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Brain metabolism is usually thought of in terms of energy production. Decades of 

research has shown that the brain derives the majority of its energy from the oxidative 

phosphorylation of glucose transported from the blood into the brain. Because of this, cerebral 

blood flow (CBF), the cerebral metabolic rate of glucose consumption (CMRglc), and the 

cerebral metabolic rate of oxygen consumption (CMRO2) generally are tightly coupled. Indeed, 

the coupling between CBF, CMRglc, and CMRO2 is robust enough such that many investigators 

believe them to be equivalent measures of brain activity. 

 Nevertheless, research over the last few decades has shown that cerebral metabolic 

coupling is not stoichiometrically exact. Perhaps the best example of metabolic uncoupling 

occurs during focal increases in brain activity. Sensory stimulation, for instance, increases CBF 

and CMRglc to a much greater extent than CMRO2. This response results in: 1) an increase in 

nonoxidative glucose consumption, and 2) an increase in oxygenated blood in the brain’s 

vasculature, the phenomenon which underlies blood oxygen dependent (BOLD) functional 

magnetic resonance imaging (fMRI).  
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Importantly, metabolic uncoupling is not restricted to periods of increased neural activity. 

The primary goal of this thesis is to investigate other examples of uncoupling between CBF, 

CMRglc, and CMRO2.  I performed four separate studies that all examine metabolic uncoupling 

from a different perspective. In the first study, I performed a meta-analysis of published papers 

to show that at rest, nearly 10% of the brain’s glucose consumption uses nonoxidative pathways 

that do not end in lactate efflux. If CMRglc and CMRO2 were completely coupled, then one 

would not expect to find any nonoxidative glucose consumption (NOglc). The second study 

expands upon the first by showing that there are regional differences in the amount of glucose 

consumed using nonoxidative pathways. In some brain regions, such as the precuneus and 

medial prefrontal cortex, NOglc accounts for nearly 20% of resting CMRglc. Conversely, there 

does not appear to by any NOglc in the cerebellum.  

The aim of the remaining two studies was to determine if changes in blood glucose 

concentration produce similar changes in CBF, CMRglc, and CMRO2. Although multiple studies 

have reported that hypoglycemia focally increases CBF in humans, it is not clear how it impacts 

regional CMRglc. Therefore, I examined both regional CBF and regional CMRglc during 

moderate hypoglycemia. Although hypoglycemia decreased CMRglc in every region of the 

brain, it only increased CBF significantly in the globus pallidus. This suggests that CBF does not 

increase during hypoglycemia to prevent a fall in CMRglc. Next, I examined regional changes in 

brain metabolism during hyperglycemia. Previous studies have established that acute 

hyperglycemia alters the topography of cerebral glucose metabolism. However, the impact of 

hyperglycemia on regional CBF and CMRO2 has not yet been determined. Therefore, I examined 

CBF, CMRglc, and CMRO2 in several brain regions during hyperglycemia. Hyperglycemia did 

not change CBF or CMRO2 in any brain region. However, hyperglycemia did increase CMRglc 
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in white matter and in the brain stem by over 30%. CMRglc was not altered by hyperglycemia in 

any other region. Therefore, hyperglycemia appears to selectively increase NOglc in the brain 

stem and white matter. 

Taken together, the four studies that make up this thesis show that metabolic uncoupling, 

in particular NOglc, is an important part of brain metabolism. These results also highlight the 

need for future studies that can elucidate the mechanisms behind uncoupling in both health and 

disease. 
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Chapter 1: A historical review on regional cerebral blood flow 
and metabolism 

 

1.1 Chapter organization 
 

The focus of this thesis is uncoupling between three major aspects of metabolism in the 

adult human brain: cerebral blood flow (CBF), the cerebral metabolic rate of glucose (CMRglc), 

and the cerebral metabolic rate of oxygen consumption (CMRO2). The underlying theme of all 

the original work presented here is that uncoupling between these three measures of metabolism 

has important physiological consequences that need to be understood. As such, the primary goal 

of this introductory chapter is to review what is known about uncoupling between CBF, 

CMRglc, and CMRO2. With this goal in mind, I have divided this introductory chapter into six 

sections. The first section discusses early studies of brain metabolism, with a particular emphasis 

on how techniques for measuring regional brain metabolism support the hypothesis that cerebral 

metabolism is coupled to neural activity. In the following section, I review the fairly large 

literature which shows that the coupling between cerebral metabolism and neural activity is not 

quite as tight as early studies suggested. Then, in section three, I explore the various mechanisms 

that have been proposed to explain metabolic uncoupling during neural responses to imposed 

tasks. After section three, the remaining text focuses on resting brain metabolism. In section four, 

I review the evidence that a significant proportion of the brain’s resting CMRglc is not consumed 

via oxidative pathways. Next, I argue, in section five, that metabolic uncoupling occurs in many 

different brain diseases and altered physiological states. Finally, I preview chapters 2-5 in section 

six. 
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1.2 Early studies of brain metabolism 
 

The idea that brain activity is coupled to cerebral blood flow and metabolism is often 

attributed to the work of Roy and Sherrington in 18901. Since then, establishing how metabolism 

supports brain activity has been the focus of an extensive body of literature. One of the important 

early discoveries, made by several investigators in the early 20th century, was that oxidative 

consumption of blood-borne glucose is the brain’s primary fuel source under normal conditions. 

These studies used cerebral arterio-venous differences of CO2 and O2 to show that the respiratory 

quotient (the ratio of CO2 produced to O2 consumed) was nearly 1.0, which would only occur if 

nearly all of cerebral oxygen consumption was used for the oxidation of glucose2-4. The 

implication of these studies is that brain activity is maintained using ATP generated solely 

through the oxidative phosphorylation of glucose. Subsequent studies provided support for this 

hypothesis by showing that reductions in the availability of glucose have profound effects on 

brain function. Insulin-induced hypoglycemia, for example, decreases cerebral glucose and 

oxygen consumption and can result in coma5-7. The brain is also extremely sensitive to oxygen 

availability, with electrical activity in the brain effectively ceasing after several seconds without 

oxygen8. 

Early evidenced seemed to indicate that brain activity was supported by metabolism. 

However, if the Roy-Sherrington hypothesis was to be proven correct, a correlation would have 

to be shown between brain activity, cerebral blood flow, and metabolism. Perhaps the first 

researcher to address this question was Angelo Masso, who as early as 1879 reported that mental 

activity increases fluctuations in cerebral blood volume9,10. However, the first group to 

specifically measure blood flow and metabolism in humans during a cognitive task was Louis 

Sokoloff and colleagues in 195511. Using the Kety-Schmidt method12, an early technique that 
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used cerebral arteriovenous differences to obtain metabolic rates, Sokoloff et al. measured global 

CBF and CMRO2 in young men while they performed a mental arithmetic task. While 

substantial shifts in EEG patterns were reported, a finding consistent with an alteration in neural 

activity, neither CBF nor CMRO2 increased during the mental arithmetic task. To explain their 

seemingly contradictory results, Sokoloff et al. proposed that, although global CBF and CMRO2 

may not change during periods of task-driven increased brain activity, changes may occur in 

specific brain regions. However, establishing that regional CBF is elevated by neural activity 

would require the development of techniques that could quantify brain metabolism at the 

regional level in healthy individuals.  

Fortunately, methods for assessing regional brain metabolism were developed quickly. In 

1955, the same year as the Sokoloff et al. report, Seymour Kety and colleagues introduced a 

method that allowed for the regional quantification of CBF in animal models13. This technique 

used a relatively simple model of inert gas exchange to relate the cerebral uptake of a radioactive 

tracer, trifluorolodomethane (CF3I131), to local CBF. Louis Sokoloff and others quickly applied 

this technique to the question of brain activation in the cat14. They found that visual stimulation 

increased CBF in several brain regions, including the visual cortex, lateral geniculate nucleus, 

and superior colliculus. Unfortunately, the CF3I131 technique could not be applied to living 

humans, as the quantification of tracer uptake required tissue samples from each brain region. An 

early attempt at solving this problem was developed by Ingvar and Lassen15. Instead of tissue 

samples, their technique measured the concentration of [85Kr] using scintillation detectors placed 

directly on the scalp. Although this technique was severely limited in spatial resolution, as tracer 

concentration could only be measured near the detector, it did allow for the measurement of CBF 

in humans16,17. Using this technique, Ingvar and Risberg found that a backwards digit-span task 
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increased average gray matter CBF, with a particular focus in brain regions superior to the lateral 

sulcus18. This finding, along with the animal work discussed above, provided support for the 

Roy-Sherrington hypothesis that increases in neural activity are accompanied by increases in 

cerebral blood flow. Other techniques, however, were necessary to determine if cerebral glucose 

and oxygen consumption were also increased by task engagement. 

The [14C]-2-deoxyglucose ([14C]-DG) tracer method was the first robust strategy for 

measuring the CMRglc within specific brain regions. Published by Sokoloff et al. in 1977, the 

technique relied on the fact that like glucose, deoxyglucose is transported into brain cells and 

phosphorylated by hexokinase19. However, unlike glucose, deoxyglucose is effectively trapped 

within cells after it is converted to 2-deoxyglucose-6-phosphate by hexokinase. It cannot move 

further down the glycolytic pathway because the lack of a hydroxyl group on the second carbon 

atom of deoxyglucose-6-phosphate prevents it from being converted to fructose-6-phosophate by 

phosphoglucose isomerase20. Furthermore, the relatively low activity of glucose-6-phosphtate in 

the brain21 limits the amount of deoxyglucose-6-phosphate being converted back to 

deoxyglucose. As a result of the trapping of 2-deoxyglucose-6-phosphate within brain cells, the 

amount of [14C]-DG taken up by a tissue is directly proportional to CMRglc. Moreover, no 

corrections need to be made for loss of tracer due to the efflux of metabolites. 

Several studies relating CMRglc to functional activity were quickly published using the 

[14C]-DG tracer. Sharp et al. reported that CMRglc was increased in the olfactory bulb of rats 

after exposure to amyl acetate22. In a pair of influential studies, Kennedy et al. found that: 1) 

Electrical stimulation of the sciatic nerve in the rat increased CMRglc in the ipsilateral lateral 

dorsal horn of the spinal cord, 2) Inducing a seizure in the motor cortex of the monkey with 

potassium benzyl penicillin increased CMRglc in the motor cortex, putamen, globus pallidus, 
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caudate, and thalamus, 3) Unilateral visual deprivation in the rat reduces CMRglc in the superior 

colliculus, lateral geniculate, and visual cortex, and 4) Unilateral visual deprivation in the 

monkey decreases CMRglc in alternating 0.3 – 0.4 mm stripes in visual cortex, revealing the 

presence of ocular dominance columns23,24. Finally, the increase in CMRglc within the rat 

superior cervical ganglion following electrical stimulation of its afferent fibers is proportional to 

the frequency of stimulation25. From these and other reports in the literature (for a review see26), 

it became clear that, at least in animal models, cerebral glucose consumption is coupled to brain 

activity.  

Like the CF3I131 technique for measuring CBF, the original [14C]-DG method was 

unsuited for human studies because tissue samples were required to quantify tracer uptake. 

However, the development of positron-emission topography (PET) in the 1970s by Michel Ter-

Pogossian and colleagues27 provided a way to track radioisotopes in the brains of within living, 

healthy humans. PET imaging took advantage of the fact that radioisotopes, such as 15O, 11C, 18F, 

that emit positrons as they undergo radioactive decay. After traveling a few millimeters, an 

emitted positron undergoes an annihilation event with an electron, producing two photons. 

Because the two photons have equal energy (511 keV) and travel in approximately opposite 

directions, the location in space of the original positron can be determined if the two photons are 

detected simultaneously by a pair of scintillation counters (i.e., a coincidence event). If one 

employs a series of scintillation detectors, a 3D image representing the tissue concentration of 

the radioactive tracer can be reconstructed using mathematical algorithms. For more information 

on the development of PET, see the review by Raichle and the references therein28. 

The first study using PET imaging to measure glucose metabolism in the brain was 

published in 1978 by Raichle et al. 29, who used [11C]-glucose to measure CMRglc in rhesus 
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monkeys. However, the measurement of CMRglc with [11C]-glucose can be complex as [11C]-

glucose is metabolized by cells throughout the body, resulting in radiometabolites that must be 

accounted for. The following year Reivich et al. used [18F]-2-deoxy-2-fluoro-D-glucose ([18F]-

FDG) to measure regional CMRglc in humans30. Like [14C]-DG, [18F]-FDG is also effectively 

trapped within cells after it is phosphorylated by hexokinase31, greatly simplifying the 

quantification of CMRglc. Within a few years of the report by Reivich et al., several studies used 

[18F]-FDG to assess the relationship between functional activity and regional CMRglc in humans 

(for a review of early findings see Phelps et al.32). In 1981, Phelps, Kuhl, and Mazziotta showed 

that visual simulation increased CMRglc in the primary and associative visual cortex33. The 

magnitude of the increase in CMRglc was found to be proportional to the complexity of the 

visual stimulus; stimulation with a constant white light increased CMRglc by approximately 

10%, whereas a complex visual scene resulted in increases of 40 to 60%. Unstructured 

illumination is similarly a weak driver of neural responses in primate visual cortex34. 

A little over a month later, Greenberg et al. used [18F]-FDG to study the effect of visual, 

tactile, and auditory stimulation on local CMRglc35. They found that CMRglc was significantly 

increased from resting controls in the visual cortex during the visual task and in the primary 

auditory cortex during auditory task. Tactile simulation also increased CMRglc in the postcentral 

gyrus, although the increase was not statistically significant. Taken together, the results of these 

early [18F]-FDG PET studies made it clear that like CBF, CMRglc increases in specific brain 

regions during periods of heightened brain activity.  

1.3 Metabolic uncoupling during neural activity 
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By the early 1980s, strong evidence had been presented that both CBF and CMRglc 

increase in specific brain regions as a result of functional activity. The remaining piece of the 

puzzle was to determine how activity affects the cerebral metabolic rate of oxygen consumption 

(CMRO2). Early methods for measuring regional CMRO2 in humans were presented as early as 

197036. Similar to the [85Kr] technique for quantifying regional CBF, Ter-Pogossian et al. 

measured regional CMRO2 using five external scintillation detectors following the injection of 

[15O]-O2. Using this technique, Ter-Pogossian et al. were able to quantify CMRO2 in very large 

brain regions (i.e., frontal, parietal, and occipital lobe). The resolution was greatly improved, 

however, with the adaptation of the [15O]-O2 PET imaging by Frackowiak et al. in 198037. A few 

years later, Fox and Raichle used [15O]-O2 PET to determine if CMRO2 was focally increased by 

vibratory stimulation of a single hand38. Although they found that vibratory stimuli slightly 

increased CMRO2 in the sensorimotor cortex (~ 5%), the increase was not statistically 

significant. Conversely, they found that CBF, measured with [15O]-H2O PET, increased by 29% 

percent in the sensorimotor cortex. As a result, the oxygen extraction fraction (OEF), or the 

fraction of arterial oxygen that is extracted by the brain, actually decreased during the 

stimulation trials. Although unexpected, these results provided some of the first evidence that 

cerebral blood flow and metabolism are not entirely coupled to neural activity in the healthy 

human brain. 

Two years later in 1988 Fox and Raichle published a follow-up study that was even more 

influential than their previous work39. In this study Fox and Raichle showed that although visual 

stimulation increases CBF and CMRglc by nearly 50%, it only increases CMRO2 by a small 

nonsignificant amount (~5%). This result has two primary implications. First it shows that 

metabolic uncoupling between CBF and CMRO2 during task-evoked activity is not limited to the 
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sensorimotor cortex. Second, and more importantly, because CMRglc increases to a greater 

extent than CMRO2, it shows that a significant portion of the glucose that is consumed during 

task performance is metabolized via non-oxidative pathways. In their 1998 paper, Fox and 

Raichle suggested that the excess CMRglc is converted to lactate via glycolysis39. Since then, 

many investigators have referred to non-oxidative increases in CMRglc during task performance 

as an increase in “aerobic glycolysis”. The term was originally used to refer to Otto Warburg’s 

discovery that cancers cells produce excess lactate via glycolysis despite sufficient oxygen to 

completely metabolize glucose via oxidative phosphorylation40. It is important to note, however, 

that in this context, the term aerobic glycolysis does not necessarily mean that the ultimate fate 

of all of non-oxidative glucose consumption (NOglc) is lactate. There are many metabolic 

pathways in the brain that do not require complete oxidation of glucose to CO2 and H2O, some of 

which bypass lactate production entirely (Error! Reference source not found.)  

Fox and Raichle’s 1988 paper was immediately controversial41. The prevailing view at 

the time accepted the Roy-Sherrington hypothesis, which postulated that increases in neural 

activity necessitated greater energy production than what would be possible if a portion of 

glucose were to be metabolized anaerobically. This hypothesis was supported by the large body 

of literature reviewed in the first several paragraphs of this chapter. The work of Fox and Raichle 

showed that CBF, CMRglc, and CMRO2 were not completely coupled during functional 

activation and that the increase in energy production during visual stimulation performance was 

a small fraction of the brain’s resting energy needs. Specifically, they estimated that, due to the 

high rate of NOglc, the maximum increase in the rate of ATP production during visual 

stimulation was 8% of baseline39. Raichle and Fox’s work was supported by earlier evidence for 

uncoupling during neural. In 1975, Cooper and colleagues reported that visual stimulation, motor 
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activity, and reading produce focal elevations in oxygen concentration42, suggesting that 

increases in CBF during activation are not matched by increases in CMRO2. 

Despite the initial skepticism, subsequent research has largely confirmed the findings of 

Fox and Raichle that task-evoked activity results in greater increases in CBF and CMRglc than 

CMRO2. Both Ginsberg et al. and Kuwabara et al. reported that CBF and CMRglc are generally 

well-coupled during somatosensory activation43,44. Blomqvist et al. combined [18-F]-FDG PET 

with [1-11C]-glucose PET to show that NOglc is increased in the motor cortex during voluntary 

motor activity45. Several studies using magnetic resonance spectroscopy (MRS) reported focal 

increases in brain lactate concentration in humans during visual46-56, motor57-59, and other 

cognitive60 tasks. Although some investigators have reported no significant changes in regional 

CMRO2 during task performance44,61-63, the majority of studies have found modest (~10-20%) 

increases in CMRO2 during task performance51,64-71. Consistent with moderate task-induced 

increases in CMRO2, Buxton performed a meta-analysis of studies which measured ΔCBF (%) 

and ΔCMRO2 (%) during activation, and found that in most studies ΔCBF was 2-4 times greater 

than ΔCMRO2
72.  

Perhaps the best evidence corroborating the Fox and Raichle result came with the 

discovery of the bold oxygen level dependent (BOLD) effect and functional magnetic resonance 

imaging (fMRI)73,74. BOLD contrast relies on the fact that deoxyhemoglobin, which is 

paramagnetic, attenuates the MRI signal because it creates small local distortions in the main 

MRI magnetic field75. During periods of increased neural activity, CBF increases more than 

CMRO2 causing a relative increase in the concentration of oxyhemoglobin over 

deoxyhemoglobin and producing a measurable increase in the MRI signal. Therefore, the 
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thousands of papers that employ BOLD imaging each year to measure brain function76 depend 

on uncoupling between CBF and CMRO2. 

1.4 Proposed mechanisms underlying uncoupling 
 

Metabolic uncoupling during functional activity, particularly that resulting in an increase 

in NOglc, is perplexing from an energetic perspective. Complete oxidative phosphorylation of 

glucose yields approximately 30 molecules of ATP, whereas glycolysis creates only 2. Why 

would the brain utilize an energetically less efficient pathway during periods of increased 

activity? First, it is important to recall that only a small increase in oxidative phosphorylation is 

necessary because the increase in ATP during task performance is small fraction of the baseline 

production rate39. This was confirmed by Lin et al., who used magnetic resonance spectroscopy 

(MRS) to show that visual stimulation increased ATP production by only about 15%51 (see Zhu 

et al. for a higher estimate77). Furthermore, Lin et al. found that the moderate increase in ATP 

production could be accounted for by a modest increase in CMRO2 from baseline values (~15%). 

This is consistent with early animal model studies that reported that task-induced increases in 

energy production could be almost entirely accounted for by oxidative consumption of 

glucose78,79. Similarly, a meta-analysis of human studies estimated that nearly 90% of the task-

induced increase in ATP production is met by oxidative phosphorylation80. Thus it appears that 

although it takes up more glucose that is necessary for oxidative phosphorylation, the brain still 

relies on oxidative phosphorylation to meet its energy needs during periods of increases activity.  

Why then does the brain consume an excessive amount of glucose? One explanation, 

suggested by Raichle and Mintun, is that glycolysis is used to quickly generate the ATP that is 

not created by oxidative phosphorylation81. This hypothesis is supported by the fact that 
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glycolysis can operate at a much faster rate than oxidative phosphorylation, at least in active 

skeletal muscle82,83. Another hypothesis that predicts that neural activity should increase 

glycolytic ATP production is the astrocyte-neuron lactate shuttle hypothesis (ANLS)84. Pellerin 

and Magistretti developed the ANLS to explain their finding that glutamate stimulated glycolysis 

and subsequently lactate release from cultured astrocytes85. The first step in the ANLS model is 

the astrocytic uptake of glutamate from the synaptic clef during neural activity. The uptake of 

glutamate by astrocytes is facilitated thorough the GLT-1 and GLAST transporters, which couple 

glutamate influx with the uptake of 3 molecules of Na+86. Therefore, astrocytes must remove 

both excess intracellular glutamate and Na+ in order to retain the ability to remove glutamate 

from the synapse. To remove excess glutamate, astrocytes convert it glutamine using glutamine 

synthetase, a reaction that costs 1 ATP. Glutamine is then transferred back to neurons where it 

can be synthesized back into glutamate. At the same time, excess Na+ is removed from 

astrocytes using the Na+/K+ ATPase. The Na+/K+ ATPase requires one molecule of ATP to 

remove 3 Na+ ions. According to the ANLS, the two molecules of ATP that are needed to 

remove glutamate and Na+ are met by the two ATP generated by glycolysis. Finally, the lactate 

that is produced as the end point of glycolysis is shuttled to neurons where it undergoes oxidative 

phosphorylation.  

A large body of experimental evidence supports the ANLS mechanism (for a 

comprehensive review, see Magistretti and Allaman87). Several studies have shown that the 

structure and enzymatic organization of astrocytes and neurons is set up to promote a transfer of 

lactate between the two cell types. The endfeet of astrocytes surround capillaries88 and express 

glucose transporters89, making them well positioned to take up glucose from the blood. 

Astrocytes also are in direct contact with synaptic terminals90, which have been shown to be the 
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site of the majority of glucose uptake during electrical stimulation91,92. Lactate dehydrogenase 

(LDH), the enzyme that converts lactate to pyruvate, exists in five distinct isozymes93. 

Astrocytes contain a high concentration of LDH594,95, the form of LDH typically found in 

glycolytic tissues such as muscle96. Conversely, neurons primarily express LDH194, which is 

usually found in oxidative tissues such as the heart96. Similarly, neurons, but not astrocytes, 

contain high quantities of pyruvate dehydrogenase95, the enzyme necessary to convert pyruvate 

to acetyl-CoA, the first molecule in the TCA cycle. Finally, astrocytes have a significantly higher 

NAD+/NADH ratio as compared to neurons, which is consistent with greater lactate production 

in astrocytes97. 

There is also a good deal of functional evidence supporting the ANLS. Studies employing 

whisker stimulation in rodents have shown that increases in barrel cortex CMRglc: 1) occur 

primarily in astrocytes98, and 2) are strongly attenuated in mice with GLT-1 and GLAST 

knockout mutations99. Studies in culture have also shown that neurons prefer to oxidize external 

cellular lactate over glucose100,101. Consistent with this fact, elevated blood lactate decreases 

CMRglc in humans102,103. Finally, studies using MRS in rats have reported a nearly 1:1 

relationship between cerebral glucose oxidation and glutamate cycling104,105. This is exactly what 

one would expect if astrocytes use glycolysis to generate 2 ATP to power glutamate turnover and 

then shuttle lactate over to neurons for complete oxidation80. 

Despite this evidence, the ANLS remains controversial, having been criticized on both 

experimental106,107 and theoretical grounds108 (for an extremely detailed critical discussion see 

the review by Dienel109). For example, Lundgaard et al. used two-photon microscopy with a 

fluorescence 2-deoxyglucose analogue to show that glucose consumption is higher in neurons 

than astrocytes at rest and during neural stimulation106. More generally, one of the most 
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pervasive critiques of the ANLS is that most of the evidence in its favor comes mostly from in 

vitro studies; in particular no study has shown that glucose-derived lactate is transported from 

astrocytes to neurons in vivo. However, recent results have begun to address this criticism. 

Zimmer et al. reported that simulation of glutamate uptake increases CMRglc in rats110. 

Furthermore, Mächler et al. showed that in transgenic mice: 1) Astrocytes have higher lactate 

concentration than neurons at baseline, 2) Intravenous lactate injections increase lactate more in 

neurons than astrocytes, and 3) Intravenous pyruvate injections result in greater lactate efflux 

from astrocytes than neurons111. Taken together, these findings suggest that glycolysis in 

astrocytes creates a lactate gradient between astrocytes and neurons, which supports lactate flow 

down this gradient. It is likely, though, that the ANLS will remain a source of controversy until 

shuttling of glucose-derived lactate from astrocytes is observed directly in vivo.  

It is important to note, however, that in its original formation the ANLS does not explain 

the rise in NOglc during increased neural activity. Instead, the ANLS predicts a rise in non-

oxidative glucose use in astrocytes, followed by an increase in oxidative phosphorylation in 

neurons85. In this model, there is in no total increase in non-oxidative glucose use, which 

contradicts the NOglc reported by Fox and Raichle39. To explain this discrepancy, several 

alternative explanations have been proposed. Pellerin et al. hypothesized that increased neural 

activity produces different metabolic alterations at different time scales84. According to their 

model, immediately following depolarization, neurons undergo oxidative metabolism to provide 

the Na+/K+ ATPase with the ATP necessary to remove excess Na+. This is consistent with the 

work of Kasischke et al., who reported that in the first 10 seconds after electrical stimulation, 

NADH levels are decreased in neurons112. Next the inhibition of neuronal glucose uptake by 

glutamate release113, causes an increase in lactate consumption in neurons. Experiments in both 
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rats114 and humans115 which show decreased cerebral lactate concentration immediately 

following activation support this hypothesis. The continued release of glutamate from neurons 

activates the Na+/K+ in astrocytes84, which results in enhanced astrocytic glucose uptake and 

lactate production as described earlier85. The excess lactate is then is transported to neurons, 

where it can be used to oxidatively generate the ATP necessary for continue neural activity. 

Multiple studies in humans46-57,59,60,116 and animals114,117-123 have shown that neural activity 

stimulates lactate production. Furthermore, Kasischke et al. showed that NADH activity starts to 

increase in astrocytes approximately 10 seconds after activation112.  

During periods of sustained activity, however, the model proposed by Pellerin et al. 

predicts that astrocytes use glycogen to supplement the glucose supplied from the blood. 

According to this model, it is glycogen replenishment that is responsible for the increase in 

NOglc during neural activity. A similar hypothesis was also proposed by Shulman and 

colleagues124, who pointed out that glycogen synthesis reduces the ATP generated from 

glycolysis from 2 ATP per mole of glucose to 1 ATP per mole. Therefore, to generate the same 

amount of ATP from glycolysis, twice the amount of glucose would need to be consumed, 

resulting in twice the amount of lactate production. Although shunting glucose down the 

glycogen pathway is energetically less efficient and results in substantial NOglc, Shulman et al. 

hypothesize that it is used during neural activity because glycogen can be quickly broken down 

during periods of greater energy requirements.  

Brain tissue contains approximately 5-10 µMol∙g-1 119,120,122,125 of glycogen, although the 

exact value is fairly sensitive to measurement technique119,125. At euglycemia, the concentration 

of glycogen in the brain is considerably higher than that of glucose, which typically exists in 

concentrations around 1.0 µMol∙g-1126-129. Interestingly, glycogen in the brain is largely confined 
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to astrocytes130. Consistent with the models proposed by Pellerin et al. and Shulman et al., neural 

activity has been shown to deplete glycogen stores in animal models118-120,122,131. Furthermore, 

prolonged periods of wakefulness have been shown to reduce cerebral glycogen content in 

rodents132 (but see133), and to increase glycogen turnover in astrocytic processes near synapses134, 

further implicating glycogen use during neural activity. However, glycogen turnover has been 

shown to be quite slow in the resting brain in both humans135 and rats136. Moreover, a study in 

humans reported that glycogen concentration in the occipital lobe was not changed by visual 

stimulation135. Although it is has been argued that the experimental methods and kinetic 

modeling used by this study were not sufficient to detect glycogen breakdown137, there are, to 

our knowledge, no other studies examining glycogen change during task-evoked activity in 

humans. Studies in rats have also reported that there is little evidence of non-oxidative glucose 

use 15 minutes after activation118, even though glycogen levels are still below baseline118,119. 

Therefore, more studies are needed to clarify how much glycogen turnover contributes to non-

oxidative glucose metabolism driven by neural activity. In particular, methods are need to 

properly assess glycogen flux in vivo, as changes in glycogen concentration might not accurately 

reflect changes in the flux of glucose through the glycogen pool122. 

An alternative hypothesis is that astrocytes produce more lactate during increased neural 

activity than can be oxidized by neurons. This would result in a temporary increase in NOglc. 

Then, after activity has returned to basal levels, the excess lactate could either be removed from 

the brain or oxidized. Studies employing MRS in humans have reported that lactate levels peak 

after a few minutes of stimulation and then decline thereafter, either towards a new slightly 

elevated baseline46,47,60, or to pre-stimulation levels48,52. Studies in both humans116 and rats138 

have shown that increased brain activity stimulates lactate efflux from the brain. Other evidence 
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suggests that lactate oxidation is increased after functional activity. Specifically, PET studies in 

humans have reported that CMRO2 increases during prolonged stimulation71,139, whereas 

CMRglc decreases140. Similarly, Madsen et al. reported in rats that as brain lactate concentration 

returns to baseline following sensory stimulation, the brain uses more oxygen than can be 

accounted for by glucose consumption118.  

Not all the evidence is consistent with the idea that NOglc is elevated during task because 

of a temporary increase in lactate consumption. Several human MRS studies have reported that 

lactate concentration remains elevated during prolonged stimulation49,50,53,54,58. Furthermore, 

additional human studies have shown that NOglc persists well after task-performance116,141. 

Finally, rodent studies have argued that lactate production has a limited role in explaining 

NOglc. The same Madsen et al. report mentioned previously estimated that less than 54% of the 

NOglc that occurred during stimulation could be accounted for by lactate production118. Based 

on metabolite measurements from extracellular fluid following the infusion of [3,4-14C]-glucose, 

Ball et al. estimated that lactate oxidation can only account for a very small fraction of activity 

dependent increases in NOglc138. Therefore, although the existing evidence suggests that 

excessive lactate production plays a role NOglc during neural activity, it is unlikely to be the 

only factor.  

An alternative, albeit non-exclusive, hypothesis is that NOglc during task-evoked activity 

is directed towards glutamate synthesis. Specially, Hertz and Fillenz proposed that increased 

neural activity stimulates the production of glutamate, which is then consumed via oxidative 

phosphorylation once activity levels have returned to baseline142. In support of this hypothesis, a 

[6-14C]-glucose labeling studying in rats reported a significant increase in the labeling of 

glutamate during sensory stimulation120. In addition, most50,53,54,56,58,143,144, but not all48,55, studies 
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have reported that sensory stimulation increases glutamate concentration in humans by a small 

amount (typically less than 5% averaged over a large ROI in the appropriate sensory area). 

Interestingly, some investigators have also found that brain aspartate concentration decreases as 

glutamate concentration increases50,54,56. This suggests that some of the increase in glutamate 

production may be due to the malate-aspartate shuttle49,145. The malate-aspartate shuttle is a 

critical metabolic pathway, as it generates NAD+ needed for glycolysis and transfers reducing 

equivalents, in the form of NADH, from the cytosol to mitochondria, where they are required for 

oxidative phosphorylation109,146. However, not all studies have reported decreases in aspartate 

concentration with sensory simulation53,55,143. Therefore, more research is needed to determine 

what role the malate-aspartate shuttle plays in glutamate production during neural activity. More 

generally, the extent to which glutamate synthesis is responsible for NOglc during task 

performance remains unclear. Although the evidence discussed above indicates that glutamate 

concentration is elevated during sensory stimulation, the increases are typically only a small 

percent of baseline values. Quantitative studies are clearly needed to establish how much NOglc 

is dedicated to glutamate production during neural activity.  

One final hypothesis deserves to be discussed. Multiple authors have proposed that 

NOglc provides the brain with the biosynthetic precursors needed for neural development and 

plasticity147,148. Early support for this hypothesis was obtained by Madsen et al. in 1995, who 

found that the whole-brain average NOglc remained elevated for more than 40 minutes after 

participants performed the Wisconsin Card Sorting Test116. Interestingly, Madsen et al. later 

reported in rats, that cerebral NOglc was effectively eliminated only minutes after tactile 

simulation118. These discrepant results suggest that increases in NOglc following task 

performance may be species dependent. More recently, Shannon and colleagues expanded upon 
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the work of Madsen et al. using PET imaging141. They reported that approximately 2 to 3 hours 

after performing a motor learning task, NOglc was increased in Brodmann area 44, an area 

which is active during motor responses149. Taken together, these two studies suggest that NOglc 

plays a role in learning-induced synaptic plasticity. 

Studies employing radiolabeled glucose infusions in rats have also provided evidence that 

glucose is used for biosynthesis during neural activity. Cruz et al. reported that, after acoustic 

stimulation, 10-25% of the recovered radiolabel was found in products of the pentose phosphate 

shunt121,150, a pathway used for nucleic acid synthesis151. Similarly, Dienel et al. found that tactile 

stimulation increased the amount of radiolabel recovered in a large number of glucose 

metabolites, including the amino acids glutamate, GABA, and alanine120. Finally, advocates of 

the biosynthesis hypothesis often point out that, during human development, a period 

characterized by brain growth and synaptic development152, approximately 30% of the brain’s 

glucose is consumed via non-oxidative pathways153 (but see154). Similarly, developmental studies 

in primates have shown that glucose consumption peaks at around the same time as rates of 

myelination and synaptogenesis148. 

There is, therefore, credible evidence that part of the brain’s NOglc passes through 

biosynthetic pathways. However, despite the fact that biosynthesis plays an important role in 

synaptic plasticity155, there is currently no evidence that glycolytic by-products are directly 

incorporated into new structural elements (e.g.., synapses) during learning. Critics of the 

biosynthesis hypothesis also argue that use of glucose for biosynthesis would result in 

uncontrolled brain growth154. Although this criticism ignores turnover of synaptic elements156,157 

and proteins158,159, as well as alternative mechanisms for the efflux of glucose metabolites138,160, 

it does highlight the fact that we do not yet know how carbon consumed via biosynthetic 
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pathways leaves the brain. Methods that can track the movement of glucose in and out of the 

brain’s biosynthetic machinery are needed to clarify the relationship between plasticity and 

NOglc. 

Currently, no single hypothesis entirely explains why NOglc is elevated during periods of 

increased neural activity. It is more likely that a combination of mechanisms, including those 

discussed in the previous paragraphs, is needed to account for all glucose consumption in excess 

of oxygen utilization. An accurate model of task-evoked NOglc will likely be complex, as it will 

need to account for, among other things, multiple metabolic pathways and interactions among 

cell types. Moreover, the effect of NOglc may not be confined to the area of activation, as 

glucose metabolites can spread to neighboring tissues via gap junctions in astrocytes121. Finally, 

a useful working model will need to consider non-oxidative uses of glucose that go beyond 

merely energy metabolism. Recent work has begun to establish the role of lactate as signaling 

molecule161, with a critical role in formation of long-term memories87. For example, Suzuki et al. 

showed that blocking the transfer of lactate from astrocytes to neurons impairs long-term 

memory formation in rats162. Importantly, it does not appear that blocking lactate transport 

impairs energy metabolism, as direct injection of glucose does not rescue memory formation. 

Instead, lactate appears to induce the expression of genes such as Arc162,163 that are related to 

synaptic plasticity155. These studies suggest that NOglc may promote biosynthesis in more ways 

than just providing metabolic precursors for biosynthesis. Furthermore, studies linking lactate 

signaling and learning reinforce the need for a model of metabolism during neural activity that 

incorporates more than just the energetic perspective. 

1.5 Non-oxidative glucose consumption at rest 
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Since the work of Fox and Raichle in 1988, the majority of research on metabolic 

uncoupling in the brain has focused on understanding uncoupling during periods of increased 

neural activity. However, it is important to realize that it was recognized as early as 1942 that 

during periods of rest the brain consumes more glucose than would be expected given its rate of 

oxygen consumption4. Early studies reported that the whole-brain average oxygen-to-glucose 

index (OGI), which is the molar ratio of oxygen to glucose consumption, was around 5.5 (for 

review see164). If glucose is entirely consumed via oxidative pathways, the OGI should be 6, as 6 

moles of oxygen are required to oxidize 1 mole of glucose. An OGI of 5.5 indicates that nearly 

10% of the brain’s glucose consumption at rest does not undergo oxidative phosphorylation. 

Following its discovery, the importance of non-oxidative glucose metabolism was largely 

underappreciated. Most investigators argued that lactate (or pyruvate) efflux accounted for nearly 

all of the NOglc in the brain4,165,166. This argument was also presented by Siesjö in his influential 

textbook Brain Energy Metabolism167. According to Siesjö, “… an OGI of less than 100% [6.0] 

could be explained in terms of production of lactate … there is no need to explain an OGI value 

of less than 100% [6.0] in terms of synthesis of amino acids or other compounds.” To this day, 

many investigators still hold to this view. For example, in recent review, Dienel wrote that 

“Submaximal OGI in resting brain is ascribed mainly to lactate production and efflux from 

brain…”109. 

Despite the widely held view that non-oxidative glucose metabolism at rest merely 

reflects lactate efflux, and is therefore of little physiological importance, there is evidence 

suggesting otherwise. Based differential arterio-venous measurements of glucose, lactate, and 

oxygen in humans, Scheinberg et al. reported in 1965 that cerebral NOglc could not be explained 

by lactate efflux to venous blood168. They also presciently concluded that “… the portion of 
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utilized glucose not accounted for by oxidation may be involved in the synthesis of other 

substances, in particular amino acids of cerebral proteins.” More recently, Vaishnavi et al., using 

PET measurements of CMRglc and CMRO2, showed that there are regional differences in 

NOglc147. The lowest rates of NOglc were found in the cerebellum and medial temporal lobe, 

whereas the highest were found in the prefrontal and parietal cortices. Interestingly, the regions 

with elevated NOglc overlapped strongly with two resting state networks (RSNs), that is, regions 

of the brain whose spontaneous activity is highly correlated at rest169. The first RSN was the 

cognitive control network, a network that encompasses parts of the lateral prefrontal and parietal 

cortices and is thought to be involved in attention and working memory170. The second RSN was 

the default mode network (DMN), a collection of regions including the prefrontal cortex, 

precuneus, and lateral parietal cortex171. The defining feature of the DMN is that, although it is 

metabolically active at rest, it becomes less so during goal-directed task performance171-173. The 

DMN has traditionally been associated with self-referential processes such as mind-

wandering174,175; however there is evidence that the DMN has more expansive role (for a review 

see176). The fact that resting NOglc is spatially correlated with regions associated with RSNs 

suggests that these regions may have unique metabolic needs compared to other brain regions. 

More recently, Goyal et al. reported that the expression of genes related to synaptic 

plasticity and development is enriched in brain regions with high levels of NOglc153 (but see177). 

This suggests that a portion of the brain’s non-oxidative glucose metabolism in spent on 

plasticity and other biosynthetic processes (for a similar argument during task-evoked activity 

see Proposed mechanisms underlying uncoupling above). In support of this idea, Glasser et al. 

showed that there is a negative spatial correlation between regional NOglc and a putative 

measure of cortical myelination178. Furthermore, Segarra-Mondejar et al. reported that glucose 
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consumption, specifically glycolysis, is necessary for neurite growth in vitro and in vivo in 

mice179. Although intriguing, these and the studies discussed in the preceding two paragraphs do 

not definitively establish the function of NOglc in the resting brain. As in metabolic uncoupling 

during task-evoked activity, it is likely that multiple mechanisms are at play. To further establish 

the role of NOglc at rest, there is a need for techniques that can quantify the flux of glucose into 

multiple metabolic pathways, including those responsible for biosynthesis. To address these 

issues,13C MRS180,181 and hyperpolarized 13C MRI182 in vivo and metabolic flux analysis in 

vitro183 provide intriguing opportunities. 

1.6 Brain metabolism in altered metabolic states and disease 
 

So far, this chapter has focused almost exclusively on brain metabolism in healthy 

individuals. However, understanding the effect of acute metabolic states and neurological 

diseases on brain metabolism has been an active area of study since methods for measuring brain 

metabolism in humans were first developed. The same year that he published his influential 

article establishing the nitrous oxide technique for measuring CBF in humans12, Kety published 

five papers studying the relationship between whole-brain CBF and CMRO2 and 

schizophrenia184, intracranial pressure185, diabetic coma6, hypertension186, and hypercapnia187. 

One of the interesting findings that emerged from these studies is that CBF and CMRO2 often are 

uncoupled during metabolic challenges. For example, Kety reported that hypercapnia 

dramatically increases CBF, without a proportional increase in CMRO2
187. Conversely, Kety 

found that, although patients experiencing diabetic coma had a greatly reduced CMRO2, their 

CBF values were largely in the normal range6.  
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Since these initial studies by Kety and colleagues, multiple investigators have reported 

uncoupling between CBF, CMRO2, and CMRglc during acute metabolic challenges. 

Hypoglycemia was intensively studied in the 1940 and 1950s since insulin shock was, at the 

time, considered a viable treatment for schizophrenia188. Consistent with Kety’s study in patients 

suffering from diabetic coma, profound hypoglycemia decreased whole-brain CMRglc greatly, 

whereas CBF and CMRO2 changed modestly7,184,189,190. Another notable example is hypoxia. 

Studies in both humans166,187,191 and rats192 have shown that hypoxia dramatically increases 

global CBF without altering CMRO2. Furthermore, CMRglc increases modestly during 

hypoxia166. The increase in CMRglc without a proportional increase in CMRO2, results in 

increased NOglc during hypoxia166,193, which appears to be due to lactate production166,194. This 

is consistent with the finding that acute hypocapnia results an in a temporary increase in 

NOglc195. 

The variety of the examples discussed in the previous two paragraphs should make it 

clear that alterations in systematic metabolism often disrupts metabolic coupling in the brain. In 

some cases it is fairly simple to come up with a reasonable hypothesis to explain the divergent 

changes metabolism. During hypoxia, for example, it is possible that CBF and lactate production 

increase to prevent energy failure167. In other cases, coming up with a satisfactory explanation is 

more difficult. Despite a great deal work, there is still no complete account of what fuel sources 

the brain uses to maintain CMRO2 during hypoglycemia (for a review see196).  

In addition to its role in acute disorders, metabolic uncoupling has also been implicated in 

chronic neurological disease. For example, temporal lobe epilepsy has been shown to decrease 

CMRglc in the temporal lobe to a greater extent than it does CBF197-199. Interestingly, metabolic 

uncoupling also occurs during traumatic brain injury, which increases whole-brain NOglc200. 
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Given these results, one would expect that metabolic uncoupling would be an active area of 

study for those interested in understanding neurological diseases, but this is not always true. A 

promising example of where research on metabolic uncoupling could contribute to the study of 

neurological disease is in Alzheimer’s disease (AD) research. AD research is a field which has 

grown quickly in the last few decades201, due, in part, to the increased economic and social 

burden that AD is expected to have on aging populations202.  

Pathologically, AD is defined by the development of amyloid-beta plaques, followed by 

tangles of hyperphosphorylated tau203. However, another hallmark of AD is focal decreases in 

glucose consumption. AD patients typically show deficits in glucose consumption in the frontal, 

parietal, and temporal lobes, as well as in the precuneus and posterior cingulate204. It is generally 

accepted in the field that decreased glucose use in AD is a sign of synaptic dysfunction203,204; a 

conclusion that is based on studies that have shown that most of the glucose consumed during 

neural activity is taken up by synapses91,92. There is, however, a lack of empirical evidence that 

decreased glucose consumption in AD patients is entirely due to energy failure at synapses. 

Although glucose metabolism measured using FDG PET is one of the most common biomarkers 

reported in AD studies205, cerebral oxygen metabolism is rarely assessed. Early studies showed 

that in patients with severe dementia, global CMRO2 declines by about 20%206, with the largest 

declines occurring in the parietal lobe207. However, as these studies did not simultaneous 

measure glucose consumption, it is not clear if CMRglc declines in proportional to oxygen 

consumption. Indeed, regional decreases in CMRglc in excess of 30-40% have been reported in 

individuals with AD208,209. Therefore, the claim that AD patients have lower cerebral glucose 

consumption entirely because of synaptic dysfunction relies on the assumption that there is a 

tight coupling between synaptic activity and glucose consumption in individuals with AD.  
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However, as we have seen, metabolic coupling becomes much less pronounced in many 

neurological diseases. Indeed, there is evidence for uncoupling in AD patients (for a review 

see210). CMRglc has been shown to decrease to a greater extent than CMRO2 in individuals with 

both early-onset211 and late onset AD212-214. This indicates that NOglc decreases during AD, in 

addition to the decline of NOglc that has been noted during healthy aging215. Intriguingly, Hoyer 

et al. also showed that in later stages of AD, CMRO2 drops sharply, which eliminates much of 

the difference between changes in CMRglc and CMRO2
212. This suggests that the relationship 

between AD and brain metabolism may evolve as the disease progresses. Consistent with this 

hypothesis, it was recently reported that there is a negative correlation between tau deposition 

and NOglc in cognitively normal individuals216. However, this correlation was only found in 

individuals that were at risk for developing AD due to high levels of amyloid plaques. It is 

therefore possible that amyloid plaques mediate the relationship between NOglc and AD. In 

agreement with this proposal, Vlassenko et al. reported that the regions of the brain with high 

levels of amyloid plaques in individuals with AD are the same regions that have high levels of 

NOglc in healthy young adults217. A few years later, Bero et al. replicated this finding by 

showing a positive regional correlation between lactate production and amyloid plaque loads in a 

transgenic mouse model of AD123. Together, these results suggest that high rates of NOglc may 

put a brain region at risk for developing amyloid plaques later in life. Determining if deficits in 

NOglc lead to the development of AD pathology, or if they are merely an epiphenomenon, will 

require more direct research.  

1.7 Overview of dissertation 
 

The previous sections in this introductory chapter have argued that metabolic uncoupling, 

in particular that resulting in NOglc, has important consequences that extend beyond energy 



26 
 

metabolism. This is in contrast to the conventional view, which posits that metabolic uncoupling 

is a minor phenomenon of relatively little physiological importance. Therefore, the goal of the 

remaining chapters in this thesis is to further explore discrepancies between CBF, CMRglc, and 

CMRO2. 

In Chapter 2, I will examine whole-brain NOglc at rest in healthy individuals. As 

previously mentioned, an early review by Kety concluded that the whole-brain OGI was 

approximately 5.5164, which shows that around 9% of CMRglc is metabolized without oxygen 

consumption. Conversely, a recent small meta-analysis (n=8) reported that the whole-brain OGI 

may be as low as 5.1218. To resolve the quantitative discrepancy, I performed a large meta-

analysis of studies reporting whole-brain OGI (n=40). Also because it is widely believed that 

excess glucose in the brain is accounted for by lactate production167, we analyzed studies (n=39) 

that reported the whole-brain oxygen-to-carbohydrate index (OCI), a measure that includes 

lactate as well as glucose consumption. If the OGI is less than 6.0 due to lactate production, then 

the average whole-brain OCI from our meta-analysis should not be statistically different from 

6.0. Alternatively, an OCI significantly less than 6.0 suggests that some of the brain’s NOglc 

proceeds down metabolic pathways that do not end in lactate production (e.g., biosynthetic 

pathways). A slightly modified version of Chapter 2 has been published elsewhere219. 

The topic of Chapter 3 is regional differences in NOglc in the brain at rest. A previous 

study from our laboratory reported that the fraction of glucose consumed via non-oxidative 

pathways varies across the human brain147. The precuneus, frontal lobe, and parietal lobe have 

high rates of NOglc, whereas the cerebellum and medial temporal lobe have lower rates. This 

report was recently challenged by Hyder et al., who argued that these regional differences are 

methodical artifacts220. In the original report, Vaishnavi et al. calculated cerebral glucose and 
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oxygen consumption using local-to-global tracer uptake ratios147, instead of quantifying absolute 

CMRglc and CMRO2 directly in each region. Although the lack of absolute units can result in 

misleading inferences221, uptake ratios are a commonly used technique because they remove 

global variance and do not require invasive arterial sampling. In their paper, Hyder et al. 

attempted to show that there are no regional differences in NOglc if a proper kinetic model is 

used to compute absolute CMRglc and CMRO2
220. However, a careful reading of the Hyder et al. 

paper suggested that the authors actually reported regional differences in their data that were 

simply masked by a combination of misleading data visualization and improper statistical 

techniques. I therefore reanalyzed the Hyder et al. data using simple, direct methods to confirm 

this impression. The results of this analysis were also reported in a previous article222. 

 Although the focus of Chapters 2 and 3 are on brain metabolism in healthy individuals 

under normal physiological conditions, the goal of Chapter 4 is to examine regional cerebral 

blood flow and glucose metabolism in participants experiencing moderate hypoglycemia. Many 

studies have examined how regional CBF changes in response to hypoglycemia (for a review 

see223). These studies have found that, in humans, hypoglycemia focally increases CBF in the 

thalamus, globus pallidus, and medial prefrontal cortex224-226. In contrast, most of the studies 

measuring CMRglc during hypoglycemia have reported only global values. Although global 

CMRglc is substantially lower in subjects experiencing profound hypoglycemia184,189, it does not 

begin to decline until moderate hypoglycemia (~50 mg/dL) occurs227,228. The sole study 

examining regional CMRglc during moderate hypoglycemia humans reported changes in every 

region examined229,230. Thus, hypoglycemia seems to affect CBF, which changes focally, 

differently than CMRglc, which changes uniformly across the brain. To test this hypothesis, I 
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used [15O]-H2O and 1-[11C]-D-glucose PET to measure regional CBF and CMRglc in 18 patients 

during stepped hypoglycemia.  

 Lastly, Chapter 5 will investigate regional changes in blood flow, glucose consumption, 

and oxygen metabolism in hyperglycemic individuals. It is well-known that during euglycemia, 

more glucose is present in the blood than is taken up by cells in the brain 231. Therefore, one 

would predict that increases in blood glucose concentration would not change CMRglc. 

However, there is evidence that this may not be true. Although statistically significant in only 

one report232, multiple studies have reported that hyperglycemia increases global CMRglc 

slightly232-235. More interestingly, two separate studies have reported that white matter is 

particularly affected by hyperglycemia, with CMRglc increasing by over 40% in both 

studies232,234. Conversely, the same two studies found that the increases in CMRglc within gray 

matter where either much smaller (~20%)232, or not significant234.There currently is no 

explanation as to why hyperglycemia increases CMRglc specifically in white matter. As 

metabolic uncoupling occurs in so many neurological conditions (see Brain metabolism and 

disease above), it is possible that hyperglycemia selectively increases NOglc. I used [18F]-FDG 

and [15O]-O2 PET imaging to determine if changes in glucose consumption during 

hyperglycemia are matched by changes in oxygen consumption. Finally, I used [15O]-H2O PET 

and arterial spin labeling MRI to test how regional blood flow if affected during hyperglycemia.
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1.8 Figures 

Gray boxes denote each separate pathway that glucose can enter once inside the brain. The 

majority of glucose enters the glycolytic pathway and then is reduced to CO2 and water in the 

TCA cycle. However, the TCA cycle also produces many important amino acids such as 

glutamate. Furthermore, glucose can also be stored as glycogen, be converted into fructose by 
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the polyol pathway, or used to generate intermediates for nucleic acid biosynthesis via the 

pentose phosphate shunt. Abbreviations are as follows: 1,3-Bisphosphoglycerate (1,3PG), 2-

Phosphoglycerate (2PG). 3-Phosphoglycerate (3PG), Phosphoglycerate kinase (3PGK), 6-

Phosphogluconate (6-PGD), 6-Phosphogluconolactone (6-PGDL), Acetylcholine (ACh), 

Aconitase (ACON), Adenosine diphosphate (ADP), α-Ketoglutarate dehydrogenase (α-KGDH), 

Alanine (Ala), Aldose reductase (AR), Aspartate (Asp), Adenosine-triphosphate (ATP), 

Coenzyme A (CoASH), Citrate synthase (CS), Dihydroxyacetone phosphate (DHAP), Erythrose 

4-phosphate (Ery4P), Flavin adenine dinucleotide (FAD), Dihydroflavine adenine dinucleotide 

(FADH2), Fructose-bisphosphate aldolase (FBA), Fructose 1,6-bisphosphate (Fru-1-6-P2), 

Fructose 6-phosphate (Fru-6-P), Glucose-6-phosphate dehydrogenase (G6PD), Glyceraldehyde 

3-phosphate dehydrogenase (GAPDH), Glyceraldehyde 3-phosphate (GAP), Guanosine 

diphosphaste (GDP), Glucose-1-phosophate (Glc-1-P), Glucose-6-phosphate (Glc-6-P), 

Glutamine (Gln), Glutamate (Glu), Glycine (Gly), Gluconolactonase (GNL), Glycogen synthase 

(GS), Guanosine triphosphaste (GTP), Hexokinsae (HK), Isocitrate dehydrogenase (IDH), 

Lactate dehydrogenase (LDH), Malate dehydrogenase (MDH), Nicotinamide adenine 

dinucleotide (NAD+, NADH), Nicotinamide adenine dinucleotide phosphate (NADP+, NADPH), 

Nucleoside-diphosphate kinase (NDPK), Pyruvate dehydrogenase (PDH), Phosphoenolpyruvate 

(PEP), Phosphofructosekinase (PFK), Phosphoglucose isomerase (PGI), Phosphoglucomutase 

(PGM1), Phosphoglycerate mutase (PGM2), Pyruvate kinase (PK), Pyrophosphate (PP), 

Pyruvate (Pyr), Ribulose-5-phosophate (R5P1), Ribose-5-phosphate (R5P2), Ribulose-5-

phosphate 3-Epimerase (RPE), Ribulose-5-phosphate Isomerase (RPI), Sedoheptulose 7-

phosphate(S7P), Succinyl coenzyme A synthetase (SCS), Succinate dehydrogenase (SDH), 

Transaldolase (TAL), Transketolase (TKT), Triose-phosphate isomerase (TPI), Uridine 
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diphosphate (UDP), UTP-glucose-1-phosphate uridylytransferase (UDPGP), Uridine 

triphosphate (UTP), Xylulose-5-phosphate (X5P). Adapted from Dienel109 and Garrett and 

Grisham236.
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Chapter 2: A systematic meta-analysis of oxygen-to-glucose and 
oxygen-to-carbohydrate ratios in the resting human braini 

 

2.1 Abstract 
 

Glucose is the predominant fuel supporting brain function. If the brain’s entire glucose 

supply is consumed by oxidative phosphorylation, the molar ratio of oxygen to glucose 

consumption (OGI) is equal to 6. An OGI of less than 6 is evidence of non-oxidative glucose 

metabolism. Several studies have reported that the OGI in the resting human brain is less than 

6.0, but the exact value remains uncertain. Additionally, it is not clear if lactate efflux accounts 

for the difference between OGI and its theoretical value of 6.0. To address these issues, we 

conducted a meta-analysis of OGI and oxygen-to-carbohydrate (glucose + 0.5*lactate; OCI) 

ratios in healthy young and middle-aged adults. We identified 47 studies that measured at least 

one of these ratios using arterio-venous differences of glucose, lactate, and oxygen. Using a 

Bayesian random effects model, the population median OGI was 5.46 95% credible interval 

(5.25-5.66), indicating that approximately 9% of the brain’s glucose metabolism is non-

oxidative. The population median OCI was 5.60 (5.36-5.84), suggesting that lactate efflux does 

not account for all non-oxidative glucose consumption (NOglc). Significant heterogeneity across 

studies was observed, which implies that further work is needed to characterize how 

demographic and methodological factors influence measured cerebral metabolic ratios. 

2.2 Introduction 
 

 
i This chapter is slightly modified version of a previously published article: Blazey TM, Snyder AZ, Goyal MS, 
Vlassenko AG, Raichle ME. A systematic meta-analysis of oxygen-to-glucose and oxygen-to-carbohydrate ratios in 
the resting human brain. PLoS ONE 2018; 13: e0204242. 
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Glucose and oxygen consumption are tightly coupled in the brain at rest, with the 

majority of glucose undergoing complete oxidative phosphorylation1. Furthermore, the ratio of 

carbon dioxide production to oxygen consumption is very close to one2, indicating that nearly all 

of oxygen consumption is used for carbohydrates. The standard measure of coupling between 

oxygen and glucose utilization is the oxygen-to-glucose index (OGI), which is the molar ratio of 

oxygen to glucose consumption. An OGI of 6 indicates that all glucose is consumed via 

oxidative pathways.  

The measurement of cerebral arterio-venous differences of oxygen and glucose is 

regarded as the gold-standard technique for obtaining OGI. With this method, arterial samples 

are collected from a peripheral artery (e.g. radial or brachial artery) and venous samples from the 

internal jugular vein at the jugular bulb. The primary assumption of this technique is that the 

venous blood in the jugular bulb comes solely from the brain. If blood from other sources is 

present, than the arterio-venous difference is no longer only the result of cerebral metabolism. 

This bias is likely to be small, however, as it has been estimated that 97.4% of the blood in the 

jugular bulb comes from cerebral sources3.  

Although the arterio-venous technique has been used to study whole-brain OGI for over 

sixty years4, there remains some uncertainty as to the exact value. Individual studies using 

arterio-venous differences in humans at rest have reported values ranging from 4.65 to 7.56. In 

1957, Kety reviewed sixteen studies of both healthy and diseased populations and reported a 

mean value of 5.544. A more recent meta-analysis of eight studies of metabolism during exercise 

found a whole-brain OGI of 5.17. These two reviews suggest that anywhere from 8 to 15% of the 

brain’s glucose uptake is consumed via non-oxidative metabolism. Thus, the value of cerebral 

OGI in resting, healthy humans is known only approximately. 
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 The fate of glucose consumed by non-oxidative pathways is also a matter of some debate. 

It has been suggested that lactate efflux to venous blood may completely account for non-

oxidative glucose metabolism8. Two more recent reviews have reported conflicting results7,9. 

Both studies performed a meta-analysis of the oxygen-to-carbohydrate index (OCI), also referred 

to as the cerebral metabolic ratio (CMR). The OCI is computed as the molar ratio of the arterio-

venous difference of oxygen to glucose plus ½ lactate. (The factor of ½ arises because each mole 

of glucose theoretically yields two moles of lactate). If lactate efflux to venous blood completely 

accounts for an OGI less than 6, then the OCI should equal 6 or greater. Alternatively, an OCI 

less than 6 indicates that lactate efflux to venous blood does not alone account for all of non-

oxidative glucose metabolism. Consistent with the original finding of Siesjö8, Quistroff et al. 

reported that the population mean OCI from eight studies is approximately 6. However, 

Rasmussen et al., in a partially overlapping sample of eight studies, reported that the resting OCI 

was 5.3. Thus, it remains unclear whether lactate fully accounts for non-oxidative glucose 

metabolism in the resting human brain. 

 To provide a more accurate estimate of both OGI and OCI in the healthy human brain at 

rest, we conducted a systematic meta-analysis10 of studies reporting arterio-venous differences 

for glucose, oxygen, and lactate. We identified 40 studies with OGI data and 37 partially 

overlapping studies with OCI data. We then performed a random effects Bayesian meta-

analysis11 to determine the population average OGI and OCI ratios and their credible intervals 

(CIs).  

2.3 Methods 
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Study Design 
 Our meta-analysis was conducted using the Preferred Reports Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines10. Figure 2.1 shows a flow diagram of the 

study procedures. Table 2.1 contains the PRISMA checklist. We did not complete or register an 

a priori study protocol.  

Eligibility Criteria 
 We included studies that reported mean OGI and/or OCI along with either SD or standard 

error of the mean (SE), or the data necessary to estimate the mean and SE. Only studies that used 

arterio-venous differences to measure whole-brain OGI and/or OCI were included. OGI and OGI 

data were typically taken from text or tables, but were extracted from figures if necessary. Table 

2.2 lists the data source for each study. If a study did not report either ratio but contained the 

necessary arterio-venous data, we contacted the corresponding author via the listed email address 

and requested the required data. Although positron emission tomography (PET) can be used to 

measure whole-brain OGI12,13, we chose to exclude these studies because of uncertainty in the 

value of the lumped constant for [18F]-FDG14. We did not include studies from older adult 

cohorts or from diseased populations (e.g., cardiac, neurological, or mental disorders).  

Study Identification 
 We searched the PUBMED database with several combinations of the terms “Arterial”, 

“Arterio”, “Brain”, “Carbohydrate”, “Cerebral”, “Glucose”, “Index”, “OCI”, “OGI”, “Oxygen”, 

“Ratio”, and “Venous” (Table 2.3). In total, we performed 24 separate search queries. All 

searches were constrained to articles published between 1900 and August 10th, 2017. To limit the 

amount of animal model studies returned by our searches, we added the Medical Subject 

Heading (MeSH) keyword “Human” to every search. In addition, the first author (TB) conducted 

a search of his personal archives for any papers that included measures of cerebral oxygen, 
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glucose, and lactate metabolism. The papers in the final dataset that were only found in the first 

authors archives are listed in Table 2.2. 

Statistics 
 A random effects Bayesian meta-analysis11 was performed to calculate the population 

average OGI and OCI. A random effects model accounts for differing variance in each study’s 

estimates of OGI and OCI, while simultaneously allowing for heterogeneity between studies. 

Separate models were run for OGI and OCI. If a study reported multiple values for OGI or OCI, 

a fixed effects meta-analysis was performed to calculate an overall estimate for that study15. Our 

model assumed that each study’s estimate, !", is a random sample from a normal distribution: 

!"~$(& + &", )") (2.1) 

where& is the population mean, &"is random offset for study i, and )" is the study standard 

deviation. No covariates or other explanatory factors were included in the model. We assume 

that )" is equal to each study’s standard error of the mean. The random offsets for each study 

were also assumed to follow a normal distribution:  

&"~$(0, ,)  (2.2) 

where , is the random effects standard deviation, which reflects the heterogeneity across studies.  

 The model parameters, &, &", and , were estimated using Hamilton Markov Chain Monte 

Carlo (MCMC) implemented in Stan16. The population mean, &, was given a broad normal prior 

with a mean of 6 and standard deviation of 2. The random effects standard deviation, , , was 

given a uniform prior with a lower limit of 0. Eight randomly initialized chains of 20,000 

samples were run for each model. The first 10,000 samples of each chain were discarded as 
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warm-up. Sample autocorrelation was minimized by only considering every 5th sample. As a 

result, all inferences are based upon 16,000 posterior samples. Convergence was assessed using 

the Gelman and Rubin potential reduction statistic, -.17,18. -. is the ratio of within chain variance 

to the pooled between chain variance. At convergence, -. should be equal to one. For both 

models, -. was with within 10-3 of 1 for every parameter. All results are summarized with 

medians and 95% equal-tailed credible intervals.  

 The primary parameters of interest where the population means, &, for OGI and OCI. We 

also computed the percent of glucose metabolism that is entirely non-oxidative. This was done 

by assuming a 6:1 stoichiometric ratio: 100 ∙ (1 − 234 6.0⁄ ). Replacing OGI in this expression 

with OCI gives the percent of carbohydrate metabolism that is non-oxidative. 

Assessment of Bias and Heterogeneity 
 Risk of bias within studies was assessed by considering four factors: study population, 

interval between catheterization and measurement, the presence of experimental manipulations, 

and fasting state. Bias assessment was not a factor in the random effects meta-analysis, and no 

sub-group analyses are reported. The possibility for bias across studies was assessed using funnel 

plots19. A funnel plot is used to determine if there is any relationship between the reported 

OGI/OCI value and its standard error. If a meta-analysis is free from publication bias and 

heterogeneity, the plot should resemble a funnel with the studies with the smallest standard 

errors clustered around the population average. An asymmetric funnel plot can be an indication 

of reporting bias or study heterogeneity20. To test for funnel plot asymmetry, we used the method 

recommended by Egger et al.19,21, which involves a regression model with effect size as the 

dependent variable and standard error as the independent variable. Our regression model, 

implemented in the R metafor package15, also estimated a random effect for each study.  
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 The possibility of study heterogeneity was further quantified using posterior predictive 

intervals22 for a random new study. Posterior predictive intervals, which incorporate the 

uncertainty in parameter estimates, provide a credible interval in which we would expect a new 

study to fall. All posterior predictive intervals were computed using 16,000 random samples. 

Finally, we computed the I2 statistic23,24: 

48 = 100 ∙
:;<

:;<=>?<
 (2.3) 

where ,̂8 is the estimated between study variance from the random effects model, and );8 is the 

within study variance:  

);8 =
∑ BC(DEF)
G
CHI

J∑ BC
G
CHI K

<
E∑ BC

<G
CHI

  (2.4) 

where L is the number of studies and M" is the precision of the mean for study i: M" = 1 )"
8⁄ . We 

calculated 48 for each MCMC sample of ,̂8 and then computed the median 48 along with its 95% 

equal-tailed credible intervals. Higher values of 48 indicated a greater relative proportion of 

between study variance and thus greater study heterogeneity. 

2.4 Results 
 

Included Studies 
 Our searches of PUBMED (see Methods) and our own archives identified 927 potential 

records (Figure 2.1). After reviewing the titles, and if necessary, abstracts of all 927 records, 810 

were discarded from further consideration. Records were discarded at this step if they were 

clearly irrelevant for our purposes (e.g. animal studies). The remaining 117 papers were then 

subjected to a critical full text review. This review resulted in the rejection of 65 papers (Table 
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2.4). The majority of papers were rejected because they did not acquire the data necessary to 

calculate OGI/OCI (n=38) or because they reported values only in experimental states (n=17). 

For OGI, we found 52 papers that met our requirements for inclusion, 34 of which reported OGI. 

In addition, we sent 19 requests for data to authors of studies that had the data necessary to report 

OGI but did not do so. We received data from 6 of these authors, resulting in a total of 40 

studies. For OCI, 43 papers met our inclusion requirements. Of these, 32 papers reported the 

required data, and data requests were sent for the remaining 11. After receiving data from 5 

authors, our final OCI dataset contained 37 studies. A summary of the characteristics for the 

included studies is in Table 2.2. A total of 30 studies measured both OGI and OCI. 

Population Average OGI and OCI 
 Forest plots for OGI and OCI are shown in Figure 2.2 and Figure 2.3, respectively. Note 

that the random effects models effectively decrease the weight of studies with high standard 

errors. The population average OGI was 5.46 with a 95% CI of 5.25 to 5.66. As the CI does not 

overlap 6.0, we can infer that there is significant NOglc at rest. The population average OCI was 

5.60 with a 95% CI of 5.36 to 5.84. The fact that the credible intervals do not contain 6 indicates 

that a significant portion of the brain’s glucose consumption is non-oxidative and cannot be 

accounted for by lactate efflux to the blood.  

Bias and Heterogeneity  
 Within-study bias was assessed in four separate categories: study population, waiting 

period between catheterization and measurement, experimental manipulations, and fasting state 

(Table 2.5). The most frequent bias in study population was the use of all male subjects. Nineteen 

studies included only male subjects. No study included only female subjects. The majority of 

studies consisted of younger subjects (Table 2.5). Across all studies that reported an average age, 
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the mean age was 27.2 with a standard deviation (SD) of 4.6. Only five studies specifically 

mentioned including subjects over the age of 4025-29. A few other studies included only hospital 

patients (e.g. Scheinberg et al., 1949, Takeshita et al., 1972) or competitive athletes (e.g., Voliantis 

et al., 2008 and Bain et al., 2016). More than half (24/47) of studies included no mention of a 

waiting period between catheterization and blood sampling. Blood sampling was performed in a 

variety of positions, the two most common being supine (13) and semi-supine (20). The majority 

of measurements were performed in the absence of any overt experimental manipulation, however 

a few studies did include the injection of labeled compounds (e.g., Boyle et al., 1994 and Glenn et 

al., 2015) or saline (Hasselbalch et al., 1996 and Volianitis et al., 2011). Finally, the requirement 

for fasting subjects was mixed, with 19 requiring at least some fasting period, 20 including no 

mention of performing measurements in a fasting state, and the remaining 8 studies assessed 

subjects in a post-absorptive state.  

To assess bias across studies, funnel plots were constructed for both OGI (Figure 2.4A) 

and OCI (Figure 2.4B). No asymmetry was apparent in either plot. This impression was 

quantified with a regression test for asymmetry19. No significant evidence for asymmetry was 

found for either OGI (p=0.2013) or OCI (p=0.1948). The lack of asymmetry suggests the 

absence of reporting bias in our sample. There was, however, substantial horizontal scatter 

around the population averages, indicating heterogeneity across studies. To further assess this 

heterogeneity, we computed posterior predictive intervals for a new random study for each ratio. 

Both ratios showed considerable variability, with the 95% posterior predictive interval for OGI 

spanning 4.35 to 6.60 and from 4.32 to 6.91 for OCI. Furthermore, the I2 values were consistent 

with substantial between study heterogeneity. An estimated 85.03% [95 CI 75.88-91.35] of the 
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total variance in the OGI meta-analysis was due to study heterogeneity. A similar value of 

84.96% [95 CI 75.09-91.60] was found in the OCI analysis.  

2.5 Discussion 
 

Our meta-analyses of OGI and OCI reveals that both measures are significantly less than 

6. The fact that OGI is less than 6 indicates that a proportion of glucose consumption is non-

oxidative, while OCI being less than 6 shows that not all of non-oxidative metabolism can be 

accounted for by lactate efflux to venous blood. Expressed in terms of percentages non-oxidative 

metabolism accounts for 9.0% 95 CI [5.67-12.5] of glucose consumption and 6.7% 95 CI [2.67-

10.67] of carbohydrate metabolism. Our estimates of the population average OGI (5.46 95% CI 

[5.25-5.66], and OCI (5.60 with a 95% CI [5.36-5.84]) are based on a much larger set of studies 

than previous reviews, and are therefore more likely to accurately reflect the true population 

means. It is of some interest to note the close agreement between our population average OGI 

and the value of 5.54 originally reported by Kety4. 

 Although we did not find any evidence for publication bias, we did find considerable 

heterogeneity across studies. We computed I2 for each ratio, which indicated that ~85% of the 

total variance is attributable to study heterogeneity. Substantial methodical differences (Table 

2.5) may account for the variability in measured OGI and OCI values. Many studies included 

only males and there is evidence of differences in metabolism between males and females30,31. 

Thus, it is likely that our population averages are more representative of male metabolic ratios. 

Similarly, our population averages are weighted towards the predominantly young adult samples 

included in our meta-analysis. Many studies also did not specify if they included a waiting period 

between catheterization and measurement. This may have influenced the reported values, as 
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metabolic ratios have been shown to decrease during arousal32. Finally, not all investigators 

insured that measurements were performed while subjects were in a basal metabolic state. A few 

studies infused labeled carbohydrates, and many studies did require that subjects be in a fasting 

state. Either factor could have affected the published results. For example, OGI is known to 

increase during hypoglycemia29. More direct studies are clearly needed to quantify the sources of 

heterogeneity in studies measuring OGI and OCI. 

There is no clear consensus concerning the role of non-oxidative glucose metabolism in 

the brain33. It has been variously proposed that NOglc (i) allows for the rapid creation of ATP for 

the Na+/K+ ATPase in astrocytes34, (ii) regulates cellular redox potentials35, (iii) is a by-product 

of glycogen breakdown during increased neuronal activation36, (iv) is necessary for the 

degradation of glutamate by astrocytes37, (v) reduces oxidative stress, particularly during periods 

of cellular growth38, or (vi) is used to fuel biosynthetic processes39,40. Part of the difficulty here is 

the uncertainty regarding the ultimate fate of glucose that enters non-oxidative pathways. It was 

traditionally thought that lactate production, and subsequent efflux to venous blood, could 

completely account for any non-oxidative glucose use8. The results of our meta-analysis are not 

consistent with this idea. The fact that the population average OCI was greater than the average 

OGI does show that some glucose is converted to lactate and leaves the brain via the venous 

system. The OCI was less than 6, however, which means this route does not account for all non-

oxidative glucose use.  

One potential explanation for the OCI being less than 6 is that resting arterio-venous 

differences simply underestimate the amount of lactate that leaves the brain. Brain lactate 

concentration has been shown to decrease during sleep41, suggesting that measurements taken 

during conscious rest do not fully account for all of lactate efflux. Alternatively, lactate may 
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leave the brain via routes that bypass the sampling sites used for arterio-venous differences. This 

idea is supported by a study by Ball et al., who found that injection of radiolabeled glucose and 

lactate into the inferior colliculus labeled the meninges42. Subsequent tracer experiments 

identified a potential perivascular clearance pathway from the inferior colliculus to the cervical 

lymph nodes42. More recently, components of the glymphatic system have been shown in mice to 

regulate lactate efflux, as well as the concentration of lactate in cervical lymph nodes41. Neither 

of these experiments, however, quantified the proportion of lactate efflux that occurs via these 

pathways. Furthermore, if perivascular/glymphatic clearance does play a role in lactate removal, 

it is not clear what impact it would have on arterio-venous difference measurements. In sheep, 

rats, and rabbits approximately half of CSF is cleared through lymphatic pathways43. The other 

half enters the venous sinuses through the arachnoid villi, and therefore would presumably be 

accounted for by venous samples taken at the level of the jugular bulb. Although exact 

proportions are not available, it has been proposed that the arachnoid pathway plays a much a 

larger role in humans43. If true, this would suggest that perivascular/glymphatic clearance cannot 

fully account for the OCI being less than 6. Direct experimental approaches are clearly needed to 

address this question. 

 An alternative possibility is that the carbon from non-oxidative glucose metabolism 

leaves the brain as metabolites other than CO2 or lactate. Although pyruvate is well-known to 

have a net efflux from the brain, it is unlikely to account for much of the unexplained fraction, as 

net pyruvate efflux is nearly an order of magnitude less than that of lactate44. Numerous other 

carbon-containing compounds, however, have also been shown to leave the brain. For example, 

there is a small net efflux of glutamine from the brain45,46. In addition, peptides and proteins are 

known to exit the brain via the CSF47. The most well-studied of these are amyloid-beta48,49 and 
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tau50, which are both markers of Alzheimer’s disease51. Other molecules, such as leptin52 and 

cholesterol53, have also been shown to leave the brain in small amounts. In contrast, Rasmussen 

et al. reported that using nuclear magnetic resonance spectroscopy , there were no detectable 

cerebral arterio-venous differences for any carbon sources other than glucose and lactate54. 

However, it is unclear exactly which carbon-based compounds were examined by Rasmussen et 

al. Therefore, future experiments with labeled compounds are needed to elucidate how, and in 

what proportions, glucose derived carbon leaves the brain.  

Although we are not aware of any studies directly linking NOglc with the synthesis, and 

subsequence efflux, of specific glucose metabolites, there is evidence linking non-oxidative 

metabolism with biosynthesis more generally. Madsen et al., found that OGI was depressed after 

the performance of the Wisconsin Card Sorting task, while lactate efflux returned to baseline 

values55. Similarly, our group recently reported that, hours after the performance of a covert 

motor learning task, non-oxidative glucose use was elevated in Brodmann Area 4456. Moreover, 

the change in non-oxidative glucose use was positively correlated with performance during the 

learning task. Both of these studies are consistent with the hypothesis that glucose is used in a 

non-oxidative manner to support learning-induced synaptic plasticity. Extending these findings 

to other learning paradigms (e.g. episodic memory) would provide additional evidence along 

these lines.  

A prior meta-analysis from our group found that non-oxidative glucose use is markedly 

elevated during early childhood40, a period of brain growth57. This finding was recently 

supported by Segarra-Mondejar et al., who found that glucose consumption is necessary for 

neurite outgrowth in vitro and in vivo 58. Interestingly, the findings of Segarra-Mondejar et al. 

also suggest that at least a part of the glucose necessary for neurite outgrowth is directly 
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incorporated into newly synthesized lipids58. Finally, regional differences in non-oxidative 

metabolism39,59 have been shown to correlate positively with expression of genes related to 

synaptic plasticity and development40. Taken together, these findings strongly suggest that 

NOglc contributes to biosynthetic processes in the brain. Quantifying the contribution of non-

oxidative glucose metabolism to biosynthesis will be an important topic for future studies. 

Combining a PET marker of protein synthesis60, such as L-[1-11C]-leucine PET61,62 with 

measures of non-oxidative glucose use during a learning task could provide further evidence that 

learning is accompanied by increases in biosynthesis and non-oxidative glucose metabolism. 13C 

magnetic resonance spectroscopy could also be used to measure the movement of glucose and 

other carbohydrates through different metabolic pathways63,64. 

 In summary, on the basis of a meta-analysis of 47 studies, we estimated that non-

oxidative processes account for 9% of glucose metabolism in the brain, a significant portion of 

which cannot be accounted for by lactate efflux to the blood. We also found substantial 

heterogeneity across studies, likely attributable to differences in methodology. Future studies are 

needed to determine both the function of non-oxidative metabolism and the ultimate fate of 

glucose consumed in the brain.
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2.6 Figures 

Included studies were selected using the indicated selection criteria. 

  

Figure 2.1: Modified PRISMA flow diagram 



66 
 

Blue squares represent the reported mean OGI for each study. Black lines represent 95% 

confidence intervals. Numeric values for these quantities are also listed. The blue diamond is the 

population average from the Bayesian random effects meta-analysis. Error bars/values for the 

population mean are 95% CIs (n=40).  

Figure 2.2: Forest plot for OGI meta-analysis 
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Same convention as in Fig 2 (n=37).  

Figure 2.3: Forest plot for OCI meta-analysis 
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Funnel plots for A) OGI and B) OCI. In each plot, the reported study mean is plotted against its 

standard error. The population average is the dashed black line, its 95% percent CI is in dark 

gray, and its 95% prediction interval is in light gray. The lack of any asymmetry is evidence 

against substantial publication bias. The wide scatter around the population average, however, 

suggests that there is substantial heterogeneity between studies. 

Figure 2.4: Publican bias and between study heterogeneity 



69 
 

2.7 Tables 
 

Table 2.1: PRISMA checklist 

Section/topic # Checklist item 
Reported 
on page # 

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  1 

ABSTRACT   

Structured 
summary  

2 Provide a structured summary including, as applicable: background; 
objectives; data sources; study eligibility criteria, participants, and 
interventions; study appraisal and synthesis methods; results; limitations; 
conclusions and implications of key findings; systematic review 
registration number.  

51 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already 
known.  

51 

Objectives  4 Provide an explicit statement of questions being addressed with reference 
to participants, interventions, comparisons, outcomes, and study design 
(PICOS).  

51 

METHODS   

Protocol and 
registration  

5 Indicate if a review protocol exists, if and where it can be accessed (e.g., 
Web address), and, if available, provide registration information 
including registration number.  

53 

Eligibility 
criteria  

6 Specify study characteristics (e.g., PICOS, length of follow-up) and 
report characteristics (e.g., years considered, language, publication status) 
used as criteria for eligibility, giving rationale.  

53 

Information 
sources  

7 Describe all information sources (e.g., databases with dates of coverage, 
contact with study authors to identify additional studies) in the search and 
date last searched.  

53 

Search  8 Present full electronic search strategy for at least one database, including 
any limits used, such that it could be repeated.  53, 69 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included 
in systematic review, and, if applicable, included in the meta-analysis).  53 

Data collection 
process  

10 Describe method of data extraction from reports (e.g., piloted forms, 
independently, in duplicate) and any processes for obtaining and 
confirming data from investigators.  

53 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, 
funding sources) and any assumptions and simplifications made.  53 

Risk of bias in 
individual 
studies  

12 Describe methods used for assessing risk of bias of individual studies 
(including specification of whether this was done at the study or outcome 
level), and how this information is to be used in any data synthesis.  

53 
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Summary 
measures  

13 State the principal summary measures (e.g., risk ratio, difference in 
means).  

53 

Synthesis of 
results  

14 Describe the methods of handling data and combining results of studies, 
if done, including measures of consistency (e.g., I2

) for each meta-
analysis.  

53 

Risk of bias 
across studies  

15 Specify any assessment of risk of bias that may affect the cumulative 
evidence (e.g., publication bias, selective reporting within studies).  53 

Additional 
analyses  

16 Describe methods of additional analyses (e.g., sensitivity or subgroup 
analyses, meta-regression), if done, indicating which were pre-specified.  NA 

RESULTS  
 

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in 
the review, with reasons for exclusions at each stage, ideally with a flow 
diagram.  

57, 65 

Study 
characteristics  

18 For each study, present characteristics for which data were extracted 
(e.g., study size, PICOS, follow-up period) and provide the citations.  71 

Risk of bias 
within studies  

19 Present data on risk of bias of each study and, if available, any outcome 
level assessment (see item 12).  57, 84 

Results of 
individual 
studies  

20 For all outcomes considered (benefits or harms), present, for each study: 
(a) simple summary data for each intervention group (b) effect estimates 
and confidence intervals, ideally with a forest plot.  

57, 66, 67 

Synthesis of 
results  

21 Present results of each meta-analysis done, including confidence intervals 
and measures of consistency.  57, 66, 67 

Risk of bias 
across studies  

22 Present results of any assessment of risk of bias across studies (see Item 
15).  57, 68 

Additional 
analysis  

23 Give results of additional analyses, if done (e.g., sensitivity or subgroup 
analyses, meta-regression [see Item 16]).  NA 

DISCUSSION  
 

Summary of 
evidence  

24 Summarize the main findings including the strength of evidence for each 
main outcome; consider their relevance to key groups (e.g., healthcare 
providers, users, and policy makers).  

60 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at 
review-level (e.g., incomplete retrieval of identified research, reporting 
bias).  

60 

Conclusions  26 Provide a general interpretation of the results in the context of other 
evidence, and implications for future research.  60 

FUNDING  
 

Funding  27 Describe sources of funding for the systematic review and other support 
(e.g., supply of data); role of funders for the systematic review.  NA 
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Table 2.2: Summary characteristics of included studies 

Studies that were found only through searching the first authors records are indicated by a *. (NA = Not Applicable). 

 

Reference PMID Journal Population Year OGI N 
OGI 

Source 
OCI N 

 

OCI 

Source 

 

Age 
Age 

Error 

Age 

Error 

Type 

Sub-

Study 

Gibbs et al., 

19421* 
NA 

Journal of 

Biological 

Chemistry 

Healthy young 

men 
1942 33 Table 33 Table 22.9 2.36 SD NA 

Scheinberg et 

al., 194965* 

1669578

8 

The Journal 

of Clinical 

Investigation 

Normal men 

(17 medical 

students, 3 

hospital 

patients 

without 

disease) 

1949 14 Table NA NA 25.1 4.04 SD Erect 

Scheinberg et 

al., 194965* 

1669578

8 

The Journal 

of Clinical 

Investigation 

Normal men 

(17 medical 

students, 3 

hospital 

patients 

without 

disease) 

1949 18 Table NA NA 25.1 4.04 SD Supine 

Sokoloff et al., 

195725* 

1342523

6 

Annals of 

the New 

York 

Normal 

patients 
1957 

8 

 

Table NA NA 24.5 9.1 SD NA 
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Academy of 

Sciences 

 

 

 

Eisenberg et 

al.,196226* 
NA Metabolism 

Healthy 

subjects 
1962 21 Table 10 Table 40.3 6.2 SD Control 

Dastur et al., 

196366* 
NA 

Human 

Aging: A 

Biological 

and 

Behavioral 

Study 

Normal young 

subjects 
1963 15 Table NA NA 20.8 0.4 SE NA 

Gottstein et al., 

196367* 

1410359

9 

Klin 

Wochenschr 
NA 1963 32 Table 18 Table 

21-

69 
NA NA NA 

Scheinberg et 

al., 196528* 

1424738

2 

Journal of 

Neurological 

Sciences 

Normal 

volunteers and 

hospitalized 

patients 

without 

evidence for 

disease 

1965 21 Table 20 Table 32.3 6.9 SD NA 

Cohen et al., 

196768* 
6031186 

The Journal 

of Applied 

Physiology 

Healthy adult 

male 

volunteers 

1967 9 Table NA NA 
21-

25 
NA NA NA 

Gottstein et al., 

196729* 
NA 

Klinische 

Wochenschr

ift 

Normal 

patients 
1967 12 Table 12 Table 

30-

60 
NA NA NA 
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Raichle et al., 

197069* 
5471647 

Archives of 

Neurology 
Healthy men 1970 3 Table 3 Table NA NA NA NA 

Takeshita, 

197270* 
5006989 

Anesthesiolo

gy 

Healthy 

patients prior 

to elective 

surgery (no 

cardiopulmona

ry or 

neurologic 

disorders) 

1972 6 Table NA NA 43 3 SE NA 

Blomqvist et al., 

199071* 
2112135 

Journal of 

Cerebral 

Blood Flow 

and 

Metabolism 

Healthy 

normal 

volunteers 

1990 7 Table NA NA NA NA NA NA 

Boyle et al., 

199472* 
8113391 

The Journal 

of Clinical 

Investigation 

Normal 

volunteers 
1994 12 Table NA NA 25 2 SE NA 

Madsen et al., 

199555 
7714007 

Journal of 

Cerebral 

Blood Flow 

and 

Metabolism 

Healthy, 

young, non-

medicated 

volunteers 

1995 8 Table NA NA 25 NA NA Study 2 

Madsen et al., 

199555 
7714007 

Journal of 

Cerebral 

Blood Flow 

and 

Metabolism 

Healthy, 

young, non-

medicated 

volunteers 

1995 9 Table NA NA 25 NA NA Study 1 
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Hasselbalch et 

al., 199673* 
8967461 

American 

Journal of 

Physiology 

Healthy 

volunteers of 

normal weight 

1996 8 Table NA NA 24 4 SD NA 

Ide et al., 199974 
1056259

7 

Journal of 

Applied 

Physiology 

Healthy 

volunteers 
1999 12 Table 12 Table 23 1 SE NA 

Ide et al., 200075 
1061816

0 

The Journal 

of 

Physiology 

Healthy 

volunteers 
2000 6 Table 6 Table 25 2 SD NA 

Dalsgaard et al., 

200276 

1195635

4 

The Journal 

of 

Physiology 

Healthy 

subjects 
2002 10 Table 10 Table 25 4 SE Study 1 

Dalsgaard et al., 

200276 

1195635

4 

The Journal 

of 

Physiology 

Healthy 

subjects 
2002 10 Table 10 Table 25 1 SE Study 2 

Møller et al., 

200277* 

1236866

5 

Journal of 

Cerebral 

Blood Flow 

and 

Metabolism 

Healthy 

human 

volunteers 

2002 8 Author 8 Author 25 NA NA NA 

Dalsgaard et al., 

200378 

1262153

5 

Experimenta

l Physiology 

Healthy 

subjects 
2003 NA NA 10 Text 24 NA NA NA 

Glenn et al., 

200379* 

1452623

4 

Journal of 

Cerebral 

Blood Flow 

and 

Metabolism 

Normal 

volunteers 
2003 31 Table 31 Author 33.3 8.3 SD Control 
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Nybo et al., 

200380 

1275417

1 

Journal of 

Applied 

Physiology 

Healthy 

endurance-

trained men 

2003 NA NA 8 Figure 27 2 SE NA 

Strauss et al., 

200381 

1462582

3 

Liver 

Transplantat

ion 

Healthy 

subjects 
2003 8 Table NA NA NA NA NA NA 

Dalsgaard et al., 

2004a82 

1460800

5 

The Journal 

of 

Physiology 

Healthy 

subjects 
2004 9 Text 9 Text 25 1 SE NA 

Dalsgaard et al., 

2004b83 

1515528

2 

Regulatory, 

Integrative 

and 

Comparative 

Physiology 

Healthy non-

athlete males 
2004 NA NA 8 Text 22 1 SE NA 

Dalsgaard et al., 

2004c84 

1520828

7 

The Journal 

of Applied 

Physiology 

Healthy young 

men 
2004 NA NA 7 Text 22 1 SE Cycling 

Dalsgaard et al., 

2004c84 

1520828

7 

The Journal 

of Applied 

Physiology 

Healthy young 

men 
2004 NA NA 8 Text 26 1 SE 

Arm 

cranking 

Ogoh et al., 

200585 

1549881

9 

Heart and 

Circulatory 

Physiology 

Healthy adults 2005 NA NA 7 Table 23 2 SD NA 

Rasmussen et 

al., 200644 

1679402

5 

Journal of 

Applied 

Physiology 

Healthy men 2006 8 Author 8 Author 
22-

29 
NA NA NA 
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Larsen et al., 

200886 

1840342

3 

The Journal 

of 

Physiology 

Healthy males 2008 8 Figure 8 Text 27 6 SD NA 

Voliantis et al., 

200887 

1793215

1 

The Journal 

of 

Physiology 

Healthy males 2008 6 Table 6 Table 32 4 SE NA 

Bailey et al., 

200988 

1972671

3 

Regulatory, 

Integrative 

and 

Comparative 

Physiology 

Healthy men 2009 11 Author 10 Author 27 4 SD 
Normoxi

a 

Gam et al., 

200989 

1965960

3 

Clinical 

Physiology 

and 

Functional 

Imaging 

Sedentary 

trained males 
2009 NA NA 8 Text 33 6 SD NA 

Seifert et al., 

2009a90 

1960576

2 

Regulatory, 

Integrative 

and 

Comparative 

Physiology 

Sedentary 

healthy males 
2009 7 Figure 7 Figure 32 6 SD 

Control 

After 

Seifert et al., 

2009a90 

1960576

2 

Regulatory, 

Integrative 

and 

Comparative 

Physiology 

Sedentary 

healthy males 
2009 7 Figure 7 Figure 32 6 SD 

Training 

Before 

Seifert et al., 

2009a90 

1960576

2 

Regulatory, 

Integrative 

and 

Sedentary 

healthy males 
2009 10 Figure 7 Figure 30 5 SD 

Control 

Before 
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Comparative 

Physiology 

Seifert et al., 

2009b91 

1901519

5 

The Journal 

of 

Physiology 

Healthy 

subjects 
2009 10 Text 10 Text 24 3 SD 

Adrenali

ne 

Seifert et al., 

2009b91 

1901519

5 

The Journal 

of 

Physiology 

Healthy 

subjects 
2009 8 Text 8 Text 27 7 SD 

Noradren

aline 

Rasmussen et 

al, 2010a92 

2040397

6 

The Journal 

of 

Physiology 

Young adult 

males 
2010 16 Table 16 Table 

20-

34 
NA NA NA 

Rasmussen et 

al, 2010b93 

2052273

3 

Journal of 

Applied 

Physiology 

Young males 2010 7 Figure 7 Figure 
18-

34 
NA NA NA 

Seifert et al., 

201094 

2066002

0 

Experimenta

l Physiology 

Young healthy 

males 
2010 9 Table 9 Table 23 4 SD NA 

Volianitis et al., 

201195 

2109800

3 

The Journal 

of 

Physiology 

Healthy males 2011 NA NA 6 Text 23 2 SD NA 

Overgaard et 

al., 201296 

2244198

2 

The FASEB 

Journal 

Healthy 

individuals 
2012 9 Table 9 Table 26 6 SD NA 

Fisher et al., 

201397 

2323023

4 

The Journal 

of 

Physiology 

Young adults 2013 11 Figure 11 Figure 22 1 SE NA 

Ainslie et al., 

20145 

2411738

2 

Clinical 

Science 
Healthy adults 2014 10 Table 10 Table 28 4.5 SD 

Hypoxia 

trial 
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Ainslie et al., 

20145 

2411738

2 

Clinical 

Science 
Healthy adults 2014 10 Table 10 Table 28 4.5 SD 

Hyperoxi

a trial 

Smith et al., 

201498 

2536215

0 

The Journal 

of 

Physiology 

Young adult 

males 
2014 8 Table 8 Table 30 6 SD NA 

Glenn et al., 

201599* 

2559462

8 

Journal of 

Neurotraum

a 

Healthy 

volunteers 
2015 6 Author 6 Author 28.2 8.2 SD Control 

Trangmar et al., 

2015100 

2637117

0 

Heart and 

Circulatory 

Physiology 

Endurance 

trained males 
2015 10 Text 10 Figure 29 5 SD NA 

Willie et al., 

20156 

2569047

4 

Journal of 

Cerebral 

Blood Flow 

and 

Metabolism 

Healthy-young 

subjects 
2015 9 Table 9 Table 30.4 7 SD NA 

Bain et al., 

2016101* 

2725652

1 

The Journal 

of 

Physiology 

Breath-hold 

divers 
2016 14 Author 14 Table 29.5 7.3 SD NA 

Bain et al., 

2017102* 

2807196

4 

Journal of 

Cerebral 

Blood Flow 

and 

Metabolism 

Breath-hold 

divers 
2017 11 Author 11 Table 31 8 SD NA 
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Table 2.3: PubMed search terms 

Number Terms 

1 Oxygen AND Arterio AND Venous AND Brain 

2 Oxygen AND Arterio AND Venous AND Cerebral 

3 Lactate AND Arterio AND Venous AND Brain 

4 Lactate AND Arterio AND Venous AND Cerebral 

5 Glucose AND Arterio AND Venous AND Brain 

6 Glucose AND Arterio AND Venous AND Cerebral 

7 Oxygen AND Arterial AND Venous AND Brain 

8 Oxygen AND Arterial AND Venous AND Cerebral 

9 Lactate AND Arterial AND Venous AND Brain 

10 Lactate AND Arterial AND Venous AND Cerebral 

11 Glucose AND Arterial AND Venous AND Brain 

12 Glucose AND Arterial AND Venous AND Cerebral 

13 OGI AND Brain 

14 OGI AND Cerebral 

15 OCI AND Brain 

16 OCI AND Cerebral 

17 Oxygen AND Glucose AND Index AND Brain 

18 Oxygen AND Glucose AND Index AND Cerebral 

19 Oxygen AND Carbohydrate AND Index AND Brain 

20 Oxygen AND Carbohydrate AND Index AND Cerebral 

21 Oxygen AND Glucose AND Ratio AND Brain 
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22 Oxygen AND Glucose AND Ratio AND Cerebral 

23 Oxygen AND Carbohydrate AND Ratio AND Brain 

24 Oxygen AND Carbohydrate AND Ratio AND Cerebral 
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Table 2.4: Papers excluded after a full-text review 

Reference PMID Journal Reason for Exclusion 

Wortis et al. 1940103 NA The American journal of psychiatry Data not sufficient 

Gibbs et al. 1945104 NA The American journal of psychiatry No control data 

Kety et al. 1948a105 16695569 The Journal of clinical investigation Data not sufficient 

Kety et al. 1948b106 16695568 The Journal of clinical investigation Data not sufficient 

Kety et al. 1951107 14833874 Pharmacological reviews Data not sufficient 

Fazekas et al. 1952108 14902811 
The American journal of the medical 

sciences 
Data not sufficient 

Novack et al. 1953109 13042927 Circulation No control data 

Scheinberg et al. 1953110 13057407 
A.M.A. archives of neurology and 

psychiatry 
Data not sufficient 

Sokoloff et al. 1953111 13044828 The Journal of clinical investigation Data not sufficient 

Schieve et al. 1953112 13065315 The American journal of medicine Data not sufficient 

Shenkin et al. 1953113 13052708 The Journal of clinical investigation Data not sufficient 

Sokoloff et al. 1955114 14392225 The Journal of clinical investigation Data not sufficient 

Mangold et al. 1955115 14392224 The Journal of clinical investigation Data not sufficient 

Kety et al. 1956116 13306754 Journal of chronic diseases Data not sufficient 

Kennedy et al. 1957117 13449166 The Journal of clinical investigation Data not sufficient 

Rowe et al. 1959118 14439685 The Journal of clinical investigation Data not sufficient 

Kety et al. 1960119 NA Methods in Medical Research Data not sufficient 

Porta et al. 1964120 14127087 Metabolism: clinical and experimental No control data 

Alexander et al. 1968121 5635772 Journal of applied physiology No control data 

Lewis et al. 1974122 4154353 Journal of neurochemistry Data not sufficient 

Raichle et al. 1975123 1155625 The American journal of physiology Data not sufficient 

Gottstein et al. 1976124 1271691 Klinische Wochenschrift No control data 

Van Aken et al. 1976125 1015217 Acta anaesthesiologica Belgica Data not sufficient 
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Juhlin-Dannfelt et al. 
1977126 

929098 
Scandinavian journal of clinical and 

laboratory investigation 
Data not sufficient 

Hertz et al. 1981127 7009645 The Journal of clinical investigation No control data 

Eriksson et al. 1983128 6619869 Journal of neurochemistry Data not sufficient 

Dastur et al. 1985129 3972914 
Journal of cerebral blood flow and 

metabolism 
Data not sufficient 

Fox et al. 198812 3260686 Science PET study 

Hatazawa et al. 1988130 3259242 
Journal of cerebral blood flow and 

metabolism 
PET study 

Warrell et al. 1988131 2900921 Lancet No control data 

Blomqvist et al. 1998132 9789584 Acta physiologica Scandinavica Data not sufficient 

Grill et al. 1990133 2110424 The American journal of physiology 
Error of OGI/OCI not 

reported 

Leenders et al. 1990134 2302536 Brain Data not sufficient 

Gutniak et al. 1990135 2185663 The American journal of physiology Data not sufficient 

Burgess et al. 1991136 2020274 
Medicine and science in sports and 

exercise 
Data not sufficient 

Blomqvist et al. 1991137 1743207 European journal of nuclear medicine Data not sufficient 

Pollard et al. 1997138 9377885 Critical care medicine Data not sufficient 

Mielck et al. 1998139 9813515 British journal of anaesthesia OGI/OCI not reported 

Schaffranietz et al. 1998140 9584928 Neurological research No control data 

Wahren et al. 1999141 10440122 Diabetologia OGI/OCI not reported 

Madsen et al. 1999142 10197509 
Journal of cerebral blood flow and 

metabolism 
Data not sufficient 

Takahashi et al. 1999143 10369366 American journal of neuroradiology Data not sufficient 

Møller et al. 2002144 12027852 Acta anaesthesiologica Scandinavica Repeated data77 

Nybo et al. 2002145 12070186 Journal of applied physiology Repeated data80 

Lancaster et al. 2004146 15544165 Cell stress & chaperones Data not sufficient 

Dalsgaard et al. 2004147 15123562 Experimental physiology Repeated data82 
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Cremer et al. 2004148 15114206 Anesthesiology Data not sufficient 

Blomstrand et al. 2005149 16218925 Acta physiologica Scandinavica Data not sufficient 

Chieregato et al. 2007150 17893572 
Journal of neurosurgical 

anesthesiology 
No control data 

Seifert et al. 2008151 19053964 Acta physiologica Data not sufficient 

Quistorff et al. 20089 18653766 FASEB journal Data not sufficient 

Holbein et al. 2009152 19196488 Critical care No control data 

van Hall et al. 2009153 19337275 
Journal of cerebral blood flow and 

metabolism 
Data not sufficient 

Espenell et al. 2010154 20661680 Canadian journal of anesthesia No control data 

Powers et al. 2010155 20959851 
Journal of cerebral blood flow and 

metabolism 
PET study 

Rasmussen et al. 2010156 20102344 Acta physiologica No control data 

Smith et al. 2012157 23019310 Journal of applied physiology Data not sufficient 

Mikkelsen et al. 2014158 25415176 
The Journal of clinical endocrinology 

and metabolism 
No control data 

Glenn et al. 2015159 25279664 Journal of neurotrauma No control data 

Fabricius-Bjerre et al. 
2014160 

24903076 
Clinical physiology and functional 

imaging 
No control data 

Lewis et al. 2014161 25217373 The Journal of physiology Data not sufficient 

Trangmar et al. 2014162 24835170 The Journal of physiology Repeated data100 

Tholance et al. 2015163 25668478 Neurological research No control data 

Slusher et al. 2015164 25771935 Journal of neuroendocrinology Data not sufficient 

Grüne et al. 2017165 28207907 PloS one No control data 
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Table 2.5: Assessment of bias within studies. 

Abbreviations: NA = Not Applicable; NS = Not stated 

Reference Study 
Population 

Waiting 
Period Position Experimental 

Manipulation(s) Fasting 

Gibbs et al., 19421 All males.  ~30 min. Supine None NS 

Scheinberg et al., 194965 
3 illness free 

hospital 
patients.  

40 to 50 min. Supine and Erect None Yes 

Sokoloff et al., 195725 

1 participant 
was a patient 

with an 
anxiety 

disorder. 

NS NS 
Some participants had been 
given LSD a week earlier. 

NS 

Eisenberg et al., 196226 None NS NS None Yes 

Dastur et al., 196366 None NS NS None NS 

Gottstein et al., 196367 Patients aged 
up to 61 years 

NS NS None NS 

Scheinberg et al., 196528 

Some subjects 
were hospital 

patients 
without 
disease 

20 min. Supine None Yes (12 hours) 

Cohen et al., 196768 All male NS Supine None Yes 
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Gottstein et al., 196729 
Patients with 

normal 
metabolism 

NS NS None NS 

Raichle et al., 197069 None NS Reclining None NS 

Takeshita, 197270 

Patients 
scheduled for 

elective 
surgery 

NS NS Given atropine NS 

Blomqvist et al., 199071 None NS NS None NS 

Boyle et al., 199472 None 2 hours NS 
Sleep reduction; Subjects 
were infused with 6,6-D2-

glucose; 
No 

Madsen et al., 199555 None ~1 hour Supine None Yes (14 hours) 

Hasselbalch et al., 199673 None 1 hour Supine Saline infusion No 

Ide et al., 199974 None NS Semi-supine None No 

Ide et al., 200075 None NS Semi-supine None NS 

Dalsgaard et al., 200276 None NS Semi-supine None NS 

Møller et al., 200277 None 1 hour Supine 
Subjects were infused with 

isotonic glucose 
Yes (Overnight) 

Dalsgaard et al., 200378 None NS Semi-supine None No 

Glenn et al., 200379 None NS NS None NS 

Nybo et al., 200380 All trained 
males 

30 min. NS None No 
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Strauss et al., 200381 None NS Supine 
Subjects were infused with 

5% glucose. 
Yes (Overnight) 

Dalsgaard et al., 2004a82 None NS Semi-supine None Yes (8 hours) 

Dalsgaard et al., 2004b83 All male 1 hour Semi-supine None Yes (Overnight) 

Dalsgaard et al., 2004c84 All male NS Semi-supine None Yes (Overnight) 

Ogoh et al., 200585 All male NS Semi-supine None Yes (Overnight) 

Rasmussen et al., 200644 All male 1.5 hours Semi-supine None Yes (Overnight) 

Larsen et al., 200886 All male 1 hour Semi-supine None Yes (Overnight) 

Voliantis et al., 200887 All trained 
male rowers 

NS Semi-supine None Yes (8 hours) 

Bailey et al., 200988 All male 30 min. Supine Subjects breathed 21% O2 Yes (12 hours) 

Gam et al., 200989 All male 1 hour Semi-supine None NS 

Seifert et al., 2009a90 All overweight 
males 

1 hour Semi-supine None No 

Seifert et al., 2009b91 None 1 hour Supine 
Some subjects received a 

saline control infusion 
No 

Rasmussen et al, 2010a92 All male NS Semi-supine None NS 

Rasmussen et al, 2010b93 All male NS Semi-supine 
Saline injected control; 

Some had received an EPO 
trial 3 months earlier 

NS 

Seifert et al., 201094 All male 30 min. Semi-supine None NS 
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Volianitis et al., 201195 
All males and 
competitive 

rowers 
NS Semi-supine 

Saline infusion control; 
Some subjects performed 

bicarbonate trial ~1-2 weeks 
earlier 

Yes (Overnight) 

Overgaard et al., 201296 None 2 hours Supine 

Some subjects performed a 
hypoxia exercise trial at 
least two weeks prior; 

Infused with [1-13C] lactate 
and labeled bicarbonate 

No 

Fisher et al., 201397 None 1 hour Semi-supine None Yes (2h) 

Ainslie et al., 20145 None 30 min. Supine 
Some measurements were 
performed after hypoxia 

trials. 
Yes (2h) 

Smith et al., 201498 All male 25 min. Supine None Yes (4h) 

Glenn et al., 201599 None NS Semi-supine 
Infusion of [3-13C] lactate 

and D2 glucose 
NS 

Trangmar et al., 2015100 All trained 
males 

~1 hour Semi-supine None NS 

Willie et al., 20156 All male ~30 min. NS 
Subjects underwent an 

arterial blood gas clamp 
NS 

Bain et al., 2016101 

All subjects 
were elite 

breath hold 
divers 

30 min NS None NS 

Bain et al., 2017102 All subjects 
were elite 

NS NS None NS 
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breath hold 
divers 
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Chapter 3: Quantitative positron emission tomography reveals 

regional differences in non-oxidative glucose consumption 

within the human braini 
 

3.1 Abstract 

 

Glucose and oxygen metabolism are tightly coupled in the human brain, with the 

preponderance of the brain’s glucose supply used to generate ATP via oxidative 

phosphorylation. A fraction of glucose is consumed outside of oxidative phosphorylation despite 

the presence of sufficient oxygen to do so. We refer to this process as non-oxidative glucose 

consumption (NOglc). A recent positron emission tomography study reported that NOglc is 

uniform within gray matter. Here, we analyze the same data and demonstrate robust regional 

differences in NOglc within gray matter, a finding consistent with previously published data.  

3.2 Introduction 

 

The energetic needs of the healthy human brain are almost entirely met by oxidative 

consumption of blood-borne glucose1,2. However, a fraction of the brain's glucose uptake does 

not undergo oxidative phosphorylation. This effect conventionally is quantitated using the 

oxygen-glucose index (OGI), which is the molar ratio of oxygen to glucose consumption. If no 

alternative fuels are used and all glucose undergoes complete oxidative phosphorylation, the OGI 

is exactly 6. However, multiple studies have shown that the OGI of the young adult human brain 

is less than 6, typically on the order of 5.53-7. Thus, around 10% of the whole brain’s glucose 

 
i This chapter is slightly modified version of a previously published article: Blazey TM, Snyder AZ, Su Y, Goyal 
MS, Lee JJ, Vlassenko AG et al. Quantitative positron emission tomography reveals regional differences in aerobic 
glycolysis within the human brain. J Cereb Blood Flow Metab 2018; 144: 271678X18767005. 
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consumption is metabolized through non-oxidative pathways. We define non-oxidative glucose 

consumption (NOglc) as the fraction of glucose metabolized outside of oxidative 

phosphorylation. NOglc is defined inversely proportional to OGI; thus areas of the brain that 

have high NOglc have low OGI ratios and vice versa. Note that NOglc is often referred to as 

aerobic glycolysis8, which dates back to Warburg’s discovery that cancer cells have high rates of 

glycolysis despite sufficient oxygen9.  

 Prior work from our laboratory has shown that, in resting, healthy young adults, NOglc is 

regionally greater in prefrontal cortex, lateral parietal lobe, and the precuneus/posterior cingulate 

cortex, relative to the rest of the brain8. These regions correspond to the default mode and fronto-

parietal control networks, which are areas of the cerebral cortex associated with higher-order 

cognition10. Conversely, NOglc in the cerebellum has been shown by us8, and others11, to be 

lower than in the rest of the brain. Hyder and colleagues7 recently published a study disputing the 

existence of regional variability in NOglc. Using quantitative positron emission tomography 

(PET) techniques, Hyder et al. measured OGI in 13 normal volunteers and reported that OGI is 

uniform within gray matter, which implies that NOglc is uniform as well. In the following, we 

refer to this study as "Hyder et al.”. To resolve the discrepancy between Hyder et al. and our 

previous findings, we reanalyzed the PET data from Hyder et al., which was generously shared 

with us by the original authors.  

3.3 Methods 

 

Dataset 

We obtained processed, quantitative PET images of cerebral blood flow (CBF), oxygen 

utilization (CMRO2), and glucose consumption (CMRglc) for 13 normal adult males from Hyder 

et al.7 CBF and CMRO2 were measured using [15O]-H2O and [15O]-O2 respectively. A two-
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compartment (tissue and vascular distribution) kinetic model was used for both tracers12,13. No 

correction for recirculating [15O]-H2O was performed during [15O]-O2 modeling. CMRglc was 

obtained by fitting an irreversible two-compartment (free [18F]-FDG and trapped [18F]-FDG-6-

phosophate) model to the [18F]-FDG data14. No correction for vascular radioactivity was 

performed, and a lumped constant of 0.8 was used. All PET imaging data were acquired with 

arterial sampling, allowing for absolute quantitation of all metabolic parameters. For further 

methodological details please see the original publication7. As stated in the original report by 

Hyder et al.7, all subjects gave written informed consent in accordance with the Helsinki Protocol 

and all experimental procedures were approved by the ethical review committees of the Central 

Denmark Region and the Aarhus University Hospital, Aarhus Denmark.  

OGI Regional Computations 

 To assess regional differences in NOglc, we first calculated voxelwise OGI 

(CMRO2/CMRglc) in each subject. We then computed regional average OGI values in several 

regions of interest (ROIs). Prior to computing regional means, we excluded voxels that were 

outside five median absolute deviations (1.11) from the gray matter median (4.83)15. Excluded 

voxels were predominantly in areas of vascular artifact or on the edges of the PET images 

(4.09% of all voxels were excluded). We also excluded any voxels that were not classified as 

gray matter in the atlas used by Hyder et al.7 

 Our primary ROI set comprised seven resting state networks (Figure 3.1A), defined in a 

previous resting-state functional magnetic resonance imaging study16. Each ROI included only 

voxels in which the likelihood of network identity exceeded 90%. Resting state ROIs were 

transformed, using FSL17,18, into the atlas space used by Hyder et al. without alterations of the 

metabolic imaging data. We also created an ROI of the cerebellar gray matter within the atlas 
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used by Hyder et al.7 To accommodate incomplete cerebellar coverage of the PET data, the 

present results are limited to portions of the cerebellum in which the OGI was measured in every 

subject (Figure 3.2). 

Statistical Methods 

All statistical analyses were conducted in R19. A one-way ANOVA with region as a 

factor and subject as a repeated measure was used to determine if brain region explained any 

variance in OGI. Statistical significance was determined using a F-test on the region factor. One 

sample t-tests were used to determine if regional OGI values were different from 6. An OGI 

significantly (p<0.05, two-tailed) less than 6 means that the probability of finding such, or more 

extreme, data by chance is below 5%. We took this as indication that a portion of the glucose 

consumption in a given region undergoes only NOglc. In the same sense, paired t-tests were used 

to assess differences in OGI between regions. We used a significant difference (p<0.05, two-

tailed) as indication that NOglc is different between two regions. Correction for the 21 pairwise 

comparisons between networks was performed using False Discovery Rate (FDR) theory20. 

Reported values are means and 95% confidence intervals unless otherwise stated. 

The statistical thresholds that we defined above are dependent on the power of the Hyder 

et al. dataset. To determine the power of the Hyder et al. data we performed a power analysis 

using two previously published PET datasets. All power calculations were performed using the R 

package pwr21. Sasaki et al. reported the mean difference between the cortical and cerebellar 

gray matter OGI to be -1.48 (SD=0.42; n=7)11. The 13 subjects in the Hyder et al. dataset gives 

us 100% power to detect an effect of this magnitude. The mean OGI difference between the 

cortical gray matter and the basal ganglia was found by Hatazwa et al. to be 0.38 (SD=0.93; 

n=7)22. The Hyder et al. dataset would provide only 17.2% power to detect this effect. Taken 
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together, these analyses reveal that we are more than sufficiently powered to detect large 

regional differences, but are unlikely to capture smaller effects. 

3.4 Results 

 

Aerobic Glycolysis Varies by Resting State Network 

 To assess regional differences in NOglc, we computed OGI in seven resting state 

networks (Figure 3.1A). The means for other metabolic parameters (e.g., CBF) are reported in 

Table 3.1. With the exception of the visual network (VIS), all resting state networks had an OGI 

significantly less than 6 (p<0.05), indicating the presence of NOglc. A repeated measures, one-

way ANOVA revealed a highly significant difference in OGI across the brain (F6,72 = 74.16, p < 

0.001). Differences in OGI between specific network pairs are shown in Figure 1B; the RSNs are 

ordered by OGI and significant differences (p < 0.05, corrected) are highlighted by color. In 

agreement with previous work8, the OGI was low in default mode network (DMN) and high in 

the visual network (VIS). Unexpectedly, the ventral attention (VAN) network had the lowest 

OGI. We note that regional differences were highly consistent across individuals. For example, 

OGI in the DMN was less than OGI in the visual network (VIS) in every subject (Figure 3.1C).  

Aerobic Glycolysis in the Cerebellum 

 Previous studies have shown that NOglc in the cerebellum is lower than NOglc in the rest 

of the brain8,11. In the Hyder et al. data, the OGI in the superior cerebellum (see Methods) was 

6.50 (± 0.67), which was not significantly different from 6.0 (t=1.63, p=0.13). The difference 

between the cerebellum and the rest of gray matter (5.18 ± 0.51) was significant (t=-8.70, 

p<0.001). As the lumped constant in the cerebellum has been reported to be approximately 1.14 

times greater than in the whole brain23, we repeated our analysis after adjusting the cerebellum 

OGI for this difference. After the adjustment, the cerebellar OGI was 5.70 (± 0.58), again not 
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significantly different from 6.0 (t=-1.12, p=0.28), but still significantly different from the rest of 

gray matter (t=-4.00, p=0.0018). Thus, the cerebellum is characterized by a distinct lack of 

NOglc. 

Topography of OGI 

 The present results indicate that regional differences in NOglc exist between resting state 

networks as well as between the cerebellar and non-cerebellar gray matter. Figure 3.3A shows 

group averaged OGI (image obtained from the original authors) at a finer spatial scale. This 

figure is essentially identical to Figure 3A in Hyder et al. (reproduced here as Figure 3.3B) 

except for choice of color scale. Thus, presenting the identical results using a more 

physiologically meaningful scale (4-7 in Figure 3.3A as opposed to 1-10 in Figure 3.3B) 

demonstrates regional differences in OGI on inspection.  

3.5 Discussion 

 

Our reexamination of the data from Hyder et al. reveals two primary findings. First, many 

regions of the brain exhibit NOglc at rest. This result is consistent with both the regional PET 

literature11,22 as well as with whole-brain measurements of OGI3-6. Second, we observed 

significant regional differences in NOglc between gray matter regions that were highly preserved 

across subjects (Figure 3.1C).  

These findings are consistent with Vaishnavi et al., 2010, a previous study from our 

group that employed regional standardized uptake ratios8. The principal result of that study was 

that NOglc is significantly non-uniform across the brain. In particular, regions constituting the 

default mode network (DMN) had higher NOglc than other parts of the brain. In contrast, the 

cerebellum had lower NOglc. These findings are replicated here using the Hyder et al. dataset. 
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There are, however, a few differences between the two datasets. The fronto-parietal control 

network (FPC) had higher NOglc in the Vaishnavi et al. study compared to Hyder et al., and the 

NOglc in the ventral attention network (VAN) was much higher in the Hyder et al. data 

compared to Vaishnavi et al. (Figure 3.1B and C). It is not clear whether these differences are 

attributable to analytical approach (relative vs. quantitative PET), study population (the Hyder et 

al. study contained only male subjects), or other unknown factors. Therefore, although both 

datasets clearly support regional differences, more work is needed to resolve the discrepancies 

between the two studies.  

 On the basis of the same dataset, Hyder et al. argued that no regional differences in 

NOglc exist, and that findings reported by Vaishnavi et al. are artifacts attributable to the use of 

relative metabolic measures. The present results, obtained using the quantitative data identical to 

that from the Hyder et al. study, do not support this perspective. It follows that the discrepant 

perspectives are attributable to differences in analysis methodology. Specifically, Hyder et al. did 

not account for subject level variability common to all regions (e.g. use of ANOVA without a 

repeated measures factor). Figure 3.1C illustrates how OGI measures in two regions would 

appear to not be significantly different if variability attributable to subject is not taken into 

account.  

 Could the observed regional difference arise from non-biological artifacts? PET involves 

many technical decisions including choosing a kinetic model, accounting for vascular 

radioactivity, adjusting for recirculating metabolites, and correcting for the delay and dispersion 

of the arterial input function. Any of these factors could, in theory, produce an artefactual 

regional difference in NOglc. However, we think this unlikely for several reasons. First, despite 

the fact that there are regional differences in cerebral blood volume24 and arterial delay25, there is 
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no direct evidence that any of these technical factors produce a spatial artifact that induces 

regional differences in OGI. Second, using different procedures to analyze PET data, we8 and 

others11 have found regional differences in OGI similar to the present findings. Finally, 

additional evidence from different techniques suggests that NOglc varies throughout the brain. 

Using microdialysis in a transgenic mouse model of Alzheimer’s disease, Bero et al. reported 

regional differences in lactate levels in interstitial fluid, a result consistent with regional 

differences in NOglc26. Taken together, the available evidence supports the conclusion that 

regional differences in OGI are of biological origin.  

In the Hyder et al. dataset, NOglc accounts for 5.57 (± 2.65) µMol/hg/min, or 

approximately 19%, of the glucose consumption in the default mode network. From an energetic 

perspective, it may be surprising that NOglc accounts for so much glucose consumption in any 

part of the brain, as the quantity of ATP generated by NOglc is quite small compared to that 

generated by oxidative phosphorylation7. Therefore, a number of alternative explanations have 

been proposed, including rapid synthesis of ATP for the Na+/K+-ATPase27, generation of 

biosynthetic intermediates necessary for myelination as well as synaptic and neuritic formation 

and turnover8, alteration of cellular redox potentials28, regulation of glycogen levels through a 

hypothesized glycogen shunt29, and the uptake and recycling of glutamate by astrocytes30,31. The 

exact apportionment of NOglc among these alternatives remains uncertain. 

One way to elucidate the role of NOglc in the brain is through spatial topography. Past 

work in our laboratory has shown that the spatial distribution of NOglc correlates with the 

expression of genes related to synaptic development and growth32. The relationship between 

NOglc and synaptic plasticity is particularly intriguing given previous findings relating NOglc to 

task performance. Madsen et al. found that whole brain NOglc was elevated both during and 
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after performance of the Wisconsin Card Sorting Test33. Our group recently expanded on this 

finding. We measured relative OGI in subjects before and after the performance of a covert 

motor learning task34. We found that hours after the performance of the learning task, subjects 

had elevated NOglc in the left Brodmann area 44, an area recruited by task performance. 

Furthermore, we observed a correlation between task performance and subsequent increases in 

NOglc. These results link focal changes in NOglc to learning and suggests that regional 

differences in NOglc might reflect regional differences in synaptic plasticity.  

Other experiments have focused on the role of NOglc in aging and Alzheimer’s disease 

(AD). For example, it has been shown that higher levels of neural activity lead to increased 

amyloid-beta production in a mouse model of AD26. Moreover, this effect is associated with 

increased lactate levels in the interstitial fluid26. Cross-sectional studies in humans have found 

that brain NOglc decreases in AD35,36 as well as in normal aging 37 (two smaller aging studies 

have reported non-significant trends38,39). One interpretation of these findings is that the same 

processes that lead to high NOglc and synaptic plasticity in early life may ultimately lead to 

disease later in life40,41. 

Synaptic plasticity is but one of several, non-exclusive explanations for the brain’s use of 

NOglc. Much more work is needed before NOglc in the brain is fully understood. Any 

explanation of NOglc will need to consider regional differences, which have now been 

reproduced in an independent dataset. It is our hope that this report will serve as an impetus for 

new research that will further elucidate the role NOglc in the brain.
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3.6 Figures 

A) Regions of interest for each of the seven resting state networks projected on the right 

hemisphere cortical gray matter surface of the Conte 69 atlas42 using Connectome Workbench43. 

Images show the right lateral and medial surfaces. B) Pairwise differences between each resting 

state network. Within each cell is the difference in OGI (∆OGI) between resting state networks 

along with the 95% CI of the difference. Positive numbers indicate greater OGI (less NOglc) in 

the network listed on the vertical axis. Only significant differences are shown in color. The 

numbers along the bottom row are the mean and the 95% CI for each network. Network 

abbreviations: fronto-parietal control (FPC), default mode (DMN), dorsal attention (DAN), 

ventral attention (VAN), language (LAN), somatomotor (SMN) and visual (VIS). (C) Within-

Figure 3.1: Differences in OGI between resting state networks 
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subject comparison of OGI evaluated within the default mode network versus visual network. 

The solid blue lines connect regional measurements within a single participant. Note consistency 

of regional differences in OGI from subject to subject. The DMN exhibited lower OGI than the 

visual network (VIS) in every subject.   
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Region was derived from the atlas used by Hyder et al. 7. Only voxels for which OGI was non-

zero in every subject were included. The MNI152 T1 template was resampled to the space of the 

PET data for anatomical reference.  

Figure 3.2: Cerebellar gray matter region of interest 
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A) A group-averaged OGI map obtained from the authors of the Hyder et al. study. Regional 

differences are found throughout the brain. B) Replication of Figure 3A from Hyder et al., 2016 

which shows little regional variation in OGI. Regional differences are masked by the use of a 

color scale that lacks a dynamic range which is not matched over the relevant physiologic range 

of the data. 

Figure 3.3: Regional topography of OGI 
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3.7 Tables 
 

Table 3.1: Means and 95% CIs for selected regions and resting state networks 

Whole brain, gray matter, and white matter regions were taken from the atlas used by Hyder et al. 7. Resting state regions were from 

Hacker et al. 16. The cerebellum was excluded from all regions. Summary statistics were calculated after excluding voxels that exceed 

five median absolute deviations from the gray matter median15. The reported means for whole brain, as well as gray and white matter, 

are largely similar to those reported in the Hyder et al. manuscript7. 

Region 
CBF 

(mL/hg/min) 

CMRglc 

(µMol/hg/min) 

CMRO2 

(µMol/hg/min) 
OGI OEF 

Whole Brain 36.32 (2.89) 26.34 (1.59) 134.53 (13.76) 5.10 (0.50) 0.42 (0.04) 

Gray Matter 38.31 (3.14) 27.57 (1.74) 142.51 (14.89) 5.18 (0.51) 0.42 (0.04) 

White Matter 28.95 (2.11) 21.74 (1.15) 104.93 (9.79) 4.78 (0.47) 0.41 (0.04) 

Dorsal Attention 37.97 (3.90) 29.00 (1.98) 150.32 (17.26) 5.24 (0.58) 0.44 (0.05) 

Ventral Attention 45.40 (4.02) 32.13 (2.10) 147.13 (16.83) 4.65 (0.54) 0.37 (0.04) 

Somatomotor 39.51 (3.42) 28.99 (1.81) 141.74 (16.59) 4.95 (0.53) 0.41 (0.05) 

Visual 41.06 (3.35) 28.42 (2.21) 173.26 (17.46) 6.02 (0.50) 0.47 (0.05) 
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Fronto-Parietal 
Control 40.63 (3.81) 30.17 (2.08) 152.25 (16.21) 5.10 (0.52) 0.42 (0.05) 

Language 41.58 (3.73) 29.88 (1.81) 152.86 (16.73) 5.20 (0.59) 0.41 (0.05) 

Default Mode 41.03 (3.57) 29.67 (1.81) 144.73 (15.40) 4.94 (0.52) 0.40 (0.04) 
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Chapter 4: Regional changes in cerebral blood flow and glucose 
metabolism during hypoglycemia 

 

4.1 Abstract 
 

 In healthy individuals at rest, the cerebral metabolic rate of glucose consumption 

(CMRglc) is tightly coupled with cerebral blood flow (CBF). However, early studies showed that 

global CMRglc decreases more than global CBF in patients experiencing profound 

hypoglycemia. Whether this relationship holds in all brain regions is unclear, as there are few 

regional measurements of CMRglc during hypoglycemia in humans. However, several 

investigators have shown that changes in CBF in humans during hypoglycemia are confined to 

just a few brain regions. To determine whether regional changes in glucose metabolism match 

changes in CBF, we used 1-[11C]-D-glucose and [15O]-H2O PET to measure regional glucose 

metabolism and blood flow in healthy young adults undergoing hypoglycemic-hyperinsulinemic 

glucose clamps. We found that moderate hypoglycemia significant decreased CMRglc by 

approximately 20-30% in every brain region examined. Other aspects of glucose metabolism, 

such as glucose influx and tissue concentration, were also decreased in every region. Changes in 

CBF (~10%) were generally smaller than changes in CMRglc (~20%) and were only 

significantly different from euglycemia in a few regions. Our results indicate that hypoglycemia 

does not alter CBF to the same degree as CMRglc during hypoglycemia. Furthermore, they 

suggest that the purpose of focal increases in CBF during hypoglycemia is not to maintain 

CMRglc despite low glucose availability. 

4.2 Introduction 
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Blood-borne glucose is the brain’s primary energy source1, with other fuel sources such 

as glycogen2, ketone bodies3, or lactate4 contributing only small amounts under normal 

conditions. Therefore, the regulation of blood-glucose level is critical for proper brain function5. 

Acute hypoglycemia has several known neurological effects, including confusion, drowsiness, 

speech difficulties, and lack of coordination6. If blood glucose drops too low from its normal 

value of ~90 mg·dL-1, seizures, coma, and even death, can occur5,7.  

Due to the counterregulatory responses of insulin, glucagon, epinephrine, and other 

hormones8, the incidence of hypoglycemia is rare in non-diabetic healthy individuals9. 

Hypoglycemic episodes are relatively common10, however, in individuals with type-1 diabetes 

(T1DM), who experience mild treatment-related hypoglycemia nearly twice a week11. 

Hypoglycemia can be particularly problematic for the approximately 25% of individuals with 

T1DM that experience hypoglycemic unawareness12, or the failure to develop hypoglycemia-

related symptoms. Without the warning provided by symptoms, individuals fail to take action to 

counter hypoglycemia (e.g., food consumption)10, which increases the risk of a more serious 

hypoglycemic episode13. 

Due to its potentially serious consequences, the impact of hypoglycemia on human brain 

metabolism is the subject of a large body of literature (e.g., see 14,15). The relationship between 

cerebral blood flow (CBF) and hypoglycemia has been particularly well-studied. Several early 

studies reported that compared to the cerebral metabolic rate of glucose (CMRglc), global CBF 

(i.e. whole-brain) is relatively stable during profound hypoglycemia (~30 mg·dL-1)16,17. Studies 

during mild hypoglycemia have reported mixed results, with some studies reporting no change in 

global CBF in healthy controls,18-22, while others have reported increases23-25 or decreases26. 

Studies examining regional changes in CBF have generally been more consistent (for divergent 
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findings see23,25,27 ). In both healthy controls26,28 and individuals with T1DM22,29-31, relative 

increases in CBF have been reported in a common set of brain regions including the thalamus, 

globus pallidus, and medial prefrontal cortex. 

The majority of studies examining CMRglc during hypoglycemia in humans have 

examined only global effects. These studies have found that CMRglc begins to decrease at blood 

glucose levels around 50 mg·dL-118-20,32,33, with large decreases seen during profound 

hypoglycemia16,17,34. The primary method used to measure regional CMRglc in humans is [18F]-

fluorodeoxyglucose (FDG) positron emission tomography (PET). Because glucose is not directly 

used as a tracer, a correction factor, called the lumped constant (LC), must be used to accurately 

measure CMRglc with FDG35. Unfortunately, the LC changes dramatically during 

hypoglycemia36, which limits the usefulness of FDG in subjects with low blood glucose 

concentrations. An alternative technique that avoids this complication is to use radiolabeled 

glucose. Very few studies, however, have used radiolabeled glucose to examine regional human 

brain metabolism during hypoglycemia. Perhaps the only exception is the combined work of 

Gutniak et al. and Blomqvist et al 18,37. The original report by Gutniak et al. measured CMRglc in 

several large regions using [U-11C]-glucose PET and found that CMRglc declined by 30-40% in 

every region37. Later Blomqvist et al. performed a voxelwise analysis of the same data to 

confirm the uniform decline in CMRglc on a much finer spatial scale18. 

The uniform decline in CMRglc during hypoglycemia reported by Gutniak et al. and 

Blomqvist et al. is in contrast to the focal CBF changes that predominate the literature14,15. A 

uncoupling between CBF and CMRglc changes might be surprising given the tight spatial 

correlation between the two parameters under normal euglycemic conditions38,39. It would, 

however, be consistent with the fact that during profound hypoglycemia, changes in global 
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CMRglc are much more pronounced than changes in either CBF or oxygen consumption16,17,34,40. 

Moreover, it has been proposed that the purpose of CBF changes during hypoglycemia in not to 

provide the brain with more glucose. Rather, CBF changes as a part of the brain’s 

counterregulatory hormonal response to hypoglycemia41,42. To determine whether brain glucose 

metabolism changes during hypoglycemia are regionally-specific or uniform, we used measured 

regional glucose metabolism with 1-[11C]-D-glucose and regional CBF with [15O]-H2O PET 

during stepped hypoglycemia in healthy participants. As a true glucose tracer, 1-[11C]-D-glucose 

enables quantitative estimates of CMRglc, glucose influx, free glucose concentration, and 

glucose extraction regardless of blood glucose level. 

4.3 Methods 
 

The original source for the data analyzed in this report is a previous study examining the 

relationship between hypoglycemia, whole-brain glucose metabolism, and counterregulatory 

hormones33. For further methodical detail, please see the cited reference. 

Participants  
A total of eighteen participants were included in this study. All participants were healthy 

young adults without a history of diabetes. Participants were randomly assigned to one of two 

groups. Subjects in the first group received hyperinsulinemic glucose clamps first at 90 mg·dL-1 

and then at 60 mg·dL-1. This group consisted of 10 individuals (6 female, 4 male) with an 

average age of 28.9 (SD 6.9) years and a BMI of 24.4 (SD 3.6) kg·m-2. The second group 

consisted of 8 subjects (2 female, 6 male) who received glucose clamps at 75 mg·dL-1and 45 

mg·dL-1. The average age was 27.6 (SD 8.2) years and a BMI of 24.0 (SD 2.8) kg·m-2. All 

participants gave written informed consent. 
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Experimental design 
Subjects reported in the morning after fasting overnight for 10 hours. Intravenous 

catheters were placed into the antecubital veins of both arms. The first catheter was used for the 

infusion of insulin, glucose, and potassium chloride, and the second for the injection of 

radioactive tracers. An arterial line was placed into the radial artery of one forearm for the 

collection of arterial input data. Subjects were then taken to the PET scanner, where the 

hyperinsulinemic glucose clamps were started after 30 minutes of supine rest. Human insulin 

was infused at 2.0 mU·kg-1·min-1 and 20% glucose was infused at a rate necessary to achieve the 

target glucose level. The first glucose clamp (90 or 75 mg·dL-1) was immediately followed by 

the second clamp (60 or 45 mg·dL-1). Each clamp lasted for 2 hours. During the clamping 

procedure, symptom scores and the arterial concentrations of epinephrine, norepinephrine, 

insulin, C-peptide, glucagon, cortisol, fatty acids, B-hydroxybutyrate, and lactate were measured 

every 30 minutes. All experimental procedures were approved by the Washington University 

School of Medicine Human Research Protection Office for compliance with the Helsinki 

Declaration of 1975.  

Image acquisition 
PET scanning began 20 minutes after blood glucose was maintained at the target level for 

twenty minutes. First, attenuation was measured with [68Ge]-[68Ga]-rotating rod sources. Next, 

subjects inhaled 22 ± 4 mCi of [15O]-CO for the measurement of cerebral blood volume (CBV) 

43. A single 5-minute long emission frame was acquired starting 2 minutes after inhalation. 

Cerebral blood flow (CBF) was then measured with the injection of 19 ± mCi of [15O]-H2O 44. 

The dynamic acquisition consisted of 60 2-second frames acquired immediately following 

injection. Finally, cerebral glucose metabolism was measured via the injection of 10 ± 3 mCi of 

1-[11C]-D-glucose45. The emission data was split into 45 frames spanning 60 minutes (16 x 30 s, 
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8 x 60 s, 16 x 120 s, 4 x 180s). All PET data was acquired with a ECAT EXACT HR+ PET 

scanner (Siemens/CTI, Knoxville, TN) in 3D mode with retraction of interslice septa and 

reconstructed using a filtered back-projection46. During [15O]-CO and [15O]-H2O acquisition, 

arterial input data was automatically sampled from the radial artery at a rate of 5 mL·min-1. 

During the 1-[11C]-D-glucose scan, manual arterial samples were acquired every 10-15 seconds 

during the first 3 minutes and every 10-15 minutes thereafter. The same PET scanning protocol 

was performed during both glucose clamps. Following the completion of the glucose clamping 

experiment, a high resolution T1-weighted MPRAGE was acquired using a Siemens 3T Trio 

(2400 ms TR, 3.16 ms TE, 256 x 256 x 176 FOV, 1 mm3 voxels). 

Image analysis 
All PET data was smoothed with a 5 mm isotropic Gaussian kernel to create images with 

an approximate resolution of 8 mm isotropic voxels47. After smoothing, the dynamic 1-[11C]-D-

glucose data was motion-corrected using previously described in-house software48,49. A mean 

image across time was then created for each PET series, resulting in two images for each tracer. 

Within each tracer, the average images were registered to each other by minimizing the error 

between the forward (image 1 -> image 2) and backward (image 2 -> to image 1) registrations48. 

Once aligned, an average within-tracer image was computed and registered to the high-resolution 

T1-weighted image using a vector gradient algorithm50.  

 The T1-weighted image was segmented using Freesurfer 5.151 to create 48 non-

overlapping cortical and subcortical regions of interest (ROIs; Figure 4.1).The Desikan atlas52 

was used to define 34 gyral-based cortical gray matter ROIs. Separate ROIs were created for 

subcortical gray regions (thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and 

nucleus accumbens) and white matter (deep, superficial, corpus callosum)53. ROIs were also 
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created for cerebellar gray and white matter. Finally, the brainstem and ventral dienecephalon 

were separated into two ROIs. All ROIs were averaged across the cerebral hemispheres. The 

tissue class (white matter, gray matter, and CSF) of each voxel was determined separately using 

FSL’s54 FAST55. 

 A previously published and validated four-compartment model45 was used to describe the 

1-[11C]-D-glucose data: 

!"($) = !'( ∙ !*($) + ∫ !*(-) ∙ .($ −
0
1 -)	3- (4.1) 

.($) = 	45670 + 89:; <
=>?@A
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where !"($) is the average tracer concentration within the ROI at time $, !*($) is the arterial 

tracer concentration, and .($) is the tissue impulse response function. The 4 and E terms are 

products of the model’s five rate constants (89, :F, :;, :G, and :H): 4 = 89 <1 −
BJ

(76B@)
+

BJB@
(B@67)(BC67)

D, E = :F + :;. To simplify the model fitting, :H was assumed to equal CBF/CBV. 

The remaining rate constants were estimated for all 48 FreeSurfer ROIs using nonlinear least 

squares. Following Graham et al., we chose to optimize KL
(BMNBJ)

 instead of :F56. Prior to regional 

fitting, the delay between the input function, !*($), and the PET data was corrected for by fitting 

equation 4.1 to the average whole-brain tissue activity curve with the addition of a delay term. In 

accordance with previous procedures, all 1-[11C]-D-glucose modeling was done with whole-

blood arterial tracer concentration without correction for radiometabolities33,45,57. 

CBF was computed for each ROI using a one-compartment, two parameter model44: 



129 
 

!"($) = O ∫ !*(-) ∙ 5
6PQ(06R)	3-0

1   (4.3) 

where O is CBF and l is the blood brain partition coefficient. Before performing a nonlinear least 

squares fit on equation 4.3, the arterial input function, !*, was corrected for delay and dispersion. 

Correction for the dispersion between the automatic blood sampler and the radial artery was 

performed by assuming that the measured input function, !S, is the convolution of the actual 

input function, !*, with a measured kernel ℎ58:  

!S($) = ∫ !*(-) ∙ ℎ($ −
0
1 -)	3- (4.4) 

Therefore, the reconstruction of !* is a deconvolution problem. This problem was solved by 

assuming that !* follows the form described by Golish et al.59, and then minimizing the 

difference between !S and the right hand side of equation 4.4 with nonlinear least squares. 

Delay between !* and the [15O]-H2O PET data was corrected for using the same procedure as the 

1-[11C]-D-glucose data. 

CBV (in mL·hg-1) was computed for each voxel using the following equation43: 

!'( =
∫ VW(R)	XR
AM
AL

∙911

∫ VY(R)	XR
AM
AL

∙Z∙XW∙X[
 (4.5) 

where \ is the ratio of cerebral small to large vessel hematocrit and 3" and 3] are the densities 

of tissue and blood respectively. The values for these constants were set according to Martin et 

al.43: \ = 0.85, 3" = 3] = 1.05 b
Sc

. As CBV was not a parameter of interest and only needed to 

solve equation 4.1, we utilized a simple strategy to minimize the impact that noise in the CBV 

quantification had on our results. All voxels with a CBV less than 6 were replaced with the mean 

CBV value of their respective tissue class (white, gray, or CSF). All voxels with a CBV greater 
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or equal to 6 were replaced with the mean of all such voxels. The resultant image was then 

smoothed with 5 mm isotropic Gaussian kernel prior to computing the mean CBV within each 

FreeSurfer ROI. Without this correction fitting the C11-glucose model (Eq. 1 and 2) was often 

unstable, as low values of CBV from noisy voxels produced unrealistically high values of :H. 

 All optimization was performed using the optimize package in SciPy 60. Uniform weights 

were used for all nonlinear least square fits. 

Metabolic parameters 
The rate constants estimated from the regional 1-[11C]-D-glucose data were used to 

estimate five distinct parameters: 1) cerebral metabolic rate of glucose (CMRglc), 2) glucose 

influx, 3) free glucose concentration, 4) glucose first-pass extraction (Efp), and 5) net glucose 

extraction (Enet). These quantities were computed as follows45,61: 

!d\efg = 	 KLBJ
(BMNBJ)

∙ !h (4.6) 

ijOfkl = 	89!h (4.7) 

!mjg5j$.n$omj = 	 KL
(BMNBJ)

∙ !h (4.8) 

pqr =
KL
V]s

 (4.9) 

ptuv =
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(BMNBJ)∙V]s
 (4.10) 

!h, the arterial whole blood glucose concentration, was estimated using !r, the measured arterial 

plasma glucose concentration45,62: !h = !r(1 − 0.3 ∙ ℎ5xn$mg.o$). We also computed whole-

brain normalized estimates of each parameter by dividing each regional value by the volume-

weighted mean across regions.  
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Statistics 
For each region, the relationship between !r and CMRglc, glucose influx, glucose 

concentration, CBF, Efp, and Enet was assessed using a multivariate linear mixed model63: 

yz{ = |z{E + }z + 5z{  (4.11) 

where yz{ is a 6 x 1 vector containing the metabolic parameter estimates for subject i during 

glucose clamp j. |z{ is a 1 x p row vector containing the fixed effect regressors. Here, p = 3 as 

|z{ is made up of three regressors: 1) Intercept (β0), 2) !r (β1), and 3) A restricted cubic spline 

term with boundary knots at the 0.1 and 0.9 quantiles and an interior knot at the 0.5 quantile 

(β2)64. The spline regressor was added to allow for a nonlinear relationship between !r and any 

of the metabolic parameters. Prior to fitting, the data in y and | were standardized so that each 

metabolic parameter and fixed effects regressor had a mean of zero and a SD of 1. The fixed 

effect regression coefficients are in the p x 6 matrix E. The 1 x 6 row vector }z contains a subject 

specific random intercept for each metabolic parameter. Finally 5z{ is a 1 x 6 row vector of 

independent and identically distributed errors. The random intercept terms were assumed to 

come from a multivariate normal distribution: }z~�m.xnf(0, Ä), where Ä is a 6 x 6 

unstructured covariance matrix. Note that even though our model assumes the residual errors for 

each parameter are identical and independent, covariance between the parameters can be 

accounted for through their random intercepts63. 

Equation 4.11 was fit separately to the data from each FreeSurfer ROI using a Bayesian 

Hamilton Markov chain Monte Carlo (MCMC) with Stan65. The fixed effect coefficients where 

given a broad normal prior with a mean of 0 and a SD of 5. A half-Cauchy distribution with a 
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location of 0 and a scale of five was used as the prior for the residual error term. For modeling 

purposes, the random effects covariance matrix was decomposed into a 6x6 correlation matrix 

and a vector of SDs 66. The correlation matrix was given a LKJ Cholesky67 prior with a shape of 

1.0, which implies a uniform prior density for the correlation between the random effect 

parameters68. A half-Cauchy distribution with a location of 0 and a scale of five was used for the 

standard deviation parameters. Fitting was performed with four independent MCMC chains 

consisting of 5,000 iterations. The first 2,500 iterations of each chain were removed as warm-up, 

leaving a total of 10,000 iterations available for inference. The Gelman-Rubin \Å statistic was 

used to check that all four MCMC chains had converged 69,70. \Å is the ratio of within to between 

chain variance and should equal 1 after convergence. The \Å for all reported parameters was close 

to 1.0 for every regional fit (range=0.9996 to 1.036). 

 Regional CBF data was missing for three clamp studies. A univariate mixed model was 

used to interpolate the missing CBF values for each FreeSurfer region. The model consisted of a 

single random intercept and the same fixed effect regressors as equation 4.11. All fitting was 

performed using the R71 package lme472. The interpolated CBF values were used to optimize 

equation 4.1 and to compute Efp and Enet. They were not used to assess the relationship between 

CBF and !r with equation 4.11. Therefore, all inference for changes in CBF was based on 33 

data points and not 36 like the other metabolic parameters. To account for the missing CBF data, 

the Bayesian formulation of equation 4.11 included the missing data points as free parameters.  

 For each region, the overall association between !r and each of the six metabolic 

parameters (CMRglc, glucose influx, glucose concentration, CBF, Efp, and Enet) was tested by 

computing the 95% highest density region of the joint distribution between β1 and β2 (Figure 



133 
 

4.2). A significant relationship was reported if the coordinate β1 = 0.0, β2 = 0.0 was outside of the 

95% region. For example, a significant relationship between Cp and CMRglc would indicate that 

CMRglc changes as a function of blood glucose level. The R package ks was used estimate the 

95% highest density regions73. If a significant relationship with !r was found, than the marginal 

highest density interval (HDI) for the cubic spline term β2 was computed74. There was significant 

evidence for a nonlinear relationship with !r if the 95% HDI of β2 did not overlap 0.0. A 

nonlinear relationship with Cp indicates that that change in the metabolic parameter (e.g. 

CMRglc) cannot be described by a simple linear function. To visualize the effect of 

hypoglycemia, an image of the difference between euglycemia and hypoglycemia was made by 

computing the difference between the model prediction at !r= 90 mg·dL-1 and at !r = 45 mg·dL-

1 for each ROI. Spearman rank order correlations were used to assess the spatial correspondence 

between maps of metabolic change (e.g., CMRglc vs. CBF). Due to the autocorrelation present 

between brain regions75, as well as differences in ROI sizes, p-values for the correlation 

coefficients were not computed. Unless otherwise stated, all values are posterior medians and 

HDIs. 

4.4 Results 
 

Regional changes in metabolism 
Figure 4.3 shows the individual CMRglc, glucose influx, glucose concentration, CBF, 

Efp, and Enet data in both the precuneus and deep white matter along with the population average 

fits from the multivariate linear mixed model. We chose the precuneus as an example gray matter 

region as it has one of the highest CMRglc at euglycemia. CMRglc, influx, and concentration 

dropped along with !r in both the precuneus and deep white matter (Figure 4.3A-C). 
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Conversely, Enet increased with decreasing !r (Figure 4.3F). CBF and Efp showed less 

pronounced changes during hypoglycemia (Figure 4.3D-E). 

To quantify this impression, we tested for the presence of a significant relationship 

between !r and each metabolic parameter in 48 separate FreeSurfer ROIs (see Methods). A 

significant relationship was found between !r and CMRglc (Figure 4.4B), glucose influx (Figure 

4.5B), glucose concentration (Figure 4.6B), and Enet (Figure 4.7B) in every region tested. A 

significant nonlinear relationship between !r and CMRglc was found for most (35/48), but not 

all, regions (Figure 4.4C). The regions showing only a linear relationship include both gray 

(amygdala, entorhinal cortex, and globus pallidus) and white (cerebellar white matter, corpus 

callosum, and deep white matter) matter. No region showed a nonlinear relationship between !r 

and glucose influx (Figure 4.5C) or concentration (Figure 4.6C), and only the globus pallidus 

had a significant nonlinear association between !r and Enet (Figure 4.7C).  

Quantitative changes in Efp and CBF were not nearly so widespread. Significant increases 

in Efp with decreasing !r were found in 17 out of 48 regions (Figure 4.8B). Both cortical and 

cerebellar gray and white matter regions displayed increases in Efp, though the only subcortical 

gray matter region which increased its first-pass extraction was the caudate. No evidence was 

found for a nonlinear relationship between !r and Efp (Figure 4.8C). A significant relationship 

between CBF and !r was found in only nine regions (Figure 4.9B). Significant decreases in CBF 

with hypoglycemia were found in the banks of the superior temporal sulcus, caudal anterior 

cingulate, interior temporal cortex, posterior cingulate, superior temporal cortex, frontal pole, 

transverse temporal cortex, and nucleus accumbens. A significant increase was found only in the 
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globus pallidus, which was also the only region with a significant nonlinear relationship between 

!r and CBF (Figure 4.9C).  

As many previous studies have reported relative changes in blood flow during 

hypoglycemia22,26,28, we repeated our previous analysis of CBF changes after first normalizing 

each CBF image by its global mean. A relative decrease in CBF was observed in the posterior 

cingulate, while relative increases were found in the thalamus, globus pallidus, brainstem, and 

ventral diencephalon (Figure 4.10B).  

Discrepancies between CMRglc and CBF changes 
To further investigate the discrepancy between the widespread changes in CMRglc 

(Figure 4) and the focal changes of CBF (Figures 7,10), we first correlated euglycemic metabolic 

values with the difference between euglycemia and hypoglycemia over all ROIs (see Methods). 

CMRglc, influx, and concentration all showed strong negative correlations. Regions with the 

greatest baseline values displayed the greatest changes during hypoglycemia (Figure 4.11A-C). 

Conversely, CBF, Efp, and Enet, the parameters which are directly dependent on blood flow, 

showed only modest correlations (Figure 4.11D-F), with the association between baseline and 

change in Efp being particularly weak (Figure 4.11E). 

Next, we correlated regional changes in CMRglc with regional changes in CBF. Changes 

in CBF and CMRglc showed only modest regional correlations, both quantitatively (Figure 

4.12A), and expressed as percent change (Figure 4.12B). This is in contrast with euglycemia, 

where regional CBF and CMRglc were tightly correlated (Ç = 0.86). Nearly every region 

exhibited CMRglc decreases in the 20-25% range, with the exception of deep white matter and 

the corpus collosum, the two regions with the lowest CMRglc at euglycemia (Figure 4.12B). 

Consistent with previous relative analysis (Figure 4.10B), CBF in most regions decreased 
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slightly, with the exception of the thalamus, globus pallidus, brainstem, and ventral diencephalon 

(Figure 4.12B), where CBF increased. 

4.5 Discussion 

 

Overview 
 A previous analysis of the same data analyzed here found whole-brain decreases in 

CMRglc, glucose influx, and free glucose concentration, an increase in Enet, and no change in 

CBF during moderate hypoglycemia (45 mg·dL-1)33. Importantly, changes in counterregulatory 

hormones (epinephrine and glucagon) were observed before changes in CMRglc. However, that 

study did not report any regional changes in metabolism during hypoglycemia. Here we found 

that hypoglycemia decreases CMRglc, glucose influx, and glucose concentration, and increases 

Enet, in every brain region we examined. Hypoglycemia induced changes in Efp, and especially 

CBF, were more regionally specific. Decreases in CMRglc, glucose influx, and glucose 

concentration correlated strongly with baseline values, whereas changes in CBF, Efp, and Enet 

showed only modest correlations. Regional changes in CMRglc did not correlate with regional 

changes in CBF, suggesting a difference between glucose metabolism and blood flow in the 

response to hypoglycemia. Finally, we found that glucose concentration in the cerebellum was 

much greater than any other brain region.  

Glucose Metabolism 
 Our finding that hypoglycemia decreases CMRglc in all brain regions is consistent with 

two previous paired studies in humans18,37. These studies reported that CMRglc declines by 

approximately 40% in all regions during an insulin-induced hypoglycemia of 50 mg·dL-1. 

Uniform declines in CMRglc are also found during short-term starvation, a condition that results 

in mild hypoglycemia76,77. Multiple studies in rats have also reported nearly uniform decreases in 
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CMRglc during hypoglycemia78-80. A few exceptions were observed in each study. Abdul-

Rahman and Siesjö reported that CMRglc in the hypothalamus and the cerebellum did not 

decline even after 30 minutes in an insulin-induced hypoglycemic coma78. Pelligrino et al. also 

reported that cerebellar CMRglc was maintained during modest hypoglycemia (approximately 40 

mg·dL-1) 80. Conversely, Bryan et al. reported CMRglc did not decrease in the pyramidal tracts79, 

even when blood glucose was lowered to nearly 25 mg·dL-1. An outlier to the studies discussed 

above is the work of Suda et al., who found much more variable changes CMRglc during 

moderate hypoglycemia (approximately 43 mg·dL-1)81. After Bonferroni correction for multiple 

comparisons, significant declines in CMRglc were found only in the dentate gyrus of the 

hippocampus and in several brainstem regions. Absolute CMRglc, however, declined in every 

region but the superior colliculus and the dentate nucleus of the cerebellum. It is possible that 

some of the variability in these results is due to differences in the degree of hypoglycemia. 

Indeed, Bryan et. al found that CMRglc declined only in a few regions when the blood glucose 

level was at 35 mg·dL-1, whereas all regions exhibited declines with more pronounced 

hypoglycemia.  

 Compared to CMRglc, the literature on regional changes in quantitative glucose influx, 

concentration, or extraction is relatively sparse. Indeed, this report is, to the best of our 

knowledge, the first to examine this question in humans. There are, however, relevant studies in 

animal models. In agreement with our results, hypoglycemia has been shown to reduce the free 

glucose concentration throughout the brain in mice82,83 and rats84,85. Interestingly, Paschen et al. 

found that the brain stem, hypothalamus, and thalamus still have some free glucose concentration 

even during deep hypoglycemia. As far as we are aware, this finding has not been replicated. 

LaManna and Harik found that glucose influx and Efp decreased in the frontal and parietal 
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cortices, cerebellum, and hippocampus86. This is only partially consistent with our results, as we 

did not find a significantly increase in hippocampal Efp. We are not aware of any data on regional 

changes in Enet during hypoglycemia, but our results are agreement with previous studies 

showing global increases33,45,87. 

We also found that the relationship between plasma glucose and CMRglc was nonlinear 

in most brain regions, with CMRglc changing little until plasma glucose was lowered to around 

45 mg·dL-1. This is consistent with the finding that glucose metabolism is largely maintained 

during modest hypoglycemia in humans19,32,33 and in animal models45,78,79. A nonlinear 

relationship between CMRglc and plasma glucose is expected under normal conditions, as 

cerebral glucose influx far outstrips glucose consumption, and therefore, glucose consumption 

only declines once CMRglc and influx are nearly equal88. Conversely, we found little evidence 

for nonlinearity in any of the other parameters that we examined. No regions had a significant 

nonlinear relationship with glucose influx, glucose concentration, or Efp, and only the globus 

pallidus had a nonlinear relationship with Enet.  

Our finding of linear changes in glucose influx and concentration generally agrees with 

the literature. Several studies using a variety of techniques have found that brain glucose 

concentration is linear with respect to plasma glucose over a wide range85,89-93. Two studies in 

rats reported that changes in brain glucose influx are largely linear in the blood glucose range we 

studied here, before saturating at higher concentrations86,94. Using a similar experimental design 

to ours, Powers et al. also showed a roughly linear decline in glucose influx in macaques45. Our 

results are somewhat in conflict with previous studies of glucose first-pass extraction in animal 

models86,95,96. These studies found a nonlinear relationship between Efp and blood glucose levels, 

with large increases in Efp during more profound hypoglycemia. Here, although Efp did increase 
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in many regions, the increase was fairly small and did not deviate significantly from linearity. It 

is likely that, if we had studied more profound levels of hypoglycemia, larger changes in Efp 

would have been observed.  

Cerebral Blood Flow 
Unlike glucose metabolism, alterations in CBF were restricted to a select set of regions. 

Quantitative decreases in CBF were found in a handful of cortical regions, including the caudal 

anterior cingulate, inferior temporal cortex, and posterior cingulate, as well as in the nucleus 

accumbens. Nwokolo et al. also reported that hypoglycemia decreases CBF in the temporal 

lobe97, prefrontal cortex42,97, and globus pallidus42. We also found that relative to the rest of the 

brain, the CBF response to hypoglycemia was significantly lower in the posterior cingulate and 

significantly higher in the thalamus, globus pallidus, brainstem, and ventral diencephalon. In 

both healthy and in individuals with T1DM, hypoglycemia has been shown to increase relative 

blood flow in the thalamus26,28-31,98-100, medial prefrontal cortex26,28,31,99, globus pallidus26,28,31, 

and anterior cingulate cortex28,31. Although we did find a relative decrease in the posterior 

cingulate29, we did not find any relative increases in CBF in the cerebral cortex. One possible 

explanation is that hypoglycemia was not maintained long enough to alter blood flow in these 

regions. In support of this hypothesis, two recent studies found that regional increases in CBF 

become more pronounced the longer hypoglycemia is maintained28,31. However, relative 

decreases in MPFC CBF have been found using a protocol similar to the one we used here42.  

Research in animal models have also found regional variability in the CBF response to 

hypoglycemia79,88,101. There are, however, a few important discrepancies from the human 

literature. First, animal model studies have generally found that hypoglycemia increases global 

CBF79,92,101-104. The human literature is much more mixed15, with a large number of studies 
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reporting no change in global CBF during mild to moderate hypoglycemia 18-22,105. It is tempting 

to argue that the reason for this discrepancy is that human studies do not measure CBF at low 

enough levels of hypoglycemia. Multiple studies in rats have shown that, although CBF 

increases rapidly once the blood glucose level drops below 40 mg·dL-1, it is relatively stable 

above this point79,92,104. A few human studies have found that whole-brain CBF increases once 

blood glucose is lowered below 40 mg·dL-123-25,34. However, other studies have reported small 

and/or non-significant changes in subjects whose blood glucose is low enough to induce a 

hypoglycemic coma16,17. Whether increased CBF during hypoglycemia is a species specific 

phenomenon, or a by-product of different measurement techniques, remains to be determined. 

Second, studies in animal models have consistently reported that hypoglycemia increases CBF in 

nearly every region of the brain79,101,103,104. There is, however, regional variability in the 

magnitude of the increase. For example, particularly large increases in CBF have been found in 

the cerebellum101,103 and the thalamus79,101. This is in contrast with the human literature, which 

has consistently shown that hypoglycemia selectively increases CBF in a network of regions 

including the thalamus and medial prefrontal cortex 15. Part of this difference may be that unlike 

animal studies, studies in humans have tended to report regional changes relative to the whole-

brain22,26,28-31. Normalization is unlikely to fully account for the discrepancy, however, as we, in 

agreement two other studies42,97, did not observe CBF changes in every region even with 

quantitative CBF. It is also possible that a species difference may explain the discrepancy 

between animal and human studies. Metabolic rates are higher in rodents106, so it is conceivable 

that they are more effected by hypoglycemia than humans.  

Metabolic coupling during hypoglycemia 
Our results show clearly that during hypoglycemia there is an uncoupling between 

regional changes in glucose metabolism and CBF. Glucose metabolism was altered in every 
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region we examined, while CBF was changed in smaller set of regions. Furthermore, there was 

only a modest regional correlation between changes in CMRglc and changes in CBF. This 

suggests that the purpose of increased CBF during hypoglycemia is not, at least completely, to 

increase the supply of glucose to the brain. A similar proposal was made by Powers et al., who 

found that the increase in CBF in the somatosensory cortex during tactile stimulation was the 

same in euglycemic and mildly hypoglycemic (~60 mg·dL-1) subjects107. If CBF increased 

during hypoglycemia in order to prevent a fall in glucose consumption, one would expect 

CMRglc to be relatively maintained in regions with increased CBF (e.g. the globus pallidus). 

Instead, we found that declines in CMRglc were largely determined by baseline metabolic rates, 

and that most regions declined by a little over 20% once the blood glucose level was lowered to 

45 mg·dL-1. In contrast, CBF fell in most regions by around 10% and baseline CBF was much 

less predictive of CBF changes. It is possible that CBF increases in order to supply the brain with 

alternative fuels such as lactate or ketone bodies. We are not able to rule out this possibility with 

our present data. However, studies measuring whole-brain changes in metabolism have reported 

that lactate and β-hydroxybutyrate can account for only a modest proportion of the brain’s 

metabolic rate during insulin induced hypoglycemia20,87. Furthermore, the plasma concentrations 

of both lactate and β-hydroxybutyrate were not significantly altered by hypoglycemia in our 

study33. This makes it unlikely that either substance was being used as an alternative, as the 

consumption of both lactate108 and β-hydroxybutyrate3is limited strongly by plasma 

concentration.  

An alternative hypothesis is that focal increases in CBF are part the sympathetic 

counterregulatory hormonal response to hypoglycemia109. In healthy individuals, hypoglycemia 

is counteracted by the release of several key hormones, the foremost of which is insulin8. 
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However, hypoglycemia is also accompanied by the release of glucagon, epinephrine, growth 

hormone, and cortisol. If the release of these hormones fails to restore the blood glucose to 

normal levels, then cognitive decline begins to occur110. It has been proposed109 that these 

counterregulatory responses are regulated by a network of brain regions consisting largely of the 

thalamus and medial prefrontal cortex. Consistent with this idea, acute hypoglycemia has been 

show to increase CBF in the thalamus and medial prefrontal cortex22,26,28,30,42,99, and there is a 

positive correlation between thalamic CBF and autonomic symptom scores during 

hypoglyemia97 . Both the thalamus and medial prefrontal cortex are part of a network of regions 

that, along with the hypothalamus, regulate the brain’s autonomic response to sensory stimuli111. 

Furthermore, Arbelaez et al. reported that while recurrent hypoglycemia attenuates hormonal 

responses in healthy individuals, it actually augments the increase in thalamic CBF that is 

normally seen during acute hypoglycemia98. Based on this finding, and the assumption that 

increased CBF is a marker of increased neural activity, Arbelaez et al. proposed that hormonal 

responses are blunted by repeated hypoglycemia because of increased inhibition of the 

hypothalamus by the thalamus98. More work is needed to confirm this hypothesis, however, as 

more recent studies have reported that the increase in thalamic CBF during hypoglycemia is 

blunted, not increased, in type-1 diabetics with hypoglycemic unawareness22,30.  

 The fact that hypoglycemia effects oxygen metabolism much less than glucose 

metabolism is well established16,17,34,40. This disconnect is particularly prevalent during extreme 

hypoglycemia, where the molar ratio of oxygen-to-glucose metabolism (OGI) rises well above 

its theoretical value of 6.0102,112,113. In the normal resting brain, OGI is approximately 5.5, which 

indicates that nearly 10% of the brain’s glucose metabolism is consumed via non-oxidative 

pathways114. OGI values greater than 6.0 indicate that the brain is oxidizing energy sources other 
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than glucose106. Studies have shown that that the rat brain quickly uses its supply of free glucose, 

glycogen, lactate, and pyruvate during profound acute hypoglycemia82-84,115,116. After this point, 

endogenous amino acids, such as glutamine102, and phospholipids113 are used to maintain ATP 

concentration until the onset of hypoglycemic coma. Although glucose consumption is reduced 

more than oxygen consumption even in moderate hypoglycemia20, how oxidative metabolism is 

maintained in this condition is not fully understood. Lubow et al. estimated that lactate uptake 

could account for up to 25% of the brain’s glucose deficit during moderate hypoglycemia20. 

Glycogen has also been suggested as a potential fuel source117-119, though it is unclear how long 

it can used as fuel source as glycogen is largely restricted to astrocytes120 and is present in fairly 

small amounts2. It is likely that oxidative metabolism is maintained by some combination of 

these and other fuels121. Part of the glucose debt that occurs during moderate hypoglycemia 

could be paid by reducing the approximately 10% of glucose metabolism that is non-oxidative114. 

Although this idea has not been tested, it would help to support whether non-oxidative glucose 

consumption is involved in learning, synaptic plasticity, and development122,123 (but see124).  

Cerebellar Metabolism 
 We did not expect to find such a striking difference in free glucose concentration between 

the cerebellum and other brain regions (Figure 4.6A, Figure 4.11C). At euglycemia, the average 

free glucose concentration in the cerebellar cortex was 0.68 μMol·g-1, compared to 0.42 μMol·g-

1for the cerebral cortex. Regional differences in free glucose concentration have not been well-

studied in humans. There are, however, some exceptions. Heikkilä et al. found that compared to 

the cerebral cortex, the ratio of free brain glucose to water was twice as high in the 

cerebellum125. Herzog et al. reported that the concentration of both free glucose and glycogen 

was higher in the cerebellar cortex126. Similar results have been obtained in animal models as 

well82-84,127, although it should be noted that the differences are smaller than what has been 
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ported in humans, and that other studies have failed to find any difference80,85. Higher glucose 

concentration in the cerebellum is relevant for two reasons. First, the cerebellum seems to 

respond differently to hypoglycemia than other brain regions. There is evidence that CMRglc in 

the rat cerebellum is maintained during both moderate80 and profound hypoglycemia78. Although 

we did not replicate this finding in our study, it is possible that our subjects were hypoglycemic 

too long for the cerebellum’s higher free glucose concentration to serve as an effective buffer. 

The cerebellum is also more resistant to hypoglycemia induced decreases in ATP84,128 and 

protein synthesis129. Finally, the cerebellum appears to be more resistant to hypoglycemia-

induced cell death than other brain regions. Prolonged severe hypoglycemia causes neuronal 

death throughout the cortex and subcortex130-132, with neuronal loss in the dentate gyrus being a 

defining feature. In contrast, cerebellar neurons, particularly Purkinje cells and granule cells, are 

largely intact even after extended periods of profound hypoglycemia128,131. Given these results, 

one hypothesis is that higher levels of free glucose provide the cerebellum with some resistance 

to hypoglycemia. The role of free glucose in preserving energy metabolism is likely minor 

though, as the cerebellum’s glucose concentration of 0.68 μMol·g-1 is small compared to its 

baseline metabolic rate of 20.5 μMol·hg-1·min-1.  

Second, the higher glucose concentration in the cerebellum is relevant to studies using 

FDG PET to measure brain glucose metabolism. The LC for FDG has traditionally been assumed 

to be the same for all brain regions35. Multiple studies have shown that the LC decreases as brain 

free glucose concentration increases133,134. This suggests that the higher free glucose in the 

cerebellum would result in a lower LC than the rest of the brain, which is exactly what was 

found by Graham et al56. Our results support the findings of Graham et al. and suggest that 

studies using FDG to study cerebellar metabolism need to account for regional differences in the 
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LC. In particular, if the same LC is used to measure CMRglc in all brain regions, then cerebellar 

CMRglc will be underestimated relative to other regions. 

Limitations 
 A few caveats should be considered when interpreting our results. First, our ability to 

detect regional effects was limited by our small sample size. This fact, combined with the 

difficulty in fitting a model with four compartments and four free parameters, limited our 

examination of regional changes to larger ROIs. Therefore, it is possible that we missed changes 

in smaller regions that were not uniquely defined in our region set (e.g., hypothalamus). Second, 

our experimental design was set up so that each subject was studied during only two glucose 

clamps. As a result, we did not observe in a single subject the transition from euglycemia (90 

mg·dL-1) to moderate hypoglycemia (45 mg·dL-1). All inferences are therefore based on 

population level statistics. Third, the first glucose clamp for each subject was always at a higher 

blood glucose level than the second clamp. This is concerning as order effects have been 

reported with FDG PET135,136, although the direction is not always consistent. A systematic order 

effect would result in biased estimates of metabolic change during hypoglycemia. Finally, our 

study was limited to observing changes in total glucose metabolism during hypoglycemia. We 

did not collect any data on oxygen metabolism to see if hypoglycemia decreased glycolytic 

glucose metabolism to a greater extent than oxidative glucose consumption. We also did not 

acquire any data that would enable us to determine the metabolic fates of glucose during 

hypoglycemia. Such analyzes would be possible using other techniques, such as labeled 13C-

labled glucose in humans32 or at an much finer resolution using metabolic flux analysis in 

vitro137,138. 
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Conclusion 
 We found that moderate hypoglycemia produces uniform declines in brain glucose 

metabolism while only altering CBF in a select set of regions. Therefore, it appears that 

maintaining CMRglc is not the primary driving force behind focal increases in CBF during 

hypoglycemia. Instead, our results are consistent with the hypothesis that focal increases in CBF 

are part of the sympathetic counterregulatory response to hypoglycemia. Elucidating exactly how 

CBF modules this counterregulatory response is an important topic for future studies.
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4.6 Figures 

The ROI set consisted 48 non-overlapping regions that were averaged across the cerebral 

hemispheres. The cortical gray matter was parcellated in to 34 regions52, the subcortical gray 

matter into 7 ROIs (thalamus, caudate, putamen, pallidum, hippocampus, pallidum, 

hippocampus, amygdala, and nucleus accumbens), and the white matter into 3 (deep white 

matter, cortical white matter, and corpus callosum). The cerebellum was also divided into white 

and gray ROIs. The remaining two regions were the brain stem and the ventral diencephalon.  

Figure 4.1: Freesurfer generated regions of interest (ROIs) 
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Each dot represents a single posterior sample from the Bayesian Markov-chain Monte Carlo 

(MCMC) used to model the change in brain free glucose concentration during hypoglycemia (see 

Methods). The x-axis is the coefficient for a linear relationship between plasma glucose (Cp) and 

glucose concentration in the precuneus, while the y-axis is the coefficient for a nonlinear 

association (a restricted cubic spline). The color indicates density, with yellow indicating the 

area of highest density. To assess whether there was any relationship between Cp and glucose 

Figure 4.2: Joint parameter distribution 
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concentration, the 95% confidence region (black line) was computed (see Methods). A 

relationship between Cp and glucose concentration was significant if the point (0.0, 0.0) was 

outside of the 95% confidence region. In this example, (0.0, 0.0) is well outside the 95% 

confidence region, so we can infer that the glucose concentration in the precuneus decreases 

significantly as blood glucose level decreases
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A) CMRglc, B) glucose influx, C) glucose concentration, D) CBF, E) Efp, and F) Enet as a function of hypoglycemia. Dots are 

individual data points, and light lines connect the data from individual subjects. Solid lines are the population median (see Methods). 

Figure 4.3: Hypoglycemia induced metabolic changes 
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Data from the precuneus is shown in blue and deep white matter in red. Hypoglycemia induced pronounced changes in A) CMRglc, 

B) Influx, C) Concentration, and F) Enet. Changes in D) CBF and E) Efp were less marked. 
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A) Map of regional CMRglc during euglycemia (Cp = 90 mg/dL). Values were computed using 

the linear mixed model described in the Methods section of the text. Regions were averaged 

across hemispheres so the map is symmetric by definition. B) Estimated difference between 

Figure 4.4: Regional CMRglc 
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CMRglc at hypoglycemia (Cp = 45 mg/dL) and euglycemia. Only regions where there was a 

significant association between Cp and plasma glucose are shown. Note that CMRglc fell during 

hypoglycemia in every single region (48/48). C) Coefficient for the natural cubic spline term of 

the linear mixed model. Regions were the highest density interval (HDI) for the spline 

coefficient overlapped zero are not shown (13/48).  
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Figure convention as in Figure 4.4. Similar to CMRglc (Figure 4.4), glucose influx decreased in 

every brain region with hypoglycemia. 

Figure 4.5: Regional glucose influx 
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Figure convention as in Figure 4.4. B) Similar to CMRglc (Figure 4.4), glucose concentration 

decreased in every brain region with hypoglycemia. 

Figure 4.6: Regional glucose concentration 
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Figure convention as in Figure 4.4. B) Unlike CMRglc (Figure 4.4), Enet increased in every brain 

region with hypoglycemia. 

Figure 4.7: Regional Enet 



157 
 

Figure convention as in Figure 4.4. B) Unlike Enet (Figure 4.7), Efp did not significantly increase 

in all regions during hypoglycemia. Particularly notable absences are subcortical gray matter 

regions (e.g,. thalamus) and the brain stem.  

Figure 4.8: Regional Efp 
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Figure convention as in Figure 4.4. B) Unlike CMRglc (Figure 4.4), changes in CBF during 

hypoglycemia were confined to only a few regions.  

Figure 4.9: Regional CBF 
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CBF values are normalized relative to the whole-brain mean (see Methods). Figure convention as 

in Figure 4.4 . B) Compared to absolute CBF (Figure 4.9B), normalization revealed additional 

regions where hypoglycemia increased CBF. Particularly prominent are the brain stem and the 

thalamus. 

Figure 4.10: Regional normalized CBF 
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Spatial correlation between maps of euglycemia (Cp = 90 mg/dL) and change (90 mg/dL – 45 mg/dL) for A) CMRglc, B) glucose 

influx, C) glucose concentration, D) CBF, E) Efp, and F) Enet. Each point is the linear mixed model estimate for a single FreeSurfer 

Figure 4.11: Variable spatial correspondence between maps of baseline metabolism and hypoglycemia induced change 
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region. Blue dots are gray matter, red dots are white matter, and green dots are the brain stem/ventral dienecephalon. Light lines are 

95% highest density intervals. Strong correlations between baseline and change were found for A) CMRglc, B) influx, and C) 

concentration but not for D) CBF, E) Efp, or F) Enet. 
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Each dot represents the linear mixed model estimate for the difference between euglycemia (Cp = 90 mg/dL) and hypoglycemia (Cp = 

45 mg/dL) for a single FreeSurfer region. Blue dots are gray matter, red dots are white matter, and green dots are the brain 

stem/ventral diencephalon. Light lines are 95% highest density intervals. A) Only a modest correlation was found the between map of 

CBF change and the map of CMRglc change. B) Expressed as a percent change, the spatial correspondence between the two maps is 

even weaker. The cluster of four regions on the right of B) are the thalamus, globus pallidus, brainstem, and ventral diencephalon. The 

two regions at the bottom of B) are the deep white matter and corpus callosum.

Figure 4.12: Lack of a strong spatial correspondence between regional CBF and CMRglc changes 
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Chapter 5: Hyperglycemia selectively alters cerebral glucose 
metabolism in white matter and brain stem 

 

5.1 Abstract 
 

At normal blood glucose levels, glucose influx into the brain greatly exceeds it basal 

metabolic rate. Despite this fact, hyperglycemia alters cerebral glucose metabolism. To 

investigate this surprising finding, we performed PET and MRI imaging in participants 

undergoing euglycemic (90-100 mg·dL-1 and hyperglycemic (250-300 mg·dL-1) glucose clamps 

with basal insulin replacement. Hyperglycemia significantly altered the topography of brain 

glucose metabolism measured with [18F]-FDG PET. Relative to the rest of the brain, glucose 

consumption increased in white matter and in cerebellar and medial temporal lobe gray matter. 

Conversely, relative glucose consumption decreased throughout the rest of gray matter. The 

change in the topography of glucose metabolism was caused by a quantitative increase in the 

cerebral metabolic rate of glucose (CMRglc) in white matter and the brain stem. Hyperglycemia 

did not change the topographies of blood flow, blood volume, oxygen consumption, or oxygen 

extraction measured with PET. Quantitative cerebral blood flow (CBF), measured with pseudo-

continuous arterial spin labeling (pCASL) MRI, also was not affected by hyperglycemia. As 

hyperglycemia did not alter the topography of oxygen consumption, the ratio of relative oxygen-

to-glucose consumption decreased in the white matter and brain stem, which suggests that the 

increase in CMRglc in these regions is due to non-oxidative glucose consumption. 

 

5.2 Introduction 
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The fact that glucose is the brain’s primary fuel source1 makes transport of glucose 

between the blood and brain critically important. Glucose is transported across the blood-brain 

barrier by facilitated diffusion through the GLUT1 transporter2. Therefore, the flux of glucose 

into the brain is dependent on the concentration of glucose in the blood. Fortunately, at normal 

blood glucose concentrations, the transport of glucose into the brain far exceeds the brain’s 

baseline metabolic requirements3. As a result, the brain is relatively insensitive to small 

decreases in plasma glucose concentration, with glucose consumption only dropping after 

moderate hypoglycemia has occurred4,5. 

Given that the brain normally receives more than enough glucose to meet its needs, one 

would predict that increasing the blood glucose concentration would not have an effect on brain 

glucose consumption. Several studies, however, suggest that this may not be the case. Mild 

hyperglycemia has been shown to alter the relative uptake pattern of [18F]-FDG, a PET tracer 

used for the measurement of regional glucose metabolism6. Kawasaki et al. found that, relative to 

the brain as a whole, acute mild hyperglycemia decreases [18F]-FDG uptake throughout cortical 

gray matter7. This finding has since been replicated multiple times, both by the same research 

group8-11, and by independent investigators12. 

Although intriguing, these studies are limited by the lack of quantitative estimates of the 

cerebral metabolic rate of glucose (CMRglc). Instead, CMRglc was approximated by computing 

the ratio of [18F]-FDG uptake within a brain region to [18F]-FDG uptake within a reference 

region. With this approach, all metabolic measurements are not absolute, but are relative to the 

reference region. As a result, it is unclear if glucose consumption is decreasing in cortical gray 

matter during acute hyperglycemia, or if it is simply changing less than the reference region. The 

extant literature favors the later possibility. With one possible exception13, all the studies 
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measuring absolute CMRglc during acute hyperglycemia in humans have reported whole-brain 

increases10,14-16, although only in the report by Blomqvist et al. was the increase significant15. 

Furthermore, studies in both rats 17,18 and humans10,15,16 have failed to report significant regional 

decreases in CMRglc. In fact, Blomqvist et al. found that CMRglc actually increased in every 

region examined15. Interestingly, Blomqvist et al. also reported an inverse relationship between 

baseline CMRglc and the change induced by acute hyperglycemia, with the largest increases in 

CMRglc occurring in regions with the lowest baseline rates15. For example, CMRglc in white 

matter increased by approximately 50%, which is much greater than the whole-brain average 

increase of around 20%. A similarly large increase in white matter CMRglc was also reported by 

Hasselbalch et al., where the centrum semiovale was the only region where CMRglc was 

significantly altered by acute hyperglycemia16. 

Taken together, the results of the studies discussed above suggest that, in humans, acute 

hyperglycemia modestly increases global cerebral glucose consumption, with larger increases 

occurring in regions with lower baseline metabolic rates. This conclusion is consistent with a 

previous analysis of regional CMRglc data in hyperglycemic rats19. It also explains why many 

studies have found that acute hyperglycemia decreases glucose metabolism in cortical gray 

matter relative to the rest of the brain. Cortical gray matter regions have high basal CMRglc, and 

therefore CMRglc changes much less during hyperglycemia than in regions, such as white 

matter, where basal CMRglc is low. This is essentially what was recently found by Ishibashi et 

al.10. The authors first reported that there we no significant decreases in CMRglc in several gray 

matter regions10 during mild hyperglycemia. After normalizing the CMRglc images by the 

whole-brain mean, however, decreases were found in several regions, including in the precuneus 

and posterior cingulate10. The most straightforward explanation of these finding is not that 
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CMRglc is decreasing in these regions; rather, it is simply increasing less than the rest of the 

brain. 

If hyperglycemia is increasing CMRglc in regions with low basal metabolic rates, it is 

unclear what effect it is having on other aspects of cerebral metabolism. Although studies in 

animal models have reported that hyperglycemia decreases cerebral blood flow (CBF) 

throughout the entire brain20,21, the findings in humans have not been so consistent. Multiple 

studies have reported that the whole-brain average CBF does not change with 

hyperglycemia13,14,16,22. Moreover, although significant regional changes in blood flow have been 

reported8,23, the set of affected brain regions differed between studies. Even less clarity exists on 

changes in the cerebral rate of oxygen consumption (CMRO2). Two initial reports found that 

global CMRO2 was unaltered by hyperglycemia13,14, whereas a recent study found that it was 

significantly decreased22. We know of no data examining regional changes in oxygen 

consumption during hyperglycemia. 

Several studies from our laboratory have highlighted the importance of measuring 

changes in glucose consumption, blood flow, and oxygen consumption under the same 

conditions24-26. Although these quantities are normally tightly coupled at rest27, they do not 

always remain so during brief episodes of increased brain activity24 or during more sustained 

changes in brain structure and function across the life-span25,26. To explore the possibility that 

acute hyperglycemia selectively affects key components of brain metabolism, we acquired 

regional measurements of glucose metabolism, oxygen metabolism, blood flow, and blood 

volume during euglycemic and hyperglycemic glucose clamps in normal, young-adult humans. 

5.3 Methods 
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Participants 
Data from twenty-six participants are included in this report. Participants were healthy 

young adults with a mean BMI of 25.3 (SD 3.3) and no history of diabetes. The participants 

(females=15, males=11) had an average age of 35.1 years (SD 10.2). Complete data during both 

the euglycemic and hyperglycemic clamp conditions were obtained for most, but not all, 

participants. The total number of subjects for each metabolic parameter of interest is listed in 

Table 5.1. All participants gave written informed consent. Experimental procedures were 

approved by the Washington University School of Medicine Human Research Protection Office 

and were compliant with the Helsinki Declaration of 1975. 

Experimental design 
The target plasma glucose level was 90-100 mg·dL-1 for the euglycemic clamp and 250-

300 mg·dL-1 for the hyperglycemic clamp. The majority of participants (18/26) were scanned 

during both clamp conditions. The condition order was counterbalanced across participants. 

Three participants had data from two separate euglycemic clamp visits. The second euglycemic 

visit was acquired as part of a separate study exploring the effect of hyperinsulinemia on brain 

metabolism. Any data points from repeated euglycemic visits were averaged together prior to 

subsequent analysis. The median time between visits was 34.0 days with a range of 7.0 – 966.0 

days. 

All participants were admitted to the Washington University in St. Louis Clinical 

Research Unit after fasting overnight for at least 10 hours. An arterial line was placed into the 

radial artery to allow for the sampling of arterial tracer concentration. Plasma insulin, c-peptide, 

β-hydroxybutyrate, lactate, and pyruvate levels were measured via the arterial line every 30 

minutes. An intravenous catheter was then placed into each arm. The first catheter was placed in 

a vein in the dorsal forearm and used for radiotracer injection. The second catheter was 
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positioned in an forearm vein and was used for infusion of octreotide, insulin, dextrose (20%), 

glucagon, and potassium. Dextrose was infused at a variable rate determined by the clamp 

condition and plasma glucose measurements taken every 5 minutes. Octreotide, a somatostatin 

analogue, was infused at a rate of 30 ng·kg-1·min-1 to suppress endogenous secretion of insulin, 

glucagon, and growth hormone28. Plasma insulin and glucagon were maintained with continuous 

infusions of 0.1 mU·kg-1·min-1 and 1.0 ng·kg-1·min-1 respectively. Finally, potassium chloride 

was given at a rate of 5 mmol·h-1 to prevent insulin-induced hypokalemia29. 

Image Acquisition 
PET and MRI data were acquired simultaneously using a Siemens Biograph PET/MRI. 

PET data acquisition began after the desired plasma glucose level was reached. First, 

approximately 25 mCi of [15O]-H2O was injected for the measurement of blood flow. Cerebral 

oxygen metabolism and blood volume were assessed with the inhalation of 25 mCi of [15O]-O2 

or [15O]-CO respectively. Repeat scans were obtained for all three tracers if possible. All the 

[15O] tracers imaging data was acquired using a dynamic acquisition that started prior to tracer 

administration. [15O]-H2O and [15O]-O2 scans lasted for five minutes, whereas the [15O]-CO scan 

went for seven minutes. Following the [15O] scans, 5 mCi of [18F]-FDG was injected, and 

cerebral glucose metabolism was measured using a 60 minute dynamic PET scan. For 

attenuation correction, a Siemens Biograph 40 PET/CT was used to acquire a CT image of the 

head (120 keV, 25 effective mAs, voxel size = 0.59 x 0.59 x 3.0 mm, acquisition matrix = 512 x 

512 x 74 mm voxels). From the CT image, µ-maps were created by converting the CT 

Hounsfield values into attenuation coefficients30,31. 

Concurrent with the [15O]-H2O PET scans, quantitative cerebral blood flow (CBF) was 

measured using pseudo-continuous arterial spin labeling (pCASL). 2D pCASL acquisition 
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included 80 images, each with 20 slices, voxel size 3.4 x 3.4 x 5.0 mm, and a 64 x 64 mm in 

plane acquisition matrix. The TR was 4.0 seconds, the TE 12.0 milliseconds, and an acceleration 

factor of 2.0 was applied. Two separate pCASL runs were acquired during each study visit. A 

gradient echo field map was also acquired in a subset of subjects (16/24) to allow for the 

correction for EPI distortions (TR = 646.0 ms. TE 1 = 5.19 ms, TE 2 = 7.65 ms, slices = 45, 

voxel size = 1.7 x 1.7 x 3.0, acquisition matrix = 212 x 212 mm. A sagittal high resolution T1-

weighted MPRAGE was also obtained (TR = 2400 ms, TE = 2.13 ms, FOV = 256 x 256 x 176 

mm, voxel size = 1.0 x 1.0 x 1.0 mm). 

Image Analysis 

 
Structural MRI 

FreeSurfer 5.332 was used to segment the T1-weighted structural image from each 

subject’s first study visit into 48 non-overlapping and bilaterally symmetric cortical regions 

(Figure 2.1). Cortical gray matter was parcellated into 34 gray-based regions of interest (ROIs), 

according to the Desikan atlas33. The remaining gray matter ROIs comprised seven subcortical 

gray matter regions (amygdala, caudate, hippocampus, nucleus accumbens, pallidum, putamen, 

and thalamus), and the cerebellum34. White matter was divided into cerebellar white, cortical 

white matter, the corpus callosum, and deep white matter. The cortical white matter region was 

created by combining all of the superficial white matter regions that are part of FreeSurfer’s 

standard output. Finally, separate ROIs were created for the brain stem and ventral diencephalon. 

Each subject’s T1-weighted image was also nonlinearly aligned to MNI152 atlas space using a 

combination of FLIRT35 and FNIRT in FSL36. To increase SNR, atlas registration was performed 

using an T1-weighted average image that was created by rigidly aligning images obtained at both 

study visits. 
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pCASL MRI 

Preprocessing of the pCASL data began with correction for odd-even slice intensity 

artifacts37. For each ASL run, non-labeled frames were used to compute separate scaling factors 

for odd and even slices. These scaling factors where then applied to both the control and labeled 

frames to remove any systematic odd-even slice intensity artifacts. Images were then motion 

corrected using FSL’s mclirt tool with the temporal mean image as the target38. Following the 

recommendation of Wang et al., motion correction was performed separately for label and 

control frames39. After motion correction, FSL’s flirt was used to compute a rigid body 

transformation between the average label and average control images. A rigid body 

transformation was then computed between the realigned pCASL timeseries and each’s subject’s 

average T1-weighted image using FSL’s flirt. For subjects where field maps were acquired, the 

field map magnitude image was used as an intermediary between the pCASL and T1 images. All 

transformations were then combined, and the pCASL time series was resampled to MNI152 

2mm atlas space in a single step. 

Once in atlas space, a high pass (0.08 Hz) temporal filter was applied to the pCASL data. 

Sinc subtraction was then used to create perfusion weighted images40. The perfusion weighted 

images were converted to voxelwise quantitative cerebral blood flow (CBF) using a one 

compartment model41,42: 

!"# = %&&&∙(∙(*+,-./0-12*+13451)∙7
89:

;<,41-->

?∙@∙A<,41-->∙*+8:∙(B27
CD

;<,41-->)
 [mL/hg/min]   (5.1) 

Where	F is the labeling efficiency (0.85), G is the blood/brain partition coefficient for water 

(0.9), HIJKLMNKO and HIOPQ7O are the control and label image intensities,	HIRS is the intensity from a 
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proton-density image, TUV is the post labeling delay (1.5 sec), W is the labeling duration (1.517 

sec), and XB,QOKKY is the longitudinal relaxation rate of blood (1.65 sec). The values for F, G, and 

XB,QOKKY were set according to the recommendations of Alsop et al.42. HIRS was approximated by 

taking the average of the control images43. When computing the mean CBF for a single pCASL 

run, a weighting scheme was applied to down weight frames where subject motion produced 

large global shifts in image intensity43. The mean difference in global noise between control and 

label images (-43.77 ± 107.80) between hyperglycemic (290.19 ± 88.80) and euglycemic (333.96 

± 80.97) runs was not significantly different from zero (p = 0.434). The median CBF was 

calculated over the whole-brain as well within each of the 48 FreeSurfer ROIs. 

PET Preprocessing 

All PET reconstruction was performed using the ordered-subset expectation 

maximization (OSEM) algorithm44 implemented in Siemens e7tools. Our PET reconstruction 

strategy consisted of two stages. In the first stage, the listmode data was scatter corrected and 

reconstructed without attenuation correction. All of the [15O] PET data was reconstructed into 30 

second frames. The [18F]-FDG reconstruction consisted of ten 30 second frames followed by 55 

60 second frames. Attenuation correction was not done at this stage because motion between 

frames precluded the use of a single µ-map for all frames. 

To correct for between-frame motion, we used a modified version of a previously 

published strategy45. Briefly, within each tracer each frame was registered to every other frame. 

From this set of pairwise registrations, a linear system was created from which it was possible to 

compute the least squares transformation between any two frames. These transformations were 

used to align the previously computed µ-map with the time-resolved PET sinograms. The 

aligned µ-maps were used in the second stage of reconstruction to create time-sliced PET images 
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with attenuation, decay, and scatter correction. The use of motion and attenuated correction in 

the second stage allowed us to use shorter time bins for PET reconstruction. The final [15O]-H2O 

and [15O]-O2 images were reconstructed into 40 three second frames followed by 18 ten second 

frames. The [15O]-CO data was reconstructed into 40 three second frames and then 30 ten second 

frames. Finally, the [18F]-FDG scan was separated into 12 ten second frames, six 30 second 

frames, and 55 60 second frames.  

After reconstruction, the motion corrected time series for each tracer was summed across 

time to create a single 3D PET image. Within individual participants, the sum images for each 

tracer were aligned to each other using rigid body registration46. After alignment, the sum images 

were averaged to create a mean image for each tracer. The mean [18F]-FDG image was then 

brought into alignment with the T1-weighted image using rigid body registration and a vector 

gradient algorithm47. The final linear transformation within computed by minimizing the error 

between the forward ([18F]-FDG -> T1) and backward (T1 -> [18F]-FDG) transformations45. The 

same procedure was used to align the [15O] sum images to the [18F]-FDG sum image. The 

computed transformations were combined and used to resample each PET time series into 

MNI152 2mm atlas space. 

Relative PET 

Standardized uptake values ratios (SUVRs) were computed for each tracer. SUVR is a 

semi-quantitative measure where the tracer uptake at each brain region is reported relative to a 

reference region. SUVR is useful in examining changes in the topography of brain metabolism, 

but not absolute changes. When computing an SUVR one must select both a reference region and 

the time window over which to sum the tracer counts. The whole-brain (excluding the lateral 

ventricles) was used a reference region for all SUVR analyses. Specific time windows were 
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selected for each tracer. For [18F]-FDG, a time window from 40 to 60 minutes post injection was 

chosen. A sixty second window, starting approximately after the bolus reached the brain, was 

used for the [15O]-H2O and [15O]-O2 data. A one minute window starting 180 seconds after the 

bolus reached the brain was used for the [15O]-CO scans. All SUVR images were computed in 

native space and then resampled to MNI152 2mm space. To minimize the impact of vascular 

artifact on our SUVR measurements of oxygen metabolism, a voxelwise spatial regression was 

run using the resampled [15O]-O2 SUVR as a dependent variable and [15O]-H2O and [15O]-CO 

SUVR as independent variables48. The [15O]-O2 SUVR was adjusted by subtracting from it the 

product of the [15O]-CO SUVR and its regression coefficient. An SUVR approximation of OEF 

(rOEF) was calculated by dividing the adjusted [15O]-O2 SUVR by the product of the [15O]-H2O 

SUVR and its regression coefficient. Finally, a SUVR estimate of the relative oxygen-to-glucose 

index (rOGI) was computed by dividing the [15O]-O2 SUVR by the [18F]-FDG SUVR. Prior to 

any statistical comparisons, all atlas space SUVR images are were normalized to a whole-brain 

mean of 1.0 and smoothed with a 5 mm FWHM gaussian kernel. 

Quantitative PET 

We were able to obtain quantitative estimates of CMRglc in a subset of participants in 

whom hand drawn arterial samples were acquired during the [18F]-FDG scan. Given the greater 

noise at the voxel level, we chose to limit our quantitative analysis to ROIs. All ROIs were 

resampled to the space of the [18F]-FDG data. A reversible two-compartment model was fit to the 

dynamic [18F]-FDG from each ROI6. The first compartment is thought to represent free [18F]-

FDG in the brain, while the second is [18F]-FDG that has been metabolized to [18F]-FDG-6-

phosophate. The model includes four rates constants (K1, k2, k3, and k4) and an additional term, 

Vb, that accounts for arterial blood volume. K1 and k3 describe influx from the blood and first 
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compartment, respectively. Loss of tracer from the first compartment is described by k2, and 

efflux from the second compartment to the first is designated by k4. Prior to model fitting, the 

time delay between the arterial samples and the [18F]-FDG data was accounted for by fitting a 

one-compartment model to the first sixty seconds (post bolus arrival) of the [18F]-FDG data49. 

This one-compartment model included a shift term that accounted for the temporal delay. The 

whole-brain time activity curve was used to determine the shift, which was then applied to all 

regional fits. Model fitting was performed using non-weighted nonlinear least squares using the 

limited-memory BFGS algorithm50 implemented in Numerical Python51. Following the 

recommendation of Wu et al52, a lumped constant of 0.81 was used to calculate CMRglc. 

Statistics 
All statistical analyses were done using the R53 programming language. A linear mixed 

model with a fixed effect for clamp condition and a random intercept for subject was used to 

determine if differences in brain metabolism between conditions were statistically significant. No 

other covariates were added to the model. The voxelwise mixed models were fit using the nlme 

package54, whereas the ROI models used lme455. For the lme4 models, p-values were calculated 

using the lmerTest package56, which implements Satterthwaite’s method for determining the 

degrees of freedom in a mixed model. The difference between conditions was considered 

significant when the p-value was less than 0.05. Multiple comparison across space were 

accounted for by controlling the False Discovery Rate (FDR) at 0.0557. No multiple comparisons 

adjustment was made for the multiple modalities that were considered. 

The lme4 package was used to perform a piecewise linear regression on the plasma 

glucose and insulin data that was obtained during the glucose clamps. The fixed effects included 

time, clamp condition, and the interaction between time and condition. There were two 
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regressors, one for each condition, that allowed for the slope of the regression line to vary after a 

breakpoint. The breakpoint was fixed at 90 minutes. We also included a random intercept for 

study visit nested within subject. Slopes that were different from 0.0 at the p < 0.05 level (no 

correction for multiple comparisons) were considered significant. Spearman correlation was used 

to quantify the degree of spatial correspondence between baseline metabolism and the change 

induced by hyperglycemia. All reported values are means and 95% confidence intervals (Cis) 

unless otherwise stated. 

5.4 Results 
 

Blood glucose and insulin levels 
The time-courses for plasma glucose and insulin during the glucose clamps are shown in 

Figure 5.1. All measurements excluding the initial baseline measurements were taken after the 

target plasma glucose level had been reached. There was no significant difference found between 

conditions (euglycemia, hyperglycemia) in baseline plasma glucose (97.7 ± 3.5 mg·dL-1; p=0.61) 

or insulin (42.6 ± 11.0 pmol·L-1; p=0.95). The target plasma glucose levels were achieved in 

both conditions, with the blood glucose level reaching 300 mg·dL-1 in the hyperglycemic clamp 

and remaining near 100 mg·dL-1 in the euglycemic clamp (Figure 5.1A). 

However, in both conditions plasma glucose rose slightly above the target concentration 

during the beginning of the glucose clamp and then slow decreased throughout the study period 

(Figure 5.1A). The time-course for plasma insulin during the euglycemic clamp exhibited a 

similar behavior (Figure 5.1B). To quantify this impression, we performed a piecewise linear 

regression where the slope of the regression line was allowed to differ after 90 minutes into the 

glucose clamp (see Methods). Table 5.2 reports the slope for each segment. For the first 90 

minutes, plasma glucose and insulin increased significantly with time in both conditions (p < 
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0.05). However after 90 minutes, plasma glucose decreased with time during both clamps (p < 

0.01) and plasma insulin decreased in the euglycemic condition (p < 0.0001). Plasma insulin 

continued to increase with time after 90 minutes during the hyperglycemic clamp (p < 0.0001). 

Importantly, insulin levels never approached values typically seen after a carbohydrate meal 

(Figure 5.1B). 

Changes in the topography of brain metabolism 

To assess regional changes in brain metabolism, whole brain normalized SUVR images 

were computed from the [18F]-FDG, [15O]-H2O, [15O]-O2, and [15O]-CO data (see Methods). The 

group average image of glucose consumption during hyperglycemia (Figure 5.2A) had much less 

contrast than the average image during euglycemia (Figure 5.2B). After correcting for multiple 

comparisons (FDR 0.05), significant differences between the two conditions were found 

throughout the brain (Figure 5.2C). Glucose consumption generally decreased relative to the rest 

of the brain in gray matter and increased in white matter. There were, however, exceptions. 

Relative glucose consumption increased in the gray matter of the medial temporal lobe and the 

cerebellum (Figure 5.2C). Despite the changes in the topography of glucose consumption, 

hyperglycemia did not alter the topography of blood flow (Figure 5.3), oxygen consumption 

(Figure 5.4), oxygen extraction (Figure 5.5), or blood volume (Figure 5.6). As the topography of 

oxygen consumption was unaffected by hyperglycemia (Figure 5.4), changes in the ratio of 

relative oxygen-to-glucose metabolism (rOGI) were essentially opposite to those found for 

glucose metabolism (Figure 5.7). rOGI significantly increased in gray matter, with the exception 

of the cerebellum and medial temporal lobe, and significantly decreased in white matter (Figure 

5.7C). 
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To eliminate the possibility that the limited SNR at the voxelwise level prevented us from 

detecting changes in the topography of brain metabolism, we performed a ROI analysis on the 

regional PET data (Figure 5.8). Two ROIs were created. The first ROI contained voxels where 

relative glucose consumption increased, and the second voxels were the relative glucose 

consumption decreased (Figure 5.8A). The values within these two ROIs for each metabolic 

parameter are shown in Figure 5.8B-G. A significant (p < 0.0001) change with hyperglycemia 

was found in both ROIs for glucose consumption (Figure 5.8B) and rOGI (Figure 5.8G). No 

significant differences were found in either ROI for blood flow (Figure 5.8C), oxygen 

consumption (Figure 5.8D), rOEF (Figure 5.8E), or blood volume (Figure 5.8F). 

Quantitative changes in brain metabolism 
The analyses in Figures 1-7 show that the topographies of glucose consumption and rOGI 

are altered by hyperglycemia, whereas the topographies of cerebral blood flow, oxygen 

consumption, oxygen consumption, and blood volume are unchanged. To explore the 

quantitative basis of these changes, we obtained quantitative estimates of cerebral glucose 

consumption and blood flow (see Methods). We first examined quantitative changes for the brain 

as a whole as well as within the same two ROIs as Figure 5.8 (Figure 5.9). Although the whole-

brain CMRglc at hyperglycemia (27.3 ± 2.0 μMol·hg-1·min-1) was slightly higher than at 

euglycemia (25.1 ± 2.1 μMol·hg-1·min-1), the difference (2.18 ± 2.84 μMol·hg-1·min-1) was not 

significant (p = 0.151; Figure 5.9A). We did, however, find significant decreases in the two 

forward rate constants K1 and k3, and a significant increase in the backward rate constant k4 (p < 

0.01; Table 5.3). CMRglc within the ROI where relative glucose consumption decreased did not 

change (p = 0.207; Figure 5.9B). However, CMRglc was significantly higher at hyperglycemia 

(23.7 ± 2.3 μMol·hg-1·min-1) than at euglycemia (18.2 ± 2.5 μMol·hg-1·min-1) within the ROI 

where relative glucose consumption increased (p = 0.006; Figure 5.9B). Hyperglycemia did not 



189 
 

significantly (p > 0.5) alter CBF in either the whole-brain (Figure 5.9C) or in either ROI (Figure 

5.9D). 

To examine quantitative metabolic change at a finer spatial scale, we calculated CMRglc 

and CBF (see Methods) within 48 ROIs defined using FreeSurfer (Figure 2.1). Figure 5.10A 

shows the estimated change in CMRglc induced by hyperglycemia for each ROI. The only 

regions that were significant at the FDR 0.05 level were the brain stem, cortical white matter, 

corpus callosum, and deep white matter. The largest change was found in the deep white matter 

(9.65 ± 2.09 μMol·hg-1·min-1; Figure 5.10B), where hyperglycemia increased CMRglc from 15.1 

± 1.7 to 24.8 ± 1.6 μMol·hg-1·min-1 (p < 0.0001). The large increase in deep white matter was 

part of the strong negative spatial correlation (Z = -0.91) between baseline CMRglc and change 

in CMRglc during hyperglycemia (Figure 5.10C). Compared to CMRglc, the regional changes in 

CBF were smaller and less consistent (Figure 5.11). The difference in CBF between 

hyperglycemia and euglycemia was not significant for any region (Figure 5.11A). This was true 

even for regions, like the deep white matter (p = 0.667; Figure 5.11B), where CMRglc increased. 

Furthermore, the spatial correlation between baseline CBF and change in CBF (Z = -0.53) was 

not as robust as that for CMRglc (Figure 5.11C). 

5.5 Discussion 
 

Overview 
Several previous studies have examined the effect of acute hyperglycemia on regional 

cerebral glucose metabolism in humans8-11,15,16. Our study is the first, however, to examine 

changes in glucose metabolism along with both regional changes in both blood flow and oxygen 

metabolism. Measuring all three aspects of metabolism allowed us to obtain several new 

findings. First, we found that although acute hyperglycemia changes the topography of glucose 
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metabolism, it does not significantly alter the topography of blood flow or oxygen consumption. 

Second, because the topography of oxygen consumption was unchanged, the topography of 

relative oxygen-to-glucose consumption (rOGI) was altered inversely to glucose consumption. 

rOGI was therefore significantly increased in gray matter and decreased in white matter. 

Exceptions to this pattern were gray matter in the cerebellum and the medial temporal lobe, 

where rOGI decreased, although not as robustly as glucose consumption decreased. Third, we 

were able to show that although quantitative CMRglc was significantly increased in the brain 

stem, corpus callosum, cortical white matter, and deep white matter, no quantitative changes in 

CBF were found in these, or any other, regions. 

Glucose consumption 
As previously mentioned, multiple studies have shown that acute hyperglycemia 

decreases glucose consumption in most of gray matter relative to the rest of the brain7-11,58. We 

have largely replicate these findings, with two exceptions. First, contrary to the original report by 

Kawasaki et al.7, glucose metabolism in the gray matter of the cerebellum and medial temporal 

increased relative to the rest of the brain. Second, we found additional relative increases 

throughout white matter. Although Kawasaki et al. did report some increases, they were either 

very focal or found only when gray matter was used as a reference region. Methodological 

differences are perhaps the most likely reason for the differences between our results and those 

reported elsewhere in the literature. The original study by Kawasaki et al7, as well as its 

subsequent replications8-11, made subjects mildly hyperglycemic using oral glucose consumption. 

This paradigm was much different from ours in several ways. First, our participants were much 

more hyperglycemic (~300 mg·dL-1 ) than the participants in the Kawasaki et al. study (~135 

mg·dL-1 ). Second, the hyperglycemic clamp technique we used produces a relatively constant 

hyperglycemia. The glucose load applied by Kawasaki et al. most likely resulted in a decline in 
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blood glucose level during the experiment. Finally, we prevented a large rise in blood insulin 

levels during hyperglycemia by suppressing endogenous insulin secretion with octreotide. 

Insulin was then infused to keep blood concentrations within a normal range. Insulin was not 

controlled in the Kawasaki et al. study. Although the effect of insulin of cerebral metabolism is 

still a matter of active research59, it has been reported that hyperinsulinemia can alter the regional 

pattern of cerebral glucose consumption60. 

We were able to use quantitative PET to verify the changes in relative glucose 

metabolism. Consistent with studies in humans10,14,16 and rats17, we found that hyperglycemia 

induced a small, but not significant, increase in whole-brain CMRglc. This is also generally in 

agreement with Blomqvist et al., who reported a significant 20% increase in global CMRglc 

during acute hyperglycemia15. In contrast, Rowe et al. found that although whole-brain CMRglc 

was insignificantly elevated from fasting levels 15 minutes after the consumption of a meal, it 

actually was significantly less than fasting values 30 minutes later13. Whether postprandial 

increases in blood glucose cause fluctuations in global CMRglc requirements confirmation. 

Taken as a whole, however, the literature suggests that global CMRglc increases slightly during 

hyperglycemia. 

Regionally, we found that CMRglc was significantly elevated in the brain stem, corpus 

callosum, cortical white matter, and the deep white matter. This is consistent with two prior 

studies that have reported that CMRglc increases by approximately 40-50% in white matter 

during acute hyperglycemia15,16. CMRglc did not significantly decrease in any region, even in a 

large region encompassing all voxels were relative glucose consumption was found to decrease. 

Finally, we replicated work in humans15 and rats19 showing that the change in CMRglc induced 

by hyperglycemia is inversely correlated with baseline metabolic rates. Taken together, our 
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quantitative results suggest that decreases in gray matter FDG uptake (relative to the rest of the 

brain) during hyperglycemia do not truly reflect a decrease in metabolic rate. Rather, the 

metabolic rate in these regions simply changes less than other regions, which then could be 

interpreted as a decrease after whole-brain normalization. This is what was found by Ishibashi et 

al., who reported significant declines in whole-brain normalized CMRglc during hyperglycemia 

even though the absolute rate in these regions was increased by a small, nonsignificant amount10. 

It is possible that the metabolic rate is really declining in gray matter during hyperglycemia, but 

by such a small amount that we, and others10,16, have failed to detect it. This possibility seem less 

likely considering another study reported significant increases in CMRglc throughout all of gray 

matter15. 

Blood flow and oxygen consumption 
Regional increases in CMRglc during acute hyperglycemia are somewhat surprising. At 

euglycemia the influx of glucose into the brain exceeds its basal CMRglc3, so one would not 

necessarily predict that raising the blood glucose concentration would increase glucose 

consumption. Combining our regional glucose consumption data with our PET measurements 

blood flow and oxygen consumption is helpful in understanding this surprising finding. In 

contrast to the changes in the topography of glucose metabolism, no changes were found in the 

topography of either blood flow or oxygen consumption. To confirm that this was not due to 

limited SNR at the voxel level, we made ROIs representing the brain regions where relative 

glucose metabolism was altered. Relative oxygen consumption and blood flow were unchanged 

within these ROIs as well. Consistent with the lack of changes in oxygen consumption and blood 

flow, relative blood volume and oxygen extraction were also unaffected by hyperglycemia. 

Finally, we measured quantitative CBF using pCASL MRI. In agreement with the relative blood 
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flow data, we found that, despite increases in CMRglc, hyperglycemia did not significantly alter 

blood flow in any region. 

Although we are not aware of any studies measuring regional oxygen consumption 

during hyperglycemia, multiple studies have investigated regional blood flow. Studies in animal 

models have consistently found that hyperglycemia decreases CBF throughout the entire 

brain18,20. Reports in humans, however, are somewhat mixed. Ishibashi et al found that, relative 

to the rest of the brain, blood flow was reduced by approximately 2% in the frontal cortex, lateral 

parietal cortex, and precuneus/posterior cingulate8 during mild hyperglycemia. A different set of 

regions was reported by Page et al., who found that mild hyperglycemia decreases CBF in the 

anterior cingulate, hypothalamus, insula, striatum, and thalamus23. It is not clear why our results 

are not in agreement with those of Ishibashi et al. or Page et al. Like Kawasaki et al., both studies 

used an oral glucose load to induce mild hyperglycemia, so the previously mentioned caveats 

with this approach apply. Ishibashi et al. also only measured relative blood flow in four small, a 

priori ROIs. It is possible that any changes in blood flow were either too small for our limited 

SNR voxelwise analysis or too focal for our large ROIs. However, these possibilities are not 

consistent with the fact that that we failed to observe any changes in quantitative CBF using both 

smaller ROIs and a larger sample size. Finally, although our results are not consistent with those 

of Page et al. and Ishibashi et al., they are in agreement with studies reporting no global change 

in CBF during hyperglycemia13,14,16,22. 

Non-oxidative glucose consumption 
Because the spatial pattern of oxygen consumption was unaltered by hyperglycemia, 

rOGI changed inversely to glucose consumption. Relative to the whole-brain average, rOGI 

increased in gray matter and decreased in white matter. Exceptions to this pattern were gray 
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matter in the medial temporal lobe and cerebellum, where rOGI decreased. Overall the changes 

in rOGI indicate that hyperglycemia produces relative decreases in non-oxidiative glucose 

consumption (NOglc) in gray matter regions and relative increases in white matter regions. It 

should also be mentioned that hyperglycemia essentially eliminated the regional difference in 

rOGI between gray and white matter (Figure 5.7A-B, Figure 5.8G). 

As we did not measure quantitative oxygen consumption, we could not verify the changes 

we observed in rOGI with quantitative data. To the best of our knowledge, there have been no 

other studies examining regional changes in non-oxidative glucose during acute hyperglycemia. 

Blomquist et al. argued that the increases in CMRglc during acute hyperglycemia were due to 

increased oxidative glucose metabolism, although this was not based on measurements of 

oxygen metabolism15. Instead, it relied on a prior validation study performed in euglycemic 

participants61. This validation study showed that, compared to arterio-venous measurements, 

whole-brain CMRglc measured with their [1-11C]-glucose PET method was closer to 1/6th of 

CMRO2 than it was to CMRglc61. If true, this would imply their method measures oxidative 

glucose metabolism, not total glucose consumption. Only a small number of subjects were used 

in that verification study, however, and no statistical comparison between the two methods were 

performed. Furthermore, the method used by Blomqvist et al. relied on correction factors 

obtained at euglycemia15,61. Therefore, there is reason to question whether Blomqvist et al. were 

able to distinguish between oxidative vs. non-oxidative glucose metabolism during 

hyperglycemia. 

Studies measuring global changes in CMRO2 during hyperglycemia have reported that it 

is either unaltered during acute hyperglycemia13,14, or decreased22. If, as we found, there are no 

regional effects of hyperglycemia on oxygen metabolism, then these studies would suggest that 
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oxygen consumption is either unaffected or modestly decreased by hyperglycemia in all brain 

regions. This, in turn, would imply that the increased CMRglc, as well as the decrease in rOGI, 

within the white matter and brain stem reflect quantitative increases in non-oxidative, not 

oxidative, glucose consumption. It is less clear how to interpret the increases in rOGI we found 

within gray matter. It is likely that such increases simply reflect the relative decreases in glucose 

consumption we found in these same regions. As discussed previously, it is unlikely that 

CMRglc actually declines in gray matter, and therefore unlikely that NOglc decreases. 

Consistent with this idea, Gottstein et al. found that the whole-brain NOglc was slightly elevated, 

albeit not significantly, by acute hyperglycemia14. 

If NOglc is increased in white matter and brain stem during hyperglycemia, it is unclear 

how the additional glucose is being consumed. At normal blood glucose levels, the majority of 

glucose in white matter is consumed oxidatively to provide energy for non-signaling tasks (e.g., 

maintaining the resting membrane potential)62. There are, however, non-oxidative pathways for 

glucose consumption in the brain63,64. Among these pathways are glycogen synthesis, the 

glycolytic pathway, the pentose phosphate shunt, and the polyol pathway. The TCA cycle also 

produces intermediates that are used for the synthesis of amino acid and neurotransmitters, 

including acetylcholine, aspartate, GABA, and glutamate64. Interestingly, alterations in some of 

these pathways have been linked to hyperglycemia. 

Both acute and chronic hyperglycemia have been shown to upregulate pentose phosphate 

activity in cultured astrocytes65, although to our knowledge this has not been replicated in vivo. 

A recent study found that acute hyperglycemia increased the production of lactate, an end-point 

of the glycolytic pathway, in the hippocampus of a mouse model of Alzheimer’s disease66. If 

lactate production is increased during hyperglycemia, it is unclear how it is removed from the 
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brain. Two studies in humans reported that lactate efflux from the brain to the blood was not 

significantly increased by hyperglycemia13,14. The glymphatic system has been proposed as an 

alternative route for lactate efflux67,68, but there is no evidence suggesting that hyperglycemia 

increases lactate efflux through the glymphatic system. It is possible that hyperglycemia 

produces excess lactate which is then subsequently used as a fuel source. Recent work has 

indicated that lactate can play a prominent role in white matter metabolism69. In developing 

mice, lactate is taken up by oligodendrocytes and can be used to support myelination when 

glucose levels are low70. Conversely, in adult mice lactate is exported from oligodendrocytes into 

axons, where it is presumably used to produce ATP via oxidative phosphorylation71,72. A transfer 

of excess lactate between cell types does not, however, explain our results, which suggest that 

hyperglycemia causes an increase in white matter glucose consumption without a detectable 

increase in oxygen consumption. 

Another possible explanation for increased NOglc in white matter and brain stem during 

hyperglycemia is an increase in the production of sorbitol and fructose through the polyol 

pathway. Although it plays a very minor role in the brain at normal blood glucose levels73, polyol 

pathway activity has been shown to increase in animal models during both acute74 and chronic 

hyperglycemia75. It is also interesting to note that activation of the polyol pathway is a well-

known features of diabetes mellitus76, a disease defined by chronic hyperglycemia. Increased 

polyol activity in diabetes results in oxidative stress77, and contributes to the development of 

several complications including cardiovascular disease, retinopathy, neuropathy, and 

cataracts76,78. There is however, no direct evidence linking hyperglycemia with increased polyol 

activity in white matter or the brain stem. Perhaps the best evidence is the work of Hwang et al., 

who used magnetic resonance (MR) spectroscopy to show that acute hyperglycemia increases the 
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fructose concentration of the human brain by about 0.5 mMol·L-179. However, their 

measurements, which were performed in a large voxel (30 x 20 x 30 mm3) in the occipital lobe, 

likely contained a combination of gray matter, white matter, and CSF. Clearly, although the 

literature suggests several possibilities, there is not yet sufficient evidence to explain how white 

matter consumes additional glucose during hyperglycemia. To resolve this issue, future studies 

will have to employ techniques, such as MR spectroscopy, that can track glucose consumption 

down metabolic pathways within specific brain regions. 

Our results have implications for human health and disease. Previous studies from our 

research group have established that non-oxidative glucose use plays a role in aging and 

Alzheimer’s disease (AD)80. Studies in humans have shown that NOglc varies between gray 

matter regions48,81, and that the regions that have the most NOglc in youth are the same regions 

that develop the greatest amyloid plaque loads in AD82. Studies in mouse models of AD have 

also shown that regional lactate production correlates with levels of amyloid plaques83. We also 

reported recently that non-oxidative glucose use decreases substantially with aging, with the 

largest decreases occurring in regions which, in young adults, have the most rates of NOglc26. 

Finally, regional deposition of phosphorylated tau has been shown to be inversely correlated with 

NOglc in individuals with high levels of amyloid plaques84. Considered as a whole, these 

findings suggest that, although NOglc may play an important role in development, plasticity, and 

learning25,85, over the course of a lifetime high levels of NOglc may increase the risk of 

neurodegeneration and disease. It is therefore tempting to hypothesize that elevated non-

oxidative glucose use in white matter may play a role in the development of the white matter 

disease that is often found in individuals with Type-2 diabetes mellitus (T2DM)86, or even that 

NOglc is part of the connection between T2DM and AD59,87. In support of the latter idea, it has 
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been shown that acute hyperglycemia increases both lactate and amyloid production in a mouse 

model of AD66. Determining whether NOglc is elevated in the brains of individuals with chronic 

hyperglycemia is an important question for future studies. 

Limitations 
A few limitations should be considered when interpreting our results. First, although we 

did show that CMRglc quantitatively increases in both the brain stem and white matter during 

hyperglycemia, we did not have any quantitative measurement of oxygen consumption. 

Quantification of CMRO2 traditionally requires invasive automatic arterial sampling, which our 

facility only recently acquired the ability to do in a PET/MR environment. Instead we reported 

that, relative to the whole-brain average, there were no changes in [15O]-O2 SUVR in any brain 

region. Although SUVRs are not quantitative measurements, they are a commonly used 

technique because they do not require arterial sampling and because normalization by a reference 

region is useful in removing global intensity artifacts88. Despite the absence of quantitative 

CMRO2 data, we believe that our data is most consist with an increase in NOglc within white 

matter and brain stem. As discussed previously, the increase in CMRglc, the absence of a relative 

decrease in oxygen consumption, the decrease in rOGI, and the fact that previous studies have 

failed to report an increase in global CMRO2
13,14,22, all point to an increase in non-oxidative 

glucose use within white matter and brain stem during hyperglycemia. We do acknowledge, 

however, that relative PET techniques can be misleading89. Indeed, we have argued here that 

decreases in gray matter [18F]-FDG uptake during hyperglycemia7 likely do not reflect decreases 

in CMRglc. Our laboratory is therefore currently performing experiments necessary to quantify 

CMRO2 and NOglc during hyperglycemia. 
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All of our measurements of CMRglc relied on [18F]-FDG, which requires a correction 

factor to account for the differences in transport and phosphorylation kinetics between FDG and 

glucose90. We chose to use the same value for this correction factor, referred to as the lumped 

constant (LC), in both the euglycemic and hyperglycemic conditions. Direct measures of the LC 

in rats have shown that it decreases very slightly during hyperglycemia91. As lower values for the 

lumped constant result in larger CMRglc, this would imply that our estimates of CMRglc, and 

therefore AG, are underestimated during hyperglycemia. To address this possibility, we followed 

the strategy of van Golen et al., and adjusted the LC using data expressing the LC as a function 

of blood glucose level in rats92. This amounted to decreasing the LC by approximately 6% in 

hyperglycemic individuals. Adjusting the LC had essentially no impact on our regional data. We 

did not identify any new regions with significantly altered CMRglc, and CMRglc remained 

significant in all the regions where it was so without LC adjustment. The only difference that 

adjusting the LC introduced in our results was that the increase in global mean CMRglc, which 

was not significant before the adjustment (p = 0.151), became significant afterwards (p = 0.018). 

The difference was quantitatively minor, however, as the increase in whole-brain CMRglc with 

hyperglycemia changed from to 2.18 ± 2.84 to 3.98 ± 2.97 μMol·hg-1·min-1. Given the small 

change in the LC during hyperglycemia, and the minimal impact it had our results, we chose to 

use a fixed LC for all of our analyses. 

Studies in humans have reported that the LC decreases to a greater extent than what we 

assumed above10,16. As lowering the LC increases the apparent CMRglc, it is possible that, if we 

had assumed a smaller value for the LC during hyperglycemia, we would have found increased 

CMRglc in a greater number of regions. In support of this possibility, a study using [1-11C]-

glucose PET15, which does not require a LC, reported increased CMRglc in all brain regions 
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during hyperglycemia. There is, however, reason to be skeptical of a larger decrease in the LC 

during hyperglycemia. The two studies reporting changes in the LC in hyperglycemic humans 

did not measure the LC directly10,16. Measuring the LC typically requires estimates of the 

metabolic rate of glucose and FDG in the same individuals93,94. Instead these studies used only 

[18F]-FDG data along with a mathematical model95 that assumes: 1) the ratio of the K1 for 

glucose to the K1 for FDG is known and unchanged by hyperglycemia, 2) the ratio of K3 between 

glucose and FDG is similarly known and unaffected by hyperglycemia, and 3) all the glucose-6-

phosophate that is created is metabolized. Although the K1 ratio is unaffected by 

hyperglycemia96, we are not aware of any study verifying the stability of the k3 ratio. We are also 

not aware of any study comparing directly LC values estimated with this model with direct 

measurements in humans. Hasselbalch et al. did attempt to validate the model based approach93. 

However, their verification was circular as the measured LC was used to compute the k3 ratio 

that was subsequently entered into the model. It should be noted, too, that even the studies that 

used the model-based method to correct for changes in the LC produced CMRglc results that 

were in agreement with ours. They found that during acute hyperglycemia: 1) whole-brain 

CMRglc increased by a non-significant amount10,16, 2) gray matter CMRglc was unchanged in 

every region examined10,16, and 3) CMRglc within white matter significantly increased by over 

40%16. 

Finally, it should be acknowledged that all of our metabolic measurements were made in 

an experimental setting. Endogenous insulin and glucagon secretion were blocked using 

infusions of the somatostatin analog octreotide. Although somatostatin has several roles in the 

CNS97, blood-brain barrier permeability for somatostatin analogs are low98, and we know of no 

studies reporting changes in CBF, CMRO2, or CMRglc after octreotide administration. Infusions 
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of glucagon and insulin were also used to were used to keep both hormones at normal values. 

This was done to isolate the effect of hyperglycemia on brain metabolism. However, 

hyperglycemia typically sharply increases the concentration of insulin in the blood. Although 

plasma insulin did rise slightly during our hyperglycemic clamp, it always remained lower than 

what is seen during an oral glucose tolerance test99 or after the consumption of a meal100. As a 

result, our results do not mirror naturally occurring hyperglycemia. It is therefore encouraging 

that our results are broadly consistent with studies that do not perform basal insulin 

replacement7,10,15. Determining what, if any, differences there are in brain metabolism between 

hyperglycemia with and without elevated insulin will require direct studies. 

Conclusion 
Our work is a novel addition to studies examining the effect of acute hyperglycemia on 

the brain. We reported that in humans, acute hyperglycemia increases CMRglc in white matter 

and brain stem, without altering regional blood flow, blood volume, or oxygen metabolism. This 

suggests that acute hyperglycemia alters normal brain metabolism by increasing NOglc in white 

matter and brain stem. Expanding upon this finding is an important topic for future research. 

Among the most pressing questions are quantifying the increase in NOglc during acute 

hyperglycemia, identifying the metabolic pathways responsible for elevated non-oxidative 

glucose use, and determining if NOglc remains high in individuals with chronic hyperglycemia. 

Addressing these questions will not only further our understanding of brain metabolism during 

hyperglycemia, but may also clarify the emerging relationship between NOglc, AD, and 

T2DM59,66,80.
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5.6 Figures 

A) After the hyperglycemic clamp (red) the plasma glucose level was approximately 300 mg·dL-

1
,
 whereas it remained near 100 mg·dL-1 during the euglycemic clamp (blue). A piecewise linear 

regression with a breakpoint at 90 minutes (black dot) was used to compute population estimates 

(thick lines) and their 95% CIs (gray ribbons). In both groups, blood glucose level increased 

prior to the breakpoint and then decreased afterwards (see Results). B) Plasma insulin also 

increased in both groups prior to the breakpoint. However, after the breakpoint insulin decreased 

during euglycemic clamp and increased in the hyperglycemic clamp. The dashed black line 

indicates a published value for the peak plasma insulin concentration after a 75 gram oral 

glucose tolerance test99. Note that even though plasma insulin increased throughout the 

hyperglycemic clamp, it was always below this value. The light lines and dots are data from 

individual sessions.  

Figure 5.1: Time course of plasma glucose and insulin levels during glucose clamping 



203 
 

A) Group average (n=18) image of [18F]-FDG SUVR during the euglycemic clamp. Values are 

normalized to the whole-brain mean. B) Group average (n=15) image of [18F]-FDG SUVR 

during the hyperglycemic clamp. C) Group average difference in [18F]FDG SUVR between the 

hyperglycemic and euglycemic clamp. Only voxels that are significantly different from zero after 

Figure 5.2: Hyperglycemia induced changes in relative glucose consumption 
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correction for multiple comparisons (FDR 0.05) are shown in color. [18F]-FDG uptake in blue 

voxels decreased relative to the whole brain mean during hyperglycemia, whereas orange/yellow 

voxels increased.   
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All conventions as in Figure 5.2. No significant differences (p > 0.05) were found between A) 

euglycemia (n=19) and B) hyperglycemia (n=15) after C) correction or multiple comparisons 

with FDR.  

Figure 5.3: Relative cerebral blood flow measured with whole-brain normalized [15O]-H2O 

SUVR 
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All conventions as in Figure 5.2. No significant differences (p > 0.05) were found between A) 

euglycemia (n=18) and B) hyperglycemia (n=14) after C) correction or multiple comparisons 

with FDR.  

Figure 5.4: Relative oxygen consumption measured with whole-brain normalized [15O]-O2 

SUVR 
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All conventions as in Figure 5.2. No significant differences (p > 0.05) were found between A) 

euglycemia (n=18) and B) hyperglycemia (n=14) after C) correction or multiple comparisons 

with FDR.  

Figure 5.5: Relative oxygen extraction fraction (rOEF) measured with whole-brain 

normalized [15O]-O2 and [15O]-H2O SUVR 
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All conventions as in Figure 5.2. No significant differences (p > 0.05) were found between A) 

euglycemia (n=18) and B) hyperglycemia (n=14) after C) correction or multiple comparisons 

with FDR.  

Figure 5.6: Relative cerebral blood volume measured with whole-brain normalized [15O]-

CO SUVR 
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A) Group average images of rOGI during the euglycemic clamp (n=17) and B) hyperglycemic 

(n=14) clamp. rOGI was computed by taking the ratio of the [15O]-O2 SUVR and [18F]-FDG 

SUVR images and then normalizing the result so that the whole-brain mean was equal to 1. C) 

Figure 5.7: Hyperglycemia induced changes in relative oxygen-to-glucose (rOGI) 
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Group average difference in relative rOGI between the hyperglycemic and euglycemic clamp. 

Only voxels that are significantly different from zero after correction for multiple comparisons 

(FDR 0.05) are shown in color. rOGI in blue voxels decreased relative to the whole brain mean 

during hyperglycemia, whereas the rOGI orange/yellow voxels increased.  
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A) Regions-of-interest (ROIs) extracted from the voxelwise analysis of relative glucose 

consumption (Figure 5.2). The blue region is composed of voxels where relative [18F]FDG 

SUVR decreased during hyperglycemia, and the red region is voxels were relative uptake 

increased. Subsequent figures show values within these ROIS for B) [18F]-FDG SUVR (glucose 

consumption), C) [15O]-H2O SUVR (cerebral blood flow), D) [15O]-O2 SUVR (oxygen 

consumption), E) rOEF (ratio of [15O]-O2 and [15O]-H2O SUVR), F) [15O]-CO SUVR (blood 

Figure 5.8: Hyperglycemia changes relative glucose consumption but not blood flow, blood 

volume, or oxygen metabolism 
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volume), and G) rOGI (ratio of [15O]-O2 and [18F]-FDG SUVR). Relative to the whole-brain, 

metabolic changes are only observed in glucose consumption and in rOGI. Significant (p < 

0.0001) No changes were seen in blood flow, oxygen metabolism, or in blood volume.   
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A) Whole-brain average cerebral metabolic rate of glucose (CMRglc) during the euglycemic 

(25.1 ± 2.1 μMol·hg-1·min-1; n=9) and hyperglycemic (27.3 ± 2.0 μMol·hg-1·min-1; n=10) clamp 

conditions. The increase in CMRglc with hyperglycemia (2.18 ± 2.84 μMol·hg-1·min-1) did not 

reach significance (p = 0.151) . B) Regional CMRglc in the same regions as Figure 5.8A. A 

significant increase (p = 0.006; see Methods) was found with hyperglycemia in the ROI where 

relative glucose metabolism increased (red), but not (p = 0.207) in the ROI were relative glucose 

metabolism increased (blue). No significant difference in CBF (measured with ASL) were found 

Figure 5.9: Quantitative glucose consumption and blood flow during hyperglycemia 
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between euglycemia (n=22) and hyperglycemia (n=19) in either the C) whole-brain or D) the 

ROIs from Figure 5.8A (p > 0.5).  
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A) Difference between hyperglycemia and euglycemia within 48 FreeSurfer derived ROIs 

(Figure 2.1). After correction for multiple comparisons using FDR, significant (p < 0.05) 

increases were found in the brain stem, cortical white matter, corpus callosum, and deep white 

matter. No significant decreases were found. B) CMRglc data from the deep white matter ROI, 

showing a robust increase in glucose consumption with hyperglycemia (9.65 ± 2.09 μMol·hg-

1·min-1; p < 0.0001). C) Scatterplot of CMRglc during euglycemia vs. the difference between 

hyperglycemia and euglycemia. Each dot is the group estimate CMRglc within a single 

FreeSurfer region. Blue dots are gray matter, red dots are white matter, and green dots are the 

brain stem/ventral diencephalon. Lines are 95% confidence intervals. There is a strong 

Figure 5.10: Quantitative increases in CMRglc in regions with low basal metabolic rates 
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correlation between baseline CMRglc and hyperglycemia induced change, with the regions with 

the smallest baseline values showing the greatest change.  
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A) Difference in CBF between hyperglycemia and euglycemia within FreeSurfer ROIs. The 

change in CBF was not significant (p > 0.05) in any ROI after correction for multiple 

comparisons using FDR. B) Unlike CMRglc (Figure 5.10B), CBF does not increase in the deep 

white matter during hyperglycemia (0.32 ± 1.42 mL·hg-1·min-1; p > 0.05). C) Scatterplot of CBF 

during euglycemia vs. the difference between hyperglycemia and euglycemia. Only a moderate 

correlation exists between baseline CBF and the change in CBF induced by hyperglycemia. All 

other conventions as in Figure 5.10.

Figure 5.11: No regional changes in CBF during hyperglycemia 
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5.7 Tables 

 [18F]-FDG 
SUVR 

[15O]-H2O 
SUVR 

[15O]-O2 

SUVR 
rOEF 
SUVR 

[15O]-CO 
SUVR 

rOGI 
SUVR 

Quant. 
CMRglc 

Quant. 
CBF 

ID Eugly. Hyper. Eugly. Hyper. Eugly. Hyper. Eugly. Hyper. Eugly. Hyper. Eugly. Hyper. Eugly. Hyper. Eugly. Hyper. 

1 ✓  ✓  ✓  ✓  ✓  ✓      

2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ 
3               ✓ ✓ 
4               ✓ ✓ 
5 ✓  ✓  ✓  ✓  ✓  ✓    ✓ ✓ 
6 ✓  ✓  ✓  ✓  ✓  ✓    ✓  

7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ 
8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
9  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓  ✓ ✓ ✓ 
10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 
12 ✓  ✓  ✓  ✓  ✓  ✓    ✓  

13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
15                 
16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 
19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ 
20  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓ 
21 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
22               ✓  

23                ✓ 
24 ✓  ✓  ✓  ✓  ✓  ✓      
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Table 5.1: Breakdown of participants with each imaging data-type 

25               ✓  

26 ✓ ✓ ✓ ✓           ✓ ✓ 

Totals 18 15 19 15 18 14 18 14 18 14 17 14 9 10 21 19 
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Table 5.2: Slope estimates from piecewise regression of plasma glucose and insulin time-

courses 

Values are means and symmetric 95% confidence intervals. All slopes are significantly different 

from zero at the 0.05 level without correction for multiple comparisons. 

Time 

Glucose 

(mg·dL-1·min-1 ) 

Insulin 

(pmol·L-1·min-1 ) 

Eugly. Hygly. Eugly. Hygly. 

Before breakpoint 0.099 ± 0.093 2.7 ± 0.094 0.47 ± 0.17 0.58 ± 0.18 

After breakpoint -0.077 ± 0.046 -0.23 ± 0.041 -0.22 ± 0.086 0.35 ± 0.077 
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Table 5.3: Whole-brain parameter estimates from the irreversible 2-compartment FDG 

model 

For each parameter, a linear mixed model was used to estimate the population mean and 95% CI 

during both the euglycemic (n=9) and hyperglycemic (n=10) clamp. K1 and k3 were significantly 

decreased during hyperglycemia, whereas k4 was significantly increased. 

Parameter Eugly. Hygly. Hygly. – Eugly. p-value 

K1 

(mL·hg-1·min-1) 
11.17 ± 1.45 6.09 ± 1.37 -5.07 ± 1.82 3.0 · 10-4 

k2 (min-1) 0.28 ± 0.11 0.24 ± 0.10 -0.041 ± 0.15 5.9 · 10-1 

k3 (min-1) 0.14 ± 0.034 0.062 ± 0.032 -0.082 ± 0.047 3.3 · 10-3 

k4 (min-1) 0.0098 ± 0.0023 0.016 ± 0.0022 0.0070 ± 0.0031 7.6 · 10-3 

Vb (mL·hg-1) 5.83 ± 1.27 5.25 ± 1.22 -0.57 ± 1.39 4.6 · 10-1 
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Chapter 6: Summary and Conclusions 

 

6.1 Summary 

 

 The goal of this thesis was to explore the relationship between cerebral blood flow 

(CBF), the cerebral metabolic rate of glucose consumption (CMRglc), and the cerebral metabolic 

rate of oxygen consumption (CMRO2). In particular, I wanted to investigate the role of non-

oxidative glucose consumption (NOglc) in the brain. To explore these issues, I performed the 

analyses that make up Chapters 2-5. Roughly speaking, these chapters can be divided into two 

parts. The focus of the first part, which consists of Chapters 2 and 3, is quantifying how much of 

the brain’s glucose consumption is metabolized via non-oxidative pathways. The aim of the 

second part of the thesis is to determine if CBF, CMRglc, and CMRO2 all are affected equally by 

hypoglycemia (Chapter 4) and hyperglycemia (Chapter 5). 

 There are three primary findings in Chapters 2 and 3. First, when considering the brain as 

a whole, NOglc accounts for approximately 9% of resting CMRglc. This shows that a substantial 

portion of the brain's glucose consumption does not undergo complete oxidative 

phosphorylation. Second, nearly 7% of resting whole-brain CMRglc is consumed via non-

oxidative pathways that do not end in lactate transport to the venous blood. It is therefore likely 

that a portion of the brain’s glucose consumption is directed to other pathways, including the 

synthesis of nucleic and amino acids. Third, the proportion of NOglc varies throughout the brain. 

In the precuneus and prefrontal cortex, regions that are part of the default mode network, NOglc 

accounts for nearly 20% of resting CMRglc. Conversely, there does not appear to be any NOglc 

in the cerebellum at rest.  
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 In Chapter 4, I found a dissociation between regional changes in CBF and CMRglc 

during moderate hypoglycemia. Specifically, I found that hypoglycemia increases CBF in the 

globus pallidus and decreases CBF in the nucleus accumbens and a handful of cortical regions. 

In the majority of regions, however, CBF was not affected by hypoglycemia. Conversely, I found 

that hypoglycemia significantly decreases CMRglc in every region of the brain. Moreover, 

regional changes in CMRglc were highly correlated with baseline CMRglc and not changes in 

CBF, generally increase during hypoglycemia in order to maintain delivery of glucose. The most 

likely explanation of increased CBF in the thalamus, globus pallidus, brainstem, and ventral 

diencephalon is to promote arousal and behavioral food-seeking behaviors.   

I reported in Chapter 5 that hyperglycemia produces a shift in the topography of cerebral 

glucose metabolism. Glucose consumption in regions with high baseline metabolic rates, such as 

the visual cortex, decreased relative to the rest of the brain, whereas regions with low baseline 

metabolic rates (e.g., white matter) increased. The major effect of hyperglycemia is a significant 

quantitative increase in CMRglc in cerebral white matter and brain stem. Interestingly, no 

changes in quantitative CBF or relative blood flow, blood volume, oxygen metabolism, or 

oxygen extraction were found in any brain region. Taken together, these findings suggest NOglc 

is elevated in the white matter and brain stem during hyperglycemia.  

6.2 Significance and Future Directions 

 

 In Chapter 1, I reviewed the fairly large literature examining the relationship between 

cerebral metabolism and functional activity, with a particular emphasis on examples of 

uncoupling between CBF, CMRglc, and CMRO2. This literature has conclusively shown that, 

although focal elevations in neural activity substantially increase CBF and CMRglc, CMRO2 
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changes only modestly. As a result, enhanced neural activity results in a temporary increase in 

NOglc. The uncoupling between CBF, CMRglc, and CMRO2 in responses to task paradigms is 

responsible for the blood oxygen dependent (BOLD) signals underlying fMRI.  

Although metabolic uncoupling now is well established, there are still several outstanding 

questions surrounding it. The rest of this chapter will focus on three of the more prominent areas 

of research. 

Non-oxidative glucose consumption during neural activity 

 One of the most important remaining questions is why task-evoked activity focally 

increases NOglc. In Chapter 1, I discussed several possibilities including a modified astrocyte-

neuron lactate shuttle, glycogen or glutamate synthesis, lactate production, or biosynthesis of 

amino acids and proteins. None of the analyses included in this thesis favor any of these 

possibilities, as all of the data were collected in resting conditions. As I argued in Chapter 1, a 

complete account of NOglc during responses to task paradigms likely will need to examine 

several different mechanisms that operate in both neurons and glia. Furthermore, recent studies 

implicating the role of lactate as a signaling molecule1,2, suggest that the role of NOglc extends 

beyond energy metabolism. Therefore, to further our understanding of task-related changes in 

NOglc, we need quantitative studies that track the creation and movement of glucose 

intermediates between cell types in vivo. Without direct evidence indicating which non-oxidative 

pathways are active, the reason why task performance elevates NOglc will remain unclear. 

 

Non-oxidative glucose consumption at rest 

 The role of NOglc at rest has been examined to a far lesser extent than it has been during 

periods of increased neural activity. In Chapter 2, I reported that NOglc accounts for nearly 10% 
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of the brain’s resting glucose consumption, replicating previous findings3. Although most 

investigators acknowledge that NOglc accounts for a portion of resting CMRglc, it is sometimes 

asserted that this a fairly small amount that can be safely ignored as it is due entirely to excess 

lactate production4,5. Much less common are reports that actively consider the possibility that 

NOglc plays a role in resting brain metabolism and function. The results presented in this thesis 

favor the possibility that NOglc plays an important role in the brain at rest. I found that a 

substantial portion of the brain’s resting NOglc cannot be accounted for by lactate efflux to the 

venous blood. Therefore, other mechanisms must be invoked to explain why the brain is 

consuming glucose without complete oxidative phosphorylation. 

One way to assess what role NOglc has in the resting brain is to correlate the spatial 

topography of NOglc with the topographies of other biological markers. A previous study from 

our group found a positive correlation between regional NOglc and the expression of genes 

related to synaptic plasticity and development6. This finding suggests that NOglc could be used 

to generate the biosynthetic intermediates necessary for synaptic plasticity. Consistent with this 

idea, other work from both our group7 and others8 has shown that NOglc is elevated hours after 

the performance of a learning task. 

In Chapter 3, I directly quantified NOglc in several regions of the brain at rest. In regions 

such as the precuneus, lateral parietal cortex, and medial prefrontal cortex, NOglc accounts for as 

much as 20% of resting CMRglc. Conversely, there does not appear to be any NOglc in the 

cerebellar gray matter. Therefore, if NOglc plays a role in synaptic plasticity, its importance may 

vary by region. The cerebellum is of particular interest in this regard, as it has little to no NOglc 

despite being a classical example of plasticity in certain types of motor learning9,10. 
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Given the limitations of human studies, none of the work I have presented here directly 

tests which cellular mechanisms underlie resting NOglc. It is likely, however, that the same 

mechanisms that are behind NOglc in responses to task paradigms also operate in the resting 

brain. Although the use of task paradigms in functional neuroimaging studies has encouraged the 

belief that task and rest are fundamentally different states, this is an oversimplification. Indeed, 

the brain is highly active even when it is not performing any overt task11, and only a small 

fraction of the brain’s energy is devoted to responding to external stimuli12. Therefore, it is 

parsimonious to hypothesize that the same mechanisms that are responsible for NOglc during 

task responses also operate at rest. 

Metabolic uncoupling and altered states 

 As was discussed in Chapter 1, metabolic derangements often result in uncoupling 

between CBF, CMRglc, and CMRO2. A classic example is profound hypoglycemia, which 

decreases global CMRglc to a much greater extent than CBF or CMRO2
13. In Chapter 4, I 

expanded upon this literature by examining regional CBF and CMRglc during moderate 

hypoglycemia. I found that, although hypoglycemia decreased CMRglc in every brain region, it 

decreased CBF in only a handful of regions. Interestingly, the only region where hyperglycemia 

increased CBF was the globus pallidus. This is in contrast to the animal literature, which has 

consistently reported that hypoglycemia increases global14 and regional15 CBF. An increase in 

CBF during hypoglycemia would suggest than blood flow is upregulated during hypoglycemia to 

increase the amount of glucose that is delivered to the brain. However, the data presented in 

Chapter 3 would suggest that this is not the case in humans, at least during moderate 

hypoglycemia. 
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An alternative possibility is that CBF changes during hypoglycemia are part of the 

brain’s counterregulatory response to changes in blood glucose concentration. The release of 

insulin during hypoglycemia is typically followed by the release of several counterregulatory 

hormones, including of glucagon, epinephrine, growth hormone, and cortisol16. Studies 

examining changes in blood flow in humans have typically reported focal increases in the globus 

pallidus, thalamus, and medial prefrontal cortex17-19. Interestingly, although the hormonal 

response to hypoglycemia is diminished after multiple hypoglycemic episodes, the increase in 

CBF in the thalamus is amplified20. These findings have led to the hypothesis that focally 

increased thalamic CBF during hypoglycemia is a marker of hypothalamic inhibition20,21. With 

repeated episodes of hypoglycemia, the amount of inhibition is increased, resulting in a 

diminished sympathetic response20. 

However, the results shown in Chapter 4 are not entirely consistent with this hypothesis. 

Although hypoglycemia did increase CBF in the thalamus, the increase was not statistically 

significant, possibly owing to the global noise inherent in absolute quantification of CBF. CBF in 

the thalamus was significantly elevated from euglycemia when expressed relative to whole-brain 

CBF. In any case, more work is needed to establish why CBF changes during hypoglycemia. It 

would also be particularly interesting to measure regional oxygen consumption during 

hypoglycemia. As mentioned earlier, profound hypoglycemia produces little change in global 

CMRO2
13. If this is true during moderate hypoglycemia, it would suggest than most of the 

decrease in CMRglc I reported in Chapter 4 was due to a decrease in NOglc. This could have 

important implications especially if, as mentioned above, NOglc is involved in plasticity and 

learning. 
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 In Chapter 5, I found that metabolic uncoupling is increased during acute hyperglycemia, 

as in hypoglycemia. Specifically, hyperglycemia altered the topography of cerebral glucose 

consumption, whereas the topographies of blood flow and oxygen consumption were unchanged. 

The change in the regional distribution of glucose consumption was due to a selective 

quantitative increase in CMRglc within the white matter and brain stem. Taken together, these 

findings suggest that, during hyperglycemia, NOglc is selectively increased in the white matter 

and brainstem. It is worthwhile noting that Type-2 diabetes mellitus (T2DM), which leads to 

chronic hyperglycemia, is associated with white matter disease22. Speculatively, it is possible 

that chronically elevated NOglc in white matter is a risk factor for the development of white 

matter disease in individuals with T2DM. In support of this possibility, increased concentration 

of sorbitol, a sugar alcohol produced from glucose via non-oxidative pathways, has been 

implicated in the development of diabetic retinotopy and neuropathy23. Therefore, determining 

whether individuals with T2DM have increased NOglc in white matter would be an important 

next step.  

 Finally, it is interesting to consider that both NOglc24 and diabetes25 have been suggested 

to play a role in the development of dementia. Individuals with diabetes are more likely to 

develop dementia26 and chronic hyperglycemia, even in the absence of diabetes, is a risk factor 

for Alzheimer’s disease (AD)27. Although alterations in NOglc have not yet been shown to be a 

risk factor for dementia, there is evidence that NOglc is involved in the development of amyloid 

plaques, one of the pathological hallmarks of AD. A previous study from our laboratory found 

that regions that have high levels of NOglc in healthy young adults go on to develop amyloid 

plaques in individuals with AD28. Consistent with this finding, Bero et al. reported a positive 

correlation between amyloid plaque loads and lactate production in a mouse model of AD29. In 
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the same model, Shannon et al. also found that hyperglycemia increases both amyloid production 

and lactate release in the hippocampus30. Other studies have reported that global NOglc is lower 

in both early31 and late32 onset AD, although both these studies involved small sample sizes (20 

patients or less). A recent report from our group also found that aging decreases NOglc, 

particularly in regions with high rates of NOglc in young individuals33. Given these connections, 

it is tempting to argue that individuals with diabetes have an increased risk for the development 

of dementia, in part, because of the effect of hyperglycemia on NOglc. Detailed mechanistic 

studies will be required to verify whether this hypothesis has merit. A longitudinal study 

establishing that individuals with abnormal NOglc do go on to develop AD at higher rates would 

also be of great interest. 
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