

Abstract— This paper presents a new procedural 3D model-

construction algorithm that benefits from a combination of
discrete and continuous modeling approaches. Our algorithm
models complex scene components such as caves, architectural
buildings, and clouds. The method combines the discrete
descriptiveness of shape grammars with the continuous flexibility
of shape morphing. This combination allows for a modeling
approach that can be controlled by a morphing parameter to
produce various types of geometry. In the paper, we focus on the
description of the algorithm while also showing its capabilities in
generating complex scene components.

Index Terms— algorithms, procedural modeling, shape
grammar, computer graphics, feature-based models, morphing.

I. INTRODUCTION
omplex structures are necessary elements of visually
convincing virtual scenes. Buildings [1], whole urban

structures [2],[3], terrains [4],[5], clouds [6]-[11], plants [12]
or caves [13]-[17] can be modeled with help of systems based
on automated shape construction. The algorithms that enable
full automation of the modeling process help to achieve large
savings in the digital media production time and budget.
Procedural systems are also used in the CAD systems such as:
City Engine – procedural cities, Houdini – procedural
animation, Terragen – procedural landscapes, Art of Illusion –
procedural textures. We can observe a constant development
of new methods i.e. merging technology and dynamical
systems [18], [19]. The problem of automated shape modeling
constitutes an important area of computer graphics activity
and has drawn attention of digital media industry for several
years. Digital movies have created constant demand for

Manuscript received March x, 2013. The main author is a scholar within

Sub-measure 8.2.2 Regional Innovation Strategies, Measure 8.2 Transfer of
knowledge, Priority VIII Regional human resources for the economy Human
Capital Operational Programme co-financed by European Social Fund and
state budget under Grant nr DSF.VI.052.4.43.1.2012.

Tomasz Zawadzki is a PhD student at Faculty of Electrical Engineering
and Computer Science, University of Zielona Góra, Poland. He is now with
the Department of Computer Sciences at Florida Institute of Technology, USA
(e-mail: t.zawadzki@my.fit.edu).

Slawomir Nikiel, is an Assoc. Prof. at Institute of Control & Computation
Engineering, University of Zielona Gora, Poland (e-mail:
s.nikiel@issi.uz.zgora.pl).

Eraldo Ribeiro, is an Assoc. Prof. Department of Computer Sciences at
Florida Institute of Technology, USA (e-mail: e.ribeiro@cs.fit.edu).

pleasing visual effects in three-dimensional graphics. In
addition to entertainment applications, shape modeling has the
practical use ranging from CAD engineering applications,
through scientific visualization to advanced game
programming and Virtual Environments. As far as we
consider real-time simulations, it is very hard to easily satisfy
the above-mentioned demand. Moreover, it is almost
impossible to do so without the use of procedural modeling
systems. We propose to extend the set of currently available
procedural methods with a hybrid of shape grammar and
morphing, offering better performance and versatility.

II. PREVIOUS WORKS

A. Shape grammars

Stiny and Gips are precursors of the shape grammars. Their
work supported the design process using a "linguistic model
of the generational system" [20], [21]. The definition of shape
grammars is analogous to the one of formal grammars, and is
graphically expressed in terms of words composed of symbols
with and a set of grammatical rules called productions [22].

Definition 1. Shape grammars are defined as follows:

>=< IRVVSG MT ,,, , (1)
where:

VT - is a set of terminal shapes,
VM - is a set of non-terminal shapes (VT

* ∩ VM = ø),
R - is a finite set of ordered pairs (u, v), and
I - is an initial shape.

Pairs (u, v) are such that u is a shape consisting of an element
of VT* combined with an element of VM, and v is a shape
consisting of: (A) the element of VT* contained in u, or (B)
the element of VT* contained in u combined with an element
of VM, or (C) the element of VT* contained in u combined
with an additional element of VT* and an element of VM.

B. Morphing

Procedural 3D Caves, Clouds and Architecture
Generation Method Based on Shape Grammar

and Morphing
Tomasz Zawadzki, Slawomir Nikiel, University of Zielona Gora

Eraldo Ribeiro, Florida Institute of Technology

C

 DOI: 10.5176/2251-3043_3.1.249

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

164 © 2013 GSTF

The idea of shape metamorphosis commonly known as
morphing forms a wide and important area of computer
graphics. Generally, morphing can be defined as a both
continuous (i.e., over time) and smooth process of
transformation of one shape into another. So-called key
shapes (by analogy to key-framed animation) may have
different topologies, and transformation smoothness does not
have to a homeomorphism [23]. Typically, morphing is a two-
step problem, namely, the step of determining ‘features’ of
key shapes to be morphed, and the interpolation of shapes
according to ‘trajectories’. The second step results in
intermediate shapes that have some topological characteristics
of both the key shapes (i.e., the ‘beginning’ and the ‘final’
shapes). The morphing intermediate shapes are used in this
paper as an alternative to CSG Boolean productions (e.g., the
‘beginning’ AND ‘final’ shapes). There are various methods
for metamorphosis for 2D shapes represented mostly by
polygons [24] but also images [25]. The problem has also
been investigated in 3D domain, and according to Lazarus
[26] they span the methods based on polygonal mesh
representation [27], [28] and the methods using voxel
representations [29].

III. SG-M HYBRID ALGORITHM

A. Construction of the hybrid system

Our hybrid method combines two independent approaches.
We use a hierarchical shape representation along with a set of
operations that can be applied to the shapes (i.e., shape rules).
In addition to discrete shape operations, we incorporate a
continuous morphic shape rule.

The representation consists of three main elements: the root
– a place where the modeling process ends, the nodes – stores
information about actual shape appearance, and leafs –
determines the possibility of rules application (Fig. 1).

Fig. 1. Hierarchical representation with two possible modeling ways. Specifies
terminal shapes are shown in red. Non-terminal shapes are shown in blue.

The example shown in Fig. 1 can be described as follows:

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

Shape rules contain Boolean operations such as sum,
difference or union. We call these classic shape rules (RC). We
then provide another type of rule - morphic shape rule (RM),
which works by morphing two input shapes into one output
shape using a linear-interpolation parameter (Fig. 2). Figure 3
shows a flow diagram of the modeling process. Our system
can apply matching rules only to non-terminal shapes that are
recognized during modeling process (Fig. 4).

Fig. 2. An example of morphing rule (RM) for another contributions of shape
A and B.

Fig. 3. Main SG-M block diagram.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

165 © 2013 GSTF

Fig. 4. Terminal and non-terminal shapes on simple rule example: sphere (T)
sphere (N) sphere (T) sphere (T) sphere (N) directly from editor.

B. Procedural cave generation using SG-M concept

The number of iterations is equal to the sum of all rules RC

and RM. In each rule, the scene base shape is recognized and
subsequently added to another shape formed by morphing a
sphere and a cube (Fig. 5).

Fig. 5. Application of applying shape rules and controlling the modeling
process by morphing parameter in cave mode. Letters A, B, C define shapes.

It is possible to select the direction of the joint points under
which new rules will be added (+X/-X, +Y/-Y, +Z/-Z). It is
also possible to control the SJ parameter (Fig. 6, 7).

Fig. 6. Controlling the modeling process using the SJ parameter – shift of the
joint points for shapes.

Fig. 7. SJ parameter characteristic: (a) regular cave, (b) non-regular cave in Y
axis, (c) non-regular cave in Y or Z axis.

C. Procedural clouds generation using SG-M concept

Cloud modeling can be done by summing many spheres in
successive rules constrained to specified directions. In our
method, we create the base shapes and shape rules that will be
used during modeling process (Fig. 8).

Fig. 8. Rule-creation process using the Max parameter for a specified axis
(+X, +Y, +Z, -X, -Y, -Z). SB – defines shape begin radius, SE – defines shape
end radius.

The number of rules is calculated as the maximum of the
value Max for each direction, i.e. Max(X, -X, Y, -Y, Z, -Z).

For each rule, all Max values are reduced by 1. Then, new
connections are created for those rules that have a positive
value. In the n-th rule, n spheres are added to the object. The
radius of the sphere in the n-th iteration is interpolated
between the initial and the final radius. In this step, the
amount of required shape rules is determined. For shapes
connecting points, some random offset is introduced. After
performing all classic rules, we can use the morphic rule to
morph our structure with the selected shape (e.g., sphere,
torus) (Fig. 9).

Fig. 9. Cloud-modeling algorithm. Colors show directions of adding spheres.

D. Procedural architecture generation using SG-M concept

We assume that the buildings are multistory. We start by
setting the first rule for the ground floor (i.e., the initial shape)

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

166 © 2013 GSTF

and the last rule for last floor. Here, intermediate rules may be
created using linear interpolation. For each level, we can
determine characteristics such as height, width, and convexity.
For example, a floor is a cube that can be convex (i.e., we
apply 4 sum rules), concave (i.e., we apply 4 difference rules).
After the application of the last rule, we can model the roof
shape by morphing from a sharp (i.e., a pyramid) shape to a
spherical (i.e., sphere). All modeling directions are selected
automatically according to basic building principles, i.e., axes
–X/X, -Z/Z are selected to adding/cutting sides, axis +Y is
chosen for building up floors and adding a roof (Fig. 10).

Fig. 10. Multistory architecture construction with possible application rules.
SL – defines the upper floor, SL – defines the lower floor .

E. Functional Description of Three-Dimensional Shapes

We propose an alternative functional description of shapes.
In contrast to classical algorithms, we are not interested in a
polygon mesh object, but only in the actual function that
describes space where solids are located. The algorithm
performs operations only on functions or scalar functions
describing the field for selected shapes.

Definition 2. A subset A Rn (in our case R3) is called an
implicit object if there exists a function f : U → Rk, A U,
and a subset V Rk, such that A = f −1(V)[30]:

})(:{ VPfUPA ∈∈= . (9)

Definition 3. The distance from a point p to a surface M in Rn

(in our case R3) is the minimum of the Euclidean distance dE
(P, s), where s M [30]:

),(
inf

),(sPd
Ss

MPd E∈
= . (10)

Definition 4. When f is a real-valued function, that is k = 1,
then f is a point-membership classification function that
returns a value according to the relationship of a point P = (x1,
. . . , xn), given as its argument, with the implicit object A
defined by f [30], i.e.,

 (11)

We define primitive shapes (e.g., cube, sphere, torus, cylinder)
using standard implicit objects (based on functional
description) [30]. For example, a sphere f is given by:

rzPyPxPPf −++= 222 ...)(, (12)

where P is a point in R3 and r is the sphere’s radius.

Definition 5. An implicit CSG solid is defined by any set of
points in Rn (in our case R3) that satisfies F(x) ≤ 0 for some F

 Sj. [30]. An example for a sum operation is given by:

U))(),(max()(PgPfgfPf == , (13)

while a morphing controlled by a morphing parameter a is
defined by the following linear interpolation:

aPgaPfgfPf ∗+−∗=∗=)()1()()(. (14)

Shapes are described by the final function as a composite of
the above functions.

F. Joint points, bonds, and directions

An important problem that we had to solve was how to
determine the joint points of the grid for the main shapes and
for the objects created during modeling process.

Definition 6. The joint point J defines the way in which one
shape can be combined with another. The joint point is
described as a point P and a direction D in 3D space

),(DPJ = . (15)

The bond B combines two shapes into one by using
appropriately selected joint points. Two bonds make a joint
point for overlapping points P and opposite directions D. This
can be seen as the “gluing” of two walls facing each other in
opposite directions. This operation helps avoid unnecessary
connections (Fig. 11). The bond is given by:

)....(),(212121 DJDJPJPJJJB −=∧=⇔= , (16)

where B is the bond, J1, J2 are joining points, P is a point in R3,
and D is a direction for the shape. If the bond does not have a
direction, i.e., when D = (0, 0, 0), then a joint point can be
created with any other point.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

167 © 2013 GSTF

Fig. 11. Joint points for base shapes. Red color shows possibility to join with
central point of the shape, green – shows another possible connections.

G. Grid Display Algorithm – Marching Cubes

Conceptually, the object surface can be described by a
function called a density function. For a point P ∈ 3D, the
function produces a single floating-point value. These values
can be positive, negative, or zero. The value of the function is
positive when P is located inside the solid. If the value is
negative, then P is located in the empty space. The boundary
between positive and negative values - where the value of the
density function is zero - forms the surface of the solid.

We wish to construct a polygonal mesh that spans that
surface. We use the GPU to generate polygons for a "block"
of structures at a time, but we further subdivide the block into
32x32x32 smaller cells, or voxels. Inside these voxels, we
construct polygons (i.e., triangles) that represent the solid
surface. The marching-cubes algorithm [31] allows us to
generate polygons within a single voxel, given as input the
density value at its eight corners. As the output, this algorithm
produces anywhere from zero to five polygons. If all the
densities at the eight corners of a cell have the same sign, then
the cell is entirely inside or outside the solid, so no polygons
are defined. In all other cases, the cell lies on the boundary of
the solid and one to five polygons are generated. We use
space partitioning with cubes. Once we determine that the
shape intersects all the boxes, we can read incidental edges,
i.e., those colliding with the surface of the shape volume. By
using linear interpolation, we can choose exactly the point of
intersection of the solid with each edge of the cube. We take
the density values at the eight corners and determine whether
each value is positive or negative. Each value is assigned one
bit in a binary representation. If the density is negative, we set
the bit to zero; if the density is positive, we set the bit to one.
From the marching-cubes’ pre-defined table of intersections
(256 combinations), the system reads the triangles that form
the points of intersection and displays them. Interpolation
determines exactly where a vertex is placed along an edge.
The vertex should be placed where the density value is
approximately equal to zero. For example, if density at the
end A of the edge is 0.1 and at the end B it is -0.3, the vertex is
placed at 25 percent in the way from A to B (Fig 8.).

Fig 8. Left – cross sections of cubes intersected by a solid (green color depicts
the selected cubes). Middle - a single voxel with known density values at its
eight corners. Right - the 15 fundamental cases in Marching Cubes.

IV. RESULTS

Figure 13 shows some results obtained using our method.

Fig. 12: Possible results (mesh and final renders): (a-c) caves, (d-g) –
architecture, (h-l) clouds. For objects in (b), (c), (e), (g), (j), (k), and (l), a
morphic rule was applied with a different value of morphing parameter.

The platform used for simulations consisted of - nVidia
GeForce GTX 460M GPU, i7-2630QM CPU and 12 GB
RAM. Processing times: from 500 ms to 10 sec (caves: 500
ms – 2 sec, buildings: 3 sec - 10 sec, clouds: 1,5 sec – 9 sec)

SUMMARY
Computer graphics systems are a key part of modern
information systems. Nowadays, there has been a noticeable
trend of applying new methods of modeling 3D objects in

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

168 © 2013 GSTF

virtual-reality systems. This trend is motivated mainly by
market demand from areas such as digital entertainment,
simulation for 3D gaming, and 3D VFX industries. Our paper
presented an innovative method for real-time procedural
modeling of three-dimensional geometry of caves, clouds, and
buildings. By adding morphing capabilities to the classical
formalism of shape grammars, our method is able to
synthesize objects with greater variety and geometric
complexity, which are characteristics that highly influence
visual realism. In addition to the advantages of shape
grammar, the morphing parameter allows us to establish the
continuous percentage contribution of two input shapes to
produce a single output object, and in turn help fine-tuning
control of the modeling process. Our further research will
focus on the development of shape rules by providing
intelligent expert system to steering rule selection.

REFERENCES

[1] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, Instant architecture.

ACM Transactions on Graphics 2003; 22(3), pp. 669–77.
[2] Y. I. Parish, and P. Muller, Procedural modeling of cities. Proceedings

(SIGGRAPH’01), ACM Press, E. Fiume, 2001, pp. 301–308.
[3] S. Greuter S, J. Parker, N. Stewart, and G. Leach, Real-time procedural

generation of pseudo infinite cities. Proceedings (GRAPHITE’03), ACM
Press, 2003, pp. 87-95.

[4] A. Peytavie, E. Galin, J. Grosjean, and S. Merrilou, Arches: a
Framework for Modelling Complex Terrains, Computer Graphics
Forum, Proceedings EUROGRAPHICS 2009; 28(2), pp. 457-467.

[5] K. Warszawski, and S. Nikiel, A proposition of particle system-based
technique for automated terrain surface modeling.
In Proceedings of the 5th International North American Conference on
Intelligent Games and Simulation (Game-On-NA '09), 2009, ISBN 978-
9077381-49-6, pp. 17-19.

[6] A. Bouthors, Neyret F. Modelling Clouds Shape, Proceedings
EUROGRAPHICS, 2004.

[7] J. Schpok, J. Simons, D. S. Ebert, and C. Hansen, A real-time cloud
modeling, rendering, and animation system. Symposium on Computer
Animation'03, 2003, pp. 160-166.

[8] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita, A
simple, efficient method for realistic animation of clouds. Proceedings of
ACM SIGGRAPH 2000, 2000, pp. 19-28.

[9] D. S. Ebert, Volumetric procedural implicit functions: A cloud is born.
SIGGRAPH 97 Technical Sketches Program, Whitted T., (Ed.), ACM
SIGGRAPH, Addison Wesley, 1997, ISBN 0-89791-896-7.

[10] P. Elinas, and W. Sturzlinger, Real-time rendering of 3D clouds.
Journal of Graphics Tools. 2000; 5(4), pp. 33-45.

[11] T. Nishita, E. Nakamae, and Y. Dobashi, Display of clouds taking into
account multiple anisotropic scattering and sky light. SIGGRAPH 96
Conference Proceedings, Rushmeier H., (Ed.), ACM SIGGRAPH,
Addison Wesley, 1996, pp. 379-386.

[12] P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants.
Springer-Verlag, 1991: 101–107. ISBN 978-0387972978.

[13] B. A. Am Ende, 3D Mapping of Underwater Caves, IEEE Computer
Graphics Applications, 2001; 21(2), pp. 14-20.

[14] M. Boggus, Crawfis R. Procedural Creation of 3D Solution Cave
Models, Proceedings of the 20th IASTED International Conference on
Modelling and Simulation, 2009, pp. 180-186.

[15] M. Boggus, and R. Crawfis, Explicit Generation of 3D Models of
Solution Caves for Virtual Environments, Proceedings of the 2009
International Conference on Computer Graphics and Virtual Reality,
2009, pp. 85-90.

[16] P. Schuchardt, and D. A. Bowman, The Benefits of Immersion for
Spatial Understanding of Complex Underground Cave Systems,
Proceedings of the 2007 ACM Symposium on Virtual Reality Software
and Technology (VRST ’07), 2007, pp. 121-124.

[17] L. Johnson, G. N. Yannakakis, and J. Togelius, Cellular Automata for
Real-time Generation of Infinite Cave Levels, Proceedings of the 2010

Workshop on Procedural Content Generation in Games (PC Games,
10), 2010, pp. 1-4.

[18] J. B. Clempner, A. S. Poznyak, Convergence method, properties and
computational complexity for Lyapunov games, The international
journal of Applied Mathematics and Computer Science, 2011; 21(2),
pp. 349-361.

[19] L. J. Di Trapani, and T. Inanc, NTGsim: A graphical user interface and
a 3D simulator for nonlinear trajectory generation methodology, The
international journal of Applied Mathematics and Computer, 2010;
20(2): 305-316.

[20] G. Stiny, and J. Gips, Shape grammars and the generative specification
of painting and sculpture. Information Processing 71, North-Holland
Publishing Company, 1972, pp. 1460-1465.

[21] G. Stiny, Pictorial and Formal Aspects of Shape and Shape Grammars,
Birkhauser Verlag, Basel, 1975.

[22] G. Stiny, Introduction to shape and shape grammars. In Environment
Planning B. 1980; 7(3), pp. 343–361.

[23] T. Martyn, A new approach to morphing 2D affine IFS fractals.
Computers & Graphics 2004; 28, pp. 249-72.

[24] M. Alexa, D. Cohen-Or, and D. Levin, As rigid as possible polygon
morphing. Computers Graphics (SIGGRAPH ‘2000) 2000; 34:157-64.

[25] G. Wolberg, Image morphing: a survey. The Visual Computer 1998;
14(8-9), pp. 360-72.

[26] Lazarus F, Verrous A. Three-dimensional metamorphosis: a survey. The
Visual Computer 1998; 14(8-9), pp. 373-89.

[27] J. R. Kent, W. E. Carlson, and R. E. Parent, Shape transformation for
polyhedral objects. Computer Graphics (SIGGRAPH ’92) 1992; 26, pp.
47-54.

[28] A. W. F. Lee, D. Dobkin, W. Sweldens, and P. Shroeder.
Multiresolution mesh morphing. Computer Graphics (SIGGRAPH ’99)
1999; 26, pp. 43-6.

[29] G. Turk, J. F. O’Brien, Shape Transformation using variational implicit
functions. Computer Graphics (SIGGRAPH ’99) 1999; 33, pp. 335-42.

[30] L. Velho, J. Gomes, and L. H. Figueiredo, Implicit Objects in Computer
Graphics. Springer, 2002, ISBN: 978-0387984247.

[31] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3D
surface construction algorithm, Computer Graphics, 1987, vol. 21, pp.
163 -169.

Tomasz Zawadzki was received his degree and
specialization – Software Engineering in Computer
Science in 2006 at Faculty of Electrical Engineering and
Computer Science, Univeristy of Zielona Góra in Poland.
From 2006 he is a PhD student at the same faculty and
his interests focused on computer graphics and virtual
reality.

Slawomir Nikiel is currently the Professor at the Institute
of Control and Computation Engineering, Department of
Electrical Technology, Computer Science and
Telecommunication, University Of Zielona Góra, Poland.
His research interests include virtual reality systems,
game programming and multimedia.

Dr. Eraldo Ribeiro is an Associate Professor of
Computer Sciences at Florida Institute of Technology. In
2001, he was awarded a Ph.D. degree in Computer
Vision in the Department of Computer Science at the
University of York, U.K. under the supervision of
Professor Edwin R. Hancock. Prior to this, he gained a
Master of Science Degree with distinction in Computer
Science (Image Processing) at the Federal University of
Sao Carlos (UFSCar- SP), Brazil in 1995.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

169 © 2013 GSTF

