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The grand challenge of biophysics is to use the fundamental laws of physics to predict how
biological molecules will move and interact. The atomistic HIPPO (Hydrogen-like
Intermolecular Polarizable Potential) force field is meant to address this challenge. It does so by
breaking down the intermolecular potential energy function of biomolecular interactions into
physically meaningful components (electrostatics, polarization, dispersion, and exchange-
repulsion) and using this function to drive molecular dynamics simulations. This force field is
able to achieve accuracy within 1 kcal/mol for each component when compared with ab initio
Symmetry Adapted Perturbation Theory calculations. HIPPO is capable of this accuracy because
it introduces a model electron density on every atom in the molecular system. Since the model is
built on first-principles physics, it is transferable from small model systems to bulk phase. In the
first test case, the HIPPO force field for water was able to reproduce the experimental density,
heat of vaporization and dielectric constant to within 1%. Importantly, HIPPO has been shown to
be only 10% more computationally expensive than the widely-used AMOEBA force field,

meaning that more accurate simulations of larger biological molecules are well within reach
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Chapter 1: Introduction

Our understanding of biology is profoundly incomplete. This seems a strange thing to say

in an age when we’ve discovered so much. From the structure of DNA to the recent invention of
a cure for Hepatitis C, the past half century has seen a boom in human understanding of
biomedicine. Despite this, however, the amount that we don 't understand about our biological
world still far outweighs what we do understand. We don’t understand how intrinsically
disordered proteins contribute to health and disease. We only partially understand how the
ribosome functions. We remain in the dark about how cells regulate traffic across their
membranes. We are unable to predict the affinity of drug molecules for their biomolecular
targets. The list is long and humbling. Central to nearly all of these yet unanswered questions,
however, is one unifying theme: the behavior of molecules at the atomic scale. And it is this fact
that should give us hope. If we can understand the behavior of molecules, we hold the keys to
being able to answer some of the most important questions in biology.

Addressing the behavior of biological molecules is the aim of this dissertation. More
specifically, the goal is to predict the behavior of and interactions between biomolecules using
physics-based computer simulations. HIPPO (Hydrogen-like Intermolecular Polarizable
Potential) is an atomistic model that I have developed in my graduate work specifically for the
purpose of making these predictions. It is a set of physical models that determines exactly how a
protein or piece of DNA moves in a computer simulation. Although it contains a multitude of
approximations, every term of the HIPPO model is derived from first-principles physics. This is
what makes it unique. There have been many physics-based models for computer simulations of

biomolecules proposed in the past, but none as rooted in the principles of elementary quantum



mechanics. The promise of the HIPPO model is that by staying true to the fundamental laws
driving the dynamics of every biomolecular system, it should yield predictive biomolecular
simulations. In this sense, this dissertation should be considered both complete model and part of
a collaborative work-in-progress effort. The work presented here shows the derivation and
validation of the HIPPO model. It does not, unfortunately finish the task of constructing and
validating this model on biomolecular systems like proteins. Assessing the ability of the model to
predict complicated biomolecular phenomena is an ongoing and broad-ranging research effort.

What makes this effort important is that it strikes at the core of the central problem of
biomolecular behavior. It answers the question: “What rules govern the interactions of
molecules?” HIPPO is an attempt to define those rules and to the extent it does so successfully,
has the power to help us understand some of the most important molecular phenomena in

biology.

1.1 The Grand Challenge of Biophysics

To motivate the need for a physics-based model for biomolecular simulations, allow
me to start with defining the “Grand Challenge of Biophysics”. Imagine that we wanted to
completely understand an arbitrary biological molecule. As an example, take the ribosome,
pictured in figure 1.1. The structure and function of the ribosome is so important that the 2009
Nobel Prize in Chemistry was awarded in large part for determining an x-ray crystal structure of
the molecule.! It is a complex molecular machine that we only partly understand despite decades
of molecular biology and structural biology research. At a fundamental level, however,

understanding the motions of the ribosome is conceptually simple.



Figure 1.1 The Grand Challenge of Biophysics.

Pictured are the ribosome (right), and Sir Isaac Newton (top left) and Erwin Schrodinger (bottom left) along with the
physical laws for which each are known. The challenge, which HIPPO addresses, is to apply these two fundamental

laws in an approximate way that is accurate enough to give predictive simulations of biomolecules.

Like every molecule, the ribosome is made up of atoms, and the laws of physics have already
given us all the rules that govern how atoms interact with each other. Namely, we have
Schrédinger’s equation which determines the electron density of each atom and Newton’s 2™
Law which defines how each atom will move under a given force. In principle these two laws
give us all the tools necessary to run a simulation of the ribosome (or any other biological
molecule) that replicates reality. In practice, however, it is virtually impossible to solve
Schrédinger’s equation completely for systems bigger than a few dozen atoms (the ribosome has
~250,000), and current computer power limits the time scale for which such simulations can be

performed. The Grand Challenge of Biophysics is to find a way to apply these two fundamental



laws in a way that is approximate, but accurate and computationally efficient enough to be

predictive.

1.2 The Importance of the Potential Energy Surface

The most important, and consequently the most challenging part of addressing the Grand
Challenge 1s approximating a solution to Schrodinger’s equation. This is because the true
solution to this equation, for a given molecule, defines the potential energy surface on which the
molecule moves. In other words, the exact solution to Schrédinger’s equation gives the exact
energy (and thus force) of every atom in the molecular system. In order for a model to replicate
reality, it must be an accurate approximation of this potential energy surface. For biomolecules
there is a long history of using classical functions for this purpose. The current standard in the
field is known as the Point Charge Force Field and it defines the potential energy of every atom
in a biomolecular system according to a set of classical intramolecular and intermolecular energy
terms. As illustrated in figure 1.2 the intramolecular terms are harmonic approximations to the
energy of interaction between atoms that are connected by chemical bonds and the
intermolecular terms consist of a simple fixed charge model that follows Coulomb’s Law and a

Lennard-Jones van der Waals model.
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Figure 1.2 The Point Charge Force Field Energy Model.
This model is a classical, empirical potential energy surface with intramolecular (first three terms) and
intermolecular (last two terms) terms. With small variations, this model is used in the vast majority of published

molecular dynamics simulations of biomolecules. (credit: Michael Levitt)

Despite (or perhaps because of) its simplicity, the Point Charge Force Field has long been the
standard for biomolecular simulations. In fact, this functional form, which was used on the very
first published simulations of a protein in 1977, remains the most popular choice of model for
biomolecular simulation today.?

The importance of the accuracy of an approximate potential energy surface is hard to
understate. At a conceptual level, if the forces generated by the model do not match reality, then
the motion of the atoms in the simulation will likewise be in error. Multiply these errors by the
thousands of atoms in a typical protein and the result is simulations that give an incorrect picture
of molecular motion and interactions. To make the level of accuracy needed in simulations
concrete, a simple example application is helpful. Take the case of using simulation to predict

the affinity of a drug for a target protein.
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Figure 1.3 Importance of Free Energy Estimate in Drug Design.

Given a particular lead compound, the blue curve shows the probability that an experienced medicinal chemist will
synthesize a new compound with tighter (more negative) binding free energy. The orange, green and red curves
indicate the probabilities if those compounds are filtered using simulations that have an accuracy of 2.0 kcal/mol,
1.0 keal/mol and 0.5 kcal/mol respectively. The shaded region indicates compound with a factor of 10 tighter
binding than the lead molecule. One can see that a model capable of even 1.0 kcal/mol accuracy can yield five times

the number of tighter binding compounds. Reproduced from reference 3.

Figure 1.3 shows the importance of accuracy in predicting the energy of the interaction between
drug and protein. A model potential energy surface that is capable of predicting the binding
energy to within 1 kcal/mol error can increase the number of potential drug candidates by 5x.?
Put another way, Because of the relation AG = -RT log(Kp), at room temperature every order of
magnitude in the binding affinity translates into 1.36 kcal/mol in the free energy of binding. This
is of great practical importance since a factor of 10 variance in a drug’s binding affinity can be
the difference between a medicine that hits a specific target vs. one that binds non-specifically.

These and other considerations lead to the goal of “chemical accuracy’: potential energies that



are accurate to within 1 kcal/mol. This level of accuracy matters specifically to binding
interactions, but it is also applicable to the veracity of biomolecular simulations, generally.
Unfortunately, in many cases the point charge force field model is not capable of the
accuracy necessary to be predictive of biomolecular reality. One concrete example that makes
this clear is a recent study examining the performance of current force fields for predicting the
fold of the UUCG RNA tetraloop. This particular RNA structure has been extensively studied by
NMR (Nuclear Magnetic Resonance) and is known to spend greater than 90% of its time in the

conformation represented by cluster 5 in figure 1.4.4
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Figilre 1.4 Structures of UUCG tetraloop as observed in simulations with various force fields.

No force field predicts the correct structure, cluster 5, shown overlaid in green. Reproduced from reference 4.

As shown in figure 1.4, however, no version of the Amber force field is able to correctly predict
the fold of the molecule. In fact, only the Amber {199 + Chen-Garcia model is able to predict that

the sequence will spend any amount of its time (~10%) in the known structure. This across-the-
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board failure occurs despite the fact that the tested force fields were specifically parameterized
for RNA. This points to a serious problem with the point charge force field potential energy
surface. Unfortunately, not all problems can be fixed with new parameterizations of the existing
functional form. In many cases the problem with the potential energy surface resides in the

functional form itself.

1.3 Symmetry Adapted Perturbation Theory

This and other failures of Point Charge Force Fields, of course, beg the question: If the
Point Charge Force Field model is not a sufficient functional form to generate an accurate
potential energy surface, what is? Because what we need is a classical functional form (solving
the equations of quantum mechanics directly is too computationally expensive), there is no
exactly correct or unique answer to this question. The fundamental issue is that classical models
must split the total energy of interaction into components (e.g. electrostatics and van der Waals
in standard force fields), but these quantities are not quantum mechanical (QM) observables.
This means that a particular energy component cannot be measured experimentally. It does not
mean, however, that such partitions are not possible mathematically. There have been many ab
initio Energy Decomposition Analysis (EDA) schemes proposed and each partitions the total
QM interaction energy into physically meaningful components. They include Kitaura—
Morokuma (KM) EDA, Reduced Variational Space (RVS) EDA, Absolutely Localized
Molecular Orbital (ALMO) EDA and others. For a useful review of EDA methods, see reference
5. The most powerful for the purposes of determining a force field functional form, however, is
Symmetry Adapted Perturbation Theory (SAPT). SAPT uses perturbation theory to decompose
the total ab initio intermolecular energy into electrostatics, induction, dispersion and exchange-

repulsion components.®® Because each of these components, as I will show through the course of



this dissertation, has a natural, classically derived analog, I choose SAPT as the ab initio method
against which to develop and parameterize the HIPPO model. Using SAPT in this way gives us
blueprint for a first principles physics-based functional form to replace the empirical Point
Charge function.

An exhaustive review of the SAPT method is beyond the scope of this dissertation. A
comprehensive explanation and derivation can be found in reference 6, and a more accessible
review article in reference 8. It is instructive, however, for the purposes of understanding the
derivation of the HIPPO potential energy model to lay out a brief explanation of each term in the
SAPT perturbation theory expansion. Since SAPT is built off of Rayleigh-Schrodinger (RS)
Perturbation Theory, I will start with overview of the RS method and then proceed to each of the
SAPT energy terms.

1.3.1 Electrostatics

SAPT is fundamentally a perturbation theory method. Generally, the idea of perturbation
theory methods is to find the solution to a complex problem by starting from the solution to a
nearby simple problem and then perturbing the simple solution to fit the complex one. In the case
of SAPT for intermolecular interactions, where we are attempting to find the full intermolecular
interaction energy between two molecules, the simple, or unperturbed, problem is monomer
wavefunctions. To get from isolated monomer wavefunctions to the full, interacting solution,
SAPT starts with RS Perturbation Theory.

In RS Perturbation Theory for intermolecular interactions the goal is to find the solution
to the equation,

HY = E¥ (1.1)



where YV is the wavefunction of the dimer system, H is the Hamiltonian of the dimer system, and
E is the energy of the interaction. Since H is complicated for a molecular dimer, we can define it
in terms of perturbation theory as,

H=H,+ AV (1.2)
where Hy is the unperturbed Hamiltonian, V is the perturbation and A is a parameter, between 0
and 1, scaling the magnitude of perturbation. In this case Ho is taken to be

Ho = H, + Hp (1.3)
where Ha and Hp are the unperturbed Hamiltonians of monomers A and B, respectively. This
means that for A = 0, YYo= Wa¥s and Eo = Ea + Eg. In other words, the zeroth order of RS
Perturbation theory is the sum of the energies of the two isolated monomers. What we are
interested in, however, is the intermolecular energy represented by the remaining orders of the
perturbation theory expansion when A > 0. In this case we can write the energy and wavefunction
as power series expansions in A,

l.lJ:lIJO +}\l.lJl +)\2tp2 + .-
E = EO +)\E1 +)\2E2 + -

(1.4)
where the infinite order expansion in energy with terms E; through E, represents the exact
intermolecular energy. In practice only the first few terms in the expansion are needed for a very
accurate approximation. Unfortunately, the total wavefunction defined by equation 1.4 does not
follow the antisymmetry requirement imposed by the Pauli Exclusion Rule. This is the root of
the need for Symmetry Adapted Perturbation Theory over canonical RS perturbation theory. The

correction that SAPT adds will be explained fully in section 1.3.4. However, the first few terms

of the RS expansion can tell us a great deal about the physical nature of intermolecular
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interactions. To derive these terms, we combine together terms with like powers of A (in Dirac
notation) to give,

E(I)QS = (LP0|H0|qJ0)
Efs = (Lp0|V|qJO)
ERS = ($o|V|¥,) (1.5)

ERS = (y|V| %)
the energies of each order according to the corresponding n-1 order wavefunction.

The first and most important term in the RS expansion, EiRS, represents the electrostatic
component of the intermolecular interaction. This is apparent when we consider the explicit
physical form of the intermolecular interaction operator, V, in equation 1.2. This is simply the
application of Coulombs law, or the operator 1/r. Inserting this into equation 1.5 gives,

E{?S = (PaWp| VW, W) = (PaWalV W5 Wg) (1.6)

or in integral form,

1
Ef® = j f pa—ppdv®. (1.7)

This is the statement of Coulomb’s Law between two charge densities, namely the unperturbed
electronic charge densities of molecules A and B. SAPT naturally terms this the electrostatic
energy. It is the portion of the interaction energy due to the Coulomb interaction between the two

charge densities before they deform in response to each other.

1.3.2 Induction

Of course, in reality the electronic charge densities of interacting molecules deform in
response to each other. This is where the 2" order and higher of RS Perturbation Theory comes
into play. For intermolecular (non-bonding) interactions, the 2" order term all that it is needed

for a nearly-complete picture of the interaction. 3™ order and higher SAPT terms do exist, but
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their classical interpretations become much more complex and their contributions to the energy
vanishingly small. For these reasons, HIPPO uses only SAPT terms through 2" order. The full
second order energy is defined as,

EFS = (% |VI¥y), (1.8)
in terms of the 1% order correction to the wavefunction, W;. This first order correction can be
split into two parts. The first, when excitations from the ground state wavefunction ¥y are
localized exclusively to either monomer A or B. The contributions from these excitations, termed
WA*Wg and WA ¥p*° form the SAPT induction energy. The remaining contributions, where
excitations occur in concert on both monomers are termed dispersion and will be discussed in the
next section. The induction component can be further subdivided into contributions from
WaA™Wp and WaAWB™* respectively,

ERS(ind) = EXS(ind, B —» A) + EXS(ind, A - B). (1.9)

The induction energy of the deformation of A in response to B, the first term in equation 1.9, can
be written as:

EX*(ind, B > A) = (Yo Wp|V W Wp) = (Palw|W5), (1.10)

where,

1
w = j;pgdv. (1.11)

This term, m, represents the electrostatic potential of the unperturbed electron density of
monomer B acting on monomer A. The energy associated with the deformation this causes is
defined by equation 1.10. The same is true, swapping symbols, for the electrostatic potential of A

acting on monomer B.
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The sum of these two terms gives the SAPT definition of the induction energy. This is a
natural definition because it matches our classical understanding of induction. When an electric
field is applied to charge density, that density responds in a predictable way. This is the idea that
underlies the concept of polarizability, which gives a description of how easily a given density
will deform. In the case of molecules, rather than an external electric field, the field applied to A
or B is coming from the other monomer. It is natural to call this component of the intermolecular

interaction the induction energy.

1.3.3 Dispersion

The induction component of the 2" order RS Perturbation theory expansion only covers
part of the full 2" order energy. In the simplest terms, dispersion is defined as what is left over
after the induction energy is calculated,

ERS(disp) = ERS — ERS(ind). (1.12)
This definition, however, does not give us any physical meaning behind the term. To extract
physical meaning, we can derive the “left over” component. As described in the previous section,

this is the contribution to the energy arising from the component of ¥'; that involve excitations
on both monomers, W2*Wp™. This component of the RS 2" order energy,

EF*(disp) = (PaWs|V [P WE™), (1.13)
cannot be decomposed into any terms involving simple, unperturbed monomer densities. The
form of equation 1.13 does, however, give us an understanding of this component. This energy is
coming from the correlation of instantaneous changes in the wavefunctions (and thus densities)
of monomers A and B. This is the classical definition of the dispersion energy. In the classical

Drude oscillator model of London dispersion (see section 4.2.1) the dispersion energy is the
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energy due to the interaction of instantaneous fluctuations in electron density. SAPT follows this

rationale and names the “left over” part of the 2" order RS energy dispersion as well.

1.3.4 Exchange-Repulsion

The electrostatics, induction, and dispersion components of the SAPT decomposition of
intermolecular interaction energies are derived from straightforward Rayleigh-Schrodinger
Perturbation Theory. Where SAPT differs, and from whence it draws its name, is its treatment of
exchange-repulsion. As stated above, the problem with RS Perturbation Theory is that it does not
yield a final wavefunction (equation 1.4) that is antisymmetric. This cannot be correct, as the
Pauli Exclusion Principle specifically demands that all valid electronic wavefunctions be
antisymmetric. To remedy this problem, SAPT introduces an operator call an antisymmetrizer,
A, which appropriately permutes all pairs of electron labels to yield an antisymmetric
wavefunction. Operating on the zeroth order H> wavefunction, for instance, the antisymmetrizer
gives,

A4 (DW5(2)] = [Pa(1)Wp(2) — ¥a(2)¥p (D] (1.14)
In the more general case of arbitrary intermolecular interactions, SAPT applies the
antisymmetrizer to each order wavefunction from RS Perturbation Theory. This gives,

PoAPT = AWPRS (1.15)
the symmetry adapted, corrected wavefunction for each order. Each component of the RS
expansion is then recalculated with these symmetry adapted wavefunctions and the difference
between these two energies defines the SAPT exchange-repulsion energy:

2
Epyen = Z EPAPT — EFS (1.16)
i=0
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In this way the total energy from SAPT is guaranteed to be the energy associated with an
antisymmetric total wavefunction, but we still retain the physical motivation behind the
electrostatics, induction and dispersion terms from RS Perturbation Theory. The physical
intuition behind this energy which SAPT calls “exchange-repulsion” (also referred to as “Pauli
repulsion”) is less obvious than the other terms in SAPT. A full interpretation is given in Chapter
5 of this dissertation, but in short, the energy due to forcing antisymmetrization of the
wavefunction arises from the overlap between the noninteracting monomer densities. The
overlap in these unperturbed densities violates the Pauli Exclusion Rule and therefore, relative to
this reference, the density in the overlap region is reduced to accommodate the rule. This
reduction in density in the internuclear region de-screens the nuclei, resulting in internuclear
repulsion. This affect is seen clearly if one plots the densities corresponding to ¥ and AY. An

example of this for the helium dimer is shown in section 5.2.1.

1.3.5 Why SAPT is a Natural Fit

There are a large number of legitimate ab initio energy decomposition analysis methods
available. A natural question is, why use SAPT? Although there are many similarities amongst
the various EDAs, the structure of SAPT makes it particularly well-suited for the purpose of
constructing a classical force field. Specifically, it is the use of perturbation theory and how it is
applied in SAPT that makes it a natural fit for building the HIPPO force field.

As described above, the reference, or unperturbed, state of the SAPT calculation is the
two non-interacting monomer wavefunctions. Although this reference state is technically not a
valid system wavefunction, it does correspond directly to the strategy used to build the
electrostatics portion of the HIPPO force field. In HIPPO the multipole moments of each atom

(charge, dipole and quadrupole) are derived directly from the isolated, gas-phase monomer
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electron density. In other words, HIPPO and SAPT start from the same reference state. The
other, higher-order terms are in direct correspondence as well. The polarization model of HIPPO
matches the definition from SAPT of electron density deformation in the presence of an external
field. The dispersion and Pauli repulsion components likewise correspond directly between
SAPT and HIPPO. The depth of these associations will be explored in Chapters 2-5 for each
component, but they stand on the same conceptual foundation. This matters to having an
interpretable force field. Because HIPPO is a natural fit with SAPT, it allows us to describe in

quantum mechanical language what the force field is approximating classically.

1.3.6 A SAPT Example

Because SAPT is both a highly accurate ab initio method and because it aligns closely
with the design principles of classical force field models, we can use it evaluate model
performance. The body of this dissertation with be full of examples comparing SAPT
components for molecular interactions to classical models (HIPPO and otherwise), but one
example at this point will clarify how SAPT can be used.

A good example of the utility of SAPT in evaluating force fields is the RNA tetraloop
mentioned in Section 1.2. A primary driver of nucleic acid structure is the base stacking
interaction. Thus, work by Parker and Sherrill in reference 9 set out to evaluate how well
standard force fields performed against SAPT for this particular interaction. Their findings are

illustrated in figure 1.5.
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Figure 1.5 SAPT vs. Point Charge Force Field Energy Components for RNA Base Stacking.

The figure is an illustration of the general trends observed in reference 9. “QM” represents SAPT. The SAPT

Induction component is omitted since there is no corresponding component in point charge force fields.

Clearly, there are some major issues with the components of the standard force field models.
First, there is an entire component missing. Point charge force fields do not include polarization,
so they miss this component of the SAPT EDA. Second, although the components for
electrostatics, exchange, and dispersion match well at long-range, each diverges at short-range.
This is particularly true for electrostatics where the divergence is sharp. As I will describe in the
body of the dissertation, these problems are not unique to RNA. They occur across the space of
chemical interactions and they are a specific result of point charge force fields neglecting the
molecular charge density.

Point charge force fields typically rely on cancellation of errors in order to cover up these
two issues, resulting in two further problems. First, the cancellation of errors that works for one
system may not necessarily work for another system. Second, and more importantly in the case
of RNA, the functional form of the point charge force field is not flexible enough to cancel errors

in all distance ranges simultaneously. This is what was observed by Parker and Sherrill. They
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found that without a charge density model included, the point charge force field model could not
be reparametrized to obtain accurate total energies across a range of intermolecular interaction
distances and conformations.

This analysis of the atomic-level interactions that drive RNA structure is enlightening,
particularly in light of the failure of point charge models in reproducing RNA structure shown in
figure 1.4. One cannot conclusively say that the inability to model base stacking correctly is the
cause of the structural errors seen in figure 1.4, but the suggestion is strong. The SAPT analysis
hints that the pathway to more accurate simulations of RNA and biomolecules in general does
not lie in reparametrizing existing models; it lies in building new models that explicitly include

the missing physics that is causing the standard models to fail in the first place.

1.3.7 The S101x7 Database
In order to use SAPT to build a model that approximates the EDA energy components,

the first step was to construct a database of reference data. Since the goal of the HIPPO force
field is to simulate biomolecules, a database was assembled that included a wide variety of
intermolecular interactions that are prevalent in biomolecular systems. A total of 101 molecular

dimers where chosen, as enumerated in figure 1.6.'°
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Arrows connecting molecules indicate a dimer. The “/2” designation indicates a homodimer. The “/+(-)”” designation

indicates that both a neutral and charged species are included. Reproduced from reference 10.

The database is derived from the widely-used S22 and S66 databases of Hobza and co-
workers.!'!2 It includes additions of halogenated systems, phosphates, sulfur-containing
compounds and amino acid side-chain analogs.

In addition to including the equilibrium structure for each dimer, the database was
expanded to incorporate six additional points along each dimer’s dissociation curve. This yields
the S101x7 database, which has been used extensively in the development of the HIPPO. The
points along the dissociation curve are 0.7, 0.8, 0.9, 0.95, 1.00, 1.05, and 1.10 times the
equilibrium distance. These represent the range of intermolecular distances typically seen in
condensed phase simulations. The monomer geometries are optimized at the equilibrium distance

at the MP2/aug-cc-pVTZ level of theory, then held fixed for the other distances.
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For each dimer structure, we performed SAPT2+ calculations using the Psi4 quantum
mechanics software package.'> SAPT2+, as illustrated in figure 1.7, includes electrostatics,

induction, dispersion and exchange terms as well as some correction terms.'*
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Figure 1.7 Levels of Symmetry Adapted Perturbation Theory.

Reproduced from reference 14.

We performed SAPT2+ calculations with two different basis sets: aug-cc-pVDZ and aug-cc-
pVTZ. The former constitutes the “silver” standard according to the reference 14 and the latter
was computed to estimate complete basis set (CBS) limits. The output of these calculations were
an electrostatics, induction, dispersion and exchange data point for each of the 707 dimers in the

S101x7 database.
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1.4 A New Kind of Force Field

For more than three decades the standard of biomolecular simulation has been the point
charge force field. This model has had many notable successes. Molecular dynamics simulations
using point charge force fields have successfully folded proteins and reproduced enzyme-
inhibitor binding interactions.!>!® As illustrated with the RNA example above and as will be
further demonstrated in the body of this dissertation, however, this standard model is missing
some key physics. The hypothesis of this work is that rather than attempting to cover over these
insufficiencies, a more productive approach is to derive a model that includes the most relevant
and important physics from the start. It is this design strategy that has driven the development of
the model presented in this work. The HIPPO model is a new class of force field. Although it is a
classical potential energy function, every term is derived, in some fashion, from first-principles
physics.

The HIPPO model is different from the point charge force field model in two subtle, but
important ways. First, the HIPPO model is derived and parameterized to explicitly reproduce the
ab initio energy components from Symmetry Adapted Perturbation Theory. This stands in stark
contrast to the strategy of the standard force fields, which are parameterized empirically, based
on condensed phase properties. Second, the HIPPO model abandons the atoms-as-points model
of the standard force field and introduces a model electron density around every atom. As I will
show, every intermolecular potential energy term is related in some way to the overlap of atomic
charge densities. Including a model density on each atom allows derivation of the first-
principles-based energy terms of the HIPPO model.

These two profound changes that make HIPPO a new class of force field yield a host of
improvements over conventional models. HIPPO is able to reproduce each separate component

of the intermolecular energy relative to SAPT within chemical accuracy, or ~1 kcal/mol.
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Including a charge density model solves the longstanding “charge penetration problem” in
molecular modeling (see Chapter 2). The resulting polarization model yields better molecular
polarizabilities than the leading polarizable force fields (see Chapter 3). The first-principle
derived dispersion model produces a damping function with true physical meaning (see Chapter
4). The exchange-repulsion model describes the anisotropy of halogen bonding with drug
molecules more accurately than any alternative force field (see Chapter 5). And, when all these
parts are added together, the whole model works naturally for simulating water and a host of
other organic molecules (see Chapter 6). These successes, as | will show through the course of
this dissertation are a direct consequence of the physics-first design of the HIPPO model. This is
not to say that HIPPO is a purely “ab initio” model. The data clearly show that the parameters
must be tuned to reproduce experimental reality in the same way biomolecular force fields have
always done. The fact that the model is rooted in its derivation from first principles, however,
means that it makes the stubborn optimization problem of empirical force fields tractable. The
direct connection between HIPPO and SAPT acts as a strong set of guidelines for model
development. We have developed water and small organic molecule HIPPO force fields, but
work is also underway to build HIPPO models for full protein and nucleic acid simulations. The
work presented in this dissertation lays the groundwork for HIPPO to produce a new class

biomolecular simulation.

1.5 Structure of the Dissertation
The dissertation will be laid out in the following manner. This first chapter has served to

give a motivation, background information and overview of the HIPPO model. Chapters 2-5 will
explain in detail how each term of the function was derived and parameterized. These will go in

order of their place in the perturbation theory expansion. Chapter 2 is devoted to electrostatics,
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Chapter 3 to polarization (induction), Chapter 4 to dispersion and Chapter 5 to exchange-
repulsion (Pauli repulsion). Each chapter will detail how the component was derived and how
well it matches the SAPT data for that component. Chapters 2, 4, and 5 are taken directly from
published works of which I am the first author. These chapters will contain an introduction to put
the paper in context, the full body of the paper and a “Further Work™ section that explains any
parts that subsequently changed. Finally, Chapter 6 will tie the dissertation together by
presenting simulation results of the full HIPPO model on water. Taken together, this should
provide a full picture of where the model comes from, how accurate it is, and how we can expect

it to perform in future applications.
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Chapter 2: Electrostatics

In many ways the electrostatics portion of the HIPPO model is the most important

component of the whole. There are two reasons for this primacy over the other components. The
first is conceptual. According to the perturbation theory strategy of Symmetry Adapted
Perturbation Theory, electrostatics is the first order contribution to the total intermolecular
interaction energy. Because of this, all of the other terms are built on top of it, making it essential
that the model be both simple and accurate. The second reason is practical. Decades of
biomedical research has shown the importance of charged interactions in biomolecular systems.
This ranges from partial charges interacting between protein sidechains to ions neutralizing
charged nucleic acid backbones. For these reasons, electrostatics was the first portion of the
HIPPO model that I addressed. The work in the following published paper lays out the
foundational idea of the HIPPO model: the atomic charge density.

At the time the following paper was published, I did not know that the charge density
would end up being so integral to the overall model. The paper was specifically meant to address
the narrower problem of “charge penetration” in molecular mechanics force fields. There had
been some work on this in the literature, but nothing comprehensive for a biomolecular force
field. This showed that within the context of the AMOEBA (Atomic Multipole Optimized
Energetics for Biomolecular Applications) force field, a simple charge density model could solve
the charge penetration problem by applying that charge density to all orders of the AMOEBA
multipole expansion (charge, dipole, and quadrupole). As I will show in “Further Work” (Section
2.8), this model was changed slightly for the final HIPPO model. The conclusions of the paper

remain, nonetheless, unchanged.
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2.1 Introduction
A grand challenge of molecular mechanics (MM) force fields is modeling the physics of

molecular interactions with an accuracy and efficiency that allows realistic, tractable simulations
of large systems. The goal is not only to correctly capture the physics of molecular interactions,
but also to be able to answer important practical questions posed by biology, materials science and
anumber of other fields. To do this, MM models make classical approximations to the 1! principles
quantum mechanics driving the true dynamics of a molecular system. Typically, this is done via a
set of classical harmonic potential terms describing the intramolecular interactions of bonded
atoms in the system and a separate set of non-bonded terms to describe intermolecular interactions.
In particular, the electrostatic nonbonded terms are especially important for accurately modeling
both short and long range molecular interactions. !

The AMOEBA force field is unique in its treatment of these important intermolecular
electrostatic interactions. Most MM force fields use point charges to approximate the charge
distribution around atoms in a system and parameterize these point charges based on
thermodynamic measurements. AMOEBA takes a more physically realistic approach. The
AMOEBA model approximates the charge distribution around atoms as a point multipole
expansion of the charge distribution obtained from ab initio quantum mechanics (QM)
calculations.?>? Using a multipole expansion derived from ab initio QM calculations provides a
much more accurate description of electrostatic interactions at medium-range (~2 to 4 times the
vdW radius), and has been shown to yield satisfactory results for simulations of water, proteins,
nucleic acids and small molecules.!>*3

The multipole approximation of electrostatics, however, starts to break down at short-
range. While the multipole expansion is rigorously correct for interactions of atoms at sufficient

distance, it is no longer strictly valid once the electron clouds of interacting atoms start to overlap.
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This phenomenon is known as charge penetration. Charge penetration is simply the change in the
electrostatic interaction between two atoms due to their electron cloud overlap and the associated
loss of nuclear screening. It is a simple accounting for the fact that atoms in a system are not points;
they represent finite charge distributions. Accurately modeling electrostatics has been a priority
with AMOEBA since its inception. The importance of these interactions was a key motivation for
the original AMOEBA multipole model. Qualitatively, accounting for charge penetration is the

logical next step in improving this model.

Level of Detail Needed to Accurately Describe Electrostatics
in Molecular Mechanics Force Fields

V(r)
) ) 1 .

| l |

Partial Charges Multipoles Multipoles + Charge Penetration

Figure 2.1 Electrostatic potential as a function of distance.

An increasing level of theory is needed as the radial distance from an atom of interest decreases.

As depicted in figure 2.1, the current model covers the accuracy of long- and medium-range
electrostatic interactions. What is needed is a description of charge penetration to accurately model

short-range interactions.
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In addition to being physically relevant, charge penetration has been shown to be an
important factor in many intermolecular interactions. A particularly instructive set of examples
lies with what are commonly called “pi-pi” stacking interactions.® The benzene sandwich dimer,
as illustrated in figure 2.2, should classically be considered electrostatically repulsive since like
charges are lined up across from one another. High level ab initio quantum mechanical
calculations, however, show the counterintuitive result that the benzene sandwich dimer is

electrostatically attractive.” This is almost entirely due to charge penetration.
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Figure 2.2 Electrostatic energy of the benzene sandwich dimer.
AMOEBA overestimates the electrostatic energy of the interaction compared with the benchmark QM calculations.

The error gets progressively worse at short-range.
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Figure 2.2 shows that the overlap of electron clouds causes the electrostatic energy of the
interaction to become more negative as the two monomers get closer together. This same
phenomenon is observed with stacking interactions between nucleobases. Parker and Sherrill have
recently shown that without charge penetration, it is difficult, if not impossible to accurately
capture the electrostatics of interacting nucleobases.® These considerations show that if AMOEBA
is to be successful in accurately modeling biologically relevant interactions such as nucleic acid
folding or ligand binding, we must account for the short-range electrostatics of charge penetration.

A number of studies have suggested functions for incorporating charge penetration into
existing molecular mechanics force fields.”?* The derivation of most of these functions has
followed the same basic strategy. The electrostatic description of each atom in the system is split
into two parts. The first is the core charge (often, but not necessarily simply the nuclear charge),
treated as a point and second a smeared electron cloud charge representing the remaining charge
of the atom. This splits what was a single interaction into four interactions, as illustrated in figure

2.3.
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Atom A Atom B

U = U (Core A-Core B) 4 U (Core A- Smeared Charge B) 4 U (Smeared Charge A - Core B) 4 U {Smeared Charge A - Smeared Charge B)
electrostatic 1 2 3 4

Figure 2.3 Electrostatic energy of charge penetration-corrected, smeared-charge atomic interactions.
The total electrostatic energy is split into four parts. The first term is the energy of the core-core, point-point
interaction. The second and third terms are the energies of each core in the electrostatic potential of the opposing

smeared charge. The fourth term is the energy of the overlap between smeared charge distributions.

The functions listed in table 2.1 are four methods suggested for how best to handle this four-part

interaction between atoms.
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Model Core A — Core A — Smeared Charge Smeared Charge A —
Core B Smeared Charge A —Core B Smeared Charge B
B
ZpZp joo Zupp(ry) dr joo Zgpa(ry) dr jf pa(r)pp(ry) PalrIPe\T2) o
Engels; r T o lRp—m| * Cm—ml
Cisneros
ZyZp ZAQB ZBqA 4498 overtap
Gordon " —f damp ™) —f damp ) — damp )
VAVB VA (CB VB) VB (CA VA) (CA - VA) (CB - VB) overlap
Piquema r fdamp (T‘) fdamp (T‘) T fdamp (
1
(cg +ny)(cg +np)| (cy +n )n (cg +ng)n N4MB overlap
el 4 T Ty - B B A T Ny )Np Faamp ™) M Faamp (™) fdamp )

Table 2.1 Proposed methods for incorporating charge penetration into molecular mechanics electrostatic
energy.
For consistency, Z is the nuclear charge, p is the total charge density of the electrons, q is the total charge of the
electron cloud, V is the number of valence electrons, c is the partial charge, n is the number of “screening electrons”,
and r is the internuclear distance. In the first row, the charge density is either a promolecular charge density

(Engels) or a density from hermite gaussians in the GEM model (Cisneros).

Tafipolsky and Engels took a more direct approach and calculated a numerical integral between
spherical pro-molecule charge densities.!” This is similar in spirit to the approach of the GEM
(Gaussian Electrostatic Model) force field, where hermite gaussians are used to reproduce the ab
initio electron density.??!?>2 While being physically straightforward, these methods currently lack

the efficiency needed for simulating large systems. The other three methods use damping functions
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to approximate how the electrostatic potential of an atom changes in its electron cloud and use
those damping functions to approximate the value of the overlap integral for Us.

In a previous proof-of-principle study, we implemented the form of Piquemal and co-
workers in the AMOEBA force field.?? The study showed that accounting for charge penetration
can start to recover the true nature of short-range electrostatic interactions between molecules. A
follow-up study extended the model for use with smooth particle mesh Ewald.?* In the present
work we seek to develop a comprehensive model based on the previous work that best captures
the physics of electrostatic intermolecular interactions and the aims of the AMOEBA force field.
Given the potential improvement our previous work has shown possible in such a model, the
question becomes: what features would we like the AMOEBA charge penetration model to have?
In the work presented here we aim to implement a charge penetration function that best meets the
following criteria:

1. The model should be physically derived.

2. The model should be computationally efficient to compute.

3. The model should be numerically stable.

4. The model should accurately reproduce ab initio QM measurements for relevant molecular
interactions.

5. The model should be consistent with the AMOEBA multipole model.

In section 2, we present the physical derivation of the models that were considered and derive
corresponding damping terms for higher-order multipoles. In section 3, the scheme for
parameterizing the models is presented. Section 4 lays out results comparing the performance of
the models. Section 5 shows validation that the charge penetration model is capturing physical

reality. And lastly, section 6 draws our conclusions.
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2.2 Theory

Stone illustrated the phenomenon of charge penetration with a simple example.?> Consider
the interaction of a proton with a hydrogen-like atom with nuclear charge Z. From quantum

mechanics we know that the wave function of a hydrogen-like atom is

z3 _
ll)(T) = ;e ZT. (21)
This gives us the electron density of the atom,
z® —-Zr
p(r) = ——e " (2.2)

This tells us how dense the electron distribution of the atom is as a function of the radial distance

(r) from its nucleus. To get the potential this density generates, we must apply Poisson’s equation,

vy =2 (2.3)

€o
where €,1s the permittivity of free space. Applying Eq. (2.3) to Eq. (2.2) we obtain
V) = -1+ (2+3) e, (2.4)
the familiar potential due to the electron density of a hydrogen-like atom. At large distances from
the atom, the first term in Eq. 2.4 dominates the second term due to the second’s exponential decay
and we have the classical point charge coulomb approximation of the potential. At closer distances,

however, as shown in figure 2.4, the second term becomes non-negligible. This second term

represents the charge penetration.

33



\
X

1.5 -
1 1 1 -27r
— V() =-—  —V(r)=-—+|Z+ e
r r

Figure 2.4 Classical coulomb potential vs. Hydrogen-like atom potential.
Plotted is the electrostatic potential of a point electron vs. the hydrogen-like electron (Z=2 to emphasize the

distinction). The classical potential diverges from the hydrogen-like result at short-range.

We can exploit the fact that V(r) converges to -1/r at large distances and rewrite Eq. 2.4 as
V) = —=(1 = (1 +Zr)e ") = == fuamp(r) (2.5)
where,
faamp(@) =1 — (1 + Zr)e™?7", (2.6)
The potential in this form is represented simply as the point charge coulomb potential multiplied

by a damping function. This is convenient because the damping function has the following

straightforward properties:
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1. It approaches a value of one as r becomes large.

2. It approaches a value of zero as r approaches zero.
3. It is a direct multiplication of the classical point-charge coulomb potential.
4. It describes charge penetration as a deviation from the classical potential.

To this point there are no approximations made in our derivation. Crucially, however, most atoms
in systems of interest for molecular simulation are not strictly hydrogen-like. This means that
faamp for non-hydrogen-like atoms is not exactly given by Eq. 2.6. The properties and form of Eq.
2.6 are instructive, however. To capture the physics more generally, we introduce a parameter, a,
in place of the 2Z and remove the prefactor in front of the exponential to obtain
faamp() =1 —e™. 2.7)
This more general construction of f;,m, retains all of the relevant damping function properties
listed above and allows us to tune the parameter, o, to reproduce ab initio electrostatic energies.
This is identical to the damping function proposed separately by both Gordon and co-workers'!
and Piquemal and co-workers.'?
Using the damping formulation of Eq. 2.7, we have now effectively changed the potential
due to every atom in a given system. The potential at any point in the system is described by,
V) =2+ faamp(® - Verassicar = =+ A = ™)  Viggssicar (2.8)
where the potential due to the nucleus is unchanged, but the potential due to the electrons now
accounts for the charge penetration effect. This, however, is not quite enough to get the interaction
energy between two atoms. Recall from figure 2.3 that although the second and third terms of the

charge penetration corrected electrostatic interaction energy involve simple point charges

interacting with the potential due to smeared charge distributions, the fourth term has two smeared
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charge distributions interacting with each other. In this unique case, we must derive a second
“overlap” damping function to account for this interaction.
For the fourth, overlap term we are attempting to approximate the overlap integral between

the two charge distributions,

Uy = prpB dv,dvg = %(f paVg(A) dv, + fPBVA(B) dvpg), (2.9)

r

where V, and V5 are the charge penetration corrected potentials due to atoms A and B respectively.
Gordon and co-workers approximate this integral using the one-center method given by Coulson?®

to yield

2 2
SSVLLY [ p— —aqr _ %A ,—apr) _ 9448, coverlapl
U4 r <1 (a%—ai) € (aﬁ—a%) € ) r fdamp (r) (2 IOa)

where gqa and qp are the total electron charges of atoms A and B, for the charge-charge portion of

the interaction. Piquemal and co-workers take a two-center approach to approximating the integral,

Uy =128 (1 — e Fam)(1 — e7For) = 242 fEPEP2 () (2.10b)

damp
where, as laid out in our previous work (Ref. 20), a second parameter is introduced to describe the
overlap. While the derivations of these formulae are slightly different, mathematically these Us
overlap damping functions constitute the only functional difference between the models of Gordon
and co-workers and Piquemal and co-workers. For simplicity’s sake, the approach of Eq. 2.10a
will be referred to as model 1 and Eq. 2.10b as model 2. They can be implemented, however, in
an identical manner. These overlap damping functions allow us to calculate the charge penetration

corrected charge-charge electrostatic interaction between any two sites:

Ucharge—charge ZpAZp

_ ZaqB Zpqa qa49B poverlap
electrostatic - + r fdamp (T) + deamp (T) + deamp (T') (2,1 1)
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The AMOEBA model, however, has more than just charges on every atom. It uses a
multipole expansion representing the charge distribution at every site. The energy between two

AMOEBA multipole sites, 1 and j, is given by,

— pgtclassical
Umultipole - MiTij Mj (2,12)
where M; and M; represent the multipole moments on atoms i and j respectively, and
R o 2 2]
axj ay]- 62j asz-
9 92 92 92 93
Ox; Oxi0x; 0x;0y; 0x;0z; axiasz.
d 92 02 92 53
i — — 1
qu]@asswal =|0y: 0yidx; 9yidy; 0ydz; ayiasz- (—) (2.13)
-
? 92 FE 92 93 Y
0z; 0zi0x; 0z;0y; 0z;0z; aziax]?
92 a3 93 a3 a*
a_xl? axl?axj axfayj axl?az,- axfax]?

is the classical point multipole interaction matrix. We can see in Eq. 2.13 that the interaction
matrix, T;;, for AMOEBA without charge penetration is obtained simply by taking repeated
derivatives of the classical coulomb potential, 1/r. To account for charge penetration, not just in
charge-charge interactions, but in all multipole interactions up to arbitrary order, we simply insert

the charge penetration damped potential in place of the classical potential. This yields the charge

penetration corrected multipole interaction matrix,

R B A G
axj ay]- GZ]' asz-
0 92 92 92 93
Ox; Oxi0x; 0x;0y; 0x;0z; axiasz-
5] 92 a2 92 FE
. Py 1
Tij = | dy; 0y;idx; 0yi0y;j 0yi0z; 6yi6x12- (r_> fdamp(r)' (2,14)
9 92 92 92 93 K
a_Zl 0zi0x; 02;0y; 0z;0z; aziax]?
92 a3 93 a3 a*
a_xl? axl?axj axfayj axl?az,- 6xi2<3x]2



where fyqmp 1s either 1 (for nuclear-nuclear interactions), the damping function from Eq. 2.7 (for

the second and third terms of the interaction energy), or the overlap damping function from Egs.
10a or 10b (for the fourth term of the interaction energy). Using the charge penetration corrected
multipole interaction matrices, we can express the new AMOEBA multipole interaction energy of
any two sites as:

Zi

ycP = %%, ZTE™ M, + Z T M, + METS P M. (2.15)

electrostatic r J i

Eq. 2.15 allows us to account for the effects of charge penetration up to arbitrary order multipole
expansion. For AMOEBA, which has multipole interactions up to quadrupole-quadrupole, this
means that the charge penetration model can be made fully consistent with the multipole model.
See Appendix A for explicit damping functions for all AMOEBA multipole interaction

components.

2.3 Parameterization
The goal of including charge penetration in the AMOEBA model is to more accurately

reproduce the energies of electrostatic interactions between molecules at short range. Because both
models 1 and 2 contain empirical parameters, we will seek to optimize them by fitting to a database
of relevant intermolecular electrostatic energies. In our previous work, the S101 and S101x7
databases where constructed for this purpose.?* The S101 database contains 101 unique pairs of
both homodimers and heterodimers of common organic molecules. It contains the widely used S66
database?” along with some additional relevant biomolecular interactions. The S101x7 database is
constructed by placing each dimer pair from the S101 database at 0.70, 0.80, 0.90, 0.95, 1.00, 1.05
and 1.10 times their equilibrium intermolecular distance. A schematic representation of all the

dimer pairs included in the S101 database is shown in figure 2.5.
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Figure 2.5 Dimer pairs in the S101 database.

“/Jr”

Arrows connect monomers that form dimers. A “/2” designation indicates a homodimer. A designation

indicates both neutral and positively charged forms. Reproduced from reference 20

In all of the parameterization that follows, the entire S101x7 database was used with the exception
of interactions involving ethyne. The omission of ethyne allows direct comparison with the results
from our previous work.

To parameterize the charge penetration models against the S101x7 database, accurate

intermolecular electrostatic energies are needed for all dimer pairs. In the previous work,
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Symmetry Adapted Perturbation Theory (SAPT)?® calculations where performed to obtain these
energies. SAPT calculations decompose intermolecular energies into physically meaningful
components; the intermolecular energy between two monomers is broken down into electrostatic,
induction, exchange-repulsion and dispersion energies. For the S101x7 database, SAPT2+
calculations?®°, estimated at the complete basis set (CBS) limit as described in Ref. 22, were
carried out to return the ab initio electrostatic interaction energy of each dimer pair.

The parameters of model 1 and model 2 were optimized by performing a nonlinear least
squares fit to minimize the difference between the AMOEBA electrostatic energy (with charge
penetration), UAM9EBA ., and the SAPT electrostatic energy, US bl aric» for each dimer pair.
For models 1 and 2, two methods of parameterizing are proposed. In the first method one
parameter, a, is assigned per element. In the second, one a is assigned per charge penetration class.

These classes, as listed in table 2.2, are simply chosen to allow for different descriptions of atoms

of the same element but different physiochemical classifications.
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Table 2.2 Atom classes and fitted parameters for charge penetration models.
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The choice of classes is based on the knowledge that the electronic structure of an sp2 hybridized
carbon, for example, will be generally different than that of an aromatic carbon. While it is
certainly true that differences in electron distribution exist even amongst atoms of the same charge
penetration class (the electronic structure of every sp2 hybridized carbon is not exactly the same),
the guiding principle is to include only the minimal level of atomic classification to allow the
model to be easily transferable.

For model 2, the parameter, B, is fixed as a fraction of a, f = y - @, where the parameter,
v, 1s taken to be universal to avoid over-fitting. Allowing B to float for every charge penetration
class has the potential, of course, to improve the overall fit, but at the cost of losing physical
meaningfulness. Recall from Eq. 2.10b that although the B parameter is specific to the overlap
function in model 2, the two electron clouds that are overlapping are supposed to already be
described by the parameter a. Allowing both a and B to float in the fit would allow two different
parameters to describe essentially the same physics. Instead fitting one universal parameter y
simply describes how B should be generally related to o in approximating the overlap between
molecules. It should be noted that the parameterization strategy here for model 2 differs slightly
from previous work. It is chosen in this way to best fit the AMOEBA multipole model and provide
for a direct comparison with model 1 on the same test set.

The results of fitting model 1 and model 2 are shown in table 2.2. Three fits were performed
for each model. First the S101x7 database of intermolecular electrostatic energies was fit using
only charge-charge damping with parameters assigned by element. Next, the same charge-charge
damping fit was performed with parameters assigned by class. Then the database was fit using
higher-order damping with damping of all AMOEBA multipole interactions (up to and including

quadrupole-quadrupole).
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In addition to parameterizing models 1 and 2, a third model, due to Wang and Truhlar!'8-2°
has been parameterized as well. This model, developed for application in QM/MM calculations, is
included as a point of comparison. However, it is not developed any further than charge-charge
damping using parameters assigned by element as it has several properties that make it unsuitable
for implementation in AMOEBA. First, the model can be unstable with respect to the parameters
of interacting atoms. If two closely interacting atoms have parameters that are close, but not
identical, the overlap damping functions of the model breaks down. Second, expanding the model
to include higher-order damping to make it fully consistent with the AMOEBA multipole model
is computationally intractable with this model. The expressions that form the overlap damping
functions, as seen in Egs. 8 and 9 in Ref. 19 are much more complex functions of the radial distance
between atoms, r. Taking the successive derivatives necessary for higher-order damping terms
would produce expressions too expensive to calculate for our purposes. Third, even if such
derivatives were deemed necessary, the model’s framework is incompatible with higher-order
damping. The damping functions used in Wang and Truhlar’s model are meant to simulate the
outer Slater-type orbitals of atoms. With this being the case, rather than treat all of an atom’s
electrons as damped, the model only treats a maximum of 2 as damped. This treatment is
acceptable for charge-charge damping since charge is spherically symmetric and one simply treats
the remaining electrons as part of the “core”. This is, however, problematic for higher-order
damping because there is no such simple partitioning of the electrons that make up an atom’s
dipole and quadrupole moment. It would be nonsensical to apply the model’s damping terms meant
for two electrons, to an atom’s dipole and quadrupole interactions.

In the following section the fits produced by the parameterization of all three models is

presented. The fits of each model to the S101x7 database will be used along with some important
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validation tests and theoretical arguments to determine which model and which parameterization

strategy to implement in AMOEBA.

2.4 Results

To understand how charge penetration improves the electrostatic model of AMOEBA, we
must understand how the current AMOEBA model without a charge penetration correction
performs. Figure 2.6 shows how AMOEBA’s prediction of intermolecular electrostatic energies

compares to the SAPT ab initio electrostatic energy values on the S101x7 database.
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Figure 2.6 AMOEBA, multipole-only intermolecular electrostatic energy of dimers in S101x7 database.
The multipole-only electrostatic energy for each dimer is plotted against the benchmark SAPT electrostatic energy.
The diagonal, y=x line indicates what would be perfect agreement. Compared to the benchmark calculations, the

multipole-only model systematically overestimates the electrostatic energy.

Figure 2.6 reveals that using only a multipole expansion to describe the electrostatic interactions

between molecules systematically overestimates the electrostatic energy at short range. The

44



pervasive gap illustrated in figure 2.6 illustrates the need for including charge penetration in the
electrostatic model of the AMOEBA force field.

The most naive method of applying a charge penetration correction is to assign one
parameter per element and damp only the charge-charge electrostatic interactions. As a first test
of the theory, this strategy was implemented for models 1, 2 and 3. Each model was then
parameterized by fitting to the S101x7 database. The overall results of assigning parameters by
element and damping only the charge-charge electrostatic interactions are illustrated in the first

cluster of columns in figure 2.7.
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Figure 2.7 Root mean square error of AMOEBA electrostatic energy with charge penetration on S101x7
database.
Multiple charge penetration models were tested. The first cluster of columns represents the results of parameters fit
by element with charge-charge damping only. The second cluster is the results of having parameters assigned by
class and charge-charge damping. The third cluster is the results for including higher-order damping in addition to

having parameters assigned by class. (RMS error of AMOEBA with multipoles-only is 13.4 kcal/mol)
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It 1s clear that all three models perform much better than the current AMOEBA multipole only
model. The RMS error of the multipole-only model for electrostatic energies on the S101x7
database is 13.4 kcal/mol. Models 1, 2 and 3 bring that error down to 2.1 kcal/mol, 2.1 kcal/mol
and 4.5 kcal/mol respectively, showing that even a naive damping strategy starts to capture the
missing physics. It is also apparent that models 1 and 2 perform much better, even at this low level
of implementation, than model 3. Additionally, note that despite having fewer parameters, model
1 performs nearly identically to model 2 for this implementation. Complete statistics for each of
these fits, including a breakdown by intermolecular distance, are available in Appendix A.

While assigning parameters by element produces an improvement over the multipole-only
AMOEBA model, it ignores some key physiochemical properties of elements in different bonding
environments relevant to interpreting the a parameter. The a parameter with units, A", can be
understood as the inverse of the physical extent of the electron cloud of an atom. From ab initio
electronic structure calculations we know that in general this property can change substantially
based on the bonding environment of an atom. For this reason, we fit models 1 and 2 with
parameters assigned by class to the S101x7 as described in the preceding section. The overall
results of assigning parameters by class and still damping only the charge-charge electrostatic
interactions are illustrated in the second cluster of columns in figure 2.7. The first thing to note is
the absence of a fit for model 3. Once the parameter set is expanded to include classes, model 3
becomes highly unstable. As noted, before this is due to numerical instability when parameters in
the model become close. This is practically unavoidable for class-based parameters, so model 3 is
excluded from this point forward. More importantly, however, we notice also that splitting out
different parameter classes improves the overall fit to the S101x7 database for models 1 and 2.

Assigning parameters by class improves the performance on the RMS error. Again, despite having
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fewer parameters, model 1 outperforms model 2 in this case. This improvement is largely due to
allowing different classes for the same element. For example, table 2.2 shows that for model 1 the
parameter for hydrogen in the element based fit splits quite significantly when one allows different
classes to vary. The element parameter, 4.0 A! splits into parameters of 3.4 A"!, 3.9 A" and 5.0 A-
' for non-polar, aromatic and polar hydrogen respectively. This extra flexibility in the
parameterization, rooted in basic physiochemical properties improves our overall description of
the electrostatics. Again, specific statistics for class-based fits can be found in the Appendix A.
Splitting out separate chemical classes for parameters improves the performance of our
charge-charge damping charge penetration model, but it unfortunately does not meet the criteria
of being fully consistent with the AMOEBA multipole electrostatic model. To test the fully
integrated model we implemented charge penetration damping for all multipole interaction terms
(up to and including quadrupole-quadrupole) for both models 1 and 2. We will refer to this model
as “higher-order” damping. The overall results, illustrated in the third and final cluster of columns
in figure 2.7, show the improvement that this model brings. Implementing a fully integrated higher-
order damping model with class-based parameters brings the RMS error on the entire S101x7
database for models 1 and 2 down to 1.31 kcal/mol and 1.52 kcal/mol respectively. Full statistical
analysis can be found in Appendix A. These numbers represent a dramatic improvement over the
current AMOEBA multipole-only RMS error of 13.43 kcal/mol. More importantly they also
improve on the errors from our charge-charge damping implementations. A significant portion of
the improvement is due to improvement in the performance on the closest dimer pairs in the
S101x7 database. Among dimers that are separated by 0.70 and 0.80 of their equilibrium distance,
model 1 with higher-order damping reduced that error from 2.75 kcal/mol to 2.27 kcal/mol, and

model 2 reduced it from 4.36 kcal/mol to 2.64 kcal/mol. Importantly, this improvement does not
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sacrifice the fit at more accessible distances. For model 1 the RMS error on dimers with
intermolecular separations of 0.90 to 1.10 times their equilibrium distance dropped to under 1
kcal/mol compared with an error of over 4 kcal/mol for the current multipole-only model. Lastly,
these fits give a slight edge to the simpler model 1 over model 2. Model 1 performs 16% better
than model 2 on overall RMS errors in the S101x7 database when higher-order damping is
included. The absolute percent error of model 2 on the electrostatic energies of the S101x7
database is 10%, while model 1 gives 7%.

Figure 2.7 lays out the overall performance of each of the implementations described
above. It is clear from this data that model 1 with higher-order damping and parameters assigned
by class gives the best fit to the electrostatics of the S101x7 database. The improvement this model

gives on each individual dimer pair is shown in figure 2.8.
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Figure 2.8 AMOEBA intermolecular electrostatic energy with and without charge penetration of S101x7
database dimers.
The AMOEBA electrostatic energy both without (multipole-only) and with (model 1 with charge-charge or higher-
order damping) charge penetration is plotted against benchmark SAPT electrostatic energy calculations. The
diagonal, y=x line indicates what would be perfect agreement. Including higher-order damping in the charge

penetration model yields the best agreement with ab initio electrostatic energies.

Figure 2.8 shows that across the board model 1 with higher-order damping is superior to simple
charge-charge damping and represents a dramatic improvement over the current multipole-only
model. This is borne out in a handful of important and instructive examples. Figure 2.9 lays out
the results for fitting the water dimer, figure 2.10 shows two important orientations of the benzene

dimer and figure 2.11 shows the model’s performance on phosphate ions.
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Figure 2.9 Water dimer electrostatics.
AMOEBA dimer electrostatic energies without (multipoles-only) and with (model 1 with charge-charge and higher-

order damping) charge penetration are plotted against benchmark SAPT electrostatic energies.
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Figure 2.10 Benzene (a) Sandwich and (b) T-shape dimer electrostatics.
AMOEBA dimer electrostatic energies without (multipoles-only) and with (model 1 with charge-charge and higher-

order damping) charge penetration are plotted against benchmark SAPT electrostatic energies.
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Figure 2.11 Phosphate-water dimer electrostatics.
AMOEBA dimer electrostatic energies without (multipoles-only) and with (model 1 with charge-charge and higher-
order damping) charge penetration are plotted against benchmark SAPT electrostatic energies. Results are shown for

PO4H (a), PO4H2 (b) and PO4H3 (c).
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These three examples represent important relevant biomolecular interactions that the current
multipole-only model fails to accurately capture. Moreover, all three also show that an integrated
higher-order damping model is needed to achieve the highest level of agreement with SAPT
electrostatic data. These examples show that not only does the model generally improve the quality
of electrostatics across a wide dataset, but it also performs well on individual examples, such as

the benzene sandwich dimer, that inspired our investigation of the charge penetration phenomenon.

2.5 Validation

The fit to the S101x7 database with model 1 higher-order damping is a welcome result.
The model dramatically improves the quality of the electrostatic fit for those electrostatic
interactions over AMOEBA’s current multipole-only model and it outperforms all of the other
relevant damping models proposed. There are, however, some considerations that need to be
addressed to validate model 1 with higher-order damping as the best option for capturing the
physics of charge penetration. First, we would like to show that in addition to giving the best fit,
model 1 is also the most robust option. Second, we need to know to what extent this charge
penetration model is independent of the AMOEBA multipole model. And most importantly, we
must validate that this model is capturing a real physical phenomenon.

It is important our charge penetration model not only provides a good fit to ab initio
electrostatic data, but also that the model is robust. To evaluate robustness, we must evaluate the
sensitivity of the model to small changes in the parameters. Model 3 does not pass this parameter

sensitivity requirement. Figure 2.12 shows the behavior of the oxygen—sulfur electrostatic
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interaction in the DMSO-water dimer as the difference between oxygen and sulfur parameters gets

smaller.
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Figure 2.12 Charge penetration model stability.
The oxygen-sulfur electrostatic interaction energy for the water-DMSO dimer is plotted as a function of the
difference between the oxygen and sulfur charge penetration parameters. As the ratio of the parameters approaches

unity, model 3 becomes unstable.

Clearly model 3 breaks down as the two parameters get close to one another. Moreover, the
problem is compounded as the intermolecular distance decreases. Since the zeta parameter
multiplies the interatomic distance, r, everywhere in the damping function, the problem gets worse

as monomers get closer together. Model 2 does not suffer from any such numerical instability, but
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it is sensitive to the parameter, vy, that determines the overlap damping function. Table 2.3 shows

that if the closest dimers are left out of our fit to the electrostatic data, y changes from 0.88 to 0.90.

Model 1 Model 2
Parameters from fit to full S101x7 131 keal/mol 1.52 kcal/mol
database ' (y=0.88)
Parameters from fit to S101x7 database 1 40 keal/mol 1.83 kcal/mol
excluding the closest points (0.8 — 1.1) ' (y=0.90)

Table 2.3 Charge penetration model parameter sensitivity.
Models 1 and 2 were fit to the S101x7 database excluding the closest points (all dimers except those at 0.7 times the
equilibrium distance). The parameters generated from that fit are then tested on the full database. Model 2,

particularly the y parameter, proves to be the more sensitive to this change.

Moreover, if we use the y that comes out of the fit where we leave out the closest points, the RMS
error for the full S101x7 database jumps from 1.52 kcal/mol to 1.83 kcal/mol. Model 1 on the other
hand does not suffer from any such sensitivity. If we leave out the closest dimer pairs and fit
parameters to our model, table 2.3 shows that those parameters do almost as well as the parameters
fit to the full S101x7 database. The RMS error for model 1 in this case goes up by less than 0.1
kcal/mol. By these tests model 1 shows the strength with respect to numerical stability and

parameter transferability we expect a robust charge penetration model to have.
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In addition to being the most robust option, model 1 also shows good model independence
from the AMOEBA multipole model. AMOEBA follows a defined protocol for determining
charge, dipole and quadrupole parameters for each monomer? and we should expect that our model
should, for the most part, be independent of that specific protocol. In other words, the multipole
model and the charge penetration model should not depend on each other. To test this, we use the
toy example, benzene. When determining the electrostatic parameters for benzene, multiple values
for the opposing charges of the carbons and hydrogens will give nearly identical fits to the
electrostatic potential on a grid of points around the molecule. Although the AMOEBA multipole
protocol fixes those charge values semi-arbitrarily, we wanted to see if choosing otherwise would
break our model 1 charge penetration model. Figure 2.13 demonstrates that model 1 accurately
reproduces the electrostatic potential regardless of which potential-fitted charge-dipole-
quadrupole model one chooses. This validates an important feature of the model: that it is

independent of the specifics of potential fitting protocol for the AMOEBA multipole model.
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Figure 2.13 Charge penetration model independence.
Three different benzene multipole models were chosen with charges fixed at +/-0.005 e, +/- 0.15 ¢7, and 0 e that
give roughly equivalent electrostatic potential fits. The charge penetration model was then applied to all three
models. RMS errors of the electrostatic potential on a grid of points around benzene for each model are plotted. The

charge penetration significantly lowers the error regardless of multipole model.

Lastly, but most importantly, for our model to be valid, we must prove that it is capturing
a real physical effect. At the heart of the charge penetration phenomenon is the fact that the
electrostatic potential around an atom at short range cannot be reproduced by a simple point
multipole approximation without accounting for the extent of the atom’s charge density. To
validate that the model is describing this physics we tested to see if our charge penetration model,

model 1 with higher-order damping, could accurately reproduce the ab initio electrostatic potential
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RMS Error (kcal/mol)

around a molecule at short range. Figure 2.14 shows that without exception the charge penetration
model dramatically improves the electrostatic potential fit around every monomer in the S101
database. This is the validation we are looking for. Not only does our model correct the practical
problem of bad intermolecular electrostatic energies at close range, but it does so by accurately

capturing the physical reality of molecules’ finite charge distributions.
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Figure 2.14 Charge penetration model performance on electrostatic potential of monomers in S101 database.
The RMS error of the electrostatic potential on a grid of points around each monomer is plotted. Including charge

penetration improves the fit to the electrostatic potential for every monomer.

2.6 Test Case: Nucleic Acid Base Stacking

As stated in the introduction, charge penetration effects are important in a broad range of
close-contact biomolecular interactions. One essential example is the stacking interactions of
nucleobases in DNA and RNA sequences. Parker and Sherrill recently showed that without an
explicit accounting for charge penetration, force fields struggle to accurately reproduce the ab

initio electrostatic energies of these interactions.® For instance in an AC:GT base step, the mean
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absolute errors (MAE) of the AMBER?'-? and CHARMM?? force fields relative to the SAPT
electrostatic energy were over 20 kcal/mol. Likewise, we find that AMOEBA without charge
penetration gives an electrostatic energy MAE over 20 kcal/mol as well. However, when we apply
our charge penetration function with parameters fixed to their values from the S101x7 fit, the MAE
drops dramatically to nearly 2 kcal/mol. This improvement is not unique to the AC:GT base step.
As shown in figure 2.15, the MAE of our AMOEBA model with charge penetration is significantly

lower for every base step combination.
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Figure 2.15 Mean absolute electrostatic interaction energy error relative to SAPTO for ten stacked base steps.
Including charge penetration lowers the MAE in the electrostatic interaction energy for every base step

combination.

Moreover, this improvement in the electrostatic description of nucleobase stacking holds

even for non-equilibrium stacking arrangements. Figure 2.16 shows that for the six structural
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parameters that define the stacking interaction, ** the AMOEBA + charge penetration model does

far better than AMBER, CHARMM or the current AMOEBA force field.
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Figure 2.16 Mean absolute electrostatic interaction energy error relative to SAPT for six structural
parameters.
Including charge penetration lowers the MAE for variation along every degree of freedom in the nucleobase

stacking interaction. Inset reproduced from reference 7.

These data confirm, as asserted by Parker and Sherrill, that including charge penetration is an
absolute necessity for a robust nucleic acid force field model. This imperative is highlighted in two
standout cases of the TA:TA base step. Figure 2.17 shows the performance of force field models

against SAPT electrostatics versus the nucleobase rise.
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Figure 2.17 Electrostatic energy of a stacked TA:TA interaction vs. Rise.
Including charge penetration reproduces the ab initio SAPT electrostatic energy over the range of rise parameters.

The behavior is consistent with that of the benzene dimer interaction (see figure 2.10).

It is immediately clear that the AMOEBA + charge penetration model put forward here is the only
model that accurately reproduces the electrostatic nature of this interaction. The same is seen in

figure 2.18 where we examine the electrostatic energy as a function of the tilt parameter.
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Figure 2.18 Electrostatic energy of a stacked TA:TA interaction vs. Tilt.
Including charge penetration reproduces the ab initio SAPT electrostatic energy over the range of tilt parameters.
Tilt-like interactions are not part of the S101x7 database, so this behavior shows a level of transferability for the

model.

Again, the model including charge penetration is the only model that agrees with the quantum
mechanics. This same improvement persists across all structural parameters of the TA:TA base
step. Figures for the other four parameters can be found in Appendix A. It is worth noting that not
only is this an important test case because of its direct relation to biomolecular applications for the
force field. It is also important because it shows that the model, parameterized against a particular
test set (S101x7) performs well on interactions well outside of that set. These results give us

confidence in the transferability of our charge penetration model.

2.7 Conclusions
The goal of the AMOEBA force field is to model the physics of biomolecular interactions

using approximations that make calculations on large systems tractable. Our work here shows that

to accurately capture the physics of short-range intermolecular interactions a charge penetration
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term is absolutely necessary. Without accounting for charge penetration, even an advanced point
multipole model cannot accurately reproduce electrostatic interactions at short range. These
discrepancies in intermolecular interactions crucial to biomolecular systems are large enough that
they cannot be ignored. Fortunately, we have also shown that charge penetration can be corrected
for with the implementation of a simple set of damping functions. This is not necessarily a new
conclusion. Previous work on AMOEBA as well other classical force field models have
demonstrated the efficacy of using damping functions to capture charge penetration. We have
demonstrated here that the higher-order damping functions we have developed for model 1
represent the best, most integrated method for implementing charge penetration in the AMOEBA
force field.

There are some key reasons why using model 1 with higher-order damping makes the most
sense for AMOEBA. The first reason is the most obvious. On an extensive test set of relevant
molecular dimers, model 1 with higher-order damping produced the most accurate results. We
have shown that including higher-order damping provides a substantial increase in model accuracy
and model 1 performs well at this purpose. The practical purpose of including charge penetration
in the force field is to accurately describe intermolecular interactions and by this direct measure
model 1 with higher-order damping does the best.

The model does more than simply give good numbers, however. Model 1 is derived from
the fundamental physics of atomic charge distributions. The damping function that describes the
electrostatic potential around an atom in this model comes directly from the charge distribution of
a hydrogen-like atom. The overlap damping function comes directly from an approximation of the
overlap integral between two hydrogen-like charge densities. The model does contain empirical

parameters, but those parameters are given physical meaning by the derived functions they sit in.
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A natural question is why the similar model 2 with one extra parameter does not give better
results than model 1. The simple answer is that it appears the two models are intrinsically aligned
with different multipole models. AMOEBA takes a two-step approach to assigning multipole
parameters. First distributed multipole analysis (DMA) is performed to obtain initial charge, dipole
and quadrupole parameters. Then, those parameters are optimized by fitting to the electrostatic
potential on a grid of points around the molecule. Because the overlap function in model 1 is
constructed starting from a simple one-electron potential, model 1 seems to align nicely with the
electrostatic potential fit method for determining AMOEBA multipoles. In contrast it seems that
the two-center integral method used by model 2 might perform better with multipoles that are not
potential-fitted. This theory is borne out by the results of figure 2.19. Figure 2.19 illustrates that
model 2 with its extra free parameter, does perform better on the S101x7 database when simple

DMA multipoles are used instead of potential fitted ones.
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Figure 2.19 Charge penetration model agreement with AMOEBA potential-fit multipole model.
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Models 1 and 2 are fit to the S101x7 database using either DMA or potential-fit multipoles. RMS electrostatic
energy error is plotted. Model 2 performs slightly better when DMA multipoles are used, but model 1 with potential-

fit multipoles gives the best overall fit.

Using the AMOEBA potential fitted multipoles however does better overall and much better when
paired with model 1. The origin of this difference between models 1 and 2 in instructive. It shows
that despite its relative simplicity, model 1 seems to provide a better intrinsic fit for the AMOEBA
force field.

Not only is the model conceptually aligned with the AMOEBA multipole model, but it is
fully integrated with it as well. Prior charge penetration models have damped charge-charge

interactions or a handful of higher order interactions'3:!4

, but here we have derived damping
functions for multipole interactions up to arbitrary order. This does two important things. First, it
improves the overall accuracy of our intermolecular electrostatic energies. And second, it gives us
a fully integrated multipole electrostatic—charge penetration model. The charge, dipole, quadrupole
moments of a multipole expansion are all functions of the underlying charge density distribution.
Thus, every interaction of these moments should be damped by the function that describes that
charge density. Our higher-order charge penetration model satisfies this requirement and does so
in a simple, straightforward way.

Importantly, the charge penetration model doesn’t just fit one set of data. We have
demonstrated that it passes multiple validation tests. First, the model proved to be robust. There is
no numerical instability and the parameters are not overly sensitive. Second, the model is
independent of the multipole model. This means that even if a slightly different set of multipole

moments that fit the electrostatic potential are chosen for a given molecule, our charge penetration

model will still give the same improvement in the fit. These validation tests indicate not only that
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our model is viable, but that it is not beholden to the test set or the multipole model. In addition,
we have shown that our charge penetration model has some measure of predictive power. On the
biologically significant test of electrostatics in nucleic acid base stacking, our charge penetration
model accurately predicted the electrostatic energies of base stacking over a wide range of non-
equilibrium structural parameters. This result displays the promise this model shows in its
application to simulations of real biological systems.

Finally, our higher-order charge penetration model captures a real physical effect. The
charge penetration phenomenon is a direct result of the fact that atoms have charge distributions
representing their electron densities. We have shown that our charge penetration function captures
exactly this physics. When we use our model to fit the electrostatic potential on a grid of point
surrounding a molecule, the error in the electrostatic fit from the simple point multipole
approximation goes down for every tested case. This gives us the highest degree of certainty that
we are doing more than just adding in another degree of freedom to our electrostatic function. The
damping functions derived for our higher-order damping model accurately describe the
electrostatic environment around molecules, and since the effect is necessarily short-range, the
computational cost of accounting for charge penetration in this way is minimal. The damping terms
can be implemented utilizing a short-range cutoff or can be computed for every pairwise
interaction in the real-space portion of an Ewald summation approach. In either case, the additional
cost beyond that of the standard AMOEBA electrostatic model is small. By describing this simple
physics in a simple way, our model allows us to more accurately predict intermolecular interactions

between biomolecules.
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2.8 Further Work

The work in this chapter demonstrated that model 1 is an effective and efficient way to
capture the electrostatic interactions between molecules at short range. For the HIPPO force
field, however, one small change was made. Rather than use the damping function proposed in

equation 2.7, we choose the similar function,

1 —ar
fdamp(r) =1- (1 + Ear> € , (2.16)

where the only difference is the addition of the polynomial prefactor. This function meets all of
the criteria required by section 2.2 and the remainder of the derivation in the text is identical.
There are two conceptual reasons why eq