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Multitemporal variables 
for the mapping of coffee 
cultivation areas 
Abstract – The objective of this work was to propose a new methodology 
for mapping coffee cropping areas that includes multitemporal data as input 
parameters in the classification process, by using the Landsat TM NDVI time 
series, together with an object-oriented classification approach. The algorithm 
BFAST was used to analyze coffee, pasture, and native vegetation temporal 
profiles, allied to a geographic object-based image analysis (GEOBIA) for 
mapping. The following multitemporal variables derived from the R package 
greenbrown were used for classification: mean, trend, and seasonality. The 
results showed that coffee, pasture, and native vegetation have different temporal 
behaviors, which corroborates the use of these data as input variables for 
mapping. The classifications using temporal variables, associated with spectral 
data, achieved high-global accuracy rates with 93% hit. When using only 
temporal data, ratings also showed a hit percentage above 80% accuracy. Data 
derived from Landsat TM time series are efficient for mapping coffee cropping 
areas, reducing confusion between targets and making the classification process 
more accurate, contributing to a correct characterization and mapping of objects 
derived from a RapidEye image, with a high spatial solution. 

Index terms: BFAST, classification, MODIS, NDVI, remote sensing, R 
package greenbrown. 

Variáveis multitemporais para o 
mapeamento de áreas de cultivo de café
Resumo – O objetivo deste trabalho foi propor uma nova metodologia para 
o mapeamento de áreas cafeeiras que inclui dados multitemporais como 
parâmetros de entrada no processo de classificação, por meio de uma série 
temporal NDVI do Landsat TM, juntamente com uma abordagem de 
classificação orientada a objeto. O algoritmo BFAST foi utilizado para a análise 
dos perfis temporais de café, pastagem e vegetação nativa, aliada à análise da 
imagem baseada em objetos geográficos. Para a classificação, utilizaram-se as 
seguintes variáveis multitemporais derivadas do pacote greenbrown R: média, 
tendência e sazonalidade. Os resultados mostraram que o café, a pastagem e 
a vegetação nativa têm comportamentos temporais distintos, o que corrobora 
o uso destes dados como variáveis de entrada para o mapeamento. As 
classificações com uso das variáveis temporais, associadas a dados espectrais, 
obtiveram altos índices de acurácia global com 93% de acerto. Quando 
utilizados somente os dados temporais, as classificações ainda mostraram um 
percentual de acerto acima de 80%. Dados oriundos de séries temporais do 
Landsat TM são eficientes para o mapeamento de áreas de cultivo cafeeiro, 
diminuindo a confusão entre os alvos e tornando o processo de classificação 
mais preciso, o que contribui para a caracterização e o mapeamento de objetos 
derivados de uma imagem RapidEye, com alta resolução espacial.

Termos para indexação: BFAST, classificação, MODIS, NDVI, 
sensoriamento remoto, pacote greenbrown R. 
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Introduction

Coffee (Coffea spp.) is one of the most valuable 
basic products in the international scenario, surpassed 
in monetary value only by petroleum, which makes 
it an activity of great importance in the international 
market. Brazil stands out as the largest coffee 
producer in the world, as it is responsible for 31.9% 
of world production (OIC, 2018). Considering the 
dimension of coffee cultivations in the country, and 
coffee as an important commodity, the mapping and 
monitoring of coffee cropping areas are essential to the 
management of the resources. They are also used to 
obtain information about spatial distribution of coffee 
cultivations over various scales.

The mapping of agricultural areas has become 
essential because these areas are crucial to the 
economic development of many regions. Several 
techniques for mapping coffee cultivation areas were 
previously used by some authors (Cordero-Sancho & 
Sader, 2007; Martínez-Verduzco et al., 2012; Santos et 
al., 2012; Sarmiento et al., 2014), including the visual 
classification (Machado et al., 2010), the supervised 
pixel-based classification approach (Cordero-Sancho 
& Sader, 2007; Martínez-Verduzco et al., 2012), the 
object-based approach (Santos et al., 2012; Sarmiento 
et al., 2014; Souza et al., 2016), the machine-learning 
algorithms (Santos et al., 2012; Sarmiento et al., 2014; 
Souza et al., 2016), the use of different variables 
(Santos et al., 2012;  Souza et al., 2016), and physical 
data (Prado et al., 2016). However, most of these works 
did not achieve satisfactory results for accuracy, once 
coffee cultivations are commonly misinterpreted with 
other vegetation, such as pasture and native vegetation, 
when automatic classification techniques are used.

An alternative to improve mapping of coffee 
cropping areas may consist in the use of data from 
time series. Many orbital satellites can provide data 
images with a regular temporal frequency, which is 
ideal for time series studies. These temporal data can 
help with the characterization of land cover (Huang 
et al., 2010). However, for the classification of coffee 
cropping areas, these variables have not yet been used 
as data input for classification. 

Remote sensing images such as those of the Landsat 
are important for the monitoring of land cover, once 
they provide a large land-surface data and, thereby, 
they are able to support the analysis of temporal or 
phenological information of certain features, which 

makes them useful as tools for mapping, especially for 
purposes of classifying the vegetation cover (Jia et al., 
2013).

Methodologies have been developed to extract 
temporal trajectories of different land cover by 
vegetation indexes such as BFAST (breaks for additive 
seasonal and trend), which is a package available in the 
software RStudio (R Core Team, 2014). This algorithm 
is capable of decomposing the time series into three 
different components: trend, seasonality, and error, 
using methods to detect and characterize changes 
in time series (Verbesselt et al., 2010). Moreover, 
greenbrown algorithm is another tool that evaluates 
the performance of different methods to estimate the 
trend, as well as to infer the time series properties 
(Forkel et al., 2013).

Some authors have used multitemporal variables 
during the classification process, obtaining successful 
results when using these data for land cover mapping. 
Mello et al. (2013) showed a new approach in sugar-
cane mapping, by using temporal variables, and 
obtained excellent results with 99% hit indexes. Jia 
et al. (2014) used temporal variables of fused data 
in order to improve land cover mapping. Temporal 
features were extracted and added to improve the 
accuracy of classification. The results showed that 
temporal features extracted from image data with 
coarse resolution have a significant effect on the 
improvement of classification accuracy of images 
with better resolution, especially for different types of 
vegetation. Santos (2014) evaluated the performance 
of different methods to detect trends and breakpoints 
(points of interruption in the time series) in normalized 
difference vegetation index (NDVI) time series. The 
use of such methods allowed of a critical assessment 
of trends, as well as the understanding of the seasonal 
component, providing a significant improvement in 
classifications, with accuracy indexes of more than 
90%.

The use of the spectral profiles over time, along with 
an object-oriented classification approach, integrating 
temporal and spectral data in the classification 
process, may be a valuable alternative to obtain 
successful results for the mapping of coffee cropping 
areas. Developing a more accurate methodology is 
important, as faster and more precise results of the 
status and size of coffee cropping areas are essential as 
a basis to monitor them.
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For the mapping of the coffee cultivation areas, most 
works that used temporal data also use bitemporal 
analysis, or just analyze the behavior of this culture 
over the years (Bernardes et al., 2012). However, the 
use of multitemporal data as input variables in the 
classification process of coffee cropping areas is still 
absent in the literature.

It is expected to answer the following questions: if the 
temporal variables are efficient for coffee separability; 
what is the adequate quantity of variables needed to 
improve the accuracy of the classification; and, if the 
temporal data from Landsat TM are compatible for 
mapping RapidEye images.

The objective of this work was to propose a new 
methodology for mapping coffee cropping areas that 
includes multitemporal data as input parameters in 
the classification process, by using the Landsat TM 
NDVI time series, together with an object-oriented 
classification approach.

Materials and Methods

The study area was located in the southern Minas 
Gerais state, Brazil, and corresponds to a subset of the 
Landsat TM path/row 218/75 scene (Figure 1). The 
vegetation is characteristic to the Brazilian Atlantic 
Forest biome. The region’s climate is a transition 
between Cwa (humid temperate climate with dry 
winter and hot summer) and Cwb (humid temperate 
climate with dry winter and moderately hot summer), 
according to the Köppen-Geiger’s classification. The 
local is a transitional region between the previously 
mentioned biomes, and it is characterized by a great 
diversity of environmental configurations. 

The prevailing native vegetation in the region is 
the montane semideciduous seasonal forest (Floresta 
Estacional Semidecidual Montana), according to 
Veloso et al. (1991). The remaining native vegetation is 
very fragmented, and the anthropic impacted portion 
is constituted mainly by areas of pastures and coffee 
cultivations. 

Images of the RapidEye sensor represent a data set 
of high-spatial resolution (5 m), radiometric resolution 
of 16 bits, and 5-band spectral resolution. These 
images were acquired previously with the geometric 
and radiometric corrections (level 3A). The image used 
(tile 2328914, from September 19th 2012) was provided 

by the Ministério do Meio Ambiente (MMA), Brazil, 
and served as a basis for the classification.

To obtain the temporal data used as classification 
parameters, a time series from Landsat TM images 
were used. For this purpose, all the available images 
between the years 2000 and 2011, path/row 218/75 
(corresponding to the RapidEye tile), were downloaded 
from the U.S. Geological Survey (USGS, 2019a), 
totalling 195 images (Landsat Surface Reflectance 
Climate Data Records - CDRs), with 30 m spatial 
resolution, 8-bit-radiometric resolution, and 7-band 
spectral resolution. 

The CDR product is generated from a specialized 
software called Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS). The 
LEDAPS produce data about surface reflectance 
and temperature, cloud and cloud shadow location, 
and soil and water, from information such as water 
vapor, ozone, geopotential height, optical thickness 
of aerosols, and terrain elevation. These datasets are 
inputs for the 6S algorithm (Satellite Signal in the 
Solar Spectrum), resulting in CDR products that are 
orthorectificated (Masek et al., 2006).

However, because the images were acquired from 
a tropical region, Landsat TM images may show a 
significant cloud cover. In addition, many Landsat TM 
images are not available for download in some specific 
dates, thus hindering its temporal analysis. In order to 
solve this problem, a fusing method between orbital 
images was used, using data from the Moderate-
Resolution Imaging Spectroradiometer (MODIS) 
sensor MOD13Q1, from the Modis Reproject Tools 
Web (USGS, 2019b), corresponding to the same period 
of the Landsat TM images. The product MOD13Q1 has 
a spatial resolution of 250 m for NIR and RED bands, 
which were used for fusion with the respective Landsat 
bands. NIR and RED bands from MODIS images were 
reprojected to Universal Transverse Mercator (UTM), 
datum WGS-84 zone 23S, using the software MODIS 
Re-projection Tools (MRT). In addition, the pixel was 
resampled for 30 m, following the same settings of the 
Landsat TM images. Subsets of the size of the Landsat 
TM images were prepared for all MODIS images. 

For the prediction of Landsat images, the algorithm 
Spatial and Temporal Adaptive Reflectance Fusion 
Model (STARFM), proposed by Gao et al. (2006), was 
used for fusing the images Landsat TM and MODIS. 
MODIS images, despite its lower-spatial resolution 
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and more recently production of orbital data, has a 
better temporal resolution (1 or 2 days), significantly 
improving the composition of time series.

The algorithm STARFM predicts surface-
reflectance values from pairs of images Landsat (fine-
resolution) and MODIS (time T1), preferable from the 
same date and MODIS (coarse-resolution) images, 
corresponding to the image date to be predicted (time 
T2). The final result is an image of high-temporal and 
spatial resolutions (Gao et al., 2006).

The time series Landsat TM was constituted of 
original and synthetic images, where all images 
were transformed to NDVI. From this time series, 

the temporal parameters used in the classification of 
RapidEye images were obtained, as below described.

With the purpose to verify if temporal data were 
efficient to separate classes, the behavior of temporal 
signatures of different types of land cover was 
evaluated. To complete this task, the algorithm BFAST 
(Verbesselt et al., 2010) was used. Modifications were 
detected by means of identifying resulting breakpoints 
from the BFAST decomposition process. With the 
establishment of the decomposed time series, the trend 
component will have high relevance for the detection of 
a real disturbance, once it allows of the determination 
of the direction of a modification by analyzing the 
signal of the slope. 

Figure 1. Location of the study area, in the southern Minas Gerais state, Brazil, showing the location of scenes Landsat TM 
218/75 and MODIS h13v11. The RapidEye subset in which the study was performed is showed in the detail. 
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In order to extract the temporal variables for the 
classification process, the method proposed by Forkel 
et al. (2013) was used, which allows to evaluate different 
methods to estimate the trend. This methodology 
was implemented by using the package named 
“greenbrown” (Forkel & Wutzler, 2015), available 
for the R software that shows a variety of functions 
to analyze trends in time series. In the present paper, 
statistical properties of time series from Landsat TM 
images were evaluated. This procedure renders seven 
layers of information (denominated GetStatistic): 
mean, trend, inter-annual variability (IAV), standard 
deviation of IAV, seasonal variation, intra-annual 
variation (STV), and the standard deviation of STV. 
In addition to these statistical properties, other trend 
methods were also analyzed, such as the annual 
aggregated time series (AAT), season-trend model 
(STM), mean annual cycle (MAC), and annual cycle 
based on singular spectrum analysis (SSA). These 
methods differ for their temporal resolution from the 
NDVI time series, presence, or absence of the seasonal 
component, and how the trend is estimated (Forkel et 
al., 2013).

In all methods, the same algorithm for detecting 
breakpoints was used, as described by Bai & Perron 
(2003). At first, the test of ordinary-least squares 
moving sum, or MOSUM, is applied to verify the 
existence of significant breakpoints in the time series. 
Then, the optimal number of breakpoints and their 
location in the series are interactively tested (Forkel 
et al., 2013). 

To verify the effectiveness of different variables 
for classification, two sets of variables – spectral and 
temporal – were used. Spectral variables were used 
according the methodology proposed by Souza et al. 
(2016), which shows the importance of these variables 
for the classification of remote sensing images in 
coffee cropping areas. Temporal variables were chosen 
according the methodology proposed by Forkel et al. 
(2013), as previously described.

The following input variables were used for 
classification: spectral ones – brightness, maximum 
difference, mean, NDVI, and standard deviation – from 
RapidEye images (Souza et al., 2016); and temporal 
ones – GetStatistic (mean, trend, IAV, standard 
deviation IAV, seasonal variation, STV, standard 
deviation of STV), AAT, STM, MAC, SSA, from the 

Landsat TM time series analysis using greenbrown 
(Forkel et al., 2013).

Different sets of temporal variables were tested, in 
order to evaluate the prominence of these variables in the 
process of class separation, as follows: 1, GetStatistic; 
2, GetStatistic+STM; 3, GetStatistic+STM+AAT; 4, 
GetStatistic+STM+AAT+MAC; 5, GetStatistic+STM+ 
AAT+MAC+SSA; and 6, best variables. These data 
were tested in two forms: the first one, using spectral 
RapidEye data together with temporal data, and the 
second one, using only temporal data. 

The classification was performed in the RapidEye 
image, using an object-based approach, in which the 
image was segmented by gathering pixels according to 
similarities among their spectral values, thus forming 
homogeneous units within the landscape – the so 
called “objects”. Variables (spectral and temporal ones) 
associated with the objects were subsequently used as 
input data for the classification algorithm. 

The landscape was divided into five classes of land 
cover – native vegetation, coffee cultivation, pastures, 
“other-use areas”, and water bodies – according to 
their spectral characteristics, described as follows. 
Native vegetation, which designates dense forest areas 
and gallery forests, as well as Cerrado formations. 
Coffee, which are the nonproducing croppings, at 
the beginning of their growing stage, and producing 
croppings. Pastures, which are areas with natural, or 
planted pastures. And areas designated as of “other 
use”, which were subdivided into two classes for the 
training sample collection, as follows: “other-use 
1”, which are areas with annual crops at different 
development stages, and production forests; and “other-
use 2”, which are urban and constructions, areas with 
bare soil, and burned areas. And water bodies, which 
are areas of rivers, streams, and natural and artificial 
lakes.

All classifications were performed using the 
machine learning algorithm support vector machine 
(SVM). This algorithm was selected because it showed 
consistent results in previous researches (Li et al., 2014; 
Souza et al., 2016). The parameters of classification 
used in the algorithm SVM were the kernel function 
RBF, with 0.02 length, and the sensibility of decision 
margin of wrongly classified supporting vectors, 
defined as 1. Algorithms as random forest and decision 
tree build a ranking of the most important variables 
for the classification process. Consequently, these 
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rankings were used to classify the best variables for 
separation of the map classes.

Different quantities of samples were tested, with the 
aim to estimate the ideal number of training samples 
for classification. Four different sets were used: A, 
500 samples; B, 700 samples; C, 1,000 samples; 
and D, 1,500 samples. These numbers were selected 
according to the suggestion by Van Niel et al. (2005), 
who recommend that the size of training samples 
should not be smaller than 10 to 30 times the number 
of bands. 

A total of 48 classifications was performed, using 
four different numbers of training samples (A, B, C, 
and D), six sets of different variables (1, 2, 3, 4, 5, and 
6) and two different approaches: one with the spectral 
variables of RapidEye images (CVR), and another 
without the use of these variables (SVR).  

Finally, to check the accuracy of classifications, 
300 points of test data were collected. The points were 
divided as follows: 60 as pastures; 90 as vegetation; 70 
as other uses; 65 as coffee cultivations; and 15 as water 
bodies. The points were obtained using a stratified 
random sampling, by which each stratum was 
represented by a category of classification (Martínez-
Verduzco et al., 2012). The verification of points was 
performed by means of field visits, and from data 
obtained in Google Earth. The Kappa coefficient and 
overall accuracy were used as evaluation criteria.

Results of accuracy were compared using the test 
of McNemar (Foody, 2004), a parametric test that 
considers the significance between the differences of 
two classes, based on bidimensional confusion matrix.

The test evaluation was based in the chi-square 
distribution. Therefore, the calculated value of chi-
square is compared with the tabulated chi-square value, 
showing its statistical significance (Foody, 2004). 

Results and Discussion

Different behaviors from different types of land 
cover over time (Figure 2) were observed through the 
analysis of time series decomposition. Breakpoints 
were detected for the trend component in coffee 
and pasture classes, while the seasonal component 
showed no alteration over time in the three evaluated 
classes (natural vegetation, coffee areas, and pasture). 
According to Verbesselt et al. (2010), changes in 
the trend component indicate gradual or sudden 

modifications, however, they do not evidence 
necessarily a change in the type of land cover. Besides, 
modifications in the seasonal component indicate 
phenological changes (Verbesselt et al., 2010), which 
may evidence changes in the type of land cover. Land 
cover classes were separated by the algorithm BFAST. 

Concerning the seasonal component, the interval 
between the curves generated for each cover type 
showed a threshold, and it was possible to observe 
differences of amplitude between classes and 
differences between native vegetation, coffee areas, 
and pasture. For pastures, the seasonality ranged 
from -0.15 to 0.10, while for native vegetation this 
interval was narrower, varying from -0.04 to 0.08, 
and for coffee areas, from -0.05 to 0.06. The shape 
of the growth profiles from the different land cover 
types, represented by the analysis of time series, 
hold information about the behavior of each analyzed 
vegetation type (Brown et al., 2013).

The trend component also showed variations over 
time, showing breakpoints for pastures in 2008, and 
for coffee areas in 2003, while the native vegetation 
showed no breakpoint. Maybe, the native vegetation has 
undergone often a minor anthropic intervention than 
other types of land cover, thus showing no modifications 
over time, in contrast to coffee and pasture areas, 
which were likely subjected to management, resulting 
in more anthropic modifications over time. Galford 
et al. (2008) emphasize that agricultural areas have 
a more complex phenology than native vegetation, 
showing therefore more breakpoints. As to pastures, 
the breakpoints in the trend component may have 
occurred due to the lack of management in these areas 
and to the fact that they are strongly degraded areas.

According to Gómez et al. (2016), the temporal 
signatures of vegetation indexes provide complementary 
information on the targets on the land surface and the 
changes in their biophysical attributes. These results 
express the significance of these variables in the 
differentiation of land cover, since the behavior of 
each type of cover is different over time. Therefore, the 
use of these variables in the process of classification 
may be favorable to the process of separation between 
classes.

Some temporal variables were tested with the 
objective to separate coffee cropping areas from other 
types of land cover, mainly the native vegetation and 
pastures. The temporal variables showed a significant 
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effect on the classification of land cover (Table 1). The 
results obtained were efficient, showing high indexes 
of accuracy in classification for all sets of the tested 
variables, with minimum accuracy of 80.50% hits 
(Table 1 - SVR, A, 3), even when synthetic images 
to compose time series were used, which favored 
the derivations of the temporal parameters used in 
classification. Jia et al. (2014) also evidenced the 
efficiency of such images for classification while using 
temporal data.

Variable sets 1 and 2 had the best performance in 
automatic classifications, with maximum accuracy 
of 92.75% hits, using also RapidEye variables (CVR). 
It is important to stress that all classifications using 
these sets of variables (CVR) showed accuracy results 
of more than 90% hits. All other sets of variables (3, 
4, 5, and 6) showed alternated results, all with good hit 
indexes. The set of variables 1 used GetStatistic, which 
is composed by different temporal variables, such 

as seasonality, trend, intra-annual and interannual 
differences, unlike the other variables which work 
with trend issues (Forkel et al., 2013). It is possible that 
the better performance of classifications was due to 
the fact that this set had a more heterogeneous quantity 
of parameters, with more temporal analyses. Besides, 
Forkel et al. (2013) emphasize that greenbrown has 
the capacity to estimate undergone changes and to 
characterize the different land covers existing in the 
ecosystems by using time series. This way, it is possible 
to sustain that data originated from their analyses were 
able to compose the input variables in the process of 
land cover classification.

The variable set 6 was composed by the best 
variables of separability in the classification (Figure 3); 
however, even using this set of data, the classifications 
did not achieve superior results. This shows that the 
most significant variables for separability of classes 
were those from set 1. 

Figure 2. BFAST processing for natural vegetation, coffee cultivations, and pastures. A, original data from time series; 
B, seasonality of the three types of use; C, trend; D, comparison between different types of land use. Line colors: blue, 
vegetation; red, coffee cultivations; black, pastures. 
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Sets Sample Variable
Accuracy (%)

Global 
(%)

Kappa Vegetation Pasture Coffee Other Uses Water
Producer User Producer User Producer User Producer User Producer User

CVR

A

1 92.00 0.89 89.47 94.44 97.04 90.97 89.11 88.17 86.00 93.48 90.00 100.00
2 90.50 0.87 88.42 93.33 96.30 87.84 90.00 88.04 80.00 93.02 90.00 100.00

3 87.50 0.83 85.26 95.29 94.07 86.39 85.56 81.91 76.00 80.85 90.00 100.00

4 88.25 0.84 86.32 95.35 94.07 87.59 88.89 83.33 76.00 80.85 86.67 100.00

5 88.50 0.84 85.26 94.19 94.07 88.81 91.11 79.61 76.00 90.48 86.67 100.00

6 89.75 0.86 86.32 93.18 97.04 87.92 88.89 84.21 78.00 95.12 90.00 100.00

B

1 91.50 0.88 90.53 93.48 96.30 90.91 91.11 88.17 78.00 97.50 96.67 90.63

2 90.75 0.87 90.53 92.47 96.30 88.44 90.00 90.00 74.00 97.37 96.67 90.63

3 88.75 0.85 85.26 95.29 95.56 88.36 88.89 82.47 74.00 90.24 93.33 90.32

4 88.50 0.84 85.26 94.19 95.56 87.16 91.11 81.19 68.00 100.00 93.33 90.32

5 89.25 0.85 84.21 93.02 96.30 90.28 92.22 81.37 72.00 100.00 93.33 87.50

6 89.00 0.85 85.26 93.10 97.04 87.33 90.00 83.51 68.00 100.00 96.67 90.63

C

1 92.50 0.90 90.53 92.47 96.30 92.86 91.11 89.13 90.00 93.75 90.00 100.00

2 92.75 0.90 90.53 93.48 96.30 92.86 91.11 89.13 92.00 93.88 90.00 100.00

3 90.50 0.87 85.26 93.10 95.56 90.85 92.22 83.00 84.00 95.45 90.00 100.00

4 89.75 0.86 84.21 94.12 94.81 90.14 92.22 80.58 82.00 95.35 90.00 100.00
5 90.50 0.87 84.21 93.02 96.30 91.55 93.33 81.55 82.00 97.62 90.00 100.00
6 90.00 0.86 85.26 93.10 96.30 90.28 91.11 82.83 78.00 97.50 93.33 93.33

D

1 91.25 0.88 88.42 94.38 95.56 93.48 92.22 86.46 92.00 85.19 76.67 100.00

2 91.50 0.88 89.47 93.41 95.56 93.48 92.22 87.37 92.00 86.79 76.67 100.00

3 89.50 0.86 86.32 94.25 94.07 92.70 94.44 80.95 84.00 85.71 73.33 100.00

4 89.25 0.85 85.26 94.19 94.07 92.70 94.44 80.19 84.00 85.71 73.33 100.00
5 89.50 0.86 85.26 93.10 93.33 92.65 93.33 79.25 84.00 91.30 83.33 100.00
6 90.50 0.87 85.26 93.10 95.56 91.49 91.11 82.83 86.00 91.49 86.67 100.00

SVR

A

1 81.50 0.74 86.32 93.18 94.81 70.33 90.00 86.17 40.00 100.00 50.00 93.75

2 82.50 0.75 87.37 92.22 94.81 71.91 87.78 85.87 48.00 100.00 50.00 93.75

3 80.50 0.73 85.26 94.19 94.07 72.57 87.78 79.00 42.00 87.50 46.67 93.33

4 81.75 0.75 83.16 95.18 94.07 73.84 91.11 78.10 50.00 96.15 46.67 100.00

5 82.50 0.76 84.21 94.12 94.81 74.85 92.22 79.81 50.00 96..15 46.67 100.00

6 82.50 0.76 83.16 95.18 95.56 73.30 93.33 82.35 48.00 96.00 46.67 100.00

B

1 83.25 0.77 84.21 95.24 94.07 73.84 93.33 84.85 44.00 100.00 66.67 86.96

2 83.50 0.77 86.32 92.13 94.07 74.71 88.89 85.11 50.00 100.00 66.67 90.91

3 82.50 0.76 85.26 94.19 94.07 74.27 87.78 80.61 46.00 100.00 66.67 90.91

4 83.00 0.76 83.16 95.18 94.07 75.15 92.22 79.81 46.00 100.00 66.67 95.24

5 83.75 0.77 83.16 95.18 95.56 75.88 93.33 81.55 46.00 100.00 66.67 95.24

6 83.50 0.77 82.11 95.12 95.56 75.44 93.33 81.55 46.00 95.83 66.67 100.00

C

1 83.25 0.77 87.37 94.32 94.07 73.41 92.22 85.57 42.00 100.00 63.33 90.48

2 83.25 0.77 85.26 93.10 94.07 74.27 91.11 84.54 48.00 100.00 63.33 90.48

3 82.75 0.76 83.16 94.05 93.33 76.83 90.00 78.64 50.00 92.59 66.67 90.91

4 83.75 0.78 81.05 95.06 93.33 76.83 94.44 79.44 54.00 100.00 66.67 95.24

5 84.25 0.78 84.21 94.12 94.07 77.91 93.33 80.00 52.00 100.00 66.67 95.24

6 84.25 0.78 83.16 95.18 96.30 76.02 93.33 82.35 48.00 100.00 66.67 100.00

D

1 83.00 0.77 82.11 96.30 94.07 75.15 93.33 80.77 48.00 96.00 63.33 90.48

2 84.25 0.78 85.26 94.19 94.07 76.51 92.22 83.00 54.00 100.00 63.33 90.48

3 84.00 0.78 83.16 95.18 93.33 78.26 94.44 79.44 52.00 96.30 66.67 90.91

4 84.00 0.78 83.16 95.18 93.33 78.75 94.44 78.70 52.00 92.86 66.67 95.24

5 83.75 0.78 82.11 95.12 94.81 78.05 94.44 80.19 52.00 86.67 60.00 100.00

6 84.75 0.79 82.11 95.12 95.56 78.66 93.33 80.77 56.00 93.33 66.67 100.00

(1)CVR, with RapidEye variables; SVR, without RapidEye variables; A, 500 samples; B, 700 samples; C, 1,000 samples; D, 1,500 samples; 1, GetStatistic; 
2, GetStatistic+AAT; 3, GetStatistic + AAT + STM; 4, GetStatistic + AAT + STM + MAC; 5, GetStatistic + AAT + STM + MAC + SSA; 6, best variables. 
AAT, annual aggregated time series; STM, season-Trend model; MAC, mean annual cycle; SSA, annual cycle based on singular spectrum analysis.

Table 1. Classification accuracy for different sets of temporal variables(1). 
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An extensive processing time is necessary to obtain 
all the analyses available in the greenbrown package, 
using Landsat images (approximately three weeks 
for the methods MAC and SSA). The set using only 
GetStatistic as temporal variables consumed the 
shorter processing time (four hours), and this is the data 
set that showed also the best results in classifications. 
Therefore, this fact evidences that other variables are 
not necessary in the classification process, which can 
reduce the processing time, allowing this methodology 
to be used for larger areas. 

The quantitative increment of the temporal variables 
used showed that the classification performances were 
slightly reduced when CVR data were used. This 
reduction did not happen when using SVR data, whose 
accuracies displayed alternate results for the different 
sets of variables. However, the best results were 
obtained when using the variables of the set 6, which 
contains a number of minor variables.

The use of temporal variables is an alternative 
to improve the classification accuracy, and it was 
important to efficiently distinguish coffee cropping 
areas from other types of land cover (Figure 4). 
Coffee croppig areas were well differentiated from 

native vegetation areas. Temporal data have a great 
potential to improve land cover classification, mainly 
if the characteristics of images with better resolutions 
are involved in the classification process (Jia et al., 
2014). The present results are in agreement with those 
obtained by Jia et al. (2014), once the best results were 
obtained using CVR.

Zhu & Woodcock (2014) also used some variables 
(mean, frequency, intra-annual and interannual 
differences, seasonality) derived from time series for 
the classification of land use, and obtained successful 
results of accuracy, with 90.48% hit index. Vieira et al. 
(2012) also obtained successful results while mapping 
sugar-cane, using time series data, in conjunction 
with object-based classification, obtaining excellent 
accuracy results with 94% hits. Such results are 
corroborated by present study, showing the importance 
of these variables for classification of areas with high-
spectral similarity. 

There was no significant difference between the 
classifications, when comparing the sets of variables 
used (Table 2). However, the greater differences were 
observed in the results obtained with the CVR, by 
which the classifications showed a greater difference 

Figure 3. Ranking of variables used in the classification process obtained with the algorithms random forest and decision 
tree. AAT, annual aggregated time series; STM, season-trend model; MAC, mean annual cycle; SSA, annual cycle based on 
singular spectrum analysis. 
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between hit indexes; this dataset showed better hit 
indexes than the classifications using SVR.

The number of training samples had no influence 
over the index of hits. The best results were obtained 
using the set C, with 1,000 training samples, with a 
total of 20 times the number of variables used. Van 
Niel et al. (2005) sustain that such number may be up 
to 30 times the quantity of characteristics. Therefore, 
it is possible to affirm that the set of training samples 
used was efficient for attaining successful results in 
the classification process of the present study.

The use of temporal variables takes into account 
the characteristics of temporal dynamics (Vieira 
et al., 2012). In this study, the area has vegetation 
with different temporal variations; in that sense 
such parameters were relevant to maximize better 
classifications and separability between classes. The 

results obtained showed the importance of these 
variables for a successful coffee classification, with 
indexes higher than the previously reported ones 
(Martínez-Verduzco et al., 2012; Santos et al., 2012; 
Sarmiento et al., 2014), even when using methodologies 
with higher accuracy; however, they require more time 
for mapping (Cordero-Sancho & Sader, 2007).

While researching in the Central-West region in 
Brazil, Mello et al. (2013) showed that variables derived 
from temporal data showed significant results in the 
mapping of agricultural areas. Variables resulting from 
temporal data have a considerable potential to represent 
modifications of spectral characteristics in the earth’s 
surface over time, making them useful not only for 
classification purposes, but also for other applications 
such as understanding of the modifications in land 
cover (Mello et al., 2013).
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Figure 4. Classification: A, CVR-C1; B, detail of the classification map from an amplified area; and C, the corresponding 
detail in the RapidEye scene.
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Very heterogeneous areas, such as the study area, 
are complex to be mapped (Li et al., 2014); however, 
this new method using temporal variables, displayed 
a feasible procedure that is easy to be implemented, 
reducing the confusion between coffee cropping 
areas and native vegetation. Moreover, this method is 
suitable for the mapping of different areas, and has a 
great potential for mapping coffee cropping areas and 
for separating land cover and land use classes. 

To evaluate the performance of spectral variables 
from RapidEye, tests were performed after the exclusion 
of these data from the analysis of the variables. The 
results showed that the classifications that did not use 
such data obtained inferior performances than those 
that used these spectral data. However, it is important 
to emphasize that, even when not using these data, 
the results were superior to previous works mapping 
coffee cropping areas, as those by Martínez-Verduzco 
et al. (2012) and Cordero-Sancho & Sader (2007).

A similarity analysis was also performed between 
the two groups of classifications – CVR and SVR –, 
and the results (Table 3) showed that both groups had a 
significant difference between them (p<0.05 and chi-
square> 3.81); therefore, these classifications may be 
considered as different. 

Temporal data from the greenbrown package were 
significant for a successful classification of land cover. 
Similar results were found by Santos (2014), whose 
work showed that temporal data were significant for 
mapping reminiscent forests. Souza et al. (2016) used 
only spectral data for the mapping of coffee plantation 
areas in the same region of the present study, and 
those authors obtained 82% accuracy indexes, which 
is inferior to those of the present study. This indicates 
that even without the use of RapidEye variables, using 
only temporal variables, the results in the present 
study were superior. Nevertheless, when the variables 
RapidEye were inserted, the improvement of hit 
indexes was significant (Table 3), which shows the 
importance of combining spectral and temporal data 
to obtain a successful performance in the classification 
process. 

Santos (2014) showed the efficiency of a temporal 
series Landsat TM for mapping data from RapidEye 
images, as verified in the present study. Carvalho 
& Carvalho (2015) evaluated the agreement of 
multisensor image use in an object-oriented approach. 
They identified a high degree of agreement from 
Rapideye and Landsat TM images, with 5 and 30 m 
spatial resolution, respectively. From these results, it 

Table 2. Comparative matrices of classifications (A and B, lower diagonal; C and D, upper diagonal), showing the difference 
between the sets of variables, performed by the McNemar test with chi-square tabulated =3.81(1). 

A and C 1 2 3 4 5 6 B and D 1 2 3 4 5 6

CVR

1 - 0.00 0.32 0.60 0.32 0.50 1 - 0.00 0.24 0.32 0.24 0.08 

2 0.18 - 0.40 0.72 0.40 0.60 2 0.04 - 0.32  0.40 0.32 0.12 

3 1.62 0.72 - 0.04 0.00 0.02 3 0.60 0.32 -  0.00 0.00 0.04 

4 1.12 0.40 0.04 - 0.04 0.00 4 0.72 0.40 0.00 - 0.00 0.08 

5 0.98 0.32 0.08 0.00 - 0.02 5 0.40 0.18 0.02 0.04 - 0.04 

6 0.40 0.04 0.40 0.18 0.12 - 6 0.50 0.24 0.00 0.02 0.00 -

A and C 1 2 3 4 5 6 B and D 1 2 3 4 5 6

SVR

1 - 0.00 0.02 0.02 0.08  0.08 1 - 0.12 0.08 0.08 0.04 0.24 

2 0.04 - 0.02 0.02 0.08 0.08 2 0.00 - 0.00 0.00 0.02 0.02 

3 0.08 0.24 - 0.08 0.18 0.18 3 0.04 0.08 - 0.00 0.00 0.04 

4 0.00 0.02 0.12 - 0.02 0.02 4 0.00 0.02 0.02 - 0.00 0.04 

5 0.08 0.00 0.32 0.04 - 0.00 5 0.02 0.00 0.12 0.04 - 0.08 

6 0.08 0.00 0.32 0.04 0.00 - 6 0.00 0.00 0.08 0.02 0.00 -
(1)CVR, with RapidEye variables; SVR, without RapidEye variables; A, 500 samples; B, 700 samples; C, 1,000 samples; D, 1,500 samples; 1, GetStatistic; 
2, GetStatistic+AAT; 3, GetStatistic + AAT + STM; 4, GetStatistic + AAT + STM + MAC; 5, GetStatistic + AAT + STM + MAC + SSA; 6, best variables. 
AAT, annual aggregated time series; STM, season-Trend model; MAC, mean annual cycle; SSA, annual cycle based on singular spectrum analysis.
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is possible to claim that the use of multisensor images 
with different spatial resolutions could be used to work 
on large-scale projects. Moreover, it is an alternative to 
work with a significant data number, like time series, 
which may be limited by the available images, thus 
bringing a great subsidy for the land cover monitoring 
and characterization. The results obtained in the present 
study evidenced that data derived from Landsat TM 
temporal series, composed by original and predicted 
images, were efficient to characterize objects derived 
from a RapidEye image with high-spatial resolution, 
obtaining excellent accuracy indexes and being able to 
separate, in an adequate manner, coffee cropping areas 
from other types of land cover. 

A new strategy of coffee mapping, based in spectral 
and temporal data from remote sensing data, was 
proposed and showed great potential.

This methodology can be recommended for 
mapping other coffee cropping areas, and to obtain 
information on productive systems and improve the 
estimation of plantation areas, crop areas, production, 
spatial distribution, and the surrounding environment. 
This way, we can have the opportunity to improve 
environmental project strategies and management 
practices, supporting the planning of municipal, state, 
and national government.

Further studies should be completed using this 
methodology for different areas. Different variables 
may be incorporated into the classification process, as 
for instance, physical data, like topography (Prado et 
al., 2016), hypsometry, and others. 

Conclusions

1. Temporal data, associated with an object-oriented 
approach, is efficient for classifying coffee cropping 
areas, and separating land cover classes, reducing the 
existing confusion between targets. 

2. The variables derived from the greenbrown 
package, used as input data in the classification process, 
are efficient for the mapping of coffee cropping areas, 
as they reduce the confusion level between native 
vegetation and coffee, as well as pasture and coffee, 
and favors the mapping of these areas with greater 
precision.

3. Statistical variables (Getstatistic) perform 
better for mapping, increasing the success index 
of classifications; and the increment of the number 
of variables reduces the percentage of success of 
classifications, showing that best results can be 
obtained by the Getstatistic, using also spectral 
variables.

 4. Data derived from a Landsat TM time series are 
efficient, contributing to a correct characterization and 
mapping of objects derived from a RapidEye image, 
with high-spatial resolution. 
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CVR x SVR Z χ2 Significant
CVR-A1 x SVR-A1 2.96 8.82 Yes
CVR-A2 x SVR-A2 2.33 5.44 Yes
CVR-A3 x SVR-A3 2.64 7.00 Yes
CVR-A4 x SVR-A4 1.83 3.38 Not
CVR-A5 x SVR-A5 1.69 2.88 Not
CVR-A6 x SVR-A6 2.05 4.20 Yes
CVR-B1 x SVR-B1 2.33 5.44 Yes
CVR-B2x SVR-B2 2.05 4.20 Yes
CVR-B3x SVR-B3 2.17 4.71 Yes
CVR-B4x SVR-B4 1.55 2.42 Not
CVR-B5 x SVR-B5 1.55 2.42 Not
CVR-B6 x SVR-B6 1.55 2.42 Not
CVR-C1 x SVR-C1 2.61 6.84 Yes
CVR-C2 x SVR-C2 2.68 7.22 Yes
CVR-C3 x SVR-C3 2.48 6.18 Yes
CVR-C4 x SVR-C4 1.69 2.88 Not
CVR-C5 x SVR-C5 1.76 3.12 Not
CVR-C6 x SVR-C6 2.64 2.64 Not
CVR-D1 x SVR-D1 2.33 5.44 Yes
CVR-D2 x SVR-D2 2.05 4.20 Yes
CVR-D3 x SVR-D3 1.81 3.27 Not
CVR-D4 x SVR-D4 1.48 2.20 Not
CVR-D5 x SVR-D5 1.62 2.64 Not
CVR-D6 x SVR-D6 1.55 2.42 Not
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