

Abstract— Differential Evolution (DE) is a fast and robust real

vector optimizer. This paper applies DE to discrete problems by

converting a real chromosome to an integer chromosome and

then decompress to a binary chromosome using LZW algorithm.

Experimental result shows that this approach is better than the

previous work and the evolution time is very fast. Analysis result

shows that the fitness landscape of LZW encoding is less

complex than the original encoding for each test problem.

Index Terms— Differential Evolution, LZW, Discrete

optimization, Fitness Landscape

I. INTRODUCTION

IFFERENTIAL Evolution (DE) is an evolutionary

algorithm designed for solving real value optimization

problems [1]. DE is very fast and efficient. It was ranked the

third in the First International Contest on Evolutionary

Optimization in 1996. However, it is more robust than those

optimizers finished before [2]. In addition, DE is very

compact. The core of the algorithm can be implemented in

less than 20 lines of C code, which is available on-line [3].

DE performs very well in continuous optimization.

However, for discrete optimization, there are a few works that

investigate DE’s effectiveness [4]. This paper presents two

alternative methods for adapting DE for discrete optimization.

The first method directly maps a real value chromosome to a

binary chromosome. The second method combines

compressed chromosome encoding with DE.

Compressed encoding enables evolutionary algorithm to

solve very large problems [5][6][7]. For example, LZW

encoding in Genetic Algorithm can solve one-million-bit

problems. To use compression with GA, the individual is in a

compressed form and has to be decompressed before the

fitness evaluation. Another advantage of this approach is low

memory requirement.

The motivation for using compress encoding is to reduce

the size of the search space so that the solution can be found

faster. However, in some cases, LZW encoding can solve

problem faster even when the size of the search space is equal

to the original encoding. This means the LZW encoding not

only can reduce the search space, it also aid the evolutionary

Manuscript received March 20, 2013.

O. Watchanupaporn is with Department of Computer Science, Kasetsart

University, Bangkok, Thailand (phone: +66-8-9148-6740; e-mail:

orawan.liu@gmail.com).

W. Suwannik is with Department of Computer Science, Kasetsart

University, Bangkok, Thailand (e-mail: worasait.suwannik@gmail.com).

search process. While the effect of search space reduction can

be measure easily by comparing the size of the search space,

the effect of using LZW encoding is difficult to be explained.

Another contribution of this paper is to analyze LZW

compressed encoding.

We use the method proposed by Uludag and Uyar [8] to

analyze the fitness landscape of DE. The idea of the analysis

method is to random walk on the fitness landscape. A new

step is obtained from the proposed neighborhood function

which is suitable for DE. In addition, we define a new

distance metric that is suitable for LZW encoding.

The organization of this paper is as follows. Section 2

describes DE. Section 3 explains how LZW compressed

encoding is applied to DE. Section 4 explains benchmark

problems. Section 5 describes the experiment. Section 6

discusses the result. Section 7 analyzes LZW encoding and

its interaction with DE. Finally, Section 8 summarizes the

paper.

II. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is an evolutionary optimization

method. The first generation of real vectors is created by

randomly filled the values in the vectors. Each vector has D

values. A population consists of NP vectors. There are two

schemes (i.e., DE1 and DE2) presented in [4]. In this paper,

DE1 is used.

A new generation is created by the following method.

Each vector competes with its trial vector. The one with less

cost survives to the next generation. A trial vector is created

by combining the vector with a mutant vector. The

combination is similar to crossover in Genetic Algorithm [9].

A mutant vector is created by adding a random vector with a

weight difference of other two random vectors (hence the

name Differential Evolution). The mathematical formula for

creating a mutant vector is as follows:

�′� = �� + �(�� − �
) (1)

The parameters in DE are listed below.

• NP (or population size) should be 5-10 times the number

of parameters D.

• F (i.e., the weight) should start with 0.5. F and NP

should be increased if the algorithm converges prematurely.

• CR (or the crossover rate) should be 0.9, 0.1, or 0.

Analysis of LZW Differential Evolution

for Binary Encoding

Orawan Watchanupaporn and Worasait Suwannik

D

DOI: 10.5176/2251-3043_3.1.233

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

59 © 2013 GSTF

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by GSTF Digital Library (GSTF-DL): Open Journal Systems (Global Science and Technology...

https://core.ac.uk/display/270151967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

convert

decompress

III. LZW DIFFERENTIAL EVOLUTION

Lempel-Ziv-Welch Algorithm (LZW) is a lossless

dictionary-based data compression/decompression algorithm

[10]. The input of the compression algorithm is a character

string. The output of the compression algorithm (also the

input of the decompression algorithm) is an array of integer

codes. The output of the decompression algorithm is the

original character string. In LZWDE, only decompression

algorithm is used. The pseudo code of LZW decompression is

given in Fig. 1.

The compression/decompression algorithms start with a

dictionary which the number of entries is equal to the number

of characters. Each entry contains one character. For example,

when using LZW to compress/decompress an English text,

the dictionary is initialized with all English characters and

symbols. However, when LZW is used to compress or

decompress a binary chromosome in GA, the dictionary is

initialized with the number 0 and 1. Fig. 2 shows an example

of decompressing an array of integer to a binary string.

During the compression, the algorithm dynamically expands

the dictionary and outputs codes that refer to strings in the

dictionary. Normally, the number of bits of the code is less

than that of the variable length string in the dictionary. Data is

compressed when the algorithm replaces the whole string with

its code. The dictionary does not have to be stored because the

algorithm can construct the dictionary during the compression

or decompression process.

To use LZW compressed encoding with DE, we add a

conversion and decompressing step before a fitness

evaluation. The real value chromosome is converted to an

array of integers. After that, the array is decompressed to a

binary string. Because LZW cannot decompress arbitrary

input, each code in an integer array must satisfy the following

constraint [6].

0 ≤ ai ≤ i+1, where i is a zero-based array index

Any positive integer can be changed to satisfy the

constraint by modulo with i+2. An example of converting a

real vector to a binary string is shown in Fig. 3.

Implementing an LZW chromosome encoding in object-

oriented language is easy. The core algorithm does not have

to be modified to support LZW encoding. Rather, for each

benchmark problem, we implemented the interface for fitness

evaluation using two classes: one for a normal chromosome

and the other is for a compressed chromosome. For DE's point

of view, it still evolves real vectors. It does not know that it is

evolving compressed encoding chromosomes.

Note that LZWDE evolves a direct representation of an

individual as a "compressed" string. There is no compression

step involved in LZWDE.

IV. BENCHMARK PROBLEMS

We use synthetic problems to assess the strengths and

weaknesses of LZW encoding. The advantage of using a

synthetic problem is that its structures (i.e., relationship

between variables) are known. Thus, we can assume that if

an algorithm can solve the problem, it can also solve a class

of problems that has the same structure. Moreover, an

Fig. 1. The pseudo code of LZW decompression.

Decode Dictionary

 Index (c) Full string
 Initial table

Input Output 0 0

 1 1

 Start enter string to dictionary

0 0 - -

2 00 2 00

1 1 3 001

3 001 4 10

1 1 5 0011

1 1 6 11

Fig. 2. Example of decompressing an array of integers to a binary string.

Real number 0.03 1.98 2.20 4.79 4.01

input 0 1 2 4 4

output 0 1 0 1 0 1 0 0 1 0

Fig. 3. Converting a real value chromosome to an integer chromosome and

decompressing it to a binary chromosome.

algorithm that can solve problems with more complex

structures is more sophisticated and is likely to solve a

problem with a simpler structure.

In [4], the author applied DE to solve the following

discrete optimization problems: OneMax, Royal Road, Order-

3 Deceptive, and Long Path problems. We test the

performance of our algorithm using the same benchmark.

Every benchmark problem is a maximization problem.

However, since DE is a global minimizer, the fitness is

transformed by multiplying the cost function with −1.

A. OneMax Problem

The OneMax problem [11] (or bit counting) is a widely

used problem for testing the performance of various genetic

algorithms. Formally, this problem can be described as

finding a string � = {�, �, … , �}, where ∈ {0,1}, that

maximizes the following equation:

Algorithm LZW Decompress

 add entries 0 and 1 to the dictionary

 read one code from input to c

 output str(c)

 p = c

 while input are still left

 read one code from input to c

 if the code c is not in the dictionary

 add str(p) + fc(str(p)) to the dictionary

 output str(p) + fc(str(p))

 else

 add str(p) + fc(str(c)) to the dictionary

 output str(c)

 else if

 p = c

 end while

The variable c stores a code read from input.

The variable p is the previous value of c.

The function str(code) returns a string associated with code.

The function fc(string) returns the first character in string.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

60 © 2013 GSTF

∑
=

=
k

i

xXF i

1

)((2)

B. Royal Road Problem

Royal Road problem [12] is designed to investigate the role

of GA crossover and building block hypothesis. The problem

can be solved using GA which uses crossover. However, it is

difficult for a hill climbing algorithm or GA with a single-bit

mutation to solve the problem.

This function involves a set of schemas S and is defined as:

ss

Ss

cXF σ∑
∈

=)((3)

where x is a bit string, each cs is a value assigned to the

schema s.

C. Deceptive Order-3 Problem

In Deceptive problem [13], an individual composes of

several blocks. Each of the blocks is evaluated by a deceptive

function. The deceptive function can fool the gradient-based

optimizers to favor zeros, but the optimal solution is

composed of all ones. It is a fundamental unit for designing

test functions that resist hill-climbing algorithms. The order-3

deceptive function is defined as:

f(000) = 28

f(001) = 26

f(010) = 22

f(100) = 14

f(011) = 0

f(101) = 0

f(110) = 0

f(111) = 30

The deceptive problem can be decomposed to several

deceptive functions. The problem, denoted by fm , is defined

as:

3}1,0{

1

),()...1(∑
=

∈=
m

i
K iK ifK mKf m

(4)

D. Long Path Problem

Long Path problem [14] is a problem that can be solved by

a hill-climbing algorithm. However, it is not practical to solve

this problem using hill climbing algorithm. This is because

climbing the hill (or the path) takes exponential time. Each

point in the path is differed by one bit. The path is constructed

such that is exponentially long. The height from the

bottommost of the hill to the top is equal to:

 223)(2/)1(−+×= −

llHillHeight
l

(5)

where l is a chromosome length.

V. EXPERIMENT

We conducted the experiment to compare the performance

of LZWDE with Gong and Tuson’s binary adapted DE

operators [4] and with simple real to binary conversion DE.

The latter scheme, which is simply called DE, converts a real

value to a binary using the rule (Xi < 0.5 ? 0 : 1)

Table I shows the experimental parameters. The length of

an LZWDE chromosome is less than DE chromosome which

are 1/5 of OneMax problem size, 1/4 of Royal Road problem

size, 1/12 of Deceptive order-3 problem size, and about 1/3 of

Long Path problem size. Before a fitness evaluation, the

compressed chromosome is decoded and decompressed with

LZW decompression algorithm. The length of the

decompressed binary chromosome is varied depending on the

code in the integer array. If the length is more than the size of

the problem size, the excess bits are discarded. However, if

the length is less than the problem size, LZWDE will evaluate

the fitness of available bits. All experimental results are the

average performance obtained from 30 runs.

TABLE I

EXPERIMENTAL PARAMETERS

Parameter OneMax
Royal

Road

Deceptive

order-3

Long

Path

Population size 50 30 100 30

Problem size 500 80 300 29

LZW chromosome

length
100 20 25 10

Maximum generation 500 500 2000 300

VI. RESULTS

Gong and Tuson [4] used different sets of parameters for

OneMax, Royal Road, Deceptive Order-3 and Long Path

problems. They reported the result of 4 DE strategies which

are: 1) any-change mutation and exponential crossover-

DE/any/exp, 2) any-change mutation and binomial crossover-

DE/any/bin, 3) restricted-change mutation and exponential

crossover-DE/res/exp, and 4) restricted-change mutation and

binomial crossover-DE/res/bin for each problem. We choose

the best of their experimental results and compare them with

our best parameters for each problem.

For each benchmark problem, we compare the performance

of binary-adapted DE, DE (simple real to binary conversion),

and LZWDE. The result is shown in Figure 4. The X-axis

shows the number of generations and the Y-axis shows the

average-best fitness. LZWDE outperforms both DE and

binary-adapted DE. Moreover, it is interesting to see that the

performance of simple conversion is comparable to binary-

adapted DE in Royal Road problem and better than binary-

adapted DE in Long Path problem.

Table II shows the average evolution time. We ran the

experiment on Intel Core i5 with 4GB of RAM. In this table,

we report only the time that DE successfully finds the

solution. The number in the parenthesis is the success rate.

LZWDE can find the solution for every run. We do not have

the data for binary-adapted DE. Therefore, we only compare

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

61 © 2013 GSTF

the time of DE and LZWDE. In LZWDE, there is an LZW

decompression step. Even with an additional step, the

algorithm can still find a solution faster than DE. Simple DE

cannot find a solution for Deceptive Order-3 problem.

TABLE II

AVERAGE EVALUATION TIME (IN MILLISECONDS)

Problem
Algorithm

DE LZWDE

OneMax 388.43 (100) 6.50 (100)

Royal Road 36.42 (87) 29.10 (100)

Deceptive order-3 - (0) 113.97 (100)

Long Path 13.53 (100) 45.69 (98.84)

VII. FITNESS LANDSCAPE ANALYSIS

In this section, we tried to explain why LZW encoding help

improve the performance of DE.

A. Binary Fitness Landscape

The difficulty of a problem depends on two factors: the size

of search space and the shape of fitness landscape. A problem

with a larger search space is usually more difficult to solve.

In addition, a problem with a more complex fitness landscape

is more difficult. Example of complex fitness landscape is the

one with many local minima or the one that leads

evolutionary search away from the global minima.

To visualize the fitness landscape for binary optimization

problem, we enumerate every possible chromosomes,

evaluate their fitness and measure distance from the solution,

then plot the graph using the fitness and the distance. Fig. 5(a)

shows the fitness landscape of a 9-bit OneMax problem. The

X-axis is the number of bits by which a chromosome differs

from the solution. The Y-axis is the chromosome's fitness

value. The darker area indicates a higher chromosome

density. As shown in Fig. 5(a), as the fitness increases, the

chromosome is closer to the OneMax solution. Since

evolutionary algorithm use fitness value to guide a search

process, OneMax is an easy problem because the fitness value

can guide the search to the correct direction.

Fig. 5(c) shows the fitness landscape of a 9-bit Trap

problem. The problem is more difficult to solve than OneMax

because the fitness landscape deceives the search into moving

away from the global optima. As the fitness increase, the

chromosome is more different from the solution. If we try to

solve the Trap problem using a local search which produces a

neighbor with 1 bit different from the current position, the

search will not be able to find the optimal solution.

Fig. 5(a) and (c) visualize the fitness landscape of two

extreme. We can easily tell from the graph which problem is

easier. However, for a problem with difficulty in between, a

subjective judgment should not be used to judge the

complexity of fitness landscape. Therefore, we quantify the

shape of a fitness landscape as one single number called

fitness-distance correlation (fdc). We compute fdc or a

correlation between fitness and distance using the formula

given below.

��� =
���(�, �)

�(�)�(�)
 (6)

where cov(F,D) is a covariance of fitness F and distance D.

�(�), �(�) is a standard deviation of F and D respectively.

(a) OneMax

(b) Royal Road

(c) Deceptive order-3

(d) Long Path

Fig. 4. The average-best fitness plotted against generation

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

62 © 2013 GSTF

(a) OneMax

(b) Royal Road

(c) Trap

(d) Deceptive-3

(e) Long Path

Fig. 5. The fitness landscape for binary optimization problems which are (a)

OneMax, (b) Royal Road, (c) Trap, (d) Deceptive-3, and (e) Long Path. All

problem sizes are 9-bit.

The fdc of the test problem is shown in Table III. For GA,

OneMax's fdc is –1, which is the lowest. Deceptive problem

has positive fdc which means that as the fitness increase, the

chromosome is getting further from a solution.

TABLE III

THE FDC OF THE TEST PROBLEM

Problem
Algorithm

GA DE LZWDE

OneMax -1.00 -0.63132 -0.78203

Royal Road -0.65 -0.44755 -0.65961

Deceptive order-3 0.32 0.16866 -0.08296

Long Path 0.02 -0.00091 -0.07498

B. Real-value Fitness Landscape

Our paper use DE to solve binary problem. DE use real

value vectors. The fdc cannot be calculated using the same

method as in the previous subsection because of we cannot

enumerate all possible real-value vectors as we enumerate all

possible binary chromosome. For a binary optimization

problem, there are finite amount of chromosomes given a

fixed length binary string. A problem size n bit has 2
n
 possible

chromosome. However, a single real-value in a DE vector, in

theory, can have infinitely uncountable possible values.

Since we cannot enumerate all possible chromosomes, we

instead explore the fitness landscape using random walk.

While an analysis procedure performs random walk, it records

a fitness and distance to a solution. Each step of random walk

imitates a trial vector generation process in DE.

����� !"� = ����� ! + �(#$��%_'$(�_�����) (7)

In this paper, we set the value of F equals to 0.1 in order to

make the step not too long. For each problem, an analysis

procedure explores 100 random starting points. For each

starting point, the procedure random walks for one million

steps. A real value in the vector is constrained within the

range [0, 1].

Another difference between binary and real value analysis

is as follows. For a binary problem, we calculate a Hamming

distance from a chromosome to an optimal solution. In DE,

Euclidean distance is calculated. The distance calculation

depends on how real-to-binary conversion is done. In this

paper, the rule for converting is Xi < 0.5 ? 0 : 1. Therefore, if

a one bit of binary solution is 1, and the corresponding real

value is in the range [0.5, 1), the distance would be zero.

Otherwise, the distance would be 0.5 – Xi. If a binary solution

is 0, the distance would be zero when the corresponding real

value is in the range [0, 0.5). Otherwise, the distance would

be Xi – 0.5.

Table III shows fdc for each problem. Real value fdc and

binary fdc are different due to the way we measure the

distance and perform the random walk.

C. LZW Real-value Fitness Landscape

Although both DE and LZWDE use real value vectors, the

procedure to calculate the distance is different. In LZWDE, a

real-value vector has to be converted to an array of integers

before decompression and fitness evaluation. Thus, the

distance calculation depends on how real to integer

conversion is done. In this paper, conversion is done simply

by truncating a fraction part of a real number. An example of

measuring the distance is as follows. Suppose that one integer

in a solution array is 3. If the corresponding real value Xi is in

the range [3, 4), the distance would be zero. If Xi is less than

3, then the distance would be 3 – Xi. Otherwise, the distance

would be Xi – 4. To calculate a distance of a vector to a

solution vector, the Euclidean distance formula is used.

The random walk process is similar to the previous

subsection. The difference is that each real value Xi is

constrained to the range [0, i+2). The value within this range

can be converted to a valid input for LZW decompression

algorithm.

For some problem such as OneMax, the original binary

encoding has only one solution. However, when the problem

is encoded with LZW, there might be more than one solution.

For example, an LZW chromosome of length 4 has 2

solutions for 9-bit OneMax problem. In that case, the

minimum distance from a vector to both solutions is used to

compute fdc.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

63 © 2013 GSTF

Table III shows fdc for each problem. For each test

problems, LZW encoding has lower fdc than the original

encoding. This explains why LZWDE performs better than

DE.

VIII. CONCLUSION

This paper proposes two methods to apply DE to solve

discrete optimization problem. The first is simple real-to-

binary conversion. The second is using LZW encoding. We

compared the result with binary-adapted DE using the same

benchmark problems. The result shows that LZWDE

outperforms binary-adapted DE and DE with simple real-to-

binary conversion. In addition, in term of computation time,

LZWDE is very fast even it has to decompress the

chromosome. It can solve all benchmark problems in less than

one second using a mid-range computer.

Using LZW can speed up evolutionary search because of

reduction in search space and transformation of fitness

landscape. The latter points are backed up by the analysis.

This paper proposed two distance metrics, one for DE and

another for LZWDE, to analyze simple real-to-binary

conversion and LZW encoding. These metrics in used with a

neighborhood function to compute fitness distance correlation

(fdc). The result shows that, in the benchmark problems, LZW

encoding can simplify the fitness landscape.

REFERENCES

[1] R. Storn and K. Price, “Differential Evolution - A simple and efficient

adaptive scheme for global optimization over continuous spaces,” 1995.

[2] K. V. Price, R. M. Storn and J. A. Lampinen, “Differential Evolution: A

Practical Approach to Global Optimization,” Springer, 2005.

[3] K. Price and R. Storn, Differential Evolution,

http://www.drdobbs.com/architecture-and-design/184410166, 1997.

[4] T. Gong and A. Tuson, “Differential Evolution for Binary Encoding,”

Soft Computing in Industrial Applications, vol. 39, pp. 251-262, 2007.

[5] O. Watchanupaporn, N. Soonthornphisaj, and W. Suwannik, “A

Performance Analysis of Compressed Compact Genetic Algorithm,”

ECTI Transactions on Computer and Information Technology, vol. 2,

no. 1, 2006, pp. 16-24.

[6] N. Kunasol, W. Suwannik, and P. Chongstitvatana, “Solving One-

Million-Bit Problems Using LZWGA,” Proceedings of International

Symposium on Communications and Information Technologies

(ISCIT), 2006, pp. 32-36.

[7] W. Suwannik and P. Chongstitvatana, “Solving One-Billion Bit Noisy

OneMax Problem using Estimation Distribution Algorithm with

Arithmetic Coding,” Proceedings of IEEE Congress on Evolutionary

Computation (CEC 2008), 2008, pp. 1203-1206.

[8] G. Uludag and A. S. Uyar, "Fitness landscape analysis of differential

evolution algorithms," Soft Computing, Computing with Words and

Perceptions in System Analysis, Decision and Control (ICSCCW 2009),

2009, pp. 1-4.

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison- Wesley, 1989.

[10] T.A. Welch, “A Technique for High-Performance Data Compression,”

IEEE Computer, vol. 17, no. 6, 1984, pp. 8-19.

[11] D. H. Ackley, A connectionist machine for genetic hillclimbing,
Boston, Kluwer Academic Publishers, 1987.

[12] M. Mitchell, S. Forrest, and J. H. Holland, “The Royal Road for Genetic

Algorithms: Fitness Landscapes and GA Performance,” in Proc. The

First European Conference on Artificial Life, Cambridge, MA, MIT

Press, 1991, pp. 245-254.

[13] D. E. Goldberg, “Genetic algorithms and Walsh functions: Part I, a

gentle introduction,” Complex Systems, vol. 3, 1989, pp. 129-152.

[14] J. Horn, D. E. Goldberg, and K. Deb, “Long Path Problems,” Lecture

Notes in Computer Science, vol. 866, 1994, pp. 149-158.

Orawan Watchanupaporn is a Ph.D. student at the

Department of Computer Science, Kasetsart

University, Thailand. She obtained a bachelor’s

degree in Computer Science from Bangkok

University in 2004 and master’s degree from

Kasetsart University in 2006. Her research interests

include compressed compact genetic algorithms and

Estimation of Distribution Algorithms.

Worasait Suwannik received a Ph.D. in computer

engineering from Chulalongkorn University,

Thailand, in 2006. At present, he is a lecturer at the

Department of Computer Science, Kasetsart

University, Bangkhen Campus, Thailand. His

research interests include compressed genetic

algorithms and GPU programming.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

64 © 2013 GSTF

