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ABSTRACT OF THE DISSERTATION

Decoupling Information and Connectivity via Information-Centric Transport

by

Hila Ben Abraham
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Professor Patrick Crowley, Chair

The power of Information-Centric Networking architectures (ICNs) lies in their abstraction

for communication — the request for named data. This abstraction was popularized by the

HyperText Transfer Protocol (HTTP) as an application-layer abstraction, and was extended

by ICNs to also serve as their network-layer abstraction. In recent years, network mecha-

nisms for ICNs, such as scalable name-based forwarding, named-data routing and in-network

caching, have been widely explored and researched. However, to the best of our knowledge,

the impact of this network abstraction on ICN applications has not been explored or well

understood. The motivation of this dissertation is to address this research gap.

Presumably, shifting from the IP’s channel abstraction, in which two endpoints must estab-

lish a channel to communicate, to the request for named data abstraction in ICNs, should

simplify application mechanisms. This is not only because those mechanisms are no longer

required to translate named-based requests to addresses of endpoints, but mainly because

application mechanisms are no longer coupled with the connectivity characteristics of the

channel. Hence, applications do not need to worry if there is a synchronous end-to-end path

between two endpoints, or if a device along the path switches between concurrent interfaces

for communication. Therefore, ICN architectures present a new and powerful promise to

applications — the freedom to stay in the information plane decoupled from connectivity.

xii



This dissertation shows that despite this powerful promise, the information and connectivity

planes are presently coupled in today’s incarnations of leading ICNs by a core architectural

component, the forwarding strategy. Therefore, this dissertation defines the role of forward-

ing strategies, and it introduces Information-Centric Transport (ICT) as a new architectural

component that application developers can rely on if they want their application to be de-

coupled from connectivity. When discussing the role of ICT, we explain the importance of

in-network transport mechanisms in ICNs, and we explore how those mechanisms can be

scalable when generalized to provide broadly-applicable application needs.

To illustrate our contribution concretely, we present three group communication abstractions

that can evolve into ICTs: 1) Data synchronization of named data. This abstraction supports

applications that want to maintain data consistency over time of a group’s shared dataset.

2) Push-like notifications for the latest named data. This abstraction supports applications

that want to quickly notify and be notified about the latest content that was produced

by a member(s) in the group. And 3) distributed named data fetching when the content is

partitioned. This abstraction supports applications that their named data is partitioned and

distributed in the group, and the names of content items in a partition cannot be generalized

and hierarchically represented using one partition name.

For each ICT, we provide examples of known applications that can use it, we discuss different

mechanisms for implementation, and we evaluate selected implementations. We show how

by relying on an ICT instead of a forwarding strategy, the tested applications can maintain

sustainable communication in connectivities where IP tools fail or do not work well.
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Chapter 1

Introduction

The purpose of this dissertation is to introduce Information-Centric Transport (ICT) as a

new architectural component that can effectively decouple the information and connectivity

planes in Information-Centric Networking architectures (ICNs). In this Chapter, we explain

how these planes are coupled in today’s incarnations of ICNs, such as Named Data Network-

ing (NDN) [83] and CICN [55], and we discuss why this coupling does not comply with the

ICN abstraction — the request for named data [39].

1.1 Motivation

Although the success of the largest IP network – the Internet – is not underestimated, advo-

cates for ICNs, argue that the underlying telephony-inspired IP abstraction, in which pairs of

addressed endpoints must establish a connection to communicate (i.e., a telephone call), does

not sustainably comply with the requirements of today’s Internet. Those requirements in-

clude better information dissemination support when multiple consumers request the same

piece of content (e.g., a chunk of a popular video), and better security and trust models

1



that shift from securing channels to securing data. Therefore, to adequately address IP’s

challenges, ICNs use another abstraction — the request for named data [39].

While this abstraction seems to achieve the requirements of today’s Internet, its impact on

applications has not been explored or well understood. The first objective of this dissertation

is to address this research gap, and to explore if, and how, the change in the network

abstraction impacts applications running on top of it.

In ICNs, applications simply request named data, and the network finds and retrieves this

data. As a result, the application does not need to worry where the data is located, or what

are the network characteristics between the consumer and the data provider (an endpoint

producer, a repository or an intermediate cache). Thus, the request for named data ab-

straction promises to simplify applications, who no longer need to establish a channel with

another endpoint, and to keep them in the Information Plane, decoupled from connectivity

concerns. In other words, the application can be concerned only with data namespaces and

trust identities of data producers and consumers, without worrying where the data is located

or how it would be retrieved.

However, our system-oriented research approach, in which we explored NDN applications and

tried to run them on the NDN testbed [53] and on the Open Network Lab (ONL)[76], revealed

that ICNs do not live up to their promise, and that despite the power of the request for named

data abstraction, ICNs applications are coupled with connectivity concerns. Specifically,

in our exploration we found that a core architectural component, the forwarding strategy,

couples applications to the details of the network connectivity in an unsustainable way [14,

15, 16].

2



In short 1, as presently designed, a forwarding strategy implements mechanisms concerning

local connectivity characteristics, and a forwarding strategy can be paired with an application

namespace to address the application needs. If an application name is paired with a specific

forwarding strategy, and this strategy implements specific connectivity mechanisms, then the

application is coupled with the characteristics of this connectivity. Hence, the forwarding

strategy component couples the information and connectivity planes.

As a result, ICN applications tend to be complex, and their implementation requires a

deep understanding of network mechanisms [14, 41]. This coupling not only makes ICN

applications hard to develop, but also does not comply with the request for named data

abstraction that promises to decouple applications from the details of connectivity.

This dissertation suggests to address the problem by providing ICN applications with a

different architectural component to rely on in order to satisfy their application-level needs.

We name this new architectural component Information-Centric Transport (ICT), and we

define it as both an abstraction and a broadly applicable communication mechanism. Our

goal is to show that by relying on ICTs, applications do not have to rely on forwarding

strategies, and therefore they are no longer have to be coupled with connectivity mechanisms.

Hence, applications can operate solely in the information plane, dealing only with namespaces

and the trust relationship.

1.2 Why is This a Hard Problem?

The request for named data abstraction was introduced by the World Wide Web (WWW),

and it was popularized by the HyperText Transfer Protocol (HTTP). The use and popularity

of HTTP has given names to the world’s data in the form of URLs, and has created several
1 More details are provided in Chapter 2
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generations of web-based applications whose function is organized around requesting data

by name.

But there is a fundamental difference between HTTP and ICNs. While ICNs aim to use

the request for named data as their a general-purpose network layer protocol, HTTP is

an application-layer protocol, linked explicitly to the underlying channel-based TCP/IP

protocol. To comply with the channel abstraction of the IP paradigm, an HTTP-based

application relies on transport layer protocols that establish a host-to-host channel and

translate name-oriented requests to IP addresses.

But ICN architectures rely on a different network abstraction and eliminate the notion of

host-to-host transport. ICNs use the same abstraction in both application and network

layer, and therefore applications can run directly on top of the network layer. In theory,

this presents great benefits that include application simplification, because no translation

is needed between the application and network layers, and because applications can simply

request named data to get the content. In practice, implementing and running applications

on top of ICNs is not that simple.

To understand why, consider that ICNs, just like IP, recognize that different applications

may have different requirements for their communication. Therefore ICNs support different

application needs by allowing applications to pair their content names with different forward-

ing mechanisms through the forwarding strategy component. However, there is presently no

specification of what application requirements may be, and there is no understanding of what

communication mechanisms should be provided to ICN applications. Moreover, the role of

forwarding strategies has not been explicitly specified.

In Chapter 2, we provide detailed background information about ICN forwarding and the for-

warding strategy component. In short, a forwarding strategy is a network-layer component in

4



ICNs that implements mechanisms for hop-by-hop packet forwarding. ICNs provide multiple

forwarding strategies, each implements different forwarding mechanisms to provide different

forwarding behaviors. For instance, the best-route strategy in NDN forwards requests for

named data on one best path determined by the routing protocol; The multicast strategy in

NDN simply multicasts requests for named data to all available upstreams; The ncc strategy

in NDN is an adaptive forwarding strategy that tries different paths and adaptively switches

between them according to real-time application and network performance; And the ASF

strategy in NDN implements a combination of the ncc and best-route strategies;

In theory, pairing an application namespace with a specific forwarding strategy, a capability

known as the named-based strategy selection, allow ICNs to implement general-purpose

information-oriented mechanisms to support different application needs. However, we show

in the next subsection and in Chapter 2 that in practice, every forwarding strategy must also

implement specific connectivity-related mechanisms. Therefore, the name-based strategy

capability couples applications to the details of connectivity.

As a result, the great promise presented by the ICN abstraction is not effectively satisfied,

and ICN applications tend to be complex because they must implement mechanisms that

are directly concerned with the characteristics of the network connectivity.

1.2.1 The Conflicted Role of Forwarding Strategies

To understand the complexity of the problem, which is also the key to the solution, we must

discuss what brought the forwarding strategy component to play such a conflicted role.

First, consider that an ICN application simply sends a request for named data using an

Interest packet, and that the network finds and retrieves the named data to the application

5



in a Data packet 2. Moreover, consider that forwarding in ICNs is done hop-by-hop, and

Data packets follow the same but reversed path of their Interest packets. When forwarding

an Interest, every router must determine answers to questions such as 1) If routing rules

permit multiple equivalent next-hops, which one should be chosen? 2) If a packet times out,

should it be retransmitted? If so, should it be retransmitted on the same or another next

hop(s)?

Clearly, the answers to such questions rely on connectivity characteristics, such as where in

the network the node is located (e.g., core vs. access), the number and type (e.g., wired

vs. wireless) of next hop links available, and the dynamics of the network (e.g., static

vs. mobile). Therefore, a router must consider the local connectivity characteristics when

forwarding Interests.

Second, our work has shown [14] that another set of forwarding questions are intrinsic to

information flow, and therefore, are meaningful for applications. For instance, 1)Should an

Interest be broadcast? 2)For how long should an Interest be saved before being dropped or

retransmitted? 3) What if a new interest for the same name prefix comes along? Should it

replace the previous one or be buffered as well? 4)Can multiple Data packets for the same

Interest be aggregated into one?

Presently, the forwarding strategy component is the only architectural component that can

address such information-oriented questions, and therefore it is the only component that

can consider application-level preferences when forwarding Interests and Data packets. Pair-

ing an application namespace with a specific forwarding strategy was designed to support

different forwarding behaviors that can address a variety of application needs.
2Detailed background information provided in Chapter 2.
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1.3 Our Approach to the Solution

It may appear that information and connectivity can be decoupled simply by voiding ICNs’

capability to pair a forwarding strategy with an application name. However, this would also

eliminate ICN’s capability to support different application-level preferences in the network.

While this may seem a minor tradeoff, and while we agree that the decoupling of applications

from forwarding strategies is the first step towards a solution, we also argue that some degree

of in-network application-oriented mechanisms is needed to fully decouple information and

connectivity.

To see why, consider that ICNs’ properties, such as the stateful forwarding plane and the

symmetric form of Interest-data exchange, natively enable in-network mechanisms for re-

silient data communications. When an Interest packet is not satisfied with a Data packet, a

router can immediately respond to guarantee continuous information flow.

But how exactly should a router respond to a network failure? Do all applications benefit

from the same in-network mechanism for resilient data communication? We argue that the

answer is no, and that the correct in-network mechanism for resilient data communication

depends on the application needs. For example, in the case of intermittent links, a file-

sharing application could benefit from in-network retransmissions of all the Interests for the

file’s chunks. However, a real-time video streaming application may prefer an intermediate

router to buffer and retransmit only a window of its Interests and prefetch the following

segments of the video for resilient user experience.

The frequently cited "Named Data Networking" paper [83] describes the forwarding strategy

component as "the key to NDN’s resiliency and efficiency", because it is the only architec-

tural component that can implement the required in-network mechanisms for robust data

7



communication. Therefore, disabling the name-based strategy selection capability eliminates

ICNs’ capability to support various information-oriented mechanisms for resilient data com-

munication, and transfers those mechanisms to the applications at the endpoints. In this

case, an ICN application, similar to HTTP-based applications, would be forced to respond

to connectivity events, and would not be decoupled from the details of connectivity.

One can argue that ICNs can resolve this problem by providing application support in the

form of ICN libraries [51], similarly to the support provided to IP applications by socket

APIs, and by implementing mechanisms that respond to connectivity events in the context

of those libraries. This way, applications could be decoupled from both forwarding strategies

and connectivity mechanisms. While our approach to the solution highly relies on endpoint

libraries, we show in Chapters 4-6 that in some scenarios, in which the network links are

highly intermittent and lossy, or when there is never a Synchronous End to End Path (SEEP)

between a consumer and the producer, endpoint libraries by themselves are not sufficient to

solve the problem.

To address these scenarios of intermittent connectivity, our approach to the solution consists

of three steps: 1) decoupling applications from forwarding strategies, 2) supporting applica-

tion needs by relying on endpoint libraries, and 3) allowing the implementation of in-network

information-oriented mechanisms in ICNs outside of the forwarding strategy component.

1.4 Contributions

We reiterate that the motivation of this dissertation is to explore how the change in the

network abstraction, from the channel abstraction in IP to the request for named data ab-

straction in ICNs, impacts applications. In our exploration, we found that ICN applications

are coupled with connectivity mechanisms through the forwarding strategy component. We

8



argue that the problem lies in ICN having one architectural component that both reconciles

application and network considerations and manages the interests of both applications and

network operators.

Therefore, this dissertation proposes to decouple applications from forwarding strategies,

and to add a new ICN component that manages the interests of applications and decouples

them from connectivity mechanisms. We do this by specifying, for the first time, the role of

forwarding strategies in ICNs, and by proposing a new abstraction for information-oriented

mechanisms, named Information-Centric Transport (ICT) 3.

We define an ICT as both an abstraction and a communications mechanism designed to

support a specific, but broadly applicable, set of application requirements. An ICT consists

of an endpoint library for application developers, and an intermediate service for network

operators. While forwarding strategies implement connectivity-oriented mechanisms, ICTs

implement information-oriented mechanisms.

We show how the placement of ICT libraries at the endpoints, and the placement of in-

termediate ICT mechanisms in the network can simplify the tested applications, and can

provide sustainable communications in the tested topologies. This, without deploying or

relying on any application-specific code in the network, and while keeping the intermediate

ICT mechanisms transparent to the application.

It is important to note that our work does not formally prove that ICT can solve the problem

and decouple applications from connectivity in any given topology or connectivity. Addition-

ally, our work does not argue that ICT is the only approach for the solution or the most

comprehensive one. Instead, our system-oriented work shows how ICT abstractions can com-

ply with the request for named data abstraction, and how ICT mechanisms can simplify ICN
3 In Chapter 3, we explain how ICN transport is different from IP transport
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applications by addressing connectivity challenges in a general-purpose way. Moreover, our

work demonstrates how in-network information-oriented mechanisms can be used by ICNs

outside of the forwarding strategy component, and decouple applications from connectivity

in the tested intermittent environment.

To illustrate our contribution concretely, we explored three abstractions that can become

ICTs: Data synchronization abstraction for applications with sync requirements; Push no-

tification abstraction for applications with quick, latest data push requirements; And an

abstraction for fetching distributed data for applications when the data is partitioned among

distributed producers.

For each ICT abstraction, we 1) define the broadly applicable requirements it implements, 2)

discuss potential applications that can use it, 3) explore mechanisms that can both implement

the application abstraction and comply with the request for the named data abstraction,

4) demonstrate how they provide communications for their applications under a range of

connectivity scenarios, where IP tools and native NDN applications fail or do not work well.

1.5 Organization

The remainder of this dissertation is organized as follows: In Chapter 2, we provide relevant

background details of ICN forwarding, we decompose the mechanisms of existing forwarding

strategies, and we explain how the underspecified role of the forwarding strategy component

led it to coupling applications with the details of connectivity mechanisms. As a first step

towards a solution, we define the architectural role of the forwarding strategy component in

ICNs.
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In Chapter 3, we explain why decoupling applications from the forwarding strategy compo-

nent is not enough to decouple applications from the details of connectivity, and we propose

Information-Centric Transport (ICT) as a new architectural component. We define ICT, we

explain how it can sustainably decouple information and connectivity, and we explore the

implications of in-network information-oriented mechanisms in ICNs.

In Chapters 4-6, we explore three ICN abstractions that can evolve into ICTs, discuss different

mechanisms to implement each abstraction, and evaluate selected implementations.

In Chapter 7, we conclude our work, and discuss future work.
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Chapter 2

Forwarding in ICNs

2.1 ICN Background

In the last few years, as interest in future information-centric network (ICN) architectures

has increased, we have witnessed continuous growth in research efforts focusing on the design

and development of ICN architecture prototypes. Two on-going research projects, Named

Data Networking (NDN) [83] and Content-Centric Networking (CCN) [55, 56], provide two

corresponding software prototypes: the NDN forwarder (NFD) [5, 54], developed by the

NDN research group, and CCNx [52], initially developed by PARC and later acquired by

Cisco and named CICN. To simplify the discussion, this subsection provides the background

information on NDN and its forwarder.

NDN was introduced as one of the four projects funded by the NSF’s Future Internet Ar-

chitecture program [71]. In NDN, data is represented by a namespace, similar to the rep-

resentation of URIs in HTTP. A namespace can represent any type of data, such as a file

name, an application state, a chat message, or a video chunk. Unlike the host-centric IP
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paradigm, NDN takes the content-centric approach, and a content item is cached, requested,

and retrieved by specifying its namespace.

The NDN architecture introduces two types of packets: the Interest packet, used to request

named data, and the Data packet, used to retrieved the named data. To request a content

item, a consumer expresses an Interest packet that carries the name of the requested content.

Upon receipt of an Interest packet, the NDN node looks in its Content Store (CS) to see if

the Interest can be satisfied by a previously cached Data packet. If the CS does not hold

the content, the node forwards the Interest to its next hop by matching the Interest’s name

with the entries in its Forwarding Information Base (FIB) table, and by selecting the FIB

entry with the longest prefix match.

When forwarding the Interest, the node notes the name of the forwarded Interest and its

incoming face in the local Pending Interest Table (PIT). Once the Interest packet arrives at

a node that can satisfy the requested name, either from the CS or a local application, the

node replies with a Data packet that carries the same name and contains the requested data.

The Data packet is sent back to the consumer on the reverse path of the Interest packet by

using the information stored in the PIT.

If more than one consumer asks for the same named content, the NDN node notes all

the incoming faces in the PIT entry of the requested name. This way, NDN supports

data dissemination and sends the same Data packet to all the consumers that requested it.

Additionally, NDN nodes on the forwarding path(s) cache a copy of the Data packet in their

Content Store (CS) as they forward it back to the consumer, and use this copy to satisfy

future requests for the same name.

To detect loops, every Interest packet carries a nonce generated by the application. When

an incoming Interest packet contains the same name and nonce as previously recorded in
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the PIT, the Interest is detected as duplicated and is dropped by the router. In recent

implementations of the NDN forwarder, the router responds with an upstream negative

acknowledgment (NACK) when a duplicated Interest is detected.

Each NDN packet is encoded in a Type-Length-Value (TLV) format that provides a dynamic

platform for adding new fields to either the Interest or the Data packet. In Chapter 6, we

propose a solution for decoupling strategy retransmissions that uses this flexible encoding

by adding a new TLV to the interest packet.

2.1.1 NDN Forwarding Plane

Prefix Face	List

/CNN/News 1,2,4

/Google/maps 3

CNN/
Newsa

g

c

d

Google/
Maps

e

1

2

3

4

FIB

Figure 2.1: NDN Forwarding Information Base.

As in the IP architecture, the NDN router uses the information in its FIB table to determine

the packet’s next hop. However, while a FIB entry in the IP architecture consists of an IP
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address and one port as the next-hop, each entry in the NDN FIB consists of a namespace

and a list of possible faces. Each face represents an upstream interface to a possible next hop,

which can be a remote NDN entity or a local application. When the list of faces consists of

only one face, the Interest is forwarded on this face. However, when that list contains more

than one face, the forwarding plane needs to decide on which face(s) to forward the Interest.

Therefore, when forwarding an Interest, the NDN router performs two operations: 1) A FIB

lookup to find the longest prefix match of the requested name. 2) The selection of one or

more face(s) to be the Interest’s next hop(s).

Figure 2.1 shows a network and the FIB table in node e. In this example, when e receives

an Interest for /Google/maps/NY, it can forward it only on face number 3 towards the

Google/Maps node. However, e can choose from a list of faces when receiving an Interest

for /CNN/news/NYC/Today. In this case, after finding the correct FIB entry, e follows

the forwarding strategy paired with /CNN/news namespace to decide on which face(s) the

Interest should be forwarded.

2.2 Forwarding Strategies

ICNs present a unique architectural component, named the forwarding strategy, which is usu-

ally referred to as the forwarding layer. This architectural component is frequently described

as the component that decides how to forward an Interest when a FIB entry contains mul-

tiple next hops. However, as we discuss in this chapter, the forwarding strategy component

does much more.

The frequently cited "Named Data Networking" paper [83] describes this core architectural

component as "the key to NDN’s resiliency and efficiency". And in fact, in the past years, the

forwarding strategy module has been demonstrated to be a key architectural component in
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Figure 2.2: NDN Building Blocks as Described in [83]

the implementation of different applications and the design of different network connectivities

[8, 26, 45, 59]. Figure 2.2 shows the building blocks of NDN, with the strategy layer residing

between the MAC layer and the Named Data layer [83].

However, despite the central role played by the forwarding strategy, its architectural role has

not been well understood, and it remains an underspecified piece in the ICN architecture.

As a result, there is no clear determination of what mechanisms strategies should implement,

or who chooses a forwarding strategy. We address these questions in Section 2.3.

Presently, ICNs allow different forwarding strategies to co-exist, and therefore, support a

range of different forwarding algorithms. Each strategy relies on a different set of input

considerations to implement a specific forwarding behavior. For instance, ad-hoc networks
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can use a dynamic routing-less forwarding strategy [33], while a more traditional routing-

based forwarding strategy can be used in core networks [45, 78]. Therefore, ICNs support a

range of different forwarding algorithms for different connectivities.

In this dissertation, we argue that while the forwarding strategy component is crucial for

the success of ICNs, its underspecified role couples applications to the details of connectivity,

and breaks the promise of the request for named data abstraction.

2.2.1 Decomposing Forwarding Strategy Mechanisms

Before we discuss the conflicted role of forwarding strategies, we decompose the current

operations of known forwarding strategies in ICNs into two core mechanisms: face selection

and failure response.

Next Hop Selection

When the FIB entry consists of multiple faces, the forwarding strategy must decide on what

face an Interest should be sent. When selecting the Interest next hop, the strategy may

choose to send the Interest on a single face, a subset of faces, or all available faces. Moreover,

the forwarding strategy may send Interests on different faces to probe the performance of

upstreams, or to discover data providers.

An essential attribute of a forwarding strategy is its adaptation to changes. In NDN, a data

packet is forwarded on the reverse path of the Interest packet. Therefore a strategy can

record the performance of each face to learn if it works and how well it performs. Then, it

can use this knowledge to update the face’s rank and improve future next-hop decisions.
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When choosing the face’s next hop, a forwarding strategy can elect to exclusively rely on

the face’s cost, provided by external services such as a routing protocol, or the face’s rank,

provided by internal feedback monitored by the forwarding strategy, or on any combination

of the two. For instance, the best-route simply relies on routing costs, the ncc strategy relies

on the internal measurements of the strategy, and the access strategy relies on both.

When relying on internal strategy feedback, every strategy is free to choose the metric of

the collected feedback according to its goals. For instance, the face rank can be determined

according to the upstream round-trip-time (RTT), the number of hops to the producer, or

the face successful delivery rate.

Failure Response

After selecting the Interest next hop(s), the forwarding strategy must decide how to react

when the Interest is not satisfied within a specific amount of time. For each forwarded

Interest, the NDN router initiates a timer for the period in which it expects to receive back

a Data packet. When a Data packet is received within this period, the packet is sent back

to the consumer by following the information kept in its PIT. At this time, the forwarding

strategy can use the time passed to determine the face’s rank.

There are three possible outcomes when the timer expires prior to the reception of a Data

packet: 1) The strategy drops the Interest packet. 2) The strategy retransmits the packet

on the same or a different face(s). 3) The strategy replies with a NACK packet to the

previous hop [24]. Presently, a forwarding strategy can choose the algorithm it follows when

implementing its timers. While some strategies, such as best-route, use a fixed-interval timer,

other strategies, such as ncc and ASF, use exponential-interval algorithms when setting an

Interest’s timer.
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The failure response mechanism can critically affect the application correctness. Thus, the

application developer must be aware of the approach taken by the forwarding strategy to

best decide how to design the application namespace and how to handle the application’s

retransmissions. We discuss this in depth in Chapter 6.

2.2.2 The Underspecified Role of Forwarding Strategies

To determine the strategy used, the router uses a per-packet name-based strategy selection,

which means that the strategy is selected dynamically according to the incoming packet name.

The current design of the NDN and CICN software prototypes gives the application developer

the option to pair a forwarding strategy with its application namespace, and therefore to

control the way the application packets are forwarded in the network. Thus, the application

developer gets the freedom to choose an existing forwarding strategy, or, alternatively, to

develop a new one to satisfy its application-specific needs. This is known as the name-based

strategy selection capability. While this capability might present new opportunities to ICN

application developers, it also poses new and significant challenges.

First, while an application developer can pair a forwarding strategy with its application

namespace in the localhost, forwarding strategies are assigned within nodes interior to the

network by the operators of those specific nodes. This difficulty can be mitigated in isolated

environments where application developers also operate the entire network, such as with the

global NDN testbed [53]. However, in general, it is not feasible for an application developer

to choose an in-network mechanism.

One can argue that an application’s strategy choice can be propagated everywhere in the

network by the routing protocol or another network mechanism. However, we argue that
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the true challenge does not lie in propagating an application’s choice, but in letting the

application choose a forwarding strategy.

Although it was never clearly specified by the ICN community, a strategy must implement

its ’face selection’ and ’failure response’ mechanisms with respect to local connectivity. We

provide a thorough explanation for that argument in the next subsection. However, even

without relying on a clear known statement, we witness numerous forwarding strategies that

were designed to address specific connectivity needs. For instance, the access strategy was

designed to forward Interests at the edge, the best-route strategy was designed to forward

Interests in the core network, and the strategies described in [11, 33, 63] were designed for

Wireless networks.

If an application pairs its name with a specific forwarding strategy, and if this forwarding

strategy implements specific connectivity mechanisms, then the application is coupled with

the network connectivity. Hence, the problem is not the distribution of an application’s

strategy choices, but it is the coupling of information and connectivity by the forwarding

strategy component. Therefore, neither application developers nor network operators can

optimally select a forwarding strategy, because the right choice depends on knowledge that

neither party alone possesses in its entirety.

To summarize this discussion, the lack of clear definition of the forwarding strategy role

leads the two contradictory assumptions: 1) A forwarding strategy can be paired with an

application namespace, and 2) A forwarding strategy can address desired connectivity char-

acteristics. If both assumptions are correct, then an application that chooses a forwarding

strategy is coupled with the connectivity the strategy implements. Hence, a forwarding

strategy couples both applications and network mechanisms, and therefore introduces chal-

lenges for an application developer who 1) cannot guarantee that the same strategy is used
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everywhere along the path(s) to the producer, 2) must modify its application whenever the

strategy changes due to changes in connectivity, and 3) should potentially develop different

versions of its application to address different network mechanisms. In other words, coupling

the mechanisms of both the network and applications in the forwarding strategy module does

not scale and makes it hard to develop ICN applications.

We argue that strategies cannot serve both applications and connectivity, because if they

do, then they couple applications to the details of connectivity. Therefore, the name-based

strategy selection capability does not comply with the request for named data abstraction.

In order to solve this conflicted role of the forwarding strategy component, we first seek to

provide a clear definition of its role.

2.3 On the Role of Forwarding Strategies

To clearly define the forwarding strategy’s role, we look at the ICN architecture as a whole

and identify the abstraction it aims to provide and how it provides it.

2.3.1 The Information and Connectivity Planes

We define that ICN applications operate in the Information Plane, and the network operates

in the underlying Connectivity Plane. To see why, consider that ICN applications ask for

data by name, and the network must find and retrieve that data. But how does the network

do that? Unlike IP, ICN is channel-less and consists of different hop-by-hop mechanisms to

find requested data. In practice, there is always an actual, real-world connectivity present

— e.g., the collection of one or more connectivity options, including WiFi links, Ethernet

links, TCP channels, BT, and UDP multicast. Because the properties of these different
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connectivities differ so widely, the best choice of mechanism in any given circumstance may

depend strongly on the specific connectivity available.

2.3.2 From HTTP to ICN

In the TCP/IP model, an HTTP name is translated to an IP address at the endpoint.

However, in the information-centric approach, the name used by an ICN application is

also used by the ICN network as the identifier of core network operations, including name-

based Interest forwarding, name-based routing, and name-based caching. The great benefit

of using the same identifier in both the information and connectivity planes is that the

application is not coupled with the connectivity properties of the channel. By contrast, in

the absence of sophisticated middleware which greatly increases application logic, HTTP-

based applications can break when 1) devices change IP addresses, 2) devices have and try

to use multiple concurrent interfaces, and 3) Internet connectivity is lost. It is true that

IP-based applications can implement mechanisms to respond to such events, but they are

still coupled with the events’ occurrences.

Unlike HTTP, ICN uses the request for named data abstraction in the network layer rather

than the application layer. Suppose that a consumer application asks: "What is the content

for this name?" Here, the consumer does not specify where the content can be found, or how

to get it. In theory, the consumer’s question can be answered simply by broadcasting it until

someone replies with the requested named data. However, broadcasting is an expensive

network operation, and flooding the network is not a scalable solution. Therefore, this

abstraction must somehow be translated by the network to a practical mechanism that can

efficiently find and retrieve the requested content. In other words, ICN must somehow move

from the information plane to the connectivity plane.

22



We illustrate the process of moving from the information plane to the connectivity plane by

asking two more questions: 1) "Who might have the content for this name?" and 2) "What

is the most efficient way to retrieve it"? These two questions should be answered differently,

according to the characteristics of the network and the nature of the underlying links.

We argue that the strategy module answers these two questions in the context of its specific

network environment, and therefore bridges the information and connectivity planes. Allow-

ing a spectrum of strategies to co-exist under the umbrella of the ICN architecture provides

flexible forwarding behavior that can be adapted to the characteristics of the local connec-

tivity. Hence, an application asks "What is the content for this name?" in the information

plane, and a strategy relies on a set of input considerations in the connectivity plane when

answering the questions of "Who might have the content?" and "How to retrieve it?".

2.3.3 The Forwarding Strategy’s Role

We specify the forwarding strategy as the architectural component that bridges the informa-

tion and connectivity planes in ICN. Moreover, we argue that choosing the right mechanism

when moving between the information and connectivity planes — the role of the forward-

ing strategy — is a critical element in the design of ICN, and what makes ICN operate in

both Internet-like infrastructures and dynamic, non-stable topologies where current Internet

methods do not work [1, 2, 3, 8, 48].

To be clear, the design and choice of specific mechanisms to bridge the two planes in any given

circumstance is a fascinating future problem. However, this chapter focuses on resolving

the tensions created because forwarding strategies, as presently defined, reconciles both

application and network considerations and manages the interests of both application and
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network operators. Therefore, the first step for decoupling information and connectivity is

to clearly specify which of the two the strategy component should address.

From our definition of its architectural role, it is clear that every forwarding strategy mecha-

nism must consider network characteristics. Therefore, in order to decouple information and

connectivity, we argue that forwarding strategies should not implement information-oriented

mechanisms, but should contain only connectivity-oriented mechanisms. When decoupled

from application-level mechanisms, forwarding strategies can be safely chosen and deployed

by network operators, according to the connectivity they manage.

To summarize this chapter, we argued that the underspecified role of the forwarding strategy

component brought it to couple information and connectivity, and as a result to break the

ICN promise. To address the problem, we first illustrated the questions ICN must answer

when translating its abstraction into a set of practical network protocols. Second, we specified

the forwarding strategy component as the one that answers those questions with respect

to local connectivity characteristics and therefore bridges the information and connectivity

planes in ICN. Third, we argued that forwarding strategies should implement connectivity-

oriented mechanisms, and be decoupled from information-oriented mechanisms. Therefore,

forwarding strategies should be selected by network operators according to the connectivity

they manage, and should not be paired to namespaces by application developers.

2.4 Forwarding Strategies in Related Work

In this subsection, we briefly discuss the mechanisms of forwarding strategies in NFD, CICN,

and related research.
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The first forwarding strategy implemented in ICN was the default CCNx strategy, which is

also known as the ncc strategy in NFD. In this strategy, the NDN router forwards a received

Interest packet on one face and waits for a Data packet to be returned. If the packet arrives

within a specific predicted time set by the strategy, usually referred to as the prediction timer,

then the face is remembered as the "best" face, and it is used to forward future interests of

the same name. If the prediction timer expires before the arrival of a Data packet, the

strategy retransmits the Interest again to another available face. The CCNx default strategy

is distinctive in the way it adjusts its prediction timer. Every time a Data packet is returned

on the selected best face, the predicted wait time is adjusted down so that the prediction

timer will expire faster the next time. When the Interest is not satisfied within the predicted

wait time, the prediction timer is adjusted up. Thus, the strategy tries another available face

whenever the prediction timer is too short to allow a successful response from the previously

working face. When that happens, the predicted time is adjusted up again to allow the

new face to respond with data. Thanks to this mechanism, the strategy timer approaches

the actual round trip times after an initial exploration phase. In addition, this mechanism

guarantees that other faces will be eventually given a chance to satisfy a namespace.

The best-route strategy, also used in NFD 0.4, is the default strategy for new applications

and the gateway routers in the NDN testbed [53]. In best-route, every Interest packet is

forwarded to the cheapest face, which is determined according to the cost assigned by the

routing protocol. The named-data link state routing protocol (NLSR) [37] is currently the

routing protocol configured to work with the best-route strategy on the testbed. When

the face fails to respond on time, the strategy drops the Interest, and the application can

choose whether to retransmit the Interest again. The strategy decides whether to suppress

or to forward the application retransmission on a different face. This decision is made by a

suppression timer set by the strategy. The suppression timer algorithm has changed several
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times in recent NFD versions. The best-route strategy keeps sending future Interests on the

same face as long as that face has the cheapest cost, regardless of its success in returning

the requested data. If the face is unresponsive, the routing protocol might delete the face

from the FIB table [79].

The loadsharing strategy as implemented in CCNx 0.82, follows the same logic and forwards

the Interest to the best available face selected according to feedback received in previous

transmissions.

The multicast strategy, as implemented in NFD 0.4, forwards the Interest packet to all

the available faces simultaneously. If there is no available face to forward the packet on,

the strategy replies with a NACK packet. This strategy is similar to the parallel strategy

implemented in CCNx 0.82.

The access strategy trades off between the best-route and multicast strategies. It first learns

which next hop can satisfy an Interest by multicasting it to all possible next hops. The

first upstream face to respond with the content is then remembered and used for future

Interests. If the preferred upstream face later fails to satisfy an Interest with a similar name,

the Interest’s retransmission triggered by the consumer causes the strategy to start a new

discovery phase by multicasting the Interest again.

The principles of an adaptive forwarding strategy are discussed in [80], and the details of

such a strategy, the GreenYellowRed strategy, are described in [78]. A dynamic forwarding

mechanism designed to discover temporary copies of content items is presented in [22]. The

work in [31] proposes a revised forwarding strategy that can better prevent or detect loops

in NDN.
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Related works have also explored potential strategies in Wireless networks, such as a strategy

for vehicular ad hoc networks in [33], and a set of adaptive forwarding strategies that can

use multiple access networks simultaneously in [63].

The work in [57] presents a probability-based adaptive forwarding strategy, including a sta-

tistical model to compute strategy retransmission intervals.

While related works explore different mechanisms and approaches for forwarding strategies

in ICN, our work is mainly focused on exploring the dynamics between applications and

forwarding strategies.
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Chapter 3

Information-Centric Transport

In Chapter 2, we identified that the underspecified role of the forwarding strategy component

couples applications with the details of connectivity mechanisms, and we explained how this

coupling complicates applications and prevents ICNs from fulfilling their promise. As a first

step towards a potential solution, we specified the role of the forwarding strategy component.

In this Chapter, we take a step forward and discuss how applications could be decoupled

from connectivity using a new architectural component — Information-Centric Transport

(ICT).

3.1 Decoupling Information from Connectivity

Specifying the role of forwarding strategies in Chapter 2 led to the conclusion that for-

warding strategies should not be exposed to applications. However, decoupling applications

from forwarding strategies is not enough to decouple information from connectivity, because

disabling the name-based strategy selection capability eliminates all in-network information-

oriented mechanisms from ICNs. It may not seem to be a problem because, as stated by the
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end-to-end principle, applications should always implement their own mechanisms and never

trust any network component to do that for them. However, we argue that, to some degree,

in-network information-oriented mechanisms are required to truly decouple information and

connectivity.

To see why, consider a network failure such as intermittent or lossy links, in which one or

more Interest and Data packets are lost. What should ICNs do? There are two options:

ICNs can either wait for the application to decide how to deal with the failure, or ICNs can

use their stateful forwarding plane and address the failure at the point it was discovered.

If ICNs simply wait for the application to decide what to do, then ICNs’ applications are

not different from HTTP-based applications. For both types, the application is coupled with

network failures, and therefore with connectivity concerns. It is true that an ICN application

can use an endpoint library to implement connectivity-related mechanisms, but it would still

be coupled with the occurrences of network failures. Moreover, a consumer’s mechanisms

by themselves are not sufficient to guarantee data resiliency. For instance, consider an

intermittent-path scenario, where there is never a Synchronous End-to-End Path (SEEP)

between a consumer and the source of the requested content (either a producer or a network

cache). In this case, the consumer may never get the requested named data. Therefore,

implementing information-oriented mechanisms only at the endpoint does not fully decouple

the information and connectivity planes.

The second option, responding to network events at the point of failure, is also challenging.

It is true that the stateful ICNs’ forwarding plane can be utilized to react to network failures

[57, 62], but do all applications benefit from the same in-network mechanisms? Consider the

following questions: Is it always right to retransmit an Interest? Is there a point where the

data becomes irrelevant to the application and an Interest for a different name would better
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serve the application needs? If so, when is this time? What about Data packets? Should

ICNs store all previous versions of Data packets for the same name? We argue that different

types of applications can provide different answers to such questions. For instance, a video

streaming application may want to retransmit only Interests for a specific frame, while a

dropbox style application would not have any constraints on the timing, and would always

benefit from Interest retransmissions. Moreover, a location-based application may want to

receive the latest Data packet, while a chat application would require all Data packets to

display all chat messages.

To conclude, we argue that the requirements for information-oriented mechanisms vary be-

tween different types of applications. We also argue that in some scenarios, such as lossy

links and lack of SEEP, in-network mechanisms are required to fully decouple the information

and connectivity planes. Furthermore, as explained in Chapter 2, we also argue that for-

warding strategies should not be exposed to applications, and therefore, they cannot be the

architectural component that implements information-oriented mechanisms in the network.

This conclusion leads us to discuss Information-Centric Transport (ICT).

3.2 Information-Centric Transport

Our approach to the solution is to add a new architectural component to ICNs, named

Information-Centric Transport (ICT), as a component that can address application-level

needs, and can implement in-network mechanisms where needed to decouple information

and connectivity.

We define ICT to be a communication mechanism that implements information-oriented

communication mechanisms, and presents an abstraction for applications. We propose that
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ICNs implement a set of ICTs to support different abstractions for different application re-

quirements. Every ICT consists of two components: an API for applications at the endpoint,

and an intermediate service that can run on selected devices in the network.

The primary goal of this dissertation is to demonstrate how by relying on ICT abstrac-

tions instead of forwarding strategies, applications can achieve different application-level

requirements, and control in-network mechanisms for data resiliency while staying in the

information plane. To do that, our system-oriented approach implements different applica-

tion abstractions, and evaluates them on lossy connectivities including lack of SEEP in the

network.

To illustrate the concept of ICT, consider how it relates to traditional notions of transport.

Existing transport concepts can readily be seen in the IP protocols, which can be viewed as

Connection-Centric Transport.

• Connection-Centric Transport (CCT): concerned with endpoints and channel charac-

teristics, such as reliability and in-order delivery.

• Information-Centric Transport (ICT): concerned with application abstractions, data

names, and the trust relationships between named identities.

The properties of a CCT are channel-based, and CCTs such as TCP and UDP enable applica-

tions to meet different reliability requirements. An IP-based application can also implement

its own transport mechanisms by following the Application-Level-Framing (ALF) concept

[23]. Related work has shown that ICN can provide similar transport mechanisms for ap-

plications with CCT requirements [30, 36, 51]. Therefore, it is important to note that ICT

does not preclude CCT transport mechanisms for ICN applications. Instead, ICT extends
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the concept of transport to include new abstractions for applications that are concerned with

namespaces, and that want to stay in the information plane, decoupled from connectivity.

To be clear, the concept of ICT does not guarantee that applications will always operate

perfectly under any given connectivity. Instead, it promises that ICNs will provide a set of

abstractions for their applications, and that the network will make its best effort to support

those abstractions in different connectivities.

Moreover, as we show in Chapters 4-6, in contrast to the simplicity of the request for named

data abstraction, implementing ICN applications is not always simple or intuitive. We argue

that it is challenging to implement relatively simple applications when the application re-

quirements are not aligned with the consumer-producer pull-based paradigm. The examples

discussed in this dissertation include applications that want to push content instead of pulling

it, and applications that want to partition their data and distribute the subsets among multi-

ple producers. Therefore, we argue that the goal of ICTs is twofold — one, provide essential

abstractions for ICN applications, and two, decouple applications from connectivity.

The intermediate ICT mechanism is deployed by the network operator where connectivity

characteristics require it (such as in intermittent links or in dynamic and mobile networks).

When deployed in the network, an ICT must address requirements raised by the Information

plane, and a forwarding strategy addresses concerns raised by the connectivity plane. There-

fore, ICT is information-oriented, while the forwarding strategy is connectivity-oriented. For

instance, an ICT can express relevant Interest packets and store data packets if needed for

resilient data delivery, and the forwarding strategy can add, remove, or probe potential

next-hops in response to connectivity changes.
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3.3 Challenges with In-Network Transport

To scope the discussion in this subsection, we reiterate that in some network scenarios, such

as the lack of SEEP or when network links are intermittent, in-network information-oriented

mechanisms are needed to decouple information and connectivity. Therefore, we defined the

ICT component as an architectural component that can implement in-network information-

oriented mechanisms. However, this has three main challenges:

1. Scalability: How can an in-network information-oriented mechanism be scalable?

2. Marking and Classification: How can an intermediate ICT mechanism classify the

application-level needs?

3. Security and Trust: Can an intermediate transport be trusted?

In this subsection, we discuss these challenges and set the high-level principles for in-network

information-oriented mechanisms.

3.3.1 Scalability

The end-to-end principle [61] determines that, for scalability, application-specific features

should remain at the endpoints and never reside in the network. Although ICN already

maintains an in-network state in its PIT and CS, we argue that to ensure scalability, an ICT

should never implement any application-specific mechanisms. Therefore, an intermediate

ICT mechanism must be implemented to capture abstractly a specific set of application-

level needs, and for scalability reasons, those needs must be shared among different types of

applications. In other words, an ICT must implement a primitive mechanism.
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We think that a future set of ICT abstractions can address a substantial range of abstract

application needs, from purely semantic needs to performance and reliability. However, this

dissertation does not define the ultimate set of ICTs in ICNs because, to the best of our

knowledge, there is no comprehensive understanding of the needs and requirements of ICN

applications. We argue that this set should be finite and kept small for practical deployment,

but exploring the different application-level requirements that should be implemented by

different ICTs is a rich area for future work. We anticipate that a number of widely useful

ICTs will emerge over time.

Once an ICN abstraction has been introduced and an ICT has been implemented, an appli-

cation can pair its code with the ICT’s endpoint library and API. Using an ICT’s library

results in three outcomes: 1) The application declares that its application-level requirements

are aligned with the information-level requirements implemented by the ICT. 2) The ICT li-

brary satisfies the application-level needs by implementing information-oriented mechanisms,

including sending and receiving Interest and Data packets. 3) The ICT library expresses the

broadly applicable application-level requirements, so that an intermediate ICT component,

deployed in the network, can identify and classify its packets.

3.3.2 Marking and Classification

The next challenge of in-network transport is marking and classification. While this chal-

lenge can be discussed as a scalability concern, we discuss it separately due to the special

characteristics of ICN packets.

In the past, packet classification was defined as the process that categorizes packets into flows

by following a pre-defined set of rules [13, 28, 34, 35]. In IP, the area of packet classification

has been widely researched and explored in the context of Quality of Service (QoS) [60, 77].
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But there is a fundamental difference between algorithms for QoS and ICTs. The purpose

of QoS is to control and manage network resources by setting priorities for specific types of

data. However, the purpose of ICT is to provide different transport mechanisms to different

types of packets. In other words, QoS is the ability to provide different priorities to different

applications, while ICT is the ability to provide different processing mechanisms for the

applications’ packets.

Related ICN work suggests adding functions to Interest packets [67], and executing those

functions in the network. However, this approach relies on fundamental changes to the CCN

and NDN architectures. Adding a Transport layer to ICN packets might be an appropriate

long-term solution, however in this work, we aim to use existing NDN code and tools to

demonstrate the ICT concept without modifying the architecture or the packet format.

Another option for marking and classifying transport requirements in the network is to

decode them in the application payload. This approach is known as the Application-Level-

Framing (ALF) approach [23], and it was suggested in the context of ICNs in [51]. However,

this approach cannot be taken by in-network transport because it breaks the ICN trust model.

In ICNs, every packet is signed and validated at the endpoints, thus, extracting transport

requirements from the payload would require in-network nodes to decode and validate signed

packets. For this reason, adding transport information to the application presents efficiency

challenges and violates the ICN trust model.

To comply with the request for named data abstraction, we propose that the transport

requirements will be encoded in the Interest and Data names. Hence, an intermediate ICT

can understand the application-level requirements from the Interest and Data names. But

encoding transport requirements in the name can be a challenging task because it either

requires that an intermediate ICT mechanism would recognize arbitrary application names,
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or determines that an application name should be designed to meet the expectations of an

intermediate ICT mechanisms.

Clearly, an intermediate ICN node cannot understand arbitrary application names, and

therefore the application must encode its transport requirement in a general-purpose way

that can be recognized by an intermediate ICT mechanism. However, if the application

must design its data names to meet the expectations of an intermediate ICT mechanism,

then the application must be modified every time the intermediate mechanism is changed or

updated. This solution is not scalable and does not comply with the request for named data

abstraction that serves as the motivation of this dissertation.

Therefore, we argue that it is the ICT library at the endpoint that should encode the ap-

plication’s transport requirements into the Interest’s name, and that it should do it in a

general-purpose way that is transparent to the application but known to the intermediate

ICT component. Every change to the intermediate ICT should be handled either by an

update to the ICT’s endpoint library or by having an intermediate ICT mechanism support

earlier versions of endpoint encoding.

The second challenge of encoding transport requirements in the name is to determine what

exactly should be encoded. An intuitive way to mark ICT requirements in the name is to

add an ICT name component as a name prefix. However, in Chapter 4-6, we show that

simply marking the ICT name as a name component is not always sufficient to provide

a context-based, but broadly applicable, transport mechanism. For instance, an ICT-Sync

prefix can classify the application’s packets as sync-based, but it can not provide the required

context to determine which names have already been synced and which have not. Similarly,

an ICT-Notify prefix can classify the application’s packets as notification-based, but it does
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not provide the information required to understand which of the latest Data packets should

be pushed.

Therefore, we argue that there is no definitive answer to the question of what should be

encoded as transport information, and that the answer lies in the type and the semantics

of the abstraction the ICT aims to provide. For instance, as discussed in Chapters 4-6, the

transport requirements for sync-based applications can be encoded as the state of the shared

dataset, while the transport requirements for notification-based applications can be encoded

as the timestamps of Data packets.

We conclude this subsection by saying that in order to mark and classify an application’s

transport requirement for in-network processing, the endpoint ICT library must translate

the arbitrary application name into an ICT name that provides broadly-applicable context,

and is not application-specific.

3.3.3 Security and Trust Considerations

A core principle in the design of an ICT is to address broadly-applicable application needs.

And as discussed in subsection 3.3.2, those needs should be represented in the Interest’s

name. Thus, an intermediate ICT component is not required to look into the application

payload. As a result, ICT can maintain the application’s trust model and is not required to

decrypt or validate Data packets.

However, in some scenarios, an intermediate ICT must express Interests and construct Data

packets to support the application’s transport requirements. For instance, ICT-Sync must

express sync packets when it learns about a change in the state of the shared dataset, and

ICT-Notify needs to aggregate multiple Data packets into a new one when it receives simul-

taneous Data packets for the same name.
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When an ICT generates a packet, either an Interest or a Data, it must sign it so it can be

validated by the endpoint ICT component. Using an intermediate service to sign or encrypt

packets leads to key management questions, in which the endpoints must hold a copy of the

intermediate’s public key. Algorithms for key management in ICNs were proposed in [7, 38,

81]. However, future work should explore the trust implications of an intermediate node

signing and encrypting ICN packets.

3.3.4 ICT Summary

To conclude this Chapter, we have proposed Information-Centric Transport (ICT) as both an

abstraction and a communication mechanism that aims to decouple applications from connec-

tivity and allows applications to operate in the

information plane, free from connectivity concerns. To achieve this goal, an ICT provides

both endpoint and in-network transport mechanisms by implementing a specific, but broadly

applicable, set of well-defined application requirements. Figure 3.1 shows that an ICT con-

sists of two components: an API for applications at the end hosts, and an intermediate

service that runs on selected devices in the network.

Although we cannot predict the final set of ICTs in ICNs, the next chapters explore several

challenges of existing ICN applications, identify three sets of broadly applicable application

needs, and propose ICTs to address them. Chapters 4-6 not only show that ICT libraries ad-

dress significant implementation challenges, but also show how the intermediate component

of an ICT allows applications to stay in the Information plane, decoupled from connectivity

and from in-network mechanisms.

Three ICT abstractions are discussed in the following chapters of this dissertation are:
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Interest / Data

Figure 3.1: ICT as a two-component transport mechanism in ICN: A library API resides at
the end-point, and an intermediate process resides in the network

• ICT for data synchronization: this chapter discusses sync abstractions for applications

that want to maintain data consistency over time of all the content under a shared

namespace. Chapter 4.5 explores different mechanisms to provide data synchronization

in NDN and CCN, and discusses their implementation details and evaluation.

• ICT abstractions for distributed applications that want to reliably push their latest

data. Chapter 5 explores the challenges in implementing push notifications in ICNs,

and more specifically, when multiple parties push simultaneous notifications under the

same prefix.

• ICT abstractions for fetching distributed partitioned named data. This abstraction

is meant for applications that want to keep their dataset partitioned and distributed

among multiple producers, while allowing consumers to reach the right producer with-

out being coupled with routing and forwarding mechanisms.
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For every proposed ICT we discuss the following:

• The broadly-applicable requirements the ICT aims to satisfy.

• Examples of applications that can use the ICT’s abstraction.

• Known challenges in the area and related works.

• Either the implementation details of an ICT mechanism, or proposed mechanisms.

Including the roles of the API and the intermediate ICT components.
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Chapter 4

Data Synchronization

This chapter explores data synchronization, usually referred to as sync, as an application

abstraction. The communication model of Sync is a group of endpoints, in which every party

in the group wants to have a replica of the content produced by the other members of the

group. Therefore, the process of data synchronization can be described as the process that

provides data consistency of a shared dataset over time, and the dataset is the union of the

distributed data items.

Although in this chapter we discuss data synchronization in the context of ICN, the premise

of sync is widely used by many of today’s popular applications, such as cloud storage, group

communication, and media sharing. The files in a Dropbox [73] directory are an example of

a synchronized dataset, in which a copy of each file is created and kept up-to-date among

the user’s devices and the Dropbox server. Another example of a synchronized dataset could

be all the messages typed in a chat room. Here, the up-to-date dataset must consist of all

messages typed by all the chat participants.
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The objective of a distributed synchronization protocol is to send the smallest possible

amount of information over the network, hence to avoid sending the entire shared dataset

every time it changes, and to keep sync latency low and acceptable.

We decompose the problem of data synchronization into three main tasks: 1) Understanding

whether an instance of a shared dataset is up-to-date or out-of-date, 2) Finding the set

difference between two or more instances of the shared dataset , and 3) Retrieving the missing

items found in the set difference. The second task lies at the heart of every synchronization

mechanism.

4.1 Sync in ICNs

In ICNs, data is represented by a namespace, and a namespace can represent any type of

content, such as a file name, an application state, a chat message, or a video chunk. Therefore,

while a synchronization mechanism in IP must consider the type of the application’s data, a

synchronization mechanism in ICNs can be generalized to synchronize namespaces instead

of content items. Hence, an ICN synchronization mechanism synchronizes a set of shared

namespaces, and the application decides if and when to fetch the content associated with

the namespace by expressing a regular Interest packet.

In recent years, keeping namespaces synchronized has emerged as a basic service required by

many ICN applications, such as Dropbox-style file sharing [4, 46], mobile and ad-hoc vehic-

ular communication [33], chat applications[86], routing protocols[37], and key management

services deployed on the NDN testbed [19].
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4.1.1 Sync as Information-Centric Transport

To become an ICT, ICNs must implement a sync mechanism, with a clear library API pro-

vided to application developers, and an in-network sync mechanism provided to the network

operator. While the deployment of the in-network mechanism depends on the network’s

best-effort policy, an ICT is required to implement one. Applications with requirements

to synchronize a shared set of namespaces should be able to use the ICT-Sync API to: 1)

Register a dataset name to be synchronized, such as the directory name in a file-sharing

application, and 2) Add a name to the shared set of namespaces, such as a new file name.

The sync mechanism implemented by the ICT should monitor the participants who regis-

tered the same dataset name, and notify the application whenever a new name was added

or deleted.

We show how the first two tasks of namespace synchronization, determining if the set is up-

to-date and finding the set-difference, can be provided by the ICT, while the third task can

be left to the application. This approach allows ICN applications to maintain the knowledge

about a shared dataset of names, without having to fetch the entire set of content items.

For instance, a chat application on Bob’s laptop can find that another participant, Alice,

added a chat message named Alice/message10, but can decide not to fetch the content of

Alice’s message if Bob previously blocked Alice. Moreover, we show in this chapter how the

mechanisms that implement the first two tasks heavily rely on the data structure chosen to

represent the synchronized set of namespaces, and therefore has a significant impact on the

performance of the sync mechanism.

In the remainder of this chapter, we discuss related works, and we describe the details of two

sync protocols we designed and implemented: ICT-Sync for the NDN architecture, and iSync

for the CCN architecture. While both mechanisms share the same goal of synchronizing a
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shared dataset of namespaces, they differ in their dataset representation, and therefore, in

the way they identify and reconcile the set-difference. ICT-Sync uses a vector to represent

the latest sequenced name of each party, while iSync uses a hierarchical invertible Bloom

filter to represent arbitrary names in a shared dataset. By discussing the two different

sync mechanisms we present the challenges and tradeoffs of different ICT mechanisms for

data synchronization. However, it is important to note that standardizing different sync

mechanisms into one global ICT remains a rich area for future work.

1. ICT-Sync: A synchronization protocol for NDN, designed and implemented as a two-

component ICT. ICT-Sync uses a list of tuples to represent a set of sequenced names-

paces. We evaluated ICT-Sync in a range of connectivities to demonstrate the con-

cept of ICT, and compared its performance to another NDN synchronization protocol,

named ChronoSync [85].

2. iSync: a synchronization protocol designed and implemented in earlier versions of

CCNx. iSync uses a hierarchical invertible Bloom filter data structure to represent a

set of arbitrary namespaces. Hence, the namespaces don’t have to be sequenced. We

evaluated iSync and compared it to the official synchronization protocol of the CCN

architecture, named CCNx Sync [20].

4.2 Related Works

Data synchronization is widely used and plays an important role in traditional and emerging

network premises. Different approaches to identify the set-difference are taken by different

applications. The well-known rsync [66] was the first to suggest a solution that does not

transfer the complete dataset over the network but send only the deltas instead. Rsync

is a pairwise algorithm that synchronizes remote files and directories by sending only the
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missing file chunks. Rsync discovers the set-difference by calculating the block checksums

of a synchronized file on one host, and sending the list of the calculated checksums to the

remote host. The remote host goes over its local copy of the file and compares its local

checksums to the received list. Then rsync identifies the missing blocks in its local file and

requests those blocks from the remote host.

Another common approach to identify the set-difference is a timestamped log. One host notes

the changes to its local dataset in a local timestamped log, and therefore the set-difference can

be identified by transferring the log notes added after the last synchronization cycle. While

log-based synchronization solutions are practical and easy to implement, their performance

dramatically decreases when the number of parties scales up, due to the complexity of

transferring, parsing, and comparing multiple files in every sync cycle.

Additional research efforts have focused on synchronization protocols such as surveys [6] and

on the synchronization of two nodes in scenarios of a small set of differences [75]. Most of

the recent works in this field are well-known commercial projects such as BitTorrent Sync

service [69], DropBox [73], and Google Drive [74].

In ICNs, the Custodian-Based Information Sharing (CBIS) system [40] was the first imple-

mentation of ICN-based sync service. In this early paper, the authors discussed the high-level

principles of what later became the foundation of other sync protocols designed to support

ICN applications.

The following sync services for ICN have been proposed in related work: ChronoSync [85],

CCNx Sync [20], PartialSync[84], and vectorSync [64]. While these protocols can be differ-

entiated by their implementation details, including their namespace design, mechanism, and
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data structures, they all follow the same high-level sync goal of providing a continuous syn-

chronization of namespaces. In the following subsections, we discuss the relevant background

details of ChronoSync[85] and CCNx Sync [20].

chronoSync

In Section 4.3, we discuss the design and implementation of ICT-Sync, and evaluate it by

comparing its performance to ChronoSync. Therefore, in this subsection, we provide the

relevant background details of ChronoSync[85].

To represent a set of shared namespaces, ChronoSync uses a digest tree and a log of sequence

numbers to keep track of the changes made by each participant. Every participant in the

synchronization service is represented by a node in the sync tree, and this node holds the

participant digest and its latest sequence number. In other words, the participant node

represents the status of the participant dataset. The root of the sync tree holds the name

of the dataset, and the digest that represents the state of the dataset. Therefore, two sync

trees of the same name are considered up-to-date only if their root digests are equal.

Figure 4.1 shows an example of ChronoSync’s digest tree, and figure 4.2 shows the digest log.

In this example, Alice, Bob, and Ted participate in a chat room named /chatRoom/wustl,

when Alice adds her 18th message. Here, Alice’s digest changes to represent Alice’s new

message, and as a result, the root digest of the entire sync tree changes.

To participate in the synchronization process, a distributed party must first use ChronoSync’s

API to publish the sync prefix, for instance /chatRoom/wustl. Then, ChronoSync uses this

sync prefix, together with the root digest, to notify all the registered parties about a change

in their shared set of namespaces.
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Alice’s sync tree
After she adds message #18

/chatRoom/
wustl/a132

20e 1e3 17f

/chatRoom/
wustl/bd4

2af 1e3 17f

Alice/17 Bob/8 Ted/35 Alice/18 Bob/8 Ted/35

Figure 4.1: ChronoSync Sync Tree

State Digest Changes
000 NULL
9w3 [Alice’s prefix, 1]
… …

a132 [Bob’s prefix, 31], 
[Alice’s prefix, 17]

bd4 [Alice’s prefix, 18]

Figure 4.2: ChronoSync Digest Log
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Periodically, ChronoSync triggers a sync Interest containing the root digest of the local

sync tree to notify remote parties about the status of the dataset. Upon receiving a sync

Interest, ChronoSync compares the received digest with the local root digest to determine

whether its view of the dataset is up-to-date. If the incoming root digest is equal to the local

root digest, ChronoSync determines that the set is up-to-date. If the digests are different,

then ChronoSync looks for the incoming root digest in its digest log. If it finds it, then it

shows that the recipient of the sync Interest has more recent knowledge about the shared

dataset, than ChronoSync responds with a Data packet to reconcile the missing names. In

our example, when Alice receives a sync Interest with digest ’a132’, it would respond with a

sync Data packet that consists of Alice/18.

If the incoming digest is not equal to the local root digest, and the incoming digest cannot

be found in the digest log, then ChronoSync waits for a fixed amount of time to allow other

parties to respond to its own sync Interest. If no sync Data packet arrives within the fixed

time interval, ChronoSync enters recovery mode, and requests others for their entire set of

names.

Upon receiving a sync Data packet, ChronoSync updates the local sync tree with the received

data, and notifies the application about the new sequence number added by the participant.

In our example, Alice’s sequence number 18. The application then can fetch the content by

exchanging application-level Interest and Data packets for Alice/18. Here, we simplified the

participants’ names to be Alice, Ted and Bob, but in practice, their names would consist of

additional name components to indicate a routable name.
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CCNx Synchronization Protocol

In section 4.4 of this dissertation, we compare the performance of iSync to the performance of

the CCNx Synchronization protocol (CCNx Sync). Therefore, in this subsection, we provide

the relevant background details of CCNx Sync.

The Content-Centric-Networking project (CCNx) project [55], implemented by PARC, was

the first open source implementation of an ICN architecture. This project was later acquired

by Cisco and renamed CICN. The initial implementation of CCNx consisted of two main

components: the CCNx deamon (ccnd) and the CCNx repository (ccnr). The ccnd compo-

nent implemented the forwarder as well as the FIB, PIT, and CS infrastructures. The ccnr

component implemented the CCNx repository, which can be used by the network or by an

application to preserve required data, such as a routing table, file contents, or an application

state.

The CCNx Sync protocol defines a collection as a set of content items, all sharing the

same name prefix. The protocol operates between two neighbor nodes that declared the

same collection, and keeps the collection up-to-date by synchronizing the differences. For

synchronization, CCNx Sync uses a tree-based structure called the Sync Tree. A single Sync

Tree represents the prefixes of all the content items in a single collection.

Upon the addition of a content item to the CCNx Repository, ccnr checks if the content

name answers the definition of an existing collection. If it does, then the content’s name is

added to a Sync Tree leaf of the corresponding Sync collection. A hash value is computed

for each of the inserted names. Thus, each leaf holds a list of content names and a combined

hash representing the arithmetic sum of the local names’ hash values. The other Sync Tree

nodes hold the combined hashes of their children. Using this tree structure, the root node
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Figure 4.3: CCNx Sync Tree

of each Sync Tree holds the combined hash of all the names stored under the represented

collection.

Figure 4.3 presents an example of a CCNxSyncTree containing four names: a/1, a/3, a/y/1,

and a/4. In this example, the first two names compute a combined hash of 0x8, while the last

two names compute a combined hash of 0x6. The root hash in our example is 0xE. Figure 4.4

shows the protocol timeline upon the insertion of a/4 into Alice’s collection. Thus, Alice’s

sync tree of a specific collection includes the inserted name a/4, while Bob’s collection is

represented by the same tree without a/4.

To keep the collection up-to-date, Alice sends a periodic Root Advise interest to Bob, includ-

ing the collection name and its root hash. Upon reception of a Root Advise interest, Bob

compares its local root hash with the remote node root hash. Equal root hashes imply the

collection is up-to-date in both nodes, while different hashes imply a collection difference.

In our example, Bob understands that its local collection is out-of-date. To reconcile the

differences, Bob sends a Node Fetch interest that contains the collection name as well as the

unrecognized hash value. Alice responds with the children’s hash values list of the unrecog-

nized hash. In our example the children of 0xe are 0x8 and 0x6. Bob recognizes 0x8, but

does not recognize 0x6, and therefore sends an additional Node Fetch interest to requests
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RootAdvise (RA), roothash 0xE 
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NF data, roothash 0xE. Data: 6, 8 

Alice Bob 

Interest for a/4 

Data of a/4 

New content 

Figure 4.4: CCNx Sync Timeline.

for the content of 0x6. Now, the unrecognized hash represents a leaf in Alice’s sync tree,

and therefore the list of the names stored in that leaf is sent as the data response. Here,

Alice responds with a/y/1 and a/4. At this point, Bob understands that the set-difference

of its collection is a/4. The remote and the local nodes can exchange Node Fetch interests

and data packets until the data packet includes the list of all the missing contents names

and, hence, the set difference. Once a node reconciles the names, it sends a regular interest

packet to fetch the content of the reconciled names. In this example, seven packets are sent

to reconcile the addition of a single name. An update to another collection will result in an

additional set of packets as described in Figure 4.3.

It’s important to note that the names described in the example were simplified to present

names that share the same a/ prefix. In reality, the prefix used by a CCNx Sync collection

consists of additional components to indicate the forwarding routes.
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4.3 ICT-Sync

As discussed at the beginning of this chapter, the core task of a distributed sync mechanism

is to identify and reconcile the set-difference, using the smallest amount of data transferred in

the network. As shown in subsection 4.2, ChronoSync, the leading sync protocol in NDN, uses

a digest in the Sync interest name to represent the state of the shared dataset. By comparing

two digests ChronoSync can tell whether the dataset is up-to-date or not. However, solely

comparing two digests is not enough to identify the set-difference. To find the set-difference,

ChronoSync maintains a local digest log to indicate the difference between two subsequent

digests. However, in the case of simultaneous updates, the set-difference cannot be found in

the digest log. When this happens, ChronoSync must use "recovery" packets that consist of

the entire synchronized dataset, and result in (at least) one additional RTT.

ICT-Sync was designed to find the set-difference directly from the sync Interest name to

avoid the penalty of recovery packets, and without the need to maintain a log. ICT-Sync

follows the sequential data naming convention proposed by ChronoSync. However, unlike

ChronoSync’s digest tree, ICT-Sync represents a sync group — a shared set of sequenced

namespaces — using two lists of tuples. The first list, named the status list (sl), consists of

two items: a UID and a sequence number. The UID represents an application party, and

the sequence represents the number of names added to the shared dataset by the party. The

second list of tuples, named the mapping list (ml), maps every UID into a full party name.

For instance, a shared dataset of Alice, Bob and Ted contains all the sequenced data names

of the three. If sl=([h1x1:10];[h2x2:13];[h4x2:11]), and ml=([h1x1:Alice/ProfilePicture/];

[h2x2:Bob/ProfilePicture/];[h4x2:Ted/ProfilePicture/];) shows that Alice, with party UID

’h1x1’, published 10 names: Alice/ProfilePicture/1, Alice/ProfilePicture/2, ...

Alice/ProfilePicture/10. Bob has a UID ’h2x2’, and he published 13 sequenced names with
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the prefix Bob/ProfilePicture, and Ted has a UID ’h4x2’, and he published 11 sequenced

names with prefix Ted/ProfilePicture.

While ICT-Sync approach to explicitly represent the synchronized dataset in the Interest

name is similar to the high-level approach suggested in [64], ICT-Sync does not rely on

vectors or membership protocol. Clearly, the two lists of tuples can be coded as a single

list. However, we describe ICT-Sync’s data structure as two lists to demonstrate how only

sl is needed to find and reconcile the set-difference of every two parties, and therefore, is the

information exchanged by sync packets.

Figure 4.5 shows how by exchanging their sl, Alice, Bob and Ted can not only identify if their

view of the shared dataset is out-of-date, but can also find and reconcile the set-difference.

Alice Bob

Ted

Alice’s sl=([h1x1:10];[h2x2:13];[h4x2:11]) Bob’s sl=([h1x1:10];[h2x2:15];[h4x2:11])

Ted’s sl=([h1x1:8];[h2x2:15];[h4x2:11])

Delta=([h1x1:10];[h2x2:15];) Delta=([h1x1:10];)

Delta=([h2x2:15];)

Figure 4.5: ICT-Sync Synchronization Model

4.3.1 ICT-Sync Synchronization Model and API

To participate in a sync group, an application party uses the ICT-API to register its UID

and name, and to specify the name of the group it wants to join. The application does it by
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using the Register API. All the parties that specify the same group name, are added to the

group’s sl and ml. To add a new sequenced name to the shared dataset, an application uses

the Add API. When ICT-Sync discovers a remote update to the group’s shared dataset, it

updates the application using the SyncUpdate callback.

Similarly to ChronoSync, ICT-Sync’s synchronization model uses sync names to synchronize

a shared list of data names. ICT-sync name consists of an ICT-Sync prefix, the group name,

and the group’s sl. The group name can be represented by one or more name components,

depending on the application in preference. A data name in the synchronized dataset consists

of the party’s routable prefix, the content name, and the content sequence number.

Figure 4.6 shows ICT-Sync synchronization model and its high-level API to applications.

The red text in the picture is an example of a file sharing application, with a ’ProfilePicture’

as its sync group name, and three known participants: Alice, Bob and Ted. The figure

shows how the application communicates with ICT-Sync using the three API calls, Register,

Add, and SyncUpdate, and can also communicate directly with the NDN forwarder to fetch

named data.

4.3.2 ICT-Sync Protocol

To maintain an up-to-date view of the synchronized set of data names, ICT-Sync multicasts

its sl to the other parties in the group. Upon the receipt of an sl, ICT-Sync compares its

local sl with the remote sl to determine if the two sets are the same. If the lists are different,

and the local sl has an up-to-date view of the set, hence a larger sequence for one or more

UIDs, then it responds with its own sl so the remote party could update its view. If the lists

are different and the remote sl has an up-to-date view of the set, then ICT-Sync updates its

local view according to the information in the received sl.
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Sync-based application
App-specific logic (File Sharing)  

Sync ICT

(ICT-Sync/FileShare/[h1x1:10];[h2x2:13];[h4x2:11
])

sl=([h1x1:10];[h2x2:13];[h4x2:11])

NDN	Forwarder

ml= ([h1x1:Alice/ProfilePicture/]; 
[h2x2:Bob/ProfilePicture/];

[h4x2:Ted/ProfilePicture/];)

Sync interests/Data

Alice/ProfilePicture/10

App-specific Communication
(Request named data/Send data)

SyncUpdate(DataName, SeqNumber)Add(SeqNumber)Register(GroupName)

Figure 4.6: ICT-Sync API

Figure 4.7 demonstrate the high-level details of ICT-Sync protocol, and shows how the

protocol handles simultaneous updates. Here, Alice, Bob and Ted form a sync group named

Group1. The table next to each participant shows its sync state at different points in

time. The first column indicates the step number, the second and third columns show

the participant’s sl and ml, and the fourth column shows the state of the incoming pending

Interest. A name in the fourth column indicates that the participant received a sync Interests

with this name, but was not able to satisfy it and therefore saved it for future processing.

Red text in the table indicates a change between the steps.

At step 1, the three parties register their data names and UIDs, and each multicast an initial

sync Interest: ICT-Sync/Group1/00. There sl and ml are still empty, but their incoming

pending Interest column shows that each party aggregate all the incoming Interests for this

initial sync state.
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At step 2, both Alice and Bob use ICT-Sync API to add a new sequenced data to publish.

Alice adds /Alice/1, and Bob adds /Bob/1. ICT-Sync updates sl and ml with the new

sequenced name, and searches its incoming pending Interest table. In this case, ICT-Sync

finds that both Alice and Bob have an incoming pending Interest for ICT-Sync/Group1/00,

and each responds to the pending Interest with its new state. Alice’s Data packet name

is ICT-Sync/Group1/00, with content: <Alice:h1x1:1>. Bob’s Data packet name is ICT-

Sync/Group1/00, with content: <Bob:h2x2:1>.

At step 3, Alice receives Bob’s Data packet, Bob receives Alice’s Data packet, and Ted

receives only one of them. In this example, we assume Alice’s message consumes the PIT

first, and therefore arrives at Ted while Bob’s Data packet gets dropped. When receiving

the Data packets, each party reconciles the differences according to the information it finds

in the content.

At step 4, after the three updated their local state, each sends a new pending Interest to

announce its new sync state. Here, both Alice and Bob receive two Interest packets, one

from the other and another from Ted. ICT-Sync on both Alice and Bob identifies that the

set-difference between the local state and Ted’s state is not empty.

At step 5, both Alice and Bob respond to Ted’s Interest with a Data packet, and Ted’s

ICT-Sync reconciles the difference and updates its local state.

4.3.3 The Intermediate ICT-Sync Component

Like other synchronization protocols, the goal of ICT-Sync is to maintain data consistency

over time of a shared namespace. However, ICT-Sync was designed according to the ICT

concept, and therefore, in addition to its endpoint library, it also consists of an optional

in-network mechanism that can be deployed by the network operator.
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Alice Bob

Ted

Step sl ml Incoming	Pending	Interest

1 <00> <> ICT-Sync/Group1/00

2 <h1x1:1> <h1x:1:Alice> ICT-Sync/Group1/00

3 <h1x1:1,h2x2:1> <h1x:1:Alice,h2x2:Bob>

4 <h1x1:1,h2x2:1> <h1x:1:Alice,h2x2:Bob> ICT-Sync/Group1/<h1x:1:Alice,h2x2:Bob>
ICT-Sync/Group1/<h1x:1:Alice>

5 <h1x1:1,h2x2:1> <h1x:1:Alice,h2x2:Bob> ICT-Sync/Group1/<h1x:1:Alice,h2x2:Bob>
ICT-Sync/Group1/<h1x:1:Alice>

1. All three send Interest: ICT-Sync/Group1/00 
2. Alice and Bob publish a new sequenced data
3. Alice receives Bob’s Data, Bob receives Alice’s. 

Ted receives only Alice's.
4. Everyone sends a new long lived interest with their updated sl
5. Alice and Bob respond to Ted’s Interest

Step sl ml Incoming	Pending	Interest

1 <00> <> ICT-Sync/Group1/00

3 <h1x1:1> <h1x:1:Alice> ICT-Sync/Group1/00

4 <h1x1:1> <h1x:1:Alice> ICT-Sync/Group1/<h1x:1:Alice,h2x2:Bob>

5 <h1x1:1,h2x2:1> <h1x:1:Alice,h2x2:Bob> ICT-Sync/Group1/<h1x:1:Alice,h2x2:Bob>

Step sl ml Incoming		Pending	Interest

1 <00> <> ICT-Sync/Group1/00

2 <h2x2:1> <h2x2:Bob> ICT-Sync/Group1/00

3 <h1x1:1,h2x2:1> <h1x1:Alice,h2x2:Bob>

4 <h1x1:1,h2x2:1> <h1x1:Alice,h2x2:Bob> ICT-Sync/Group1/<h1x:1:Alice,h2x2:Bob>
ICT-Sync/Group1/<h1x:1:Alice>

5 <h1x1:1,h2x2:1> <h1x1:Alice,h2x2:Bob> ICT-Sync/Group1/<h1x:1:Alice,h2x2:Bob>
ICT-Sync/Group1/<h1x:1:Alice>

2. D: ICT-Sync/Group1/00
Content: <Alice:h1x1:1>

2. D: ICT-Sync/Group1/00
Content: <Bob:h2x2:1>

5. D: ICT-Sync/Group1/<h1x:1:Alice>
Content: <Alice:h1x1:1, Bob:h2x2:1 >

Figure 4.7: ICT-Sync Simultaneous Updates

The intermediate ICT-Sync process learns about the synchronized groups by classifying

sync packets using their ICT-Sync prefix. When receiving a Sync packet, the intermediate

ICT-Sync acts like an endpoint, and maintains the group state by looking at the sl name

component and by sending Sync Interest and Data packet when identifying a set-difference.

However, unlike an endpoint process, we implemented the intermediate process to automati-

cally fetch the content associated with new name updates. On receipt of content, it validates

the signer of the content, using its trust model. If the content is validated, it saves the full

Data packet, including the original signature of the content and all headers. Then, it serves

as a provider of the fetched data by registering the participant’s prefix in its local NFD. Our

implementation can be configured to use either persistent storage or the NDN CS to store

the fetched data, depending on the characteristics of the network and the router.
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4.3.4 Mapping Data Names to UIDs

As can be seen in Figure 4.7, ICT-Sync uses the information in its Data packet to map a

UID into the participant data name. ICT-Sync does not choose the party’s UID, and leaves

the application to do that. This approach might be perceived as a weakness, because a

party’s UID must be kept unique for the correctness of the protocol. However, we argue that

choosing a UID is not a hard task for an application with a finite number of group members.

First, the application UID can simply be the party’s Data name as this name must be unique

for routing purposes. However, since the UID is expressed as the sync state in ICT-Sync

packets, we recommend choosing a smaller representation of the name. This can be done

by hashing the data name into a shorted UID, or by any other mechanism chosen by the

application. If the application cannot guarantee the uniqueness of its parties’ UIDs, it can

use universally unique identifiers (UUIDs) [44].

When a party receives an Interest with a UID it doesn’t recognize, it cannot map it to a Data

name, and cannot update the application with the new update. The first time ICT-Sync

can map a party name to a UID is when this party responds with a Data packet. This could

create long convergence time when the update frequency of multiple parties is high, and

when a Data packet from one party always wins the race and consumes the PIT. Therefore,

as an optional enhancement to the protocol, ICT-Sync uses a Discovery Interest to map a

UID to a Data name.

With ’Discovery’ mode on, a party sends a Discovery Interest to request the Data name of

a UID. The Interest name would consist of the ICT-Sync Interest, the group name, and the

UID of the requested Data name. In the example described in Figure 4.7, the Interest name

would be ICT-Sync/Group1/Discovery/h1x1.
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Discovery Interests and Data packets have another benefit. It allows ICT-Sync to remove the

Data name component from the Data packet, and therefore, results in smaller Data packets.

We evaluate the discovery enhancement in Section 4.3.5.

4.3.5 ICT-Sync Evaluation

The goal of this section is to show the capabilities of ICT-Sync. In the next set of experiments,

we focus on demonstrating how ICT-Sync provides transport for a file sharing application

by decoupling it from connectivity characteristics. We conducted all our experiments on the

Open Network Lab (ONL) [76], where real routers and links can be programmed to control

the factors we used in our experiments: link delay, link bandwidth, packet drop rates, and

link availability.

Experimental Setup

First, we tested ICT-Sync in the small network topology presented in Figure 4.8. Although

it seems simple, this topology illustrates a use case in which endpoints communicate via a

path of unreliable links and nodes, where links are lossy and an end-to-end communication is

not guaranteed. For instance, consider a sensor network in which two sensors communicate

via one or more intermediate nodes and links that can asynchronously move or fail. As we

show in this section, without an ICT, the application is highly coupled with the network

connectivity to the point it can completely break.

This topology consisted of six endpoints and four intermediary NDN routers running on 10

two-core machines. In addition, we used five Ubuntu Linux (16.04.4) software routers servers

to interconnect the machines. All two-core machines ran NFD [5] and each experiment was

repeated at least five times. The endpoints ran tested applications with ICT-sync APIs.

59



NDN routers were a combination of two machines - a Linux software router and a machine

that ran the NFD code.

Figure 4.8: Tested NDN Topology

We configured each of nodes ’b’-’e’ as producers and node ’a’ as the consumer. Each producer

encrypted data read from local 10MB files into 512KB chunks, and published five chunks

per second using ICT-Sync API. For each published chunk, ICT-Sync updated its state list

to represent the sequence number of each new chunks, and synchronized the entire group of

endpoints ’a’-’f’ with the new sequence numbers of each producer. ICT-Sync libraries on the

endpoints exchanged sync Interest and Data packets to reconcile the new information, and

notified the application of every new chunk name. In our experiments, we implemented the

application to fetch every new chunk in order to measure its performance on top of a variety

of connectivities. Once the chunk was received, the signer was validated, and the content
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Figure 4.9: Mapping Topology onto Physical ONL Hardware

was decrypted, and concatenated into a single file. In our experiment, we preconfigured the

nodes with the sync prefix for the content and the trust anchor needed for validation.

We used the producers’ system clock to record the publish time in the Interest name — when

the chunk was initially published by its producer — and the sync time – when the consumer

learned about the chunk for the first time. We set the Link rate to 1000Mbps and changed

the loss rate of the links to replicate an ad-hoc network with low bandwidth and intermittent

links.

To compare ICT-Sync with ChronoSync, we implemented a file sharing application that can

work with both APIs, and we measured the sync times of the file’s chunks when ICT-Sync

or ChronoSync are deployed on the endpoints. To evaluate the impact of in-network sync

mechanisms, we deployed the intermediate ICT-Sync component (described in Section 4.3.3

on the network routers R1 and R2 in some of our experiments. Following the ICT concept,

we ran the same application regardless of the deployment of the intermediate ICT component.
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Figure 4.10: Average Sync Times over Low Loss Rates

In addition, we tested the same topology with a similar IP-based application by using ipref.

We recorded all sync times and reported the average.

Sync Times over Different Loss Rates

In the first set of experiments, we evaluated ICT-Sync and ChronoSync over different loss

rates. In each experiment we configured all the links in our topology to have the same loss

rate, and we tested ICT-Sync with and without an intermediate component on NDN R1 and

NDN R2. Figure 4.10 supports the following conclusions:

• ICT-Sync achieves faster sync times than ChronoSync over different loss rates.
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Figure 4.11: Average Sync Times over High Loss Rates

• In small loss rates (10%-20%), ICT-Sync with an intermediate component achieves

similar sync times as ICT-Sync without an intermediate component deployed in the

network.

• In loss rates greater than 20%, the deployment of an intermediate ICT-Sync achieves

faster sync times.

To better understand the impact of an intermediate ICT-Sync component on synchronization

times, we continued and tested our application over larger network losses. Due to the

different scale, we present those results separately in Figure 4.11. Here, ICT-SYNC-W-I

bars represent the sync times over high loss rates when an intermediate ICT component was

deployed in the network, while ICT-SYNC bars show the sync times without the deployment

of an intermediate ICT. As can be seen in Figure 4.11, an intermediate ICT-Sync component

significantly improved sync times for 60% and 80% loss rates. Moreover, the results show

that without an intermediate component, it took over a minute to synchronize each file chunk
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when the network loss was set to 80%. Additionally, Figure 4.11 shows that the intermediate

ICT-Sync component is essential when there is no SEEP, and without it no named data can

be synchronized. We extend no SEEP experiments in the next subsection.

Synchronous End-To-End Path (SEEP)

Next, we evaluated ICT-Sync in a network with no SEEP. We ran the same file sharing

application on nodes ’a’ and ’e’, with ’a’ being the consumer and ’e’ being the producer.

We configured the producer to publish five chunks of file a second, and we stopped our

experiment shortly after it published 1024 file chunks. During this time, we alternated link

1 and link 2 (as shown in Figure 4.8), for one, two or three seconds. Therefore, in this

experiment there was never a SEEP between the consumer and the producer.

Figure 4.12 shows the percentage of the fetched file. Here, the x-axis indicates the number of

seconds each link is up before being stopped. The results support the following conclusions:

• The application succeeded in fetching above 50% of the shared file when links 1 and 2

broke the end-to-end path only with an intermediate ICT component was running on

router 1.

• Without an intermediate ICT component, the consumer failed to fetch any portion of

file. Therefore, both ICT-Sync and Iperf failed.

• The results did not demonstrate statistical significance for the tested up and down

times. This is a direct result of our experimental setup, in which we stopped the

experiment shortly after the producer published 1024 chunks, and regardless of the

link state at that time.
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Figure 4.12: Percentage of Fetched File of Different Communications with Alternating Links

• When we let the experiment run after the producer published its 1024 chunk, ICT-

Sync with an intermediate always fetched 100% of published chunks, while Ipref and

ICT-Sync without the intermediate remained on 0%.

Scaled Up Topology

To better compare the performance of ICT-Sync and ChronoSync, we scaled up our topology

and evaluated the two protocols using the ONL topology presented in Figure 4.13. We used

40 producers that served also as consumers, each publishes 5 data chunks per second, with

a total of 401 data chunks published by each producer.

Table 4.1 presents the comparison of the two protocols. The results demonstrate that ICT-

Sync improves average sync times by 97% while using about 20% of ChronoSync traffic. In

addition, the results show that ICT-Sync packets are about 3 times larger than ChronoSync

packets.
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Figure 4.13: Scaled Up ONL Topology

ICT-Sync ChronoSync
Average Sync Time (ms) 26.96 1033.64
Standard Deviation 4.11 154.89
Total Number of Packets 149508 773131
Bytes/Packet 624.36 160.36

Table 4.1: Large Scale Comparison of ICT-Sync and ChronoSync

To evaluate the overhead added by the intermediate ICT-Sync component, we counted the

number of packets sent and received by an endpoint in the tested topology with and without

an intermediate ICT component. The results shown in Figure 4.14 demonstrate that the

overhead caused by the intermediate ICT-Sync component over different loss rates.

4.3.6 ICT-Sync Summary

The characteristics of ICT-Sync as Information-Centric Transport are as follows:

• ICT-Sync is a primitive mechanism and it can be used by any application that is

looking for sync-based services.

• The existence of the intermediate ICT-Sync component does not introduce any change

to the application running at the endpoints.
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Figure 4.14: Traffic Overhead of ICT-Sync

• The intermediate ICT-Sync component has no knowledge of any application-specifics

property or the content it handles. It builds its local sync state from looking at the

names of Interest and Data packets and without decrypting the content.

• Because an application uses the same API in both reliable and challenged networks,

its information plane is fully decoupled from the actual connectivity plane.

• If required, ICT-Sync can maintain existing NDN trust schema mechanisms to fetch

keys and validate the data. It does this by using the existing NDN tools and by looking

at the packet’s name and key-locator fields, without decrypting the content.
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4.4 iSync: Synchronizing Namespaces With Invertible

Bloom Filters

In this section, we describe another synchronization mechanisms, named iSync. The goal of

this section is to explore how invertible Bloom filters (IBFs) can be exchanged by synchroniza-

tion mechanisms to support a large number of sync updates of arbitrary names. Therefore,

while ICT-Sync synchronizes sequenced names using a state list, iSync synchronizes arbi-

trary application names using IBFs. Unlike ICT-Sync, we did not implement or evaluate an

intermediate iSync component, but we focused on implementing and testing alternative sync

mechanisms that can form an ICT for sync-based applications.

We designed and implemented iSync for the CCN architecture, with the goal to provide full

data synchronization to CCN applications, hence synchronization of the names and their

content. While iSync and CCNx Sync — the default synchronization protocol of CCN —

share the same motivation, their infrastructures are fundamentally different. CCNx sync

used bounded logs of namespaces, as discussed in 4.2 and iSync uses invertible Bloom filters.

The goal of this subsection is to explore another sync mechanism that can support a large

number of distributed updates of arbitrary names.

4.4.1 IBF Background

The invertible Bloom filter (IBF), introduced in 2011 as an extension of the original Bloom

filter [32], is a simple and space-efficient probabilistic data structure. The Bloom filter

answers whether an item exists in a dataset or not. The implementation of the Bloom filter

consists of a simple array and a number, k, of hash functions. The k functions map an item

into k cells in the array. The mapped cells are marked as occupied upon the insertion of an
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item. A Bloom filter tests for the existence of an item by looking into its hashed cells, and

answers yes if all the cells are marked as occupied. The original design of the Bloom filter

does not support either deletion of an item or querying the stored items.

IBF was designed to address those limitations. As in the counting Bloom filter, IBF uses

count to indicate the number of items that have been indexed to each cell. In addition, the

IBF algorithm introduces two new values in each cell: idSum and hashSum, to represent key-

value pairs in each cell. The insertion process of an item is similar to the original insertion

process of the Bloom filter. A set of k hash values is generated to map the item into k cells in

the array. However, unlike the standard Bloom filter, the value of the inserted item is added,

using a XOR operation, to the value of idSum in each of the mapped cells. Also, another

hash function adds the hash value of the inserted item to the value of hashSum in each of

these cells. This addition is also achieved by XORing the hash value of the inserted item

with the value of hashSum. An item insertion increments count in each of the k mapped

cells.

In a similar way, we can delete an item from an IBF by subtracting it and its hash value

from idSum and hashSum respectively, and by decrementing count in each of k hashed cells.

We can retrieve the items from an IBF by looking for pure cells. A pure cell is a cell that

contains only one item, and the hash value of the cell’s idSum equals the value of hashSum. To

discover additional pure cells, and therefore additional stored items, we subtract the items

found in the pure cells from the other cells indexed to store those items The subtraction

process can be repeated as long as there are pure cells to retrieve.

IBF not only supports insertion and deletion of items, but also can obtain the difference set

of two IBFs by subtracting one IBF from another, followed by decoding the resulting IBF to

retrieve the stored items.
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We present an example to illustrate the encoding process of an IBF: Upon the insertion of

a new element S into a cell i, the value of idSum of the ith cell is XORed with S, while

the value of hashSum is XORed with the hash value H(S). Given two IBFs, A and B, we

can compute the set difference (A - B) by XORing the values of idSum and hashSum, and

decreasing the value of B’s count from the value of A’s count. In case the set includes at least

one pure cell, we can start the encoding process and retrieve the elements in the difference

set. Again, the pure cell must satisfy two requirements: Its count value must be equal to 1

or -1, and the hash value of its idSum must be equal to its hashSum. The encoding process

can list the IBF’s elements as long as there are pure cells to subtract from other cells.

4.4.2 iSync Synchronization Model

As shown in Figure 4.15, iSync consists of a repository, a repository API, and a sync agent.

iSync can be regarded as an additional data synchronization layer in the CCNx stack, and

can serve as a synchronization service to CCNx applications. The repository offers an inter-

face for CCNx entities (i.e., applications) to insert files and publish sync collections. Like in

CCNx Sync, iSync defines a collection as the set of content items sharing a common prefix.

To synchronize a collection, an application is required to declare the same collection in each

of the participating nodes. An example of a collection can be a set of music items that

share a common prefix, such as John’sDocuments/Music. Possible content items in such a

collection might include

John’sDocuments/Music/MichaelJackson/song1 or

John’sDocuments/Music/BestOf2010/song32. iSync repository provides an API to declare

a sync collection. Applications can declare multiple sync collections, which will be synchro-

nized independently.
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Figure 4.15: iSync Data Synchronization Model

The iSync repository notifies the sync agent when a new content name matches one of the

local declared collections. Then, the sync agent indexes the inserted content name and up-

dates a digest that reflects all the names of the collection. The sync agent notifies the remote

nodes of its local digests by sending periodic broadcasts, while receiving remote ones. Like

CCNx Sync, iSync identifies whether the collections are up-to-date by comparing local with

remote digests. When a remote collection digest does not match the local collection digest, a

reconciling process starts, and the set difference is found by repeatedly requesting, receiving,

and comparing remote IBF tables against local and global IBF tables. The notation of global

IBF will be described in section 3.4.

It is important to note that, like other applications built on top of CCNx, the sync agent

communicates with its peers using CCNx packets.

4.4.3 iSync’s Protocol and Data Structure

Different types of data collections may have different update frequencies. For example, a chat

application generates a few messages per second, while video streaming can produce hundreds
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Figure 4.16: Hierarchical Synchronization Data Structure.

of video chunks per second. The iSync protocol was designed to offer synchronization as a

service to different applications simultaneously, and therefore is required to support different

types of update frequencies. We designed the protocol data structure to address three key

tasks: 1) Efficiently maintain a digest to reflect the status of the entire repository, and hence,

the status of all the local collections; 2) Efficiently distinguish between up-to-date and out-

of-date collections; 3) Obtain set differences quickly, and with minimal traffic overhead.

As shown in figure. 4.16, iSync uses a hierarchical two-level IBF: Digest sync IBF and

collection sync IBFs. The higher level records the status of the entire repository, while the

lower level logs file insertions or deletions of each sync collection separately. An update to a

collection changes the collection’s IBF digest by hashing the new name into the corresponding

collection sync IBF. The change in a collection digest invokes an update to the repository

IBF and digest in the first level.

Thus, the three key tasks are all achieved: 1) The first level digest holds the status of the

entire repository. 2) Currency is maintained by subtracting a remote first level IBF from the

local first level IBF. While traditional NDN synchronization protocols iteratively send the

digests of each collection, iSync requires only one data exchange to discover all the out-of-

date collections. 3) In a similar way, the set difference of the changed collection is obtained
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Figure 4.17: Alice’s Hierarchical Data Structure.

by subtracting a corresponding remote IBF from the local second level collection sync IBF.

iSync sequentially requests all the remote out-of-date collection sync IBFs, subtracts them

from the local ones, obtains the updated namespaces, and fetches the content.

We illustrate the operation of the protocol using an example in which two applications de-

clare collections to be synchronized. The first application is a dropbox style application

that requests synchronizing all the files in a specific directory. To achieve this, the appli-

cation declares a collection using the namespace "MyFiles/Pictures" in all the participating

hosts. The second application is a media streaming application that requests synchroniz-

ing all the chunks of a video. This application declares a collection using the namespace

"Movies/Frozen/". When a new file with the prefix "MyFiles/Pictures" is added to one of the

hosts, iSync automatically indexes the file name in the IBF corresponding to the dropbox

style applications. In a similar way, the name of the video chunk "Movies/Frozen/chunk12"

is indexed to the corresponding media streaming IBF. A collection digest is calculated to

represent each of the modified IBFs and the repository’s IBF.

Figure 4.17 shows Alice’s hierarchical data structure after adding new contents, while Figure

4.18 presents the timeline of our discussed example.
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In our example Alice and Bob are the participating hosts, and Alice adds ten new chunks

of the movie Frozen to her local repository. All the chunks have the same shared prefix,

Movies/Frozen/. In addition, Alice uploads her camera photos and names the uploaded

files using the "MyFiles/Pictures" prefix. As will be explained in section 3.3, the names

of the movie chunks are indexed and added to the ’Frozen’ IBF, while the pictures are

indexed to the ’Pictures’ IBF. The digests of the two IBFs are changed according to the

added names, while the digest of the repository IBF is changed according to the ’Frozen’

and ’Pictures’ digests. Upon the expiration of the sync timer, Alice sends an interest packet

consisting of her repository digest. Bob doesn’t recognize the digest in the incoming interest,

and therefore he requests Alice’s Digest sync IBF. When it is received, Bob subtracts the

incoming Digest sync IBF from its local one, and discovers all the out-of-date collections.

Bob then iteratively asks for the IBFs of the outdated collections, the IBFs of the ’Frozen’

and ’Pictures’ collections. As he did for the Digest sync IBF, Bob decodes and requests the

added file names by subtracting the remote collections’ IBF from the local ones. As will be

described in section 3.4, when the subtraction fails to resolve all the differences, Bob requests

Alice’s previous (local) IBFs. After Bob receives and decodes the missing names, he indexes

the changes in his collection sync IBFs and updates the collections and the repository digests.

To store the content of a video chunk or a picture, Bob sends an interest with the chunk or

picture name.

We emphasize that while traditional synchronization protocols require multiple data re-

trievals and comparisons for a single update, iSync can reconcile multiple differences using

a single data request. In the example, Alice uses a single interest packet to notify Bob that

multiple changes were made in two collections. Also, a single request for a collection IBF

results in the discovery of all the updates made in the collection. Therefore iSync’s workload

is concentrated in computation, which reduces time and traffic overheads.
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Figure 4.18: iSync Timeline Example.
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It is important to note that while a single packet is used to notify a participant about

multiple changes, and a single packet is used to reconcile multiple differences, the retrieval

of the content names as well as the content items is done by sending one packet per name.

Therefore, iSync can leverage the NDN characteristics and receive the requested content

from a cached router or from a third user who already holds the missing content.

Name Encoding and Recording Scheme

The design of IBF handles fixed-length item names and does not support content lookup

very well [32]. To support namespace synchronization in NDN, iSync introduces a name

encoding and recording scheme.

The name encoding and recording scheme is part of the second level table described in section

3.2 and in Figure 4.16. The scheme is responsible for two tasks: mapping variable-length

file names into fixed-length IDs, and recording what items have been inserted. Mapping

is carried out by using a hash-indexed table to support bidirectional mapping relations

between file names and file IDs; Recording is based on an invertible Bloom filter to support

file insertions, deletions, and queries. This IBF represents the collection digest. During the

entire synchronization process, file names are replaced by fixed-length file IDs. Moreover,

the scheme can be regarded as a name compression scheme that reduces traffic overhead.

The insertion process of the name encoding and recording scheme is described in Algorithm

1.

To simplify the discussion, we refer to content name as a File name in Algorithm 1. However,

the name could represent different types of data, as explained in the Introduction. Algorithm

1 distinguishes between two errors: Already existing content names and hash collisions. The

first error implies that a content item with the same name already exists in the collection.
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Algorithm 1 Name Encoding and Recording Scheme
File_ID ← Hash_Function(File_Name)
if File_ID is not found in Member Recording Table then
Adding F ile_ID →Member Recording Table
Insert F ile_Name→ Name Encoding Table

else if File_Name Found In Name Encoding Table then
Report F ile_Aleady_Inserted_Error

else
Report Hash_Collision_Error

end if

The second error indicates that the content name is new, but its hash value is already

mapped by another content name. Both errors could be easily fixed by prompting a renaming

request to the user. False positive errors such as the hash collision error could occur when

mapping a long namespace into a shorter one. However, this probability is well studied

and can be controlled by choosing the right algorithms and length of content IDs [25, 50].

In addition, by considering relevant application requirements and the potential number of

names, collision resolutions can be maximized [42, 47]. The ’name encoding and decoding’

scheme is implemented in the second level of the iSync hierarchical design, and therefore

each application could make its own decision regarding the length of the encoded IDs.

Difference Size Control Scheme For Collection Sync IBFs

Using the name encoding and recording scheme, the iSync protocol utilizes IBFs to hold the

set of name IDs for each sync collection. As described in the background section, it is efficient

to compute differences between two IBFs by subtracting them and decoding the resulting

IBF. However, the decoding process can compute the differences only as long as there are

pure cells in the resulting IBF. Therefore, there is no guarantee that all the differences can be

decoded. For a fixed-size IBF, the more updates it holds, the less likely it can be perfectly

decoded (recover all item IDs). Moreover, the number of updates varies among different
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Figure 4.19: Periodical Synchronization.

sync collections, and does not follow a predictable pattern. Thus, a fixed size IBF can be

inefficiency large in one application scenario, but small enough to cause decoding errors in

another. To optimize the IBF size for various applications, we designed a difference size

control mechanism.

First, as shown in Fig 4.19, hosts that have declared the same sync collections periodically

confirm the consistency of their data sets. This periodic operation guarantees bounded delay

of file shares and limit the potential size of differences between nodes.

Second, for any sync collection in one host, iSync creates multiple IBFs to hold the changes

produced during a sync period. This scheme offers a flexible capability for recording and

recovering the latest updates. As described in Fig 4.20, two types of IBFs are used: global

and local. The global IBF can be regarded as a public version of the data collection. It is

the latest local IBF in a sync cycle and the foundation of the first local IBF in the next

synchronization cycle. The local IBFs support the process of reconciling the set difference

at the end of a sync cycle. To find all changes made in a sync cycle, iSync first subtracts a

remote global IBF from a local IBF. If it fails to obtain the complete set difference, it uses

the local IBFs.
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Algorithm 2 presents the details of the described difference size control scheme. When there

is an update to a collection, and therefore to its current IBF, iSync checks whether the total

number of updates exceeds the configured maximal number. If exceeds, the current IBF

is marked as local, stored as a backup table, and the number of updates is reset to 0. In

addition, to limit memory consumption, iSync checks if the number of stored IBF exceeds

the maximal number allowed. When iSync timer expires the current IBF is marked as global.

Each application configures its own constants for the maximum number of updates and the

number of history IBFs.

The combination of the local and global IBFs makes differences between two IBFs traceable.

To support the optimal decoding of different update frequencies, an application can tune the

periodic sync time and the IBF size according to its specific requirements.
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Algorithm 2 Difference Size Control Algorithm
if updates_count > max_updates then

if stored_IBFs_count > max_stored_IBFs then
Dequeue Backup_Queue
stored_IBFs_count← stored_IBFs_count+ 1

end if
Enqueue Current_IBF_Table As Local
updates_count← 0
max_stored_IBFs← max_stored_IBFs+ 1

end if
if Timesince_last_sync > Timesync_period then
Globalize Current_IBF_Table
Enqueue Current_IBF_Table As Global

end if

Recovery Scheme

False positive errors will occur if two different name IDs are mapped into the same IBF cells.

Even though the possibility can be controlled, a recovery scheme is inevitably needed to

provide disaster relief. In case a newcomer or returner jumps in with an empty or outdated

sync collection, the original IBF design has a limited capability to recover.

To solve this problem, iSync uses a blacklist based scheme. After two hosts have gone through

all their IBFs and still do not have a common view of the sync collections, the Bloom filters

of the local and remote data sets (maintained by the name encoding and recording scheme)

are exchanged. Each host reconciles local data sets and sends the list of files to remote nodes.

Thus, local computing sources bear most of the overhead of the recovery scheme.

4.4.4 iSync Evaluation

We built a prototype of iSync on top of CCNx and compared its performance with the CCNx

Sync protocol. iSync was written in C to ensure its compatibility and performance. The
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prototype consists of a repository server, a sync agent and a file retriever. All components

are connected by system FIFOs to ensure the protocol’s potential for scaling.

The sync agent consists of the three schemes described in section 3: name encoding and

decoding, difference size control, and recovery mode. To reduce false positive errors, we

used a hash indexed table with 224 entries to build bidirectional name-to-ID mapping, and

a counting Bloom filter of 224 cells. Each cell in the counting Bloom filter contained an

8-bit counter to count the number of the inserted files. As shown in Figure 4.20, we used

an IBF FIFO to store a history of 32 IBFs for each sync collection. Each IBF consisting of

160 cells, and guaranteed to hold 128 IDs by default. The capacity of each IBF could be

configured when declaring sync collections. All communications followed the pattern of the

NDN architecture, which means that all data chunks (contents) were retrieved by exchanging

interests and data packets.

Experimental Setup

We used the open network laboratory (ONL) [76] to measure the synchronization time and

traffic overheads of CCNx Sync and iSync. Our experiments explored the impact of four

factors: 1) file name length, 2) file size, 3) the number of hosts, and 4) topology type. Each

host in the ONL system ran Ubuntu 12.04.2 LTS and CCNx version 0.7.2 on a Xeon CPU

@ 2.5GHz with 4 GB memory.

In each experiment, we inserted a file into a local host, and waited until this file was replicated

by iSync or CCNx Sync, and hence, synchronized, in all the participating hosts. We used

tcpdump to capture the exchanged traffic during the experiments, and analyzed the traces to

measure the traffic overhead. To measure the time overhead, we modified a small section in

the CCNx code to record the content insertion timestamp. Then we calculated the differences
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between the insertion timestamp in the local host and the insertion timestamp in the remote

hosts. We reported the average synchronization time as the time overhead.

As described in [27], the ratio between the number of inserted items and the number of

IBF cells impacts the capability to reconcile the differences between two IBFs. To ensure a

successful decoding rate of more than 99%, we limited this ratio to 60%. Therefore, a new

backup of current IBF was created when the number of new updates exceeded 60% of its

holding capacity.

In the next subsections, we first describe the results of a simple topology consisting of two

nodes, and show the impact of the name length and file size factors on sync time and traffic

overhead. Then we show how the topology type and the number of hosts affect the sync

time. Last, we present the measured performance of iSync’s recovery scheme.

While measuring the performance of the CCNx Sync protocol, we discovered that the API

used to insert a content item into the CCNx repo is not optimized, and took about 2.8 seconds.

Due to this large overhead, we reported two different times: CCNx Sync and CCNx Sync

Data. The former records the time overhead of the entire synchronization process, while the

latter does not include the API overhead.

Time Overhead of iSync in a Simple Topology

Figure 4.21 shows the synchronization times of a 128 KB file with different name length

using the CCNx Sync and iSync protocols. The file song1 consist of one component, while

the file

John’sDocuments/Music/Maroon5/song1 consists of four components. This experiment was

performed on a two-node network to provide a basic measurement.
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Figure 4.21: Impact of Number of Components in File Name on Synchronization Time.

The figure shows that synchronizing one file with one name component takes about 3.1

and 0.036 seconds by CCNx Sync and iSync respectively. This time overhead includes

file insertion time, reconciliation time, and file retrieval time. CCNx Sync Data time is

approximately 0.261 seconds. Therefore, iSync as an end-to-end system is about 86 times

faster than CCNx Sync, while it is 8 times faster than the CCNx Sync Data when ignores

the CCNx insertion overhead. We found that the number of components in a file name does

not impact the sync time results.

File insertion and resolution play critical roles in iSync. We evaluated the time overhead

of the two operations under different intensities to further understand their effect on the

synchronization times. As shown in Figure 4.22 it takes about 3 ms and 330 ms to insert 80

and 20480 files respectively. In these experiments, we increased the IBF table sizes to ensure

all file names could be perfectly resolved. Therefore, the time overhead was affected by the

IBF table size, number of inserted files, and computing power of the host.
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Figure 4.22: File Insertion and Recovery Time for iSync Protocol.

Figure 4.23 shows the effect of the file size on the synchronization time consumptions. The

left figure shows the measured results, while the right figure shows the ratio between CCNx

Sync and iSync. As expected, for both protocols, the synchronization time increases as file

size increases. Synchronizing a file of 65536 KB took about 9 seconds for iSync and 63

seconds for CCNx Sync. Moreover, iSync was about 86 times faster than CCNx Sync for

small files, and about 8 times faster for large files. The figure also shows that iSync is still

8 to 10 times faster than CCNx Sync, even if we do not consider file insertion time.

Synchronization performance can be divided into two tasks: reconciling content names and

retrieving the file contents. As file size grows, the weight of data retrieval grows. iSync uses

a more efficient scheme to find the set difference and optimized size of packets to deliver

data, and therefore is faster than even CCNx Sync data, for large files.

84



Figure 4.23: Impact of File Size on Time Cost (left) and Ratios of CCNx Sync vs. iSync
(right).

Traffic Overhead

Traffic overhead impacts the scalability and efficiency of a synchronization protocol. We

synchronized files of different sizes (from 128 KB to 64 MB) and measured the traffic overhead

by capturing the network traffic, using tcpdump traces.

Figure 4.24 shows the number of packets transmitted by CCNx Sync and iSync for different

files sizes, and the ratio between the protocols’ overheads. In synchronizing a small file of

128 KB, iSync and CCNx Sync transferred 10 and 182 packets respectively. The numbers

increase to 1032 and 49589 when the file size increases to 64 MB. From the ratio point of

view, iSync is about 18 and 48 times more efficient than CCNx Sync on number of packets

while sharing files of 128 KB and 64 MB respectively. We explain this ratio by looking at

the number of packets sent by CCNx per one update as shown in the example demonstrated

in the background section.

Figure 4.25 shows the number of bytes exchanged during the synchronization process. For

synchronizing a file of 128 KB, iSync and CCNx Sync exchange about 160 KB and 204 KB.

For a file of 64 MB, the traffic overheads increase to 65.5 MB and 83.6 MB. In all tests,
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Figure 4.24: Traffic Overhead for Various File Sizes.

iSync exchanges a smaller number of bytes than CCNx Sync. However, the advantage of

iSync over CCNx Sync in traffic amount is not as significant as in the exchanged number

of packets. We believe that this might be the result of smaller packets sent by CCNx Sync

compared to iSync.

The main reasons for the advantages of iSync over CCNx Sync can be summarized as follows.

First, while CCNx Sync concentrates more on exchanging node information, iSync consumes

more local computing resources for the IBFs’ decoding process. It also causes the inconsistent

differences between the number of exchanged packets and bytes in the experiments (most

packets transmitted by CCNx Sync are smaller than 80 bytes). Second, the max data unit

limitations of the protocols are different. Both CCNx Sync and iSync use jumbo packets to

deliver the files. However, the max size of CCNx Sync content packets is about 22KB (which

might be disassembled according to the MTU limit of switches and routers). The smaller

the size limit, the more packets that need to be sent. To improve the performance, iSync

uses content packets of 64KB, which is the optimal value the current CCNx daemon can

handle. It significantly reduces the number of packets, as is shown in Figure 4.24. Third,

extra interest and content packets are exchanged by the CCNx repository, and therefore we

can expect a larger traffic overhead.
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Figure 4.25: Number of bytes vs. File Size.

Scalability Test

In this section, we evaluated and compared the performance of the iSync and CCNx Sync

protocols in multiple network topologies with the number of nodes ranging from 2 to 32. As

described in the background section, interest packets are satisfied by a cached content or a

producer. To verify the correctness of the protocol in the NDN architecture, we tested it in

chain, ring, star and full mesh topologies, representing weak to strong connectivity. Files

were inserted into the start node of the chain topology, and the core node (which has direct

connections to all other nodes) of the star network.

Figure 4.26 shows the scalability results. We found that the synchronization times of CCNx

Sync were very unstable; therefore, we plotted the average results in the bar charts and

added annotations for the worst results on the top of each bar. To provide a better display
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Figure 4.26: Average Synchronization Time of iSync and CCNx Sync in Networks of Various
Topology Types (with max recorded results on top of each bar).

of the protocols’ performance, we also plotted the results of CCNx Sync data to ignore the

API overhead.

As expected, the results show that the chain topology produces the slowest synchronization

times in both protocols. Since we inserted the files into the start of the chain, each file

should be delivered one by one until all nodes have received it. Moreover, the time overhead

shows an approximately linear relationship with the number of nodes. The variation in the

results of the chain topology is large, especially for CCNx Sync. The average and max times

for iSync to synchronize a 128 KB file in a 32 nodes network are 0.37 and 0.44 seconds
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respectively, and CCNx Sync results are 12 and 30 seconds. Therefore, the max time is

about 2.5 times larger than the average time. Ratio similar to that is found in the results

for iSync and CCNx Sync Data (about 2.9 times).

The results show that synchronizing a file in a ring topology is much faster than in a chain

topology, because the parallel synchronization starts from two directions. For example, the

synchronization time in a ring network of 32 nodes is nearly half of that in a chain network.

The variation is also much smaller.

The star topology achieves the fastest synchronization time. In our experiment, we inserted

the file into the central node that has direct access to all the other nodes; therefore, the data

could be delivered to all nodes at the same time. During the experiments, we found that

large variations occasionally occurred in the results of CCNx Sync in a 32 node network.

After careful consideration, we believe that this variation is caused by the forwarding plane

of CCNx and the design of CCNx sync. As illustrated in the example in the background

section, CCNx Sync is a pairwise protocol that operates between neighbors. Therefore, when

adding a file into the central node in a star topology, the protocol operates on every two

neighbors separately. Moreover, the behavior of the CCNx forwarding strategy delays the

RootAdvise notification sent to a subset of the neighbors.

Compared to other types of topologies, full mesh topology networks have the strongest

connectivity. However, the time overhead of data synchronization in full mesh topology is

no better than that in a star topology. All nodes publish digests after receiving any updates,

and each of them has to process redundant data units from synchronization protocols (iSync

or CCNx Sync).
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Recovery Overhead

The recovery overhead of iSync from false positive errors is mainly concentrated in local

computing. Specifically, the effectiveness of this scheme is highly dependent on the hash

algorithm and local computing power. To evaluate the effectiveness and efficiency of the

recovery scheme, we randomly deleted a few file contents in the defined collections and

measured the time it took the protocol to reconcile the differences. We manually deleted up

to 10% of the collection files, and repeated each test ten times.

As shown in Fig 4.27, the time overhead of the recovery scheme shows a linear relationship

with the size of the collection. It costs about 10 ms for the iSync host to recover missed file

names from a data collection of 1K files. The time overhead grows to about 3.5 seconds for

recovering all names from a collection of 1024K files. In those experiments, and as guaranteed

in theory, iSync could always recover and reconcile discarded items.

90



Figure 4.27: Recovery Time vs. Number of Items after 10% of items have been deleted
randomly

4.5 Conclusions

This chapter discussed the task of data synchronization in ICN, and explored general-purpose

sync mechanisms that can be used to form the basis of sync ICTs. Our work has illustrated

two different sync methods that represent different tradeoffs: ICT-Sync was designed to

represent a set of sequenced namespaces and can synchronize an update within 1.5 RTT,

while iSync synchronizes a set of arbitrary names, and requires an additional RTT to map

IBF hashes into names. We implemented iSync for in the CCN architecture, and compared

it with the CCNx synchronization protocol, CCNx Sync [20], and evaluated its scalability

and performance over different network topologies.

We implemented ICT-Sync as a two-component ICT, an endpoint library and intermediate

sync component, we evaluated it in both reliable and lossy environments, and we compared
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it to ChronoSync[85]. Our experiments demonstrate how a Sync ICT can keep applications

in the information plane, decoupled from connectivity characteristics, without a change to

the application or its libraries. Therefore, applications with sync requirements can rely on

ICT-Sync to solely operate in the information plane.

Table 4.2 summarizes the properties and considerations of sync as an ICT.

ICT property ICT-Sync
Broadly applicable needs Synchronize a set of namespaces

Application examples File sharing
Group chat applications
Key management tools
Routing protocols

Known challenges Dataset representation,
and algorithms to find the set-differences

ICT API Register: App registers a prefix to be synchronized
Add: App inserts a new name into the dataset
SyncUpdate: Application callback notifying a change
in the dataset

Intermediate ICT Acts as a sync consumer
Stores all or selected Data packets according to the
network policy

Table 4.2: Sync Properties as an ICT
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Chapter 5

Push Notifications

This chapter explores push notifications as a new application abstraction in ICNs. Like data

synchronization, this chapter also aims to address this abstraction for a group communication

model, in which a consumer can also be a producer. Unlike Sync, here, a consumer in the

group is not interested in maintaining data consistency over time, but wants new data to be

pushed to him as soon as possible, even at the cost of dropping previously pushed data.

Pushing data in ICNs is a complicated problem due to the following challenges:

1. NDN is a pull-based paradigm, and it does not natively support pushing Data packets

unless someone expressed an Interest packet first.

2. Naming future and unknown data is a complex task, especially in a group communi-

cation where multiple endpoints act as data producers.

We elaborate on these challenges before we discuss related works in the area of push data in

ICNs.
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First, in ICNs, no Data packet can be sent without an Interest packet requesting it. A

common approach to address this challenge is to use long-lived Interests. In ICNs, every

Interest packet carries a lifetime value that determines how long an unsatisfied Interest

should be kept in the PIT before it is removed. To extend the lifetime of an Interest packet,

a new Interest for the same name must be sent. A long-lived Interest is an Interest packet

that is sent periodically in intervals that are shorter than the packet lifetime, and therefore

maintains a continuous valid PIT entry. Using long-lived Interests, a producer can push

Data packets at any given time.

This leads to the second challenge: what name should be used in the pending interest?

In pub-sub systems, where a single producer pushes content to a group of consumers, any

routable name can be used to push one Data packet to all the consumers. However, in the

ICN communication model, in which endpoints act as both consumers and producers, any

node can push notifications to others, and therefore the namespace design plays a crucial

role.

There are two approaches. First, a long-lived Interest can carry a producer identifier in the

notification’s routable prefix, and every participant in the group can send a separate Interest

to each one of the other group members. While this approach is straightforward, it consumes

more network overhead (state and bandwidth), and it requires that a consumer know all the

producers in its group. Moreover, a consumer would be required to maintain this knowledge

and be updated when a new producer joins the group or when other leaves.

The second naming approach uses one general name multicasted to all group members in one

long-lived Interest. This approach consumes one entry in the network PITs, and anyone in the

group can satisfy the pending Interest and push Data packet. However, this approach does
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not support simultaneous multi-source Data packets because the first Data packet consumes

the PIT entry, so the second one will be dropped.

Both naming approaches must address another challenge which emerges with long-lived

Interests — how to differentiate one long-lived Interest from another? Clearly, the naming

convention must guarantee that a new long-lived Interest is different from the one satisfied

before it, so a producer or the CS would not push the same Data again. An intuitive way

to achieve it is by adding a sequence number to every long-lived Interest. For instance,

if a consumer sends a producer-specific long-lived Interest, then /Alice/1 is a long-lived

Interest sent to Alice requesting Alice’s first notifications, and /Bob/3 is a long-lived Interest

requesting Bob’s third notification.

Another approach is adding a timestamp a long-lived Interest to ask for data generated

after the timestamp. For instance, a long-lived Interest with name /notification/t3 asks for

data generated after t3. However, this approach does not support unordered data when

names are used without a producer identifier. To see why, consider that consumer C sends a

long-lived Interest looking for notifications that occur after t1. Producer P1 responds with

a notification that occurred at t2, and a little after, producer P2 responds with another

notification occurred at t3. If t3 arrives at C before t2, then C would ask for notifications

that occurred after t3, and therefore will miss the notification occurred at t2.

As the preceding demonstrates, supporting push notifications in ICNs is a real challenge.

As we will see following a brief discussion of related work, the use of an ICT represents a

promising path forward.
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5.0.1 ICN Push in Related Works

Recent ICN works have studied the problem of handling push-based notifications. [9] dis-

cusses and evaluates three schemes to support push-based traffic in NDN: Interest notifica-

tion, unsolicited data, and virtual Interest Polling. Interestingly, due to the trade-off between

a device’s efficiency and the network overhead, it was found that no scheme is better than

the others, and that the selected scheme should be decided according to the expected traffic

load and the constraints of devices. [10] discusses a framework for multi-source data retrieval

in IoT networks. This framework uses exclude filters to allow selective data retransmissions,

and controls PIT deletions to support multiple Data packets for the same Interest. [58]

proposes a new ICN packet type for push notifications.

The work in [10] and [58] propose changes to the ICN architecture to better support push

notifications. In contrast, our work focuses on designing and developing a proof-of-concept

multi-source notification ICT without any modifications to the architecture. Our goal is to

show that such an ICT can be a primitive in the current implementation of NDN, without

any modification to the PIT or the forwarder, and without adding a new packet type. We

do not argue that our work is more efficient than the alternatives. Rather, we argue that a

mechanism for push-based notifications can evolve as an ICT because it supports common

application needs, and it can allow NDN applications to stay in the information plane, free

from connectivity concerns.

5.1 ICT for Push Notifications

The works mentioned in Section 5.0.1 discuss push notifications as an essential mechanism

in ICN, but present it as a hard problem. To the best of our knowledge, there is currently
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no mechanism that solves the problem of push notifications in a general-purpose way, and

without introducing modifications to the ICN architecture. In this section, we propose to

identify push notifications as a problem that requires an ICT abstraction.

The goal of an ICT abstraction for push notification is to provide different applications with a

clear and easy API to push notifications, and to implement the network mechanisms required

to achieve this behavior. The high-level role of the ICT component is to decouple applications

from the details of connectivity. Therefore, an ICT abstraction for push notifications is

required to decide what to do when unreliable connectivity, such as intermittent links or

network delays, prevents a reliable delivery of a pushed notification.

For instance, consider a GPS-tracking application in which the movement of multiple end-

points is tracked on a grid. If a user moves from point 1 to point 2 and then to point 3, and

the Data packets pushing the two movements are lost, should the producer or the network

keep retransmitting both notifications? Or should it drop the packet announcing point 2

and move on to deliver only the one announcing on point 3? The goal of defining a clear

ICT abstraction is to address this question, and to guarantee that an application can choose

an ICT that addresses its application-level needs.

We discuss possible abstractions to this question in section 5.1.1, but we first summarize

and say that the role of an ICT for push notifications is two-fold: Simplify the process of

push notifications in the pull-based ICN paradigm, and implement in-network information-

oriented mechanisms to comply with the selected application abstraction.

5.1.1 Abstractions for Push Notifications

As mentioned at the beginning of this chapter, ICT for push notifications is not required

to maintain data consistency over time, and therefore, an intermediate ICT component
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deployed in the network should not simply store all Data packets. In this section we explore

two abstractions for push notifications in ICN: a producer-oriented notification abstraction,

and a time-oriented notification abstraction. Each of these abstraction addresses different

application needs, and therefore, each requires different in-network mechanisms.

1. Producer-Oriented Notifications Abstraction: A consumer requests to be notified on

the latest data produced by each producer in the group, regardless of the specific time

it was produced.

For instance, consider a group chat application, such as Slack [72] or Google hangouts

[70], in which a connectivity sign is presented for each participant: A green mark when

a participant is ’online’, a yellow mark when he is ’away’ and a red mark when he

is ’offline’. Here, a consumer using the notification abstraction requests to be notified

on the latest status of each member in the group. In this case, a lost notification is

relevant only if it is the most recent notification. This way, when a new consumer joins

the group he receives only the latest and most accurate connectivity status of every

participant.

Another example of an application that can use this abstraction could be a GPS-

tracking application, in which participants report their locations as they move. A

consumer in this application wants to be notified whenever a producer is moving.

However, if the producer made multiple steps while the network was disconnected,

then a consumer only wants to get the latest one.

2. Time-Oriented Notifications Abstraction: A consumer requests to be notified on the

latest data produced in the group, only if this data was produced within a specific

(recent) interval of time. This abstraction does not guarantee any producer-specific
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notification, but only that the latest set of content items generated in the group is

pushed.

For instance, consider a news feed that presents the headlines of the latest hour. Using

this abstraction, the consumer gets all the headlines produced within that hour. It

may present multiple headlines pushed by the same news resource within this hour,

and zero headlines from others if they didn’t produce new data during that time.

Another application example that can use this abstraction is a sensor network appli-

cation, in which sensors report their measurements only if they pass a pre-defined

threshold. In this example, a consumer requests to get all the measurements that

passed their thresholds recently, even if some of them were pushed by the same sensor.

This abstraction promises that in case of packet loss, a measurement would not be

lost unless it expired. This can be helpful if a consumer wants to identify patterns

of multiple measurements pushed by the same sensor within a short amount of time,

even if some of them were initially lost due to bad connectivity.

5.1.2 Push Notifications Vs. Data Synchronization

One could say that these two abstractions can be simply satisfied by Sync, because if Sync

synchronizes the entire set of names, it synchronizes the latest. However, we argue that

the mechanisms required to support full namespace synchronization are heavyweight for

applications that need only the latest update(s). Moreover, all existing Sync mechanisms

require at least 0.5 Round-Trip-Time (RTT) to synchronize the name of the data, and an

additional RTT to fetch it [20, 29, 84, 85]. The goal of this chapter is to explore whether

Data in the group can be pushed to all consumers immediately, with the best case scenario

of within 0.5 RTT.
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To illustrate the differences between push notifications to Sync, consider the example of

the Slack-like application, where a connectivity sign represents if a participant is ’Online’,

’Offline’ or ’Away’. Using mechanisms for data synchronization the application gets all the

sequence numbers of connectivity events, and can then fetch the latest to find out the current

status it needs to present. Using a push mechanism, an application can simply get the latest

status to be presented. Moreover, in the case of a disconnected or lossy environment, or

when a new consumer joins the group, there is no point in sending notifications for previous

events that show that a participant was ’Away’, ’Offline’ and ’Away’ again, but he is now

’Online’. Instead, it is much more useful for the application to simply get the latest status

rather than getting all the statuses pushed when a link was down.

In addition, one could say that the abstraction for push notification can be achieved by pub-

sub mechanisms already implemented in NDN [84]. However, we argue that the communica-

tion model of the two is different, and therefore, each requires different mechanisms. First,

pub-sub mechanism focus on retrieving large streams of data from specific known sources.

However, the goal of our proposed abstraction is to push relatively small notifications, fit a

single Data packet, from multiple dynamic sources in group communication.

To conclude the objectives of this chapter, we reiterate that the goal of this chapter is to

explore mechanisms for dynamic and multi-source event-driven applications, with the goal

of pushing small notifications within a one-way delay latency.

5.2 ICT-Notify

In this section we describe ICT-Notify, which is an implementation of the push notification

abstractions we presented in Section 5.1.1. A detailed flow of ICT-Notify will be presented
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in Figure 5.2. But first, we define the high-level requirements from ICT-Notify to ensure

that it is a primitive ICT that can be used by different types of ICN applications:

• Supports multi-source data retrieval.

• Supports scenarios in which the exact number and identity of the group members are

unknown.

• Does not require changes to the ICN architecture or to its forwarders.

• Introduces an API for applications.

• Maintains trust relationships as defined by applications.

• Its intermediate component must not understand application-specific semantics, and

is not required to decrypt the application’s content.

As mentioned, the goal of ICT-Notify in not to support data consistency over time, but

instead, to push only the relevant data as quickly as possible, and preferably, within one-way

delay latency. Therefore, applications that use ICT-Notify must tolerate notification loss, if

it is no longer relevant as defined by the abstraction.

Like ICT-Sync, ICT-Notify consists of an application library and an intermediate process

that can be deployed by the network operator. The implementation of ICT-notify follows

the long-lived Interest scheme. As discussed in [9, 58], this scheme presents challenges in

namespace design. It is important to mention that our goal was to implement a proof-

of-concept ICT mechanism, and therefore, this work does not study the cost of long-lived

Interests on the PIT, and does not evaluate the tradeoffs between long-lived Interests and

architectural modifications to include a new type of push packets.

101



To address our requirement for dynamic environments with unknown identities of producers,

we choose the general-purpose naming approach, in which a consumer sends one long-lived

Interest for future push notifications, and not a separate long-lived Interest for each producer

in the group. ICT-Notify supports simultaneous data delivery through its namespace design,

with the penalty of additional latency.

The major challenge in sending long-lived Interests is to distinguish one Interest from an-

other. In the past, this has been done by adding a sequence number or a timestamp to the

Interest name. As discussed in the first section of this chapter, a sequence number is used

to request the next sequenced notification, and a timestamp is used to request a notification

that occurred after that time. However, none of these options provide a complete solution.

Sequenced Interests require the producer’s identity in the namespace, and timestamps do not

support unordered data delivery. To address this challenge, ICT-Notify follows the sync ap-

proach. Instead of simply naming future data to be pushed using a timestamp or a sequence

number, ICT-Notify names the state of the data.

5.2.1 ICT-Notify API

To participate in a notification group, application parties use ICT-Notify API and Register

an application name. All the parties that register the same name join the same notification

group. To push notifications in the group, parties call the Push function and provide an

event to be pushed.

We define an event to be the content of the notification pushed in a Data packet. Each

event is in the form of a hierarchical name, for instance: "/sensorA/temperature/50" or

"/User/Alice/Location/X/Y". Since the event is the Data payload, and not the Interest

or Data name, it can be of any form, and it can contain producers’ identities if desired
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by the application. When an application pushes an event, ICT-Notify API generates a

corresponding event identifier.

The event identifier depends on the specific notification abstraction. When ICT-Notify im-

plements the producer-oriented abstraction, in which a consumer requests to be notified on

the latest notification per producer, the event identifier is represented by a tuple of producer

identifier and a sequence number, similarly to ICT-Sync representation. When ICT-Notify

implements the time-oriented abstraction, in which a consumer requests to be notified on all

the events occurred in the last X interval, then the event identifier is represented by a times-

tamp. ICT-Notify uses nanosecond accuracy to minimize collisions of frequently generated

events.

Notification-Based Application
App-specific logic

ICT-Notify

NDN	Forwarder

Notification interests/Data

App-specific Communication
(Request named data/Send data)

NotificationUpdate(List_of_Events)Push(Event)Register(GroupName)

Time-Oriented Mechanism
Pushed event is mapped to a 

timestamp:
( ti)

Producer-Oriented Mechanism
Pushed event is mapped to a 

tuple:
( pi, Seq #)

Figure 5.1: ICT-Notify API for the Two Abstractions
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Figure 5.1 presents the high-level API of ICT-Notify, and shows that ICT-Notify implements

mechanisms for the two different push notifications abstractions: The producer-oriented

abstraction and the time-oriented abstraction.

To illustrate the interaction between the application and ICT-Notify, consider the following

GPS-Tracking application that follows the producer-oriented notification abstraction: Using

ICT-Notify API, Alice, Bob and Ted register the same application name to participate in

a notification group, which triggers multicast of three long-lived Interests, one from each

participant, for the same group name. When Alice moves to a new location X,Y, she uses

the push call in ICT-API to create an event and push it to others. The event content can

look like "/User/Alice/Location/X/Y". ICT-Notify API will then create the event identifier

is (Alice,1). The ICT-Notify API notifies Bob and Ted about Alice’s notification using the

NotificationUpdate Callback.

5.2.2 ICT-Notify Protocol and Namespace Design

ICT-Notify follows the next namespace design for its long-lived Interest:

<ICTName>/<AppName>/<ConsumerState>. <ICTName> identifies ICT-Notify packets

in the network. <AppName> is the group name registered by the participants to differen-

tiates one group from another, and it also supports multicasting to only application parties.

<ConsumerState> consists of a notification list which is the list of relevant events.

As mentioned in the previous subsection, the specific representation of notifications in the

notification list depends on the abstraction ICT-Notify implements: a tuple of producer

identifier and sequence number in the producer-oriented abstraction, or a timestamp in the

time-oriented abstraction. When ICT-Notify implements the producer-oriented notification
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abstraction, then the notification list consists of a list of tuples, each pair represents a mem-

ber identification and its latest sequence number. When ICT-Notify implements the time-

oriented notification abstraction, then the notification list consists of the list of timestamps

generated within the relevant time frame.

The name of a notification Data packet consists of the name of the long-lived Interest and an

additional name component – <ProducerState> – that lists the latest notifications known

by the producer. Before a new long-lived Interest is sent, old notifications are removed

from the <ConsumerState> name component. In the producer-oriented abstraction, events

of previous sequence numbers are removed, while in the time-oriented abstraction, expired

timestamps are removed. In our current implementation, the expiration of a timestamp is

configurable, and can be determined by the application.

When receiving an Interest, a producer compares its local notification list of known event

identifiers with the identifiers in the received <ConsumerState> name component, and deter-

mines if it has new events unknown to the consumer. If so, the producer responds with a Data

packet that consists of 1) its local notification list in the <ProducerState> name component,

and 2) the events that correspond to the missing identifiers in the payload. Therefore, the

Data name contains two notification lists: the consumer’s out-of-date list from the Interest

name, and the latest up-to-date producer’s list. The Data payload contains the set-difference

of the two lists, which is a list of the missing events.

Since the long-lived interest scheme guarantees that there is always an Interest in the PIT, a

producer can push Data notifications whenever the application generates an event. Having

<ConsumerState> in the Interest name allows every participant, including the intermediate

ICT process, to find the relevant set-difference and to respond quickly with Data. It also

enables relevant data retrieval from NDN caches.

105



For the time-oriented notification abstraction, we explored two implementations of <Con-

sumerState> and <ProducerState>: an invertible Bloom filter (IBF) [27], and a simple

vector. We encoded each of these data structures in a name component and compressed

these names using the Bzip algorithm. We found that although IBFs are considered to be

efficient data structures, they consume more memory than vectors when supporting small

numbers of items (in the hundreds). Our experiments showed that Interest names with vec-

tor representations are six times smaller than Interest names with IBF representations. A

quantitative evaluation of vectors is presented in Section 5.2.3. Since the goal of ICT-Notify

is to push only the latest notifications, old names are removed from the vector and therefore

we do not anticipate a large number of events encoded in the name components.

Furthermore, ICT-Notify API allows applications to define filters on the events they request

to receive. This way, different instances of the applications can choose to be notified about

specific events, and not about every event generated by a producer. For instance, a sensor

in an IoT network can wake up and send its temperature periodically, but an application

can choose to be notified only when the temperature is above X or below Y. ICT-Notify

follows the implementation of the schematized trust model [82] to enable regular expressions

as configurable filters, as is done to define trust relationships.

The intermediate process of the ICT works similarly to an end-point consumer. It maintains a

<Consumer State> list according to Data names it sees, and it generates long-lived Interests

to notify others of its state. However, it does not produce notifications, and unlike ICT-

Sync, it does not need to store all Data packets. Instead, the intermediate ICT component

keeps tracking the system’s latest events: either the latest sequence number per producer in

the producer-oriented abstraction, or the latest timestamps in the time-oriented abstraction.

Then, the intermediate ICT-Notify component stores only the corresponding payloads of

the unexpired events, and can responds to Interests just like any end-point party, without
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the need to decrypt the data. This way, ICT-Notify supports applications even when the

network is disturbed, with the worst case of no Synchronous End-to-End Path (SEEP).

Figure 5.2 summarizes the high-level flow of ICT-Notify, when it implements the time-

oriented push mechanism. The red text represents changes between the steps. The example

illustrates how ICT-Notify pushes data immediately to all the consumers, and how it deals

with simultaneous pushes. Here, an intermediate is not deployed in the network, however, in

network with intermittent links, the intermediate ICT-Notify component could be deployed

and act as a consumer.

5.2.3 Evaluation

The experiments discussed in this section focus on showing the capabilities of the time-

oriented ICT-Notify abstraction rather than its scalability. Similarly to ICT-Sync, we con-

ducted all our experiments on the Open Network Lab (ONL) [76] to control network connec-

tivity factors such as link delay, packet loss rates, and link availability.

Experimental Setup

Our ICT-Notify experimental setup is similar to the setup we used to evaluate ICT-Sync.

The NDN topology, presented in Figure 5.3, is mapped to the ONL topology presented in

Figure 5.4. The topology consisted of six endpoints and four intermediary NDN routers

running on 10 two-core machines, and five Ubuntu Linux (16.04.4) software routers. All

two-core machines ran NFD [5] version 0.6.1, and each experiment was repeated three times.

NDN routers were a combination of two machines - a Linux software router and a machine

that ran the NFD code.
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Alice Bob

Ted

Step Incoming	Pending	Consumer	State	 Producer	State EventsMap

1 /ICT-Notify/AppName/<> <> <>

2 /ICT-Notify/AppName/<> <t1> <t1=e1_b>

3 /ICT-Notify/AppName/<> <t1> <t1=e1_b>

4 /ICT-Notify/AppName/<t1> <t1> <t1=e1_b>

5 /ICT-Notify/AppName/<t1> <t1,t3> <t1=e1_b
t3=e2_b>	

6 /ICT-Notify/AppName/<t1> <t1,t2,t3>
<t1=e1_b	 		
t3=e2_b	
t2=e1_t>	

7 /ICT-Notify/AppName/<t1,t2,t3>
/ICT-Notify/AppName/<t1, ,t3> <t1,t2,t3>

<t1=e1_b
t3=e2_b	
t2=e1_t>	

8 /ICT-Notify/AppName/<t1,t2,t3> <t2,t3> <t3=e2_b	
t2=e1_t>	

2. D: ICT-Notify/AppName/<>/<t1>
Content: < Bob/Temperature/40 >

2. D: ICT-Notify/AppName/<>/<t1>
Content: < Bob/Temperature/40 >

2. D: ICT-Notify/AppName/<>/<t1>
Content: < Bob/Temperature/40 >

Step Incoming	Pending	Consumer	State Producer	State EventsMap

1 /ICT-Notify/AppName/<> <> <>

2 /ICT-Notify/AppName/<> <> <>

3 /ICT-Notify/AppName/<> <t1> <t1=e1_b>

4 /ICT-Notify/AppName/<t1> <t1> <t1=e1_b>

5 /ICT-Notify/AppName/<t1> <t1,t2> <t1=e1_b,
t2=e1_t>	

6 /ICT-Notify/AppName/<t1> <t1,t2,t3>
<t1=e1_b	 		
t2=e1_t	
t3=e2_b>	

7 /ICT-Notify/AppName/<t1,t2,t3>
/ICT-Notify/AppName/<t1, ,t3>

<t1,t2,t3> <t1=e1_b,	 		
t2=e1_t	
t3=e2_b>	

8 /ICT-Notify/AppName/<t1,t2,t3> <t2,t3> <t3=e2_b	
t2=e1_t>	

Step Incoming	Pending	Consumer	State Producer	State EventsMap

1 /ICT-Notify/AppName/<> <> <>

2 /ICT-Notify/AppName/<> <> <>

3 /ICT-Notify/AppName/<> <t1> <t1=e1_b>

4 /ICT-Notify/AppName/<t1> <t1> <t1=e1_b>

5 /ICT-Notify/AppName/<t1> <t1> <t1=e1_b>

6 /ICT-Notify/AppName/<t1> <t1,t3> <t1=e1_b
t3=e2_b>	

7 /ICT-Notify/AppName/<t1,t2,t3> <t1,t3> <t1=e1_b
t2=e2_b>

8 /ICT-Notify/AppName/<t1,t2,t3> <t2,t3> <t3=e2_b	
t2=e1_t>	

1. All three send Interest: ICT-Notify/AppName/<> 
2. a. Bob pushes a new event with content: Bob/Temperature/40 (marked e1_b) 

b. ICT-Notify maps the content to t1, and pushes Data packet
3. Alice and Teb receive Bob’s Data, ICT-Notify updates their producer state. 
4. All send a new long-lived Interest: ICT-Notify/AppName/<t1> 
5. a. Ted pushes a notification at t2: Bob/Temperature/45 (marked e2_b), 

b. Bob pushes a message at t3: Ted/Temperature/43 (marked e1_t).
c. ICT-Notify libraries on both Bob and Ted push their content simultaneously.

6. a. Bob’s notification consumes the PIT first, so Alice only gets Bob’s notification. 
b. Ted and Bob get each others notifications.

7. a. All send their new long-lived Interests. 
b. The notification pushed at t1 expires.

8. Bob and Ted respond to Alice’s Interest, and push notification e1_t.

Figure 5.2: ICT-Notify Example
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Figure 5.3: Tested NDN Topology

Figure 5.4: Mapping Topology onto Physical ONL Hardware
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Figure 5.5: Average Push Latency over Different Loss Rates (ms)

The Network Time Protocol (NTP) was used on ONL machines to ensure the consistency of

timestamps. We implemented a simple application that uses the time-oriented notification

abstraction to push notifications to participants in the group.

ICT-Notify over Different Connectivities

First, we evaluated push latency of a single producer in the group. We configured node ’e’

to push between 80-100 notifications, one every 1-4 seconds. The notification push time was

recorded as the event identifier, and we collected the time the notification arrived at the

consumer ’a’. Figure 5.5 shows the average notification times when the links were stable and

reliable, and without an intermediate ICT-Notify at intermediate routers.

The results demonstrate how the latency of pushed notifications remained stable over a

small percentage of loss rates. Here, we set notifications to expire one second after they have

been sent. We could not evaluate larger loss rates because a large percentage of the pushed

notifications expired before they reached the consumer.
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Second, we evaluated push latency over different loss rates, when link 1 and link 2 alternated

for different amounts of times, hence, there was never a SEEP. Here, we set notifications to

expire after five seconds, and configured nodes ’b’-’f’ to push 100 notifications in random

intervals of 1-4 seconds. When running this experiment without the deployment of the

intermediate ICT process, zero notifications received by the consumer. Therefore, we ran

the same experiment with an intermediate ICT-Notify deployed on NDN R1 and NDN R2,

and we present the results in Figure 5.6.

The x-axis of Figure 5.6 indicates the different loss rates we tested, and the y-axis indicates

the latency for the different up and down times we tried. The results show that notifications

are pushed faster when the links alternated for a short amount of time, with the exception of

alternating the links for 500 ms. After a thorough investigation, we found that the ndn-cxx

library, the library we use for ICT-Notify implementation, does not support multi-threaded

applications, and can process incoming Interests and Data packets only from a single thread.

However, the application we implemented for our tests consisted of two threads: a producer

thread and a consumer thread. While the nodes in our tested topology sent and received

Interests and Data in random intervals, nfd processed them all in one-second intervals as if

they were all sent by a single thread. Therefore, alternating links for less than one seconds

did not improve push latency.

Dynamic Name Size

Next, to understand the limitations of our namespace design, in which a list of timestamps

or tuples are encoded in a name component, we evaluated the dynamic sizes of the Interest

and Data names. Here, we deployed the intermediate ICT-Notify process on NDN R1, and

we programmed the five producers to start sending simultaneous notifications approximately

four seconds after we started each experiment. We set notifications to expire five seconds
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Figure 5.6: Push Time with no SEEP (sec)

after they have been sent. Each producer sent a total of 50 notifications every 1-3 seconds

before we stopped the experiment. Figure 5.7 shows the size (in Bytes) of the name of the

Interest and Data packets sent and received by the intermediate process.

As shown in the figure, in our the tested setup of 5 simultaneous producers, the Interest name

size was around 400 Bytes, while the Data name size was around 800 Bytes. Data names

are approximate twice the size of Interest names because they carry both the consumer and

producer states. Interestingly, Figure 5.7 also shows how the name size drops when expired

timestamps are removed, and how it grows back up as new notifications are pushed. The

goal of this experiment was to verify that this size is bounded, and explore how expired

notifications impact the name size. Future work should evaluate the name size as a function

of different update rates for a larger amount of producers, and explore name enhancements

such as name compressions.
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Figure 5.7: Name Size (Bytes)

Simultaneous Notifications

Last, we evaluated the latency of simultaneous push notifications in a reliable network,

without an intermediate ICT component. In this set of experiments, we increased the number

of producers that sent simultaneous notifications, and configured each producer to push

between 80-100 notifications every 1 second. We measured the time elapsed from the moment

a producer pushed a notification until it arrived at the consumer. We used node ’a’ as the

consumer, and nodes ’b’-’f’ as the producers.

Figure 5.8 shows the latency of simultaneous notifications over a different number of pro-

ducers. The results suggest a linear trend between the number of simultaneous updates and

push latency. To understand the linear trend, consider that a notification can be lost if

another notification consumes the PIT entries on R2, R3, or R4. In such cases, ICT-Notify

resends the lost notification as a response to the next long-lived Interest, but this second
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update can also lose the race to the router if another one was faster. Therefore, the push

latency grows with the number of simultaneous producers.

Figure 5.8: Push Time (ms) of Simultaneous Notifications

5.3 Conclusions

This chapter discussed the problem of push notifications ICN. We explored the challenges

in supporting push mechanisms in the pull-based paradigm, and we illustrated a mechanism

that can push Data packets based on two application abstractions: a time-oriented push

abstraction and a producer-oriented push abstraction. We evaluated the basic push func-

tionality of ICT-Notify in a simple topology with intermittent links. Our experiments show

that with the time-oriented intermediate ICT-Notify component, applications were able to

push notifications to others when the network links present small loss rates, and when there

was never a SEEP between the members of the group.

To summarize the contributions of this chapter, we designed and implemented ICT-Notify to

support applications in two aspects: 1) It proposes a push-based mechanism as a primitive
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for ICN applications, without relying on any application specifics. 2) Like ICT-Sync, it

decouples information from connectivity and supports applications in different connectivities,

even if there is no SEEP. Although ICT-Notify illustrates a push-based mechanism that can

form a future ICT, and therefore achieves the goals of this chapter, it is important to note

that it was not evaluated for robustness and efficiency, and future research should explore

enhancements to the mechanism.

Table 5.1 summarizes the properties of ICT-Notify as an ICT abstraction for push notifica-

tions mechanisms.

ICT property ICT-Notify
Broadly applicable needs Push the latest Data

Application Examples Location-based applications
Sensor network applications
AR/VR applications
Status applications

Known challenges Pushing Data in the pull based paradigm
Naming pending long-lived Interests
Supporting simultaneous notifications in the same group

ICT API Register: App registers to a notification group
Push: push an event to others
NotificationUpdate: ICT-Notify pushes a remote events
to the application

Intermediate ICT Acts as a consumer
Remembers the latest relevant notifications
Aggregates simultaneous Data packets and lost Notifications

Table 5.1: Push Properties as an ICT
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Chapter 6

Data Partitioning

Like Chapters 4 and 5, this chapter also discusses a distributed group communication, but

unlike the previous chapters, this chapter presents an ICN problem that has not been con-

sidered by others in related work. While data synchronization and push notifications have

been discussed as essential ICN mechanisms in related works, and therefore were native can-

didates for ICT abstractions, mechanisms for fetching distributed partitioned data have not

been explored. In this chapter, we not only argue that the task of fetching partitioned data

is required by different types of ICN applications, but we also argue that this task is highly

coupled with connectivity mechanisms, and therefore, requires an ICT abstraction.

We start the discussion with a definition of data partitioning in ICNs:

• An application with a dataset D, consists of N content items c1,...,cN with correspond-

ing names p/n1,...,p/nN. All names share the same prefix p.

• D is partitioned into K subsets, and the subsets are distributed among different parties

in the network.

116



• The names in each subset cannot be generalized and hierarchically represented in one

partition name.

Figure 6.1 illustrates an example, in which N=8, K=3, and nodes A,B and C are the three

distributed parties.

{c6,c7,c8} with names {p/n6,p/n7,p/n8}

{c1,c2,c3} with names {p/n1,p/n2,p/n3}

{c4,c5} with names {p/n4,p/n5}

A

B

C

Figure 6.1: Distributed Producers with Partitioned Data

In theory, according to the request for named data abstraction, a consumer in a reliable

network, with no intermittent or congested links, should be able to fetch any named data

in the distributed dataset. However, in practice as we will show in the next subsection, a

consumer must do more than simply request named data, and can only successfully fetch

distributed partitioned data when specific connectivity mechanisms are present.

The following subsections of this chapter are organized as follows: We first demonstrate the

problem of data partitioning in NDN by providing a simple application with partitioned data,

and by showing empirically how NDN fails to satisfy the application requests unless there is

a specific coupling of the application with forwarding strategies. Second, we discuss how this

problem impacts different types of applications, and therefore, should be addressed by an ICT
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abstraction. Third, we discuss existing and new mechanisms that can address the problem,

and explore under which circumstances they can provide the desired abstraction. Fourth,

we evaluate a simple abstraction that allows applications to control in-network information-

oriented retransmissions, and show how it solves the problem of fetching partitioned data.

6.1 The Problem of Partitioned Data

In short, we argue that the problem of data partitioning arises when an application data is

partitioned into disjoint subsets, and the data names in a subset cannot be generalized and

hierarchically represented in a prefix. In such cases, ICNs cannot guarantee that an Interest

for a named data would be satisfied, although the content exists and is reachable. Before we

get to explain why, we prove our argument by emulating a distributed database application

and show how NDN fails to retrieve the partitioned named data.

In our experiment, we created a dataset with 200 content items named p/ni, in which p is

the shared prefix and ni is the name component that differentiates one name from the other.

We partitioned the dataset into four equal and disjointed subsets S1-S4, and distributed

them among four producers P1-P4. Therefore, each producer held 25% of the dataset. We

emulated the distributed database application using ndn-traffic, and ran it on the ONL

topology presented in Figure 6.2. We programmed a consumer (C) to randomly fetch all 200

content items, and collected all the Data packets it received.

We ran the experiment three times, and we found that in all repetitions, the consumer

received exactly 25% of the requested named data, and only the data held by P2. When we

checked the network logs, we found that all the requests arrived at P2, including the ones for

data held by P1, P3 and P4. Therefore, P1, P3 and P4 were not able to respond to requests
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NDN Routers

Consumer

C

NDN R1

NDN R2

P4

NDN R4

NDN R3

P3

P1 P2

Producer

Figure 6.2: Distributed Database Use Case

for named data held by them. Hence, the problem lies in NDN’s forwarding and/or routing

mechanisms.

6.1.1 Where is the Failure?

To understand why NDN failed to satisfy 75% of the requests for named data, although the

network was reliable and the links were configured to have routes between the consumer and

all the producers, we must look into NDN’s routing and forwarding planes. To announce

existing named data, and to make it reachable to others, a producer in ICNs must publish the

names of the data it holds. Then, a routing protocol is responsible to propagate those name

in the network and to populate the FIB routes. Presently, the NDN architecture does not

specify how an application should publish its names, and whether a producer should publish

the full list of names it holds, or only prefixes that represent clusters of its data. However,
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Prefix Face	Towards

/P/ P1,	P2,	R2

Prefix Face	Towards

/P/ R3,	R4

Prefix Face	Towards

/P/ P3,	P4,	R2

R4 FIBR2 FIBR3 FIB

Figure 6.3: FIB Tables of R2, R3 and R4

for scalability, it was determined that NDN routing schemes should compute hierarchically

structured routes based on name prefixes, and propagate those prefixes and not the full

names [37]. In other words, NDN routing schemes aggregate similar names into shared

prefixes, and populate the FIBs with the prefixes instead of full names.

In our tested application, the names in each partition could not intuitively be generalized

into one hierarchical partition name. Therefore, similarly to the routes computed by routing

schemes, the FIB tables in our tested network were configured to have the dataset prefix /P

towards all the producers as shown in Figure 6.3. As discussed in Section 2.1.1, the NDN

router looks for the FIB entry which has the longest prefix matching with the incoming

Interest’s name to determine the Interest’s next hop. Here, all the requests for names in the

dataset, regardless of the specific partition they belong to, matched the same FIB entry, and

this FIB entry contained more than one possible next hop.

As also discussed in Section 2.1.1, when a FIB entry contains more than one next hop, the

forwarding strategy determines which one(s) to use. Our experiments used the default NDN

configuration which pairs the best-route strategy with all routable names. As discussed in

Section 2.4, this strategy chooses the least expensive face when it forwards an Interest, and

it does not change its selection unless the face cost has changed by a routing protocol or by

the network operator. Here, all faces had the same cost, and the strategy chose the face with

the lowest id to break the tie. This behavior caused R2 to choose R3 as the next hop for all
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the Interests it processed, and caused R3 to choose P2 for all the Interest it processed. As

a result, only the requests for named data in S2 were satisfied.

Strategy Choice

To better understand the impact of the strategy selection on the correctness of our distributed

DB application, we changed the default configuration and paired our application prefix, P,

with different NDN strategies. Table 6.1 presents the percentage of satisfied requests over

different network strategies.

Strategy % of Satisfied Requests
best-route 25
ncc 100
asf 27.5
multicast 100

Table 6.1: Percentage of Satisfied Requests over Different NDN Strategies

As can be seen in the table, NDN satisfied 100% of the requests only when two strategies

were configured in our tested topology: The multicast and ncc strategies. The multicast

strategy sent an Interest to all available next-hops found in the FIB entry, and therefore,

each producer received all the requests, and responded to the requests for named data in its

partition.

To understand why ncc successfully retrieved 100% of the requests, and why the asf strategy

satisfied only 27.5%, we need to extend our discussion from Section 2.2.1, and discuss the

details of the strategy’s failure response mechanisms. When an Interest is not satisfied with

a Data packet, the forwarding strategy can retransmit the Interest again on a different face,
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or it can drop the Interest. Clearly, the best-route strategy drops the Interest, and does not

try another face.

Like the best-route strategy, the ncc strategy also chooses one upstream face when the FIB

entry contains multiple next hops. However, unlike the best-route strategy, the ncc strategy

retransmits the Interest on a different face if a Data packet was not received within a specific

amount of time. Therefore, the strategy guarantees that if there is a route to a producer

that can satisfy the Interest, this producer would eventually receive the Interest and satisfy

the consumer request.

Interestingly, the asf strategy satisfied 27.5% of the requests, 96.5% of them were satisfied by

P2, and 3.5% were satisfied by P4. To see why, consider that like the ncc and the best-route

strategies, the asf strategy sends an Interest to only one upstream face, and like the best-

route strategy, asf does not retransmit an Interest if a Data packet was not received on time.

However, after a few consecutive failures, the asf strategy changes its face selection, and

forwards Interests for the same prefix on other faces in the FIB entry. The exact number

of consecutive failures in which after the strategy changes its face selection depends on

configuration parameters.

To conclude, our simple distributed database experiment demonstrated that in order to

satisfy requests for named data, when the data is partitioned and the names in each partition

cannot be represented hierarchically in an explicit partition name, an application must be

coupled with a forwarding strategy that either multicasts Interests to all potential next-

hops, or retransmits an Interests on different faces when a Data packet is not received on

time. However, in Chapters 2 and 3, we explained why pairing applications with forwarding

strategies break the ICN promise, and couples applications with connectivity mechanisms.
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Therefore, choosing the ’right’ forwarding strategy to solve the problem of data partitioning

is not a sustainable solution.

6.2 ICT for Fetching Distributed Partitioned Data

We propose to identify data partitioning as a problem that requires an ICT abstraction.

As discussed in Chapter 3, the goal of an ICT abstraction is to keep applications in the

information plane while the ICT implements broadly applicable mechanisms to satisfy the

requests for named data. In this section, we explore whether an abstraction for distributed

partitioned data is required by different types of applications, and therefore, justifies an ICT

abstraction.

Presently, mechanisms for fetching named data when the data is partitioned have not been

recognized as essential mechanisms in ICNs. This is mainly because the problem could be

solved by using topological names, in which the data name contains a location-oriented prefix.

For instance, data items held by P1 producer would have /P1/ prefix while data items held

by P2 would have /P2/ prefix. Although we agree that this is a valid mechanism in Internet-

like infrastructures, such as the NDN testbed, we also argue that it is not a general-purpose

solution for ICNs because it couples application with topological names.

In host-centric networks, the problem of efficiently locating the node that stores a particular

data item when the data is partitioned was acknowledged as a fundamental problem that con-

fronts peer-to-peer applications [65], and was addressed by decentralized overlay frameworks

such as distributed hash table (DHT) [65] and Virtual cord protocols (VCP) [12].

In addition to traditional decentralized storage services, similar to the distributed database

application we emulated in the previous section, our work on the NDN testbed encountered
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two additional use cases that required a mechanism for fetching partitioned data. The

first is a video streaming application [36], in which the producer had to respond to a large

number of requests for video frames, in addition to requests for the key certificates. Due to

long computation time of each Data packet, and in order to meet latency requirements, the

application developers asked for a mechanism that stores every produced Data packet in a

local or a remote repository, and then have that repository act like a ’cache’ and respond to

requests on the producer behalf. Hence, the producer would only work on generating Data

for new requests, while the repository would satisfy previously generated Data packets. As

a result, the application dataset was partitioned into two: previously generated data held by

a repo, and newly generated data held by the application.

Here, the topological naming convention on the NDN testbed prevented the option to use a

remote repository, because the application namespace was coupled with the testbed gateway.

Moreover, similarly to the emulated distributed database application, the default testbed

strategy, best-route, forwarded all the Interests to either the producer or the repository.

Here, changing the strategy to multicast or ncc did not solve the problem because these

strategies could not differentiate old requests from new requests, and forwarded a mix of old

and new Interests to both the application and the local repository.

The second service with a requirement to fetch partitioned data we encountered on the

NDN testbed was nTorrent [49], a BitTorrent-like [68] implementation for NDN. The naming

convention of nTorrent identified the name of the torrent, the communication group, the files

in the torrent, and the requested file chunk. A participant in a torrent, a peer, dynamically

adds itself to a torrent by announcing the torrent prefix. However, announcing a prefix does

not mean that the peer has all the torrent’s data (e.g., the prefix of a file in the torrent does

not mean the peer has all the file’s chunk). Therefore, a mechanism for path exploration per

name-based request is required. When deployed on the NDN testbed, the nTorrent prefix
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was paired with the ncc strategy for successful data fetching. Alternatively, the nTorrent

paper [49] suggests using name mapping services, such as SNAMP [3], to translate torrent

names into topological names.

To conclude this section, we argue that the requirement to fetch distributed partitioned data

is not an application-specific requirement. Instead, it is a requirement shared by different

services with the goal to aggregate storage, computation or network resources, by using a

number of distributed resources. Presently, those services must be coupled with either con-

nectivity mechanisms, such as forwarding strategies and routing prefix aggregation, or with

topological names. In other words, the Information plane is coupled with the connectivity

plane. This coupling not only impacts the application complexity, but it also affects the

performance and correctness of the application. To decouple the two planes and to simplify

the process for fetching distributed partitioned data, we must use an ICT.

6.2.1 Considerations for ICT Mechanisms

In this subsection, we discuss mechanisms for fetching partitioned data, and we explore if

and how they can form ICT abstractions.

NDN Map-and-Encap for Partitioned Data

The first mechanism we discuss is mapping data names into explicit routable names by an

external service such as NDNS (DNS for NDN) [1]. For instance, if a data name p/ni resides

at Alice’s laptop, and Alice is connected to WUSTL network, then every time a consumer

sends a request for p/ni it would be mapped into /WUSTL/AliceLaptop/p/ni by a service

like NDNS. Then, the application can send Interest using the mapped name, and not the

application-specific data name. The key property of this approach is to eliminate the FIB
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ambiguity by mapping every data name to an explicit routable name. The mapped NDNs

name can be topological, or arbitrary, depending on the network configuration.

The NDN Secure Namespace Mapping (SNAMP) [3] takes the Map-and-Encap approach,

and adds a layer of indirection to NDN when names whose reachability do not follow topo-

logical hierarchy can be reached using other globally routed names. Hence, when the routing

protocol does not propagate the data names published by the application.

Using SNAMP, the network responds with ’no route’ NACK when an Interest for unreachable

data name is expressed. When the NACK arrives at the consumer, SNAMP sends an Interest

to NDNS to map the unreachable data name into a routable name. If found, NDNS responds

with a routable name(s), and this routable name is added as a link object to the Interest.

Then, SNAMP uses this link object to send the Interest to the specific data provider. The

process of mapping unreachable application names into routable names is done by SNAMP,

and is transparent to applications.

While the approach of mapping application-level names into explicit routable names can

be considered as an ICT mechanism to fetch partitioned data, SNAMP does not present a

complete solution. First, the goal of SNAMP is to retrieve unreachable named data, and

not to retrieve partitioned data. Therefore, SNAMP relies on network NACKs to trigger the

mapping operation. In contrast, the names of partitioned data are reachable, and can be

found in ambiguous FIB entries. Hence, an ICT abstraction for fetching partitioned data

cannot rely on network NACKs.

A potential ICT abstraction for fetching distributed partitioned data can follow SNAMP

approach, with the following modifications:
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• On the producer side, ICT-API maps every name in the local partition into an explicit

routable name representing a route to the producer.

• On the producer side, ICT-API adds this mapping into NDNS, and publishes only the

routable producer name.

• On the consumer side, When a consumer fetches named data, the consumer’s ICT-API

first fetches the routable name from NDNS, and then expresses an Interest for the data

using the routable producer name and not the application data name.

While this ICT approach simplifies applications and can solve the problem of fetching par-

titioned data, it presents a few limitations. First, relying on a centralized server such as

NDNS can result in failures when the server is down, or when connectivity prevents continu-

ous access to the server. Therefore, it does not fully decouple information and connectivity.

Second, mapping every request for an application name into a routable name using an exter-

nal service results in additional delay, because it requires an additional RTT to translate an

application-level name into an explicit routable name.

Decentralized Mapping Using Sync

To address NDNS limitations, we propose another possible ICT solution that follows a sim-

ilar mapping approach, but does not require centralized services like NDNS. This ICT uses

invertible Bloom Filters (IBFs) to encode data names into one partition name, and then re-

quests named data by expressing an Interest carrying the IBF representation of the partition

name. The following list discusses the high-level principles of our proposed ICT:
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• ICT-API on the producer side encodes every name in the local partition into an IBF,

and publishes the binary representation of the IBF as an explicit partition name. For

instance: /ICT-DistributedFetch/<ApplicationName>/<PartitionIBF>.

• Routing protocols propagate the explicit partition names published by the ICT-API

without aggregating them into a single prefix. As discussed in Chapter 3, while an

application cannot express any routing requirements, such as name aggregation, an

ICT is allowed to specify routing requirements because an ICT name represents broadly

applicable needs.

• A sync mechanism, such as ICT-Sync, is used to synchronize all the partition names

among the distributed producers.

• On the consumer side, a request to fetch named data causes ICT API to search the

corresponding partition name in the synchronized list of IBFs. Then, the ICT API ex-

presses an Interest for the named data by expressing an Interest for the data in a parti-

tion:

/ICT-DistributedFetch/<ApplicationName>/<PartitionIBF>/<RequestedDataName>

• Thanks to the explicit partition name in the Interest, the Interest is forwarded in the

network directly to the producer that holds the requested named data.

• On the producer side, when a producer receives an Interest for named data, the ICT

library uses the <RequestedDataName> component to request the named data from

the application. Then it responds to the Interest with the content retrieved from the

application in a corresponding Data packet.

The advantage of this approach is that such an ICT abstraction adds a layer of indirec-

tion without modifying the application, without relying on a centralized server, and without
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adding delays to translate application names into routable names. However, the synchro-

nization of partition names is likely to add additional network overhead.

Theoretically, the proposed distributed ICT can implement an application abstraction for

fetching distributed partitioned data. We think that an intermediate ICT component for

fetching partitioned named data can synchronize partition names, store retrieved Data pack-

ets for future requests, and retransmit Interest packets when it is not satisfied by the network.

This way, an intermediate ICT component can solve the challenge of false positive IBF de-

coding, and retransmits Interests towards additional data partitions. However, this assumed

behavior should be verified and evaluated by an implementation.

Controlling Strategy Retransmissions

The third mechanism we consider is a simple application abstraction, that controls in-network

retransmissions when FIB ambiguity implies that the data might be partitioned, and when

an Interest packet is not satisfied by the originally selected face. We elaborate on this

abstraction in Section 6.3.

6.3 Application Abstraction: Controlling Strategy Re-

transmissions

As shown in section 6.1.1, the problem of fetching distributed partitioned named data can

be addressed by strategy retransmissions. However, coupling applications to a specific for-

warding strategy is not a sustainable solution because it couples applications with network

connectivity. Therefore, we present a simple abstraction that moves the decision to perform

information-oriented in-network retransmission to the application, without the need to be
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paired with a specific forwarding strategy. This way, the decision whether to retransmit in

the network is decoupled from a variable strategy implementation, and made only by the

application. Although we do not consider this abstraction as an ICT, it demonstrates how

applications with partitioned data can be decoupled from connectivity mechanisms while

controlling general-purpose in-network operations.

Our proposed abstraction for retransmission mechanism performs two independent yet com-

plementary functions: retransmissions decoupling and retransmission differentiation.

6.3.1 Retransmission Decoupling

This abstraction adds a new TLV to the Interest packet to specify the application retrans-

mission requirement. We name this Boolean type field the ’Interest Retransmission Policy’

(IRP) flag.

By setting the IRP to True or False, the application dictates whether the strategy should or

should not retransmit an Interest as part of its failure response mechanism. A forwarding

strategy can then support each option by providing the two failure response mechanisms as

part of its implementation, one that performs in-network retransmissions and another that

does not.

Algorithm 3 presents a simplified framework for a forwarding strategy that supports both

retransmission mechanisms using the IRP flag.

The IRP flag does not determine the in-network retransmission algorithm, and not the

strategy that should be used. The IRP flag only requires that a retransmission mechanism

exists. Thus, the application decides whether an Interest should be retransmitted by the

network, while the strategy determines the in-network retransmission algorithm, that is,
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Algorithm 3 Strategy framework that decouples in-network retransmissions
Function ForwardInterst(interest):

face_list = SelectNextHop(interest)
IRP = GetIRP(interest)
SendInterest(interest, face_list)
if IRP then

schedule retransmission at time x
else

wait for application retransmission
end
return

when to retransmit and which next hop(s) to choose. The retransmission and suppression

timers presented in algorithm 3 are only placeholders for possible retransmission algorithms

provided by a forwarding strategy. The strategy is free to choose any algorithm to support the

two options. For example, a core network strategy might choose a retransmission algorithm

that addresses congestion issues and relies on collecting round-trip-times, while an access

strategy retransmission algorithm might simply follow a list of given faces and retransmit an

Interest after a fixed time interval. The work in [57] proposes a statistical model to compute

retransmission intervals.

6.3.2 Retransmission Differentiation

Our proposed strategy abstraction adds a second Interest TLV, the ’Network Retransmission

Differentiation’ (NRD), to differentiate application Interests from network retransmissions.

Using the NRD TLV, strategies can support different mechanisms for controlling network

traffic, and can collect performance measurements of alternative next hops in dynamic envi-

ronments. We describe two scenarios in which the NRD field is required.

First, in dynamic networks, such as in a vehicular network [33] or in wireless networks[63],

an adaptive forwarding strategy can probe faces to explore alternative next-hops. Such a
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strategy might want to differentiate the probed Interests from the Interests generated by the

application to support designated strategy mechanisms for control and data traffic.

The second scenario is an existing problem in the current ncc strategy and the NFD forward-

ing mechanism, in which loop detection caused by nonces can prevent better face exploration.

As explained in Chapter 2, the ncc strategy adjusts its retransmission timer up whenever the

best face upstream times out, and adjusts it back down whenever the face upstream success-

fully retrieves data. Adjusting the timer down for every successful data retrieval guarantees

that at some point, the time period is less than the upstream RTT, and therefore allows ncc

to explore other potential upstreams. However, because of the duplicated nonce mechanisms,

ncc can fail to explore potentially better-performing upstreams. We illustrate this problem

in Figure 6.4.

Figure 6.4: NACK problem

As presented in Figure 6.4, R1 has a new faster path to R4 through R3, but the ncc strategy

has previously selected R1 as the (only) best performing upstream face, thus it sends all
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Interests on face 1. When the R1 timer approaches 48ms, which is smaller than the actual

50 ms RTT through R2, the timer of Interest i, sent at t0, causes R1 to retransmit the

Interest on face 2 at t48. Router R4, which received Interest i from R2 at t25, receives it

again at t58. R4 recognizes the second i and its nonce as a duplicate Interest, and therefore

drops it and replies with NACK. Here, ncc on node R1 does not receive a Data packet on face

2, and therefore continues to use face 1 as the best-performing face, although its upstream

RTT is more than twice that of the other new path. The ncc strategy will switch to use face

2 only if a retransmitted Interest arrives at R4 before the original Interest. In other words,

the strategy changes its best-face selection only if the "timer period" plus the "one way trip

time through R3" is less than the "one way trip time through R2".

This problem could be solved by adding the NRD TLV to the retransmitted Interest, and

differentiating the retransmitted Interest from the original one. This way, the strategy does

not detect the Interest as a duplicate one, thus enabling better face exploration. However,

by adding NRD TLV and processing Interests with the same nonce, we interrupt the core

mechanism of loop detection in NDN. Therefore, using the NRD as a simple Boolean flag

does not solve the problem.

In our implementation, we used a non-negative-integer to represent the NRD TLV. We set

the initial value of the NRD TLV to 0, and increased it by one every time the Interest was

retransmitted by the strategy to an additional face. In our experiments, we selected 10 as the

maximum number of allowed retransmissions, and replied with NACK if the Interest’s nonce

was previously recorded and the NRD TLV was equal to 10. In addition, we implemented

the strategy mechanism to reply with NACK when there were no unused upstream faces

to use. Although our implementation provided us with the desired behavior, the NRD

mechanism should be better explored as part of future work. We present a framework of our

implementation in algorithm 4.
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Algorithm 4 Retransmission Differentiation using NRD
Function DetectLoopAndRetransmissions(interest):

if nonce previously recorded then
if NRD == ’MaxAllowed’ then

send NACK
else

interest.NRD++ HandleRetransmission(interest)
end

else
interest.NRD++
ForwardInterst(interest) [algorithm 3]

end
return

Unlike NDN, CCN does not use nonces to detect loops, but uses an additional Time-To-

Live(TTL) TLV to avoid infinite loops. While the problem described in Figure 6.4 might

not occur in CCN, we suggest that the proposed differentiation can be useful in the CCN

architecture to support more intelligent forwarding strategies that can differentiate an appli-

cation Interest from an Interest injected by the network.

6.3.3 Empirical Results

We implemented the proposed retransmission mechanism in NFD 0.4 and added the two

suggested TLVs to the Interest packet. We modified the loop-detection mechanism to follow

algorithm 4, and tested the proposed in-network retransmission abstraction by running a set

of experiments using the emulated NDN testbed [43] in the Open Network Lab (ONL) [76].

The emulated environment consisted of 26 dual-core machines that represent the testbed

gateways, 26 virtual machines(VM) that represent end hosts, and four software routes. All

these machines run Ubuntu 12.04.5 and our modified version of NFD 0.4. We configured

each gateway to publish the same set of namespaces used by the corresponding world-wide

NDN testbed [53] gateway, and ran NLSR 0.2.2 as the network routing protocol to distribute
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Figure 6.5: Emulated NDN testbed

the gateways’ namespaces. The emulated testbed also had 66 links that were configured with

costs that match world-wide NDN testbed costs.

We connected one VM to each of the gateway machines to emulate one end host connected

to each gateway. Figure 6.5 presents our emulated gateways’ topology. To simplify the

presented topology, Figure 6.5 does not present the end-hosts connected to each gateway.

We modified the best-route and ncc strategies so they checked the IRP flag in order to

determine if in-network retransmission was required by the application, and used NRD TLV

to differentiate in-network retransmissions from application Interests. We used algorithm 4

to prevent infinite loops of retransmitted Interests. We named the modified best-route and

ncc strategies the ’best-route-r’ and ’ncc-r’ strategies.
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Three experiments in the scale of the NDN testbed demonstrated the impact of in-network

retransmissions on the correctness of fetching partitioned data, and provided the cost of

retransmissions in each of the evaluated scenarios.

Partitioned Data among Distributed Producers

In this experiment, we used modified versions of ndn-traffic and ndn-traffic-server to generate

Interests and Data packets. We ran ndn-traffic consumer on the VM connected to the

WU gateway, and two instances of ndn-traffic-server as multiple producers on the VMs

connected to the ORAMGE and KISTI gateways. These three gateways are colored in red

in Figure 6.5. We configured both servers to respond to the Interests for the same name,

while ORANGE VM is the originator of the data, and KISTI serves as the data’s repository

by fetching all newly generated data to be stored in its local repo. This way, ORANGE

can focus on generating new data and KISTI can satisfy future requests. To emulate a

use case in which ORANGE is busy generating new data and cannot satisfy requests for

named data, we configured the ORANGE producer to halt for 10 seconds during the run of

the experiment. We set the consumer’s Interests IRP flag to True, and thereby required in-

network retransmission from the strategy. We did not provide any retransmission mechanism

for unsatisfied Interests in the application scope. The total traffic sent over the network

consisted of the traffic generated by our producer as well as the traffic generated by NLSR.

The details of the experiments can be summarized as follows: At the beginning of the

experiment, we configured the consumer to start expressing Interest packets at the rate of

50 Interests per second, and the producers to respond with Data packets for each received

Interest. We stopped the producer on ORANGE VM 10 seconds after the start point, and

brought it back up again 10 seconds later for an additional five seconds.
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Strategy Unsatisfied Interest Rate(%) Total Interest Sent by WU Gateway Std Sample
best-route 42.55 1700 0.09

best-route-r 0.621 3563 0.00048
ncc 0.95 5322 0.044

ncc-r 0.93 5490 0.00073

Table 6.2: Multiple Producers Results Summary

We repeated the experiment five times with each of the following strategies: best-route, best-

route-r, ncc, and ncc-r. We collected the total number of Interests sent by the consumer, the

total number of Data packets received from each producer, and the number of Interests sent

by WU gateway. The average results are presented in Table 6.2.

As shown in Table 6.2, when using best-route as the strategy paired with the application’s

namespace, an average of 42% of the expressed Interests remain unsatisfied. However, less

than 1% of sent Interests remain unsatisfied when the application’s namespace is configured

with best-route-r, ncc, or ncc-r. In addition, Table 6.2 shows that the number of Interests

sent by the WU gateway when using best-route-r was twice the number of Interests sent by

WU when using best-route. This difference is explained by the specific implementation of

best-route-r, in which the strategy retransmits an Interest after a fixed amount of time, which

is shorter than the actual round-trip time in the used topology. This detail in the in-network

retransmission mechanism should be better explored as part of future work. However, the

experiment demonstrates that a simple change to the best-route strategy, supporting the IRP

flag, can dramatically improve the unsatisfied Interest rate in the case of multiple producers

with a congested node, and therefore supports a wider range of applications.

Our statistical analysis of the results did not indicate any statistical difference between ncc

and ncc-r, Therefore, we can conclude that supporting the IRP flag does not change the

performance and correctness of strategies that already support in-network retransmissions

as part of their default implementation.
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Partitioned Data among Distributed Producers with Intermittent Link

To evaluate this abstraction in different connectivities, we repeated the previous set of ex-

periments and configured the links from WU gateway with a different drop rate each time.

We used drop rates of 5%, 20%, and 50%. We present two figures due to the different scale

of the results: Figure 6.6a presents the unsatisfied Interest rates of the best-route strategy

and Figure 6.6b presents the unsatisfied Interest rates of the other strategies explored.

For the best-route strategy the rate of unsatisfied Interests reaches an average of 70% when

the congested gateway drops 50% of the packets. However the unsatisfied Interests rate

remains less than 1.5% when using best-route-r, ncc and ncc-r. This contrast again shows

how simple support of in-network retransmission in the best-route strategy can improve the

performance of a multiple producer application, even when one of the gateway nodes is

congested and drops 50% of the packets.

Abstraction Impact on Multipath Traffic with Failed Link

In this experiment, we used a simple consumer-producer service using ndn-traffic as the

consumer running on the WU VM, and ndn-traffic-sever as the producer running on the

KISTI VM. As before, we modified the consumer to set IRP to True, and did not support any

application retransmission mechanism in the application’s scope. To emulate a congested

link, we set a drop rate of 100% on the link between WU and UIUC, which is the least

expensive next-hop to reach the producer from the WU gateway. We collected RX and TX

counters every 0.1 seconds on all participating links.

The details of the experiments can be summarized as follows: As before, we started the

experiment by configuring the consumer to send 50 Interest packets per second. Ten seconds

later, we configured the link between WU and UIUC to drop all application packets sent
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(a)

(b)

Figure 6.6: Unsatisfied Interest Rates for Different Link Loss Rate: (a) best-route. (b)
best-route-r, ncc-r, and ncc. Note the very different Y axis ranges
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by the WU gateway. We recorded the traffic for 120 seconds before removing the dropping

filter, and continued to record measurements for an additional 120 seconds before stopping

the consumer’s traffic. The total runtime of the experiment was 250 seconds.

Figure 6.7: End Hosts Traffic over Time with best-route

Figure 6.7 shows the traffic recorded on the producer and consumer VMs when using the

best-route strategy, and Figure 6.8 shows the traffic recorded using the best-route-r strategy.

From these two figures we learn that all Interests sent during the dropping interval remained

unsatisfied when using best-route, while the consumer-producer traffic remained unaffected

when using best-route-r.

To better explore the strategy behavior, we recorded all the traffic transmitted on the WU

gateway links to the following immediate hops: UIUC, UM, URJC, and VERISIGN. We show

the results using the best-route strategy in Figure 6.9, and the results using the best-route-r

strategy in Figure 6.10.
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Figure 6.8: End Hosts Traffic over Time with best-route-r

As shown in Figure 6.9, due to the NLSR costs configured on the emulated testbed, UIUC

was selected as the best next-hop by the best-route strategy. At t=10, when the link towards

UIUC started dropping all the Interest packets transmitted by the consumer, the traffic on

this link dropped to almost zero. Due to our overlay network setup on top of the ONL ma-

chines, the traffic reported in these figures contains NLSR traffic, and therefore the recorded

TX counters on this link do not present an absolute zero. At t=135, NLSR determined the

link to UM is the new least expensive nest-hop to the producer, and therefore the best-route

strategy rerouted all the traffic to use this link. At t=210, 100 seconds after we stopped

dropping UIUC packets, NLSR determined UIUC as the least expensive next hop again, and

rerouted the traffic towards that link.

Figure 6.10 presents the measurements of the same WU links when using the best-route-r

strategy. As before, the link to UIUC was first selected as the best next-hop towards the

producer. At t=10, when the link towards UIUC started dropping the consumer packets, the
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Figure 6.9: WU Traffic over Time with best-route

best-route-r strategy retransmitted all unsatisfied Interests towards UM, without waiting for

NLSR to declare this face as the least expensive next-hop. The strategy continues to use

UM link until UIUC becomes available again. This quick response was achieved because the

application set the IRP flag to require in-network strategy retransmissions.

It is important to clarify that our intention in this experiment was not to compare forwarding

recovery times to routing convergence times [79]. Instead we sought to demonstrate how a

multipath consumer-producer service can maintain a continuous traffic flow even when the

network is congested, and without forcing the application to implement a retransmission

mechanism, as required by the existing best-route strategy. Moreover, as can be seen in

Figure 6.10, the Interest rate sent by the best-route-r strategy on the WU gateway is on

average twice the rate sent on WU using best-route. As in the previous experiments, this is

a direct outcome of the fixed retransmission intervals we implemented in best-route-r, which

is shorter than the actual round-trip time in the used topology, and will be better explored

as part of future work.
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Figure 6.10: WU Traffic over Time with best-route-r

6.4 Conclusions

This chapter discussed the problem of fetching distributed partitioned data in ICN. We

demonstrated how NDN fails to satisfy a request for named data, although the content

exists and is reachable, and identified FIB ambiguity and forwarding mechanisms as the

source of the problem. We provided examples to argue that the problem is not application-

specific, and is shared by different types of applications asking to aggregate storage, network

or computation resources. Therefore we proposed to address the problem using an ICT

that decouples applications from the details of connectivity mechanisms, and simplifies the

process of fetching distributed partitioned data.

To summarize the contributions of this chapter, we identified the problem of fetching dis-

tributed partitioned data, and we explored approaches to solve it by either using Map-

and-Encap mechanisms, or by controlling in-network information-oriented mechanisms. We
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implemented the second approach and evaluate an abstraction for controlling strategy re-

transmissions. We tested this abstraction on the emulated NDN testbed, and demonstrated

how it allows applications to successfully fetch partitioned data regardless of the underlying

forwarding strategy, and despite FIB ambiguity.

Table 6.3 suggests high-level properties of a future ICT abstraction to fetch distributed

partitioned data in ICNs.

ICT property ICT for Fetching Distributed and Partitioned Content

Broadly applicable needs Application data is partitioned into disjoint subsets,
and the content of a data subset cannot be generalized
and hierarchically represented in a prefix

Application examples Services with aggregated resources
Known challenges Decoupling forwarding and routing mechanisms

from applications, and FIB ambiguity

ICT API Translate application needs by either:
Mapping app-specific names into explicit routable names,
Marking applications policy to control in-network
retransmissions

Intermediate ICT Decouple applications from connectivity by either:
In-network mapping of data names and partition names
Controlling information-oriented in-network retransmissions

Table 6.3: Fetching Partitioned Data Properties as an ICT
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Chapter 7

Conclusions

In this dissertation, we explained how the network abstraction of ICNs — the request for

named data — promises to decouple applications from the details of connectivity, and we

identified that despite this promise, the information and connectivity planes are presently

coupled through the forwarding strategy component. We showed how this coupling prevents

applications from operating solely in the information plane, and we proposed to address

this problem by adding a new architectural component to ICNs, named Information-Centric

Transport (ICT).

We defined ICT to be an abstraction and a communication mechanism that consists of an

API for application developers at the endpoints, and an intermediate network process for

network operators. We defined the intermediate ICT process as a mechanism that imple-

ments broadly applicable needs, and we determined that it should not obtain any application-

specific knowledge. To make the ICT abstraction practical and scalable, we defined high-level

considerations of an ICT, and we argued that the number of ICTs implemented in ICNs must

145



be kept small. Moreover, we discussed how the concept of ICT does not preclude other ap-

plications from using traditional end-to-end transport mechanisms, but instead, it extends

the concept of transport by allowing new in-network name-oriented mechanisms in ICNs.

To demonstrate the concept of ICT, we explored three general-purpose group communication

mechanisms in ICN, and we discussed why these three implement broadly applicable needs,

and therefore, can form ICT abstractions. The three explored general-purpose abstractions

are: data synchronization, push notification, and fetching distributed partitioned named

data. We discussed mechanisms for each abstraction and evaluated selected implementa-

tions in different network connectivities. We showed that when relying on these ICTs, ICN

applications can operate in the information plane, and no longer need to rely on forwarding

strategies. We demonstrated how the ICT approach could support the tested applications in

intermittent environments, such as lossy links or lack of SEEP, where IP-based applications

do not work well.

It may appear that the core contribution of this dissertation is to allow placing function-

specific features at intermediate nodes. However, we argue that forwarding strategies al-

ready implement function-specific features in the network, and that the core contribution

of this work is our attempt to decouple applications from connectivity. Our approach to

the solution suggests providing ICN applications with a different architectural component

to rely on in order to satisfy their application-level needs, and allowing this architectural

component to operate at both the endpoint and in the network. Moreover, our contribution

also includes a definition of the role of the forwarding strategy component, which was previ-

ously underspecified. We defined the forwarding strategy to be the architectural component

that translates the request for named data abstraction into a practical connectivity-oriented

network mechanism.
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One can argue that the concept of ICT can be related to the concept of Delay-Tolerant

Networking (DTN) [21]. Although both concepts address similar connectivity concerns, they

serve fundamentally different roles. DTN is a protocol suite that aims to extend Internet

capabilities by implementing routing mechanisms for disturbed networks. However, ICT is a

broadly-applicable abstraction and a communication mechanism that aims to support ICN

applications running on different network connectivities.

7.1 Future Research Directions

The approach taken by this dissertation aims to address the problem by decoupling information-

oriented mechanisms from forwarding strategies, and by creating information-oriented ab-

stractions and placing them in a new architectural component. While this dissertation

demonstrates that the implemented ICT abstractions can decouple applications from con-

nectivity in the tested topologies, this work does not formally prove that ICTs always decou-

ple applications from connectivity. To justify the proposed addition to ICN architectures,

formal proof should show that ICT can comprehensively solve the problem and decouple

applications from connectivity.

Moreover, other non-architectural solutions should be explored and evaluated against ICT.

For instance, can a smart ICN repository implement various information-oriented storage

mechanisms that decouple applications from connectivity? As we showed in this work,

relying on ICN storage is not sufficient for resilient data communication in all intermit-

tent connectivities, and therefore, such a repo solution would have to implement different

application-level mechanisms for both sending Interest and storing Data packets.

Moreover, although this dissertation made an effort to propose ICT abstractions that address

real challenges of present ICN applications, determining the finite set of ICTs in ICNs remains
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an open question for future work. We present the following research directions to further

improve the concept of ICT and the ICT mechanisms we discussed in this dissertation.

The purpose of the implemented mechanisms for push notifications, and the purpose of

the discussed mechanisms for data partitioning was to demonstrate the concept of ICT,

and not to present robust and efficient ICT mechanisms. Therefore, the exploration and

implementation of additional mechanisms for robust and efficient communication is a rich

area for future work. For instance, future work can implement and evaluate the proposed

ICT mechanism discussed in 6.2.1.

Specifically, the implementation of ICT-Notify presented in Chapters 5 was designed to

address the challenges of a push mechanism, and to demonstrate the capabilities of the

push abstraction in different network connectivities, and was not evaluated in a large scale

topology. Future work should evaluate the implemented mechanisms in a larger scale, and

test the performance of an intermediate ICT component under multiple notification streams.

Furthermore, the interaction between the ICT component and other network components

must be further explored. For instance, how does routing interact with ICTs? Should QoS

and congestion control mechanisms be implemented in the connectivity plane (forwarding

strategy) or the information plane (ICT)? Are these mechanisms even relevant in the channel-

less ICN architecture? Can one ICT implement different mechanisms for the same set of

application needs? For instance, can we have one universal ICT API that can work with

different in-network sync mechanism? Moreover, the exact placement(s) of an intermediate

ICT should be explored and better understood. For instance, is it beneficial to deploy the

intermediate ICT process everywhere in the network, or only in some specific network nodes?

Another rich area for future work is security and trust considerations of the ICT component.

In this dissertation, we provided initial statements and determined that an ICT should
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never rely on content decryption, but we did not sufficiently address validation and trust

considerations. For instance, can an intermediate ICT validate packets in a general-purpose

way? Or how can an endpoint trust traffic generated by an intermediate ICT component?

7.2 Publications of Dissertation Work

The work presented in this dissertation was previously published in the following:

• Our work presents the concept of Information-Centric Transport (ICT) has been pub-

lished in [18]. This publication discusses the role of forwarding strategies, introduces

the concept of ICT, and presents early versions of ICT-Sync and ICT-Notify. Chapters

2-5 include content published in this paper.

• The initial discussion about the coupling of ICN applications and forwarding strategies

was published in [15]. Chapters 2 and 6 include content published in this paper.

• The iSync protocol, discussed in Chapter 4, was published in [29], and the initial

performance measurements of CCNx Sync was published in [17]. As stated in the

publication, the author of this dissertation was an equal contributor co-author of the

work in [29].

• The abstraction to control strategy retransmissions, presented in Chapter 6, was pub-

lished in [14].
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