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Completing data sets that are collected in heterogeneous units is a quite frequent problem.
Chow and Lin (1971) were the first to develop a unified framework for the three problems
(interpolation, extrapolation and distribution) of predicting times series by related series
(the ‘indicators’). This paper develops a spatial Chow-Lin procedure for cross-sectional
data and compares the classical and Bayesian estimation methods. We outline the error co-
variance structure in a spatial context and derive the BLUE for ML and Bayesian MCMC
estimation. In an example, we apply the procedure to Spanish regional GDP data between
2000 and 2004. We assume that only NUTS-2 GDP is known and predict GDP at NUTS-3
level by using socio-economic and spatial information available at NUTS-3. The spatial
neighborhood is defined by either km distance, travel time, contiguity or trade relation-
ships. After running some sensitivity analysis, we present the forecast accuracy criteria
comparing the predicted values with the observed ones.
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1 Introduction

The use of regional (i.e. sub-national) statistics for econometric models is increasingly impor-
tant for European regional politics. However, even in the most developed statistics systems,
important data restrictions arise when the aim is to obtain regional data at a lower temporal or
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spatial level. From a temporal perspective, since the 1960’s we are confronted with the un-
availability of appropriate short-term indicators (published on monthly or quarterly basis) at
the regional level. This limitation restricts the possibility of an accurate follow-up of the re-
gional economy, where an increasing share of the public budget is being managed. With the
aim of overcoming this first limitation, different interpolation methods have been developed,
for example, with the aim of estimating quarterly regional accounts (e.g. OECD, 1996; Pavia-
Miralles and Cabrer-Borras, 2007), using both univariate (e.g. Boot et al., 1967; Denton, 1971;
Friedman, 1962; Chow and Lin, 1971; Fernandez, 1981; Litterman, 1983) and multivariate ap-
proaches (e.g. Rossi, 1982; Di Fonzo, 1990).

On the other hand, from the territorial view point, it is difficult to find coherent databases
covering even the most basic indicators for sub-national units at different spatial disaggregation
levels (regional, provincial, local or point data). The consequences are obvious when one takes
into account the heterogeneity of space and the effect of different administrative borders in the
spatial concentration of the economic activity. Several examples could illustrate the importance
of this issue. First, some recent papers in the field of the New Economic Geography point
out that the aggregation bias affecting the measurement of economies of agglomeration stems
from the type of spatial units usually considered in the data (e.g. Duranton and Overman, 2005,
2008). Another illustrative example can be found in the studies of regional integration and trade
(e.g. Helliwell and Verdier, 2000; Hillberry, 2002; Poncet, 2003, 2005), where the unavailability
of rich databases covering different spatial levels impede the right evaluation of the integration
processes occurring within a country or a group of countries. The relevance of this issue is clear
in the case of the European Union, where a lot of effort is being put in the reduction of regional
inequalities through the regional and cohesion policy of the EU. The evaluation of this policy,
which accounts for the largest part of the EU expenses, is critically affected by the availability of
good regional statistics needed for the assignment and surveillance of the EU Funds. With this
aim (among others), during more than a decade, Eurostat publishes regional data on a range of
different statistical topics, collected by the 27 member states, but also from the three candidate
countries and from the four EFTA states. Usually, this information is collected at different
spatial levels based on the nomenclature of territorial units for statistics (NUTS).

NUTS data are collected by the individual member states using common rules and methods.
However, not all member states have developed the same level and speed of skills, especially
after 1995 when the harmonized European economic account system started. This leads to
inhomogeneous data quality and sometimes to holes in the data base, especially of it comes to
smaller regional units. Thus, although in 2003 the NUTS system was acquired as a legal basis,
and is enjoined on any new member country, it is common to find that the data at the lowest
levels of disaggregation (NUTS-3) is missing for some countries and indicators. Moreover,
periodical changes in the NUTS regulation occur since the regional classification adapts to the
new administrative boundaries or economic circumstances. Consequently, these changes lead
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to additional disconnections in the time series, which can lead to breaks in the information
at the lowest spatial units under consideration. Therefore, sometimes it is difficult to obtain
stable panel data of all EU regions at the NUTS-3 level covering even the most basic indicators
referred to demographics, labor markets, infrastructure, prices or productivity. For example,
if one downloads the Eurostat information for regional GDP at the NUTS-3 level for the EU
27, including EFTA and the candidate countries for the period 1995-2005, one would find that
15% of the numbers are missing. On top of that, the problems of data restriction at the NUTS-3
level increases for more disaggregated components of the regional accounts, either from the
supply (Gross Value Added by industries), the demand (investments, public or public expenses)
or the income side (salaries or capital remuneration). Finally, as it has been described above, it
could also be the case that the right spatial level for analyzing a specific economic phenomenon
requires the use of data even at a lower level of aggregation as the presently available NUTS-3
data.

All these facts emphasize the importance of developing spatial interpolation methods. Be-
sides the temporal limitation of the data, the problem of spatial interpolation of sub-national
variables has received little attention by the official statistics systems. Furthermore, the aca-
demic literature available on this topic is less compact and rooted in the main stream of eco-
nomic statistics. Although there is an abundant literature dealing with the problem of spatial
interpolation (from point data to area data and vice versa) of physical phenomena and environ-
mental issues (e.g. Kyriakidis and Yoo, 2005; Yoo and Kyriakidis, 2006; Huerta et al., 2004;
Guttorp et al., 1994), the number of references decreases when we focus on the interpolation
of economic data at the sub-national level. Among the exceptions, LeSage and Pace (2004) use
spatial econometric techniques to estimate missing dependent data. They predict unobserved
house prices by using the information of sold and unsold houses to increase the estimation ef-
ficiency. LeSage and Pace (2004) predict unobserved spatially dependent data with observable
data at the same regional level. Our approach is more related to the classical temporal Chow-
Lin procedure, but where we now observe the indicators at the disaggregated regional level and
need to predict unobserved dependent data at the same regional level.

In this paper we suggest two extensions of theChow and Lin (1971) method, the workhorse
of the current literature on temporal interpolation: First, we will apply the procedure to regional
cross-sectional data using a spatial econometrics model (see Anselin, 1988) and second we will
embed the model into a Bayesian framework. We address the problem of a regional data set
that is completely observed at an aggregate level (like NUTS-2) and has to be broken down into
smaller regional units (e.g. NUTS-3) conditional on observable indicators. We propose a spatial
econometrics model in a classical or Bayesian framework, the latter one has to be estimated by
MCMC. These methods are developed for cross-sectional data.

The paper is organized as follows. Section 2 outlines the Maximum Likelihood (ML) model
of the spatial Chow-Lin (CL) method. The classical (BLUE) estimator for the spatial autore-
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gressive model (SAR) is derived, along with the error covariance matrix needed for the im-
proved prediction of the missing values, which leads to the so-called spatial gain terms for pre-
dictions. In section 3 we discuss the aggregation bias. The next section (4) considers Bayesian
approaches for the spatial Chow-Lin method. In this section the MCMC algorithms and predic-
tions densities are formalized. Applied examples for the procedures are given in section 5. We
apply the spatial Chow-Lin method to Spanish NUTS-2 and NUTS-3 data. As we observe all
data on the disaggregated level, we will evaluate the quality of the spatial Chow-Lin method by
comparing the predicted values for the NUTS-3 GDP to their observed values and calculate the
usual forecast accuracy criteria. A final section concludes.

2 The Maximum Likelihood Chow-Lin Method for Completing Cross-sectional
Data

2.1 The Chow-Lin Method

High frequency time series data of the economy is valuable information for policy makers.
However, such data on a monthly or quarterly basis are rarely available. In the past many at-
tempts have been made to interpolate missing high frequency data by using related series that
are known. Friedman (1962) suggested relating the series in a linear regression framework.
The three problems in connection of missing data are known by statisticians as interpolation,
extrapolation and the distributional problem of time series by related series. Interpolation is
used to generate higher frequency level (or stock) data, while extrapolation extends a given se-
ries outside the sample period, and in the distribution framework one allocates lower frequency
flow data, such as GDP (see Fernandez, 1981), to higher frequency observations. The path-
breaking paper by Chow and Lin (1971) embedded the missing data problem to a predictive
system framework of aggregate and disaggregate data, leading to a boost in research on this
topic.

Assuming a linear relationship for the high frequency (disaggregate) data yd = Xdβ + ε,
where yd is a (n × 1) vector of unobserved high frequency data, Xd is a (n × k) matrix of
observed regressors, β is a (k × 1) vector of regression coefficients, and ε is a vector of random
disturbances, with mean E(ε) = 0 and covariance matrix E(εε′) = σ2Ω, Chow and Lin (1971)
showed that the BLUE for the regression parameter β̂ and the unobserved high frequency data
ŷd is given by:

β̂ = (X′dC′(CΩC′)−1CXd)−1X′dC′(CΩC′)−1ya (1)

ŷd = Xdβ̂ + ΩC′(CΩC′)−1(ya −CXdβ̂), (2)

where ya = Cyd is the observed aggregated dependent variable (while yd is unobserved
at the disaggregated level) and C is a N × n (with n ≥ N)aggregation matrix consisting of
0’s and 1’s, indicating which cells have to be aggregated together. The essential part in the
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equation 1 and 2 is the residual covariance matrix Ω, which has to be estimated. The Chow-
Lin construction of the BLUE requires knowledge or assumptions about this error covariance
matrix. In the literature assumptions like random walk, white noise, Markov random walk
or autoregressive process of order one have been suggested and tested (e.g. Fernandez, 1981;
Di Fonzo, 1990; Litterman, 1983; Pavia-Miralles et al., 2003). Some authors extended the
framework for the multivariate case (e.g. Rossi, 1982; Di Fonzo, 1990) covering time and space
for example (e.g. Pavia-Miralles and Cabrer-Borras, 2007). Usually, constraints are imposed to
restrict the predicted unobserved series to add up to the observed lower frequency series, e.g. by
specifying penalty functions (e.g. Denton, 1971). In this case, the discrepancy between the sum
of the predicted high frequency observations and the corresponding low frequency observation
is divided up over the high frequency data through some assumptions (for example pro rata).

There are various problems that may arise when applying the Chow-Lin procedure empir-
ically. First, one has to find a suitable set of observable high frequency indicators. Predicted
outcomes may heavily rely on the indicators chosen and their statistical properties. Seasonally
adjusting the data and aggregating multi-collinear variables improves the quality the results (see
Pavia-Miralles and Cabrer-Borras, 2007, for Monte Carlo evidence). Another crucial fact is, of
course, the design of the residual covariance matrix and the restrictions imposed.

2.2 The Spatial Extension of the Classical Chow-Lin Method

Consider a cross-sectional model of n regions where we fit a spatial autoregressive (SAR) model

yd = ρWyd + Xdβ + εd, ε ∼ N[0, σ2In]. (3)

The reduced form model is obtained by the spread matrix R = In − ρW for an appropriately
chosen weight matrix W : n × n

yd = R−1Xdβ + R−1εd, R−1εd ∼ N[0, σ2(R′R)−1]. (4)

The aggregated reduced form (ARF) model is obtained by multiplying equation (4) with the
N × n matrix C

ya = Cyd = CR−1Xdβ + CR−1ε, CR−1εd ∼ N[0, σ2C(R′R)−1C′]. (5)

We will write shorter for the N × N covariance matrix of the aggregated residuals:

σ2Σρ = σ2C(R′R)−1C′. (6)

The index ρ indicates the dependency of the covariance matrix on the parameter ρ that is part
of the spread matrix R. In the Chow-Lin framework, the aggregated model is always given
completely by observed data. Therefore, we can estimate β by standard maximum likelihood
methods, although the estimates can become quite unreliable because only fewer observations
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are available for estimation on an aggregate level. Based on the coefficients estimate of the
aggregated model we can forecast the missing values at the disaggregate level. This is possible
in two ways: the first way neglects the system framework of the Chow-Lin method, i.e. the
seemingly unrelated correlation of the aggregated and the disaggregated model and is therefore
the usual univariate regression forecasts, in this paper called Chow-Lin without gain. This naive
or ’no-gain’ forecast is given by the point forecast at the observed low-frequency indicator Xd

(the mean of the conditional model 3):

ŷd = R−1
ρ̂ Xdβ̂, (7)

with the estimated spread matrix Rρ̂ = In − ρ̂W. For the no-gain prediction, all the regressor
variables in Xd at the disaggregated level have to be known for all n regions. The second method
uses the spatial correlation structure between the aggregated and the disaggregated model and
we obtain forecasts with the gain, i.e. conditional normal estimates, where we condition the
disaggregated forecasts on the known values of the aggregated model.
The joint distribution of the aggregated (5) and the disaggregated model (4) is given by(

yd

Cyd

)
∼ N

(µd

µa

)
,

 (R′R)−1 (R′R)−1C′

C(R′R)−1 C(R′R)−1C′

 : (8)

The conditional mean ŷd for the disaggregated observations given the aggregated data ya = Cyd

is given by
ŷd = µd + (R′R)−1C′(C(R′R)−1C′)−1(ya − µa),

where µa (µd) is the mean of the aggregated (disaggregated) model.1 This leads to a formula
that is similar to the temporal Chow-Lin method:

ˆ̂yd = R−1Xdβ̂ + Gêa, (9)

where the Gêa is the ’gain-in-mean’ term of the forecast since it is an improvement over the
naive or simple forecast of the missing y-value in (7). The gain is the product of the estimated

1For the partitioned normal distribution(
x
y

)
∼ N

[(
µx

µy

)
,

(
Σxx Σxy
Σ′xy Σyy

)]
the conditional distribution is given by N[µx|y,Σx|y] with

µx|y = µx + Σxy(Σyy)−1(y − µy),

Σx|y = Σxx − Σxy(Σyy)−1Σyx.
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aggregated error vector êa = ya − R−1Xaβ̂ of the aggregation equation, and the ’gain matrix’ G,
first used by Goldberger (1962), is given by

G = (R′R)−1C′(C(R′R)−1C′)−1 (10)

It is interesting to note that G is orthogonal to C because of CG = IN and the aggregated
Chow-Lin forecasts have the property

C ˆ̂yd = Cŷd + êa,

which is the aggregated naive forecasts plus the aggregated residual vector. Thus the gain
term Gêa can be seen as a chopping or ’spatial smearing out’ of the aggregated residual vector
êa to the simple disaggregate forecasts ŷd. In case of ρ = 0 or R = In we find the gain to be a
simple ’reverse projection’ matrix G = C′(CC′)−1: in this case each aggregated residual êa,i is
divided by ni and is equally distributed over the ni disaggregated units.

Therefore we call the Chow-Lin point forecasts for the disaggregated model as forecasts
’with gain’ where the gain or improvements of the forecasts is mainly stemming from the ag-
gregated residuals.

3 Aggregation Bias

Smith (2001) has shown that there exists an aggregation bias for maximum-likelihood estima-
tion of the spatial correlation parameter, ρ, in spatial autoregressive processes. In simulation
study he has shown that the bias can cover the whole interval (−1, 1), but it is an open question
as how big the bias can be: Has a bias for the regression coefficients consequences for the fore-
casts of the dependent variable? What is the implication for the Chow-Lin method? In general,
if we have biased estimates the effect on prediction might be smaller than for the coefficient
estimates. For the spatial Chow-Lin method to be different to non-spatial Chow-Lin methods,
the estimated ρ should be different from zero. We don’t know what the true ρ is, we have just an
estimated of the ρ in the aggregated model. Thus, this ρ estimate could be biased: either it is too
big or too small, we just need it as a plug in for the Chow-Lin forecasts. The aggregation bias
affects only the SAR model, so if ρ is zero, we will not make a big error, since then we obtain
non-spatial forecasts. The only big error can occur if we estimate a large ρ: In such a case a
sensitivity analysis might be useful. If similar models don’t produce large ρ’s, then we should
be careful in using a large ρ for the spatial Chow-Lin method. If the results of the estimated ρ’s
lie close together and are large, then the use of the estimated ρ is justified. In future research
it might be possible to explore in more detail the size of the bias in case of spatial Chow-Lin
methods.

In case of a Bayesian estimation, we can always protect against outlying effects of biased
estimation: We just have to assume a prior distribution that is uni-modally centered at the origin
(A similar argument for prior information was used in ridge regression or shrinkage priors in
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vector autoregressions). Then the posterior density will be always an average of the prior and
the likelihood and therefore more centered toward zero, where the damaging effects of a biased
rho is reduced. In case of a more detailed model of the connection of the spatial ρ between the
aggregated and the disaggregated model, we could come up with a better prior density of ρ and
use it in the MCMC procedure.

4 The Bayesian Chow-Lin Model for Completing Cross-sectional Data

This section describes the estimation Bayesian SAR-CL model, which builds upon the C-
aggregation of the reduced form as given (5). The prior distribution for the parameters of the
SAR-CL model θ = (β, σ−2, ρ) is proportional to

p(β, σ−2, ρ) ∝ p(β) · p(σ−2) = N[β | β∗,H∗] · Γ(σ−2 | s2
∗, n∗),

since we assume a uniform prior for ρ ∼ U[−1, 1].
The joint distribution of θ = (β, ρ, σ2) of the Bayesian SAR-CL model is given by

p(θ | y) = N[CR−1Xβ, σ2Σρ] · N[β | β∗,H∗] · Γ(σ−2 | s2
∗, n∗) (11)

Consider the SAR cross-sectional Chow-Lin (SAR-CSCL) model and let us denote the 3
conditional distributions by p(ρ | y, θc), p(β | y, θc), and p(σ2 | y, θc) where θ = (ρ, β, σ2) de-
notes all the parameter of the model and θc the complementary parameters in the full conditional
distribution (fcd), respectively. The Markov Chain Monte Carlo (MCMC) procedure consists
of 3 blocks of sampling, as is shown in the next theorem:

Theorem 1 (MCMC for the SAR Chow-Lin model)
The MCMC estimation for the SAR Chow-Lin model model involves the following iterations:

1. Draw β from N
[
β | b∗∗,H∗∗

]
2. Draw ρi by a Metropolis step: ρnew = ρold + N(0, τ2)

3. Draw σ−2 from Γ[σ−2 | s2
∗∗n∗∗/2, n∗∗/2]

4. Repeat until convergence.

Proof 1 (Proof of Theorem 1)
1. The full conditional for the β regression coefficients is

p(β | y, θc) = N[β | b∗,H∗] · N[Cy | CR−1Xβ, σ2C(R′R)−1C′]

= N
[
β | b∗∗,H∗∗

]
with the parameters

H−1
∗∗ = H−1

∗ b∗ + σ−2X′R′−1C′Ω−1
ρ CR−1X,

b∗∗ = H∗∗[H−1
∗ b∗ + σ−2X′R′−1C′Ω−1

ρ Cy]
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2. For the fcd of the residual variance we find

p(σ−2 | y, θc) = Γ[σ−2 | s2
∗∗n∗∗/2, n∗∗/2] (12)

with n∗∗ = n∗ + n and s2
∗∗n∗∗ = s2

∗n∗ + ES S ρ and where the error sum of squares ES S ρ is
given by

ES S ρ = (Cy −CR−1Xβ)′Ω−1
ρ (Cy −CR−1Xβ). (13)

3. For the fcd of the spatial ρ we use a Metropolis step:

ρnew = ρold + N(0, τ2) with α = min
[
1,

p(ρnew)
p(ρold)

]
,

the acceptance ratio, and where p(ρ) is the (kernel of) the full conditional for ρ, in our
case the kernel is just stemming from the likelihood function:

p(ρ | y, θc) = |Ωρ|
− 1

2 exp(−
1
σ2 ES S ρ), (14)

with ES S ρ given in (13).

From the MCMC simulation we obtain a numerical sample of the posterior distribution p(β, ρ, σ−2 |

y).

4.1 Completing Data by Prediction

We obtain the posterior predictive distribution in the following way, by integrating over the
conditional predictive distribution with the posterior distribution

p(yp | y) =

∫ ∫ ∫
p(yp | β, ρ, σ

−2)p(β, ρ, σ−2 | y)dβdρdσ−2

where the posterior normal-gamma density p(β, ρ, σ−2 | y) is found numerically by the MCMC
sample, yielding a posterior sample of the θ parameters: ΘMCMC = {(β j, ρ j, σ

2
j), j = 1, ..., J}.

Next we compute a numerical predictive sample of the unknown vector y by drawing from the
reduced form (which depends on the matrix W and on the known regressors X):

y( j) ∼ N[R−1
j Xβ j + g j, σ

2
j[(R

′
jR j)−1 −G j]], (15)

with R j = In − ρ jW, j = 1, ..., J and g is the gain vector and G is the gain matrix for the mean
and variance matrix, respectively, which are defined by

G j = (R′jR j)−1C′[C(R′jR j)−1C′]−1C(R′jR j)−1], (16)

g j = (R′jR j)−1C′[C(R′jR j)−1C′]−1(ya − ŷa, j)], (17)

where we use the aggregated residuals êa = ya − ŷa and the current predictions ŷa, j = R−1
a, jXaβ j.
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5 Application of the Spatial Chow-Lin to Spanish Regions

In this section, the performance of the classical and Bayesian Chow-Lin method is evaluated
using actual data for the Spanish GDP at NUTS-2 and NUTS-3 level2. Spain has 18 regions
(NUTS-2) and 52 provinces (NUTS-3). The associated C matrix is constructed from the knowl-
edge of the hierarchical structure of the NUTS-2 to NUTS-3 regions. Note that, in contrast to
the temporal Chow-Lin method where each aggregated period (year) has the same number of
disaggregated stretches (4 quarters, 12 months etc.), in the spatial framework the number of
provinces (NUTS-3) varies for each region (NUTS-2). In Spain, the number of provinces by
regions range between 1 and 9, and 7 regions are single unit regions, having just 1 province.
This heterogeneity in terms of size and administrative structure makes Spanish regions a real
challenge and testing ground for spatial Chow-Lin methods.

5.1 The Spanish Sub-national Data

The regressors used for the aggregate model are described in Table 1.

Table 1: Description and Source of the Variables in the Database

Variable Description Source
Area Area of provinces in square km INEa

Pop Population by provinces in 1,000 INE
Emp Employment by provinces in 1,000 INE
Kstock Capital stock by provinces FBBVA-IVIEb

Export International exports of goods by provinces AEATc

Import International imports of goods by provinces AEAT
Vat Value Added Tax revenue by provinces AEAT
IncTax Income tax revenue by provinces AEAT
Income IncTax by provinces per capita Own calc.- INE
Trucks Number of heavy trucks by provinces La Caixad

Banks Number of banks in each province La Caixa
Mad Bar Dummy for Madrid and Barcelona Own calc.
Capi Dummy for Madrid only Own calc.
Caprov Dummy: 1 for all capital provinces Own calc.
Rforal Dummy: 1 for provinces with special tax system Own calc.
Sources: awww.ine.es, bwww.fbbva.es, www.ivie.es, cwww.aeat.es, dwww.lacaixa.es.

Note that the indicators should be available at the NUTS-2 and NUTS-3 level. Usually, due
to the data limitation problems described above, the number and quality of indicators available

2All data and the hierarchical C-Matrix for Spanish provinces are available from the authors upon request.
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at this spatial level is lower than for the NUTS-2 level. However, in the Spanish case it is possi-
ble to obtain some reliable indicator variables that are able to proxy the GDP by the demand and
supply side. All regressors enter in log levels to explain GDP (NUTS-2) for the year 2004. The
NUTS-2 GDP series were calculated by aggregating NUTS-3 GDP. Therefore, it is possible to
compare the Chow-Lin predicted values with the actual data available. As a spatial weight ma-
trix W = W1 we use the row normalized matrix for the inverse distances between the NUTS-3
provinces.

In addition, we have used three alternative spatial weight matrices: W2 is defined as the
row normalized matrix for the inverse of the minimum travel time between provinces, com-
puted by means of a GIS (geographical information system) software for the actual Spanish
transport network and considering the speed and legal restrictions for trucks in Spain (from
Gutiérrez Puebla et al. (2007)). W3 is defined as a row normalized matrix for the interregional
trade flows between the NUTS-3 provinces as well as between the NUTS-2 regions (these trade
matrices come from the Spanish ’c-intereg’ database: www.c-intereg.es). W4 is defined as the
row normalized first order contiguity matrix.

5.2 Alternative Specifications for the Cross-section Classical Model

We start with the estimation of a cross-sectional SAR model and the classical Chow-Lin pre-
diction. The first aim is to find an appropriate aggregated SAR model, using different indicator
variables, which should be correlated with the ‘GDP’, both at the regional and provincial level.
Table 2 shows the results obtained for the best 5 models (in terms of the coefficient of determi-
nation R2)3, using the SAR program of LeSage (1997).

Table 2: Cross-sectional SAR Model: Classic Estimates for GDP 2004, NUTS-2 and NUTS-3

Models Model 1 Model 2 Model 3 Model 4 Model 5
R-squared 0.9996 0.9993 0.9876 0.9984 0.9970
R̄-squared 0.9995 0.9992 0.9868 0.9981 0.9966
σ2 0.1601 0.2880 4.4160 0.6816 1.1769
Nobs, Nvars 18, 5 18, 4 18, 2 18, 3 18, 3
log-likelihood -2.8197 -8.1271 -32.9083 -15.8589 -20.8297
coefficientsa

constant -2.7265 -5.2255 19.3336 3.2634 9.0523
(0.0922) (0.0083) (0.0004) (0.1688) (0.0040)

log(Emp) 0.3789 0.4203 1.3351 0.9390
(0.0000) (0.0000) (0.0000) (0.0000)

(Continued on next page)

3Due to space limitations, we omit the results for variables like ‘capital-stock’, ‘number of trucks’ and
’number of banks’, which did not improve the results.
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Table 2 – continued from previous page
Models Model 1 Model 2 Model 3 Model 4 Model 5
log(Pop) 0.6325

(0.0000)
log(Exports) 0.2110 0.5039

(0.0000) (0.0000)
log(Imports) 0.3091

(0.0001)
log(IncTax) 0.5769 0.2662

(0.0000) (0.0000)
log(Vat) 0.0351

(0.6914)
log(Income) 0.0257 0.0079

(0.4069) (0.8467)
ρ 0.0908 0.1919 -0.6349 -0.0969 -0.3089

(0.1164) (0.0052) (0.0010) (0.2456) (0.0043)
ap-values in parentheses

Better indicators are expected to fit (and predict) the dependent data better in a mean squares
sense. The variables used in the first two models perform reasonably well, with the exception
of ‘Income’. In these two models the spatial term ρ is positive, but not always significant. As
we will see later, these two specifications, based on the role of employment and international
trade for explaining ‘GDP’ can easily be improved.

Before that, we focus on the next three models, which are characterized by the use of fis-
cal variables (‘Vat’, ‘IncTax’), and - surprisingly - show a negative ρ that captures the spatial
autocorrelation effect (although not significant for Model 4). Contrary to the intuition that spa-
tial income effects lead to positive spillovers between neighbors, the sign obtained in these
three models is negative, indicating the presence of an inverse relation between rich GDP
provinces and poorer neighbors. Such a negative and significant ρ obtained for Model 3 and
5 can be interpreted as a form of sub-national ‘core-periphery’ structure (see Krugman, 1991)
for Spanish provinces, and for some subregions, even within those. This phenomenon is a
kind of a ’polycentric-periphery’ relationship, and can be seen in Figure 1, where some rich
provinces like Madrid are surrounded by poor regions, and a few rich provinces are contiguous
(Barcelona-Tarragona-Saragossa, Alicante-Valencia-Castellón, Seville-Cádiz-Málaga).

In order to test if a negative spatial correlation is generated by ‘rich tower provinces’ and ‘flat
surroundings’ leading to a ‘core-periphery’ effect, we estimate two alternative specifications
whose results are summarized in Table 3. In Model 6, we include a dummy variable ‘Caprov’
with 1 for capital provinces and 0 otherwise. Interestingly, all the variables are significant and
again we obtain a negative and significant ρ with a much higher coefficient than in Model 5,
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Figure 1: Geographical Distribution of GDP 2004 for the Spanish Provinces (NUTS-3)

where we have not controlled for ‘the capital effect’. However, when we move to Model 7,
and the ‘Caprov’ is substituted by another dummy variable ‘Rforal’ that takes value 1 when the
province belongs to a special fiscal regime within Spain and 0 otherwise, the ρ become non-
significant. Thus, the cancellation of the negative and significant spatial effect in Model 7 points
to the presence of a problematic bias in the fiscal variables included (there is no alternative fiscal
variables available of the same relevance and level of disaggregation). Therefore, leaving this
issue for further research, we focus on three new specifications that explore the potential of the
variables included in Model 1.

Table 3: Cross-sectional SAR Model: Classic Estimates for GDP, 2004 (NUTS-2 and NUTS-3)

Models Model 6 Model 7 Model 8 Model 9 Model 10
R2 0.9978 0.9999 0.9996 0.9996 0.9997
R̄2 0.9973 0.9999 0.9995 0.9995 0.9996
σ2 0.8643 0.0229 0.1662 0.1662 0.1410
Nobs, Nvars 18, 4 18, 4 18, 4 18, 5 18, 5
log-likelihood -18.0950 14.6908 -3.1638 -2.9429 -1.6849
coefficientsa

constant 14.2439 0.3951 -3.5358 -3.8550 -3.9274
(0.0000) (0.4581) (0.0067) (0.0046) (0.0012)

(Continued on next page)
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Table 3 – continued from previous page
Models Model 6 Model 7 Model 8 Model 9 Model 10
log(IncTax) 0.2403 0.4180

(0.0000) (0.0000)
log(Emp) 1.0061 0.5680 0.3732 0.3798 0.4010

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
log(Exports) 0.2271 0.2357 0.2265

(0.0049) (0.0034) (0.0023)
log(Imports) 0.2991 0.2881 0.2900

(0.0002) (0.0004) (0.0001)
Capi -0.3099

(0.5003)
Mad Bar -0.5362

(0.0725)
Caprov -2.8482

(0.0118)
Rforal 2.4237

(0.0000)
ρ -0.4039 -0.0165 0.1189 0.1317 0.1347

(0.0000) (0.3637) (0.0119) (0.0084) (0.0023)
ap-values in parentheses

First, Model 8 consists of 3 variables (‘Employment’, international ‘Exports’ and ‘Imports’)
and is able to explain with a high R2 = 99.96% much of the spatial distribution of the ‘GDP’.
Once that ‘Income’ is removed (by definition, it was also affected by the ‘fiscal bias’), all
the variables are highly significant and the spatial correlation effect is positive and significant,
indicating that the ‘GDP’ in a region is positively correlated with the GDP of their nearest
neighbors. Then, in order to test if the two largest regions -‘Madrid’ and ‘Barcelona’- are caus-
ing decrements or improvements in the spatial model, we include two agglomeration dummy
variables: The dummy ’Capi’ takes value 1 for Madrid only and the dummy ’Mad Bar’ with
a 1 for Madrid and Barcelona (and 0 otherwise). Now both Models 9 and 10 slightly improve
the results compared to Model 8. In both specifications, the agglomeration dummy variables
improve the significance of the other coefficients, including the spatial term, which has higher
positive coefficients and levels of significance.

To explore the robustness with respect to the neighborhood matrix W, Table 4 shows the
results for three alternative spatial specifications of ‘proximity’ defined in 5.1. As expected,
the results for the inverse distances and travel times are very similar, obtaining high levels of
significance for all variables, with the exception of the ‘Mad Bar’ dummy in the former model.
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Table 4: Cross-sectional SAR model: Classic and Bayesian Estimates of GDP, 2004

Models Model 10
Estimation W1=distance W2=time W3=trade W4=contiguity
R2 0.9997 0.9996 0.9995 0.9995
R̄-squared 0.9996 0.9995 0.9994 0.9993
σ2

sige, ESS/(n-k) 0.1410 0.1507 0.1922 0.2101
ndraws,nomit 5000,500 5000,500 5000,500 5000,500
Nobs, Nvars 18, 5 18, 5 18, 5 18, 5
log-likelihood -1.6849 -2.2779 -4.4620 -5.2598
coefficientsa

constant -3.9274 -3.2070 -1.5668 -0.3309
(0.0012) (0.0034) (0.1151) (0.2145)

log(Emp) 0.4010 0.3937 0.4278 0.4349
(0.0000) (0.0000) (0.0000) (0.0000)

log(Exports) 0.2265 0.1881 0.1099 0.1109
(0.0023) (0.0089) (0.1359) (0.1556)

log(Imports) 0.2900 0.3318 0.3941 0.3881
(0.0001) (0.0000) (0.0000) (0.0000)

Mad Bar -0.5362 -0.4494 -0.4119 -0.3854
(0.0725) (0.1403) (0.2315) (0.2863)

ρ 0.1347 0.1039 0.0333 0.0020
(0.0023) (0.0064) (0.1799) (0.6903)

ap-values in parentheses; ESS = Error Sum of Squares

However, the results vary considerably when proximity is specified by an ‘interregional
trade’ and ‘contiguity’ matrix. In both cases, international ‘Exports’ and ‘Mad Bar’ become
non-significant and the spatial effect almost disappears (low coefficients and z-values). Al-
though this issue requires further research, it seems that a model with positive spatial auto-
correlation effects is positioned somewhere in the middle between a ‘gravity’ model explain-
ing the Spanish interregional trade 4 and the ‘first order contiguity’ model that represents the
’polycentric-periphery’ relationship as discussed above.

4In previous papers (Llano et al. (2010); Requena and Llano (2010)), the interregional trade in Spain has
been analyzed using gravity equations and found important flows between distant regions, like between
Catalonia-Andalusia, Catalonia-Madrid or Madrid-Valencia. In the gravity equation, proximity just ex-
plains part of the bilateral trade, and the pull and push factors linked to the origin and destination regions
explain the rest.
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5.3 Alternative Methods of Estimation

Based on Model 8 and Model 10, we have developed an alternative estimation procedure based
on a Bayesian spatial model. In Table 5, we have listed the results for both specifications using
classic and Bayesian cross-sectional SAR models. For both models, we obtain high R2 and
levels of significance for all variables. The sign for all the variables is the right one, and the ρ
always have a positive coefficient within the range of 0.11 to 0.13, which is of about the same
size as in Vayá et al. (2004).

Table 5: Cross-sectional SAR Model: Classic and Bayesian Estimates for GDP, 2004

Models Model 8 Model 10
Estimation Classic Bayesian Classic Bayesian
R2 0.9996 0.9996 0.9997 0.9997
R̄2 0.9996 0.9995 0.9996 0.9996
σ2 0.1662 0.1410
sige, ESS/(n-k) 0.2169 0.1951
ndraws,nomit 5000,500 5000,500
Nobs, Nvars 18, 4 18, 4 18, 5 18, 5
log-likelihood -3.1638 -1.6849
coefficientsa

constant -3.5358 -3.4639 -3.9274 -3.8971
(0.0003) (0.0253) (0.0012) (0.0117)

log(Emp) 0.3732 0.3492 0.4010 0.4084
(0.0000) (0.0000) (0.0000) (0.0015)

log(Exports) 0.2271 0.2492 0.2265 0.2377
(0.0049) (0.0204) (0.0023) (0.0191)

log(Imports) 0.2991 0.2843 0.2900 0.2747
(0.0002) (0.0077) (0.0001) (0.0055)

Mad Bar -0.5362 -0.5490
(0.0725) (0.0831)

ρ 0.1189 0.1185 0.1347 0.1360
(0.0119) (0.0324) (0.0023) (0.0166)

ap-values in parentheses; ESS = Error Sum of Squares

5.4 Evaluation of the Spatial Chow-Lin Method

Because of the forecasting nature of the approach, the evaluation of the spatial Chow-Lin (CL)
method can be done by the evaluation methods for predictions in general statistical models.
This follows from the fact that unknown disaggregated y’s have to be predicted while the disag-
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gregated predictors are fully observed. In the Spanish case we are in the fortunate position of
knowing the disaggregated y-values, so we can compute the prediction accuracy. This is done
for the classical and Bayesian prediction models as well as for the method with and without the
’gain term’ (9 and 10).

Table 6: Chow-Lin Prediction Accuracy: Classical vs. Bayesian Estimates

RMSEa MAEb MAPEc

Cross-section Classical gain 1.242 0.098 0.905
no gain 1.338 0.140 1.285

Bayesian gain 0.820 0.067 0.618
no gain 2.930 0.321 2.905

aRoot Mean Squared Error
bMean Absolute Error
cMean Absolute Percentage Error

To evaluate the accuracy of the ML and Bayesian prediction we chose three criteria from
the forecasting literature (see e.g. Chatfield, 2001): the Root Mean Squared Error (RMSE), the
Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE)5. The results
are shown in Table 6.

Using these three criteria (RMSE, MAE and MAPE), the rankings of the models are the
same. Moreover, the forecasts including the ‘gain term’, which is a function of the spatial
autocorrelation, always outperform the corresponding methods ‘without the gain’. According
to these rankings, the best method is the Bayesian method ‘with gain’, followed by the classical
approach ‘with gain’. This shows that a spatial model (in our case a SAR-CLCS model) will
considerably improve the Chow-Lin forecasts for disaggregate data, while ignoring the spatial
correlation - i.e. applying a conventional regression model instead - will give non-gain forecasts
and lead to a considerable accuracy loss for the predicted data.

Finally, to visualize the comparisons, Figures 2 to 3 show overlay plots of the deviation of
the classical and Bayesian Chow-Lin predictions for model 10, with and without gain, from
the observed data. Those Figures clearly show that the Bayesian spatial Chow-Lin forecasts lie
closer to the observed values than classical predictions or non-spatial methods (denoted as ’no
gain’).

5The formulas are RMS E = 1
N

√∑N
i=1(y − ŷ)2, MAE = 1

N
∑N

i=1 |y − ŷ| and MAPE = 1
N

∑N
i=1 |

y−̂y
y | respec-

tively.
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Figure 2: Deviation from Observed Data: Classical Cross-sectional GDP Predictions with
and without Gain across NUTS-3 Regions

Figure 3: Deviation from Observed Data: Bayesian Cross-section Predictions with and
without Gain and across NUTS-3 Regions

6 Conclusions

Regional econometric work in Europe has become increasingly important, especially since the
integration process of the European Union puts a lot of weight on policies for regional coher-
ence. For such evaluations NUTS data are the main source of information. They are collected
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by Eurostat and the individual member states using common rules and methods. But not all
member states have developed the same level of skills in data collection, especially since 1995
after the harmonized European national accounting system has started. This leads to inhomoge-
neous data quality and sometimes to holes in the database if smaller regional units are needed.
In order to apply many modern panel methods one has to complete such data sets. While the
simplest method is interpolation, this does not always give satisfactory results.

In this study, we develop a new spatial Chow-Lin procedure similar to the original one used
in the field of time series interpolation. The procedure uses the indicators at the disaggregated
regional level to predict the disaggregated unobserved dependent variable, conditional on the
complete aggregated observed model.

Interestingly, we found models also with a significant negative spatial autocorrelation effects
by including the fiscal variable ‘Income Tax’, but the R2 fit is lower than for models with
positive ρ’s. Moreover, the Chow-Lin results improve if we control for the centers Madrid and
Barcelona, because spatial spillovers are sensitive to the definition of the spatial neighborhood
matrices and the concept of ‘proximity’.

To evaluate the new method, we forecasted the GDP for the 52 Spanish provinces (at NUTS-
3 level), but based only on the information for the 18 Spanish regions (i.e. NUTS-2 GDP as
dependent variable), while the forecasts are based on high frequency socio-economic indicators
at the NUTS-3 level. Then, to compare the results obtained with the actual series available at
the NUTS-3 level, we computed forecast criteria.

Finally, we point out that a significant spatial lag parameter leads to an improvement (through
the so called gain term) in the spatial Chow-Lin prediction of the disaggregated data. The
Bayesian MCMC methods yield the best result among the 10 models in the GDP forecast exper-
iment. Our new method has shown that it pays to get a good spatial model if one is interested in
good predictions of missing data in a cross-sectional model. A non-trivial condition for finding
a good model is the existence of good indicators and the modeling skills to find the appropriate
weight matrix to estimate the spatial effects. In future research we will explore these modeling
possibilities in more detail and extend the spatial Chow-Lin method to complete large blocks
of data at the national and European level, including flow data such as inter-regional trade or
migration flows.
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