
 

  

Abstract— Differential Evolution (DE) is a fast and robust real 

vector optimizer.  This paper applies DE to discrete problems by 

converting a real chromosome to an integer chromosome and 

then decompress to a binary chromosome using LZW algorithm.  

Experimental result shows that this approach is better than the 

previous work and the evolution time is very fast. Analysis result 

shows that the fitness landscape of LZW encoding is less 

complex than the original encoding for each test problem.  

 
Index Terms— Differential Evolution, LZW, Discrete 

optimization, Fitness Landscape 

I. INTRODUCTION 

IFFERENTIAL Evolution (DE) is an evolutionary 

algorithm designed for solving real value optimization 

problems [1].  DE is very fast and efficient.  It was ranked the 

third in the First International Contest on Evolutionary 

Optimization in 1996.  However, it is more robust than those 

optimizers finished before [2]. In addition, DE is very 

compact.  The core of the algorithm can be implemented in 

less than 20 lines of C code, which is available on-line [3].   

DE performs very well in continuous optimization.  

However, for discrete optimization, there are a few works that 

investigate DE’s effectiveness [4]. This paper presents two 

alternative methods for adapting DE for discrete optimization.  

The first method directly maps a real value chromosome to a 

binary chromosome. The second method combines 

compressed chromosome encoding with DE. 

Compressed encoding enables evolutionary algorithm to 

solve very large problems [5][6][7]. For example, LZW 

encoding in Genetic Algorithm can solve one-million-bit 

problems. To use compression with GA, the individual is in a 

compressed form and has to be decompressed before the 

fitness evaluation. Another advantage of this approach is low 

memory requirement. 

The motivation for using compress encoding is to reduce 

the size of the search space so that the solution can be found 

faster. However, in some cases, LZW encoding can solve 

problem faster even when the size of the search space is equal 

to the original encoding. This means the LZW encoding not 

only can reduce the search space, it also aid the evolutionary 
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search process. While the effect of search space reduction can 

be measure easily by comparing the size of the search space, 

the effect of using LZW encoding is difficult to be explained. 

Another contribution of this paper is to analyze LZW 

compressed encoding. 

We use the method proposed by Uludag and Uyar [8] to 

analyze the fitness landscape of DE. The idea of the analysis 

method is to random walk on the fitness landscape. A new 

step is obtained from the proposed neighborhood function 

which is suitable for DE. In addition, we define a new 

distance metric that is suitable for LZW encoding.  

The organization of this paper is as follows. Section 2 

describes DE. Section 3 explains how LZW compressed 

encoding is applied to DE. Section 4 explains benchmark 

problems. Section 5 describes the experiment.  Section 6 

discusses the result.  Section 7 analyzes LZW encoding and 

its interaction with DE. Finally, Section 8 summarizes the 

paper. 

II. DIFFERENTIAL EVOLUTION 

Differential Evolution (DE) is an evolutionary optimization 

method. The first generation of real vectors is created by 

randomly filled the values in the vectors. Each vector has D 

values. A population consists of NP vectors. There are two 

schemes (i.e., DE1 and DE2) presented in [4]. In this paper, 

DE1 is used. 

A new generation is created by the following method.  

Each vector competes with its trial vector. The one with less 

cost survives to the next generation. A trial vector is created 

by combining the vector with a mutant vector. The 

combination is similar to crossover in Genetic Algorithm [9]. 

A mutant vector is created by adding a random vector with a 

weight difference of other two random vectors (hence the 

name Differential Evolution). The mathematical formula for 

creating a mutant vector is as follows: 

 

�′� = �� + �(�� − �
) (1) 

 

The parameters in DE are listed below. 

• NP (or population size) should be 5-10 times the number 

of parameters D. 

• F (i.e., the weight) should start with 0.5. F and NP 

should be increased if the algorithm converges prematurely.  

• CR (or the crossover rate) should be 0.9, 0.1, or 0. 
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III. LZW DIFFERENTIAL EVOLUTION 

Lempel-Ziv-Welch Algorithm (LZW) is a lossless 

dictionary-based data compression/decompression algorithm 

[10]. The input of the compression algorithm is a character 

string. The output of the compression algorithm (also the 

input of the decompression algorithm) is an array of integer 

codes. The output of the decompression algorithm is the 

original character string. In LZWDE, only decompression 

algorithm is used. The pseudo code of LZW decompression is 

given in Fig. 1. 

The compression/decompression algorithms start with a 

dictionary which the number of entries is equal to the number 

of characters. Each entry contains one character. For example, 

when using LZW to compress/decompress an English text, 

the dictionary is initialized with all English characters and 

symbols. However, when LZW is used to compress or 

decompress a binary chromosome in GA, the dictionary is 

initialized with the number 0 and 1. Fig. 2 shows an example 

of decompressing an array of integer to a binary string. 

During the compression, the algorithm dynamically expands 

the dictionary and outputs codes that refer to strings in the 

dictionary. Normally, the number of bits of the code is less 

than that of the variable length string in the dictionary. Data is 

compressed when the algorithm replaces the whole string with 

its code. The dictionary does not have to be stored because the 

algorithm can construct the dictionary during the compression 

or decompression process. 

To use LZW compressed encoding with DE, we add a 

conversion and decompressing step before a fitness 

evaluation. The real value chromosome is converted to an 

array of integers.  After that, the array is decompressed to a 

binary string.  Because LZW cannot decompress arbitrary 

input, each code in an integer array must satisfy the following 

constraint [6]. 

 

0 ≤ ai ≤ i+1, where i is a zero-based array index 

 

Any positive integer can be changed to satisfy the 

constraint by modulo with i+2.  An example of converting a 

real vector to a binary string is shown in Fig. 3. 

Implementing an LZW chromosome encoding in object-

oriented language is easy. The core algorithm does not have 

to be modified to support LZW encoding. Rather, for each 

benchmark problem, we implemented the interface for fitness 

evaluation using two classes: one for a normal chromosome 

and the other is for a compressed chromosome. For DE's point 

of view, it still evolves real vectors.  It does not know that it is 

evolving compressed encoding chromosomes. 

Note that LZWDE evolves a direct representation of an 

individual as a "compressed" string.  There is no compression 

step involved in LZWDE.  

IV. BENCHMARK PROBLEMS 

We use synthetic problems to assess the strengths and 

weaknesses of LZW encoding. The advantage of using a 

synthetic problem is that its structures (i.e., relationship 

between variables) are known.  Thus, we can assume that if 

an algorithm can solve the problem, it can also solve a class 

of  problems   that   has   the  same  structure.   Moreover,  an  

 
 

Fig. 1.  The pseudo code of LZW decompression. 

 

 
Decode Dictionary 

  Index (c) Full string 
  Initial table  

Input Output   0   0 

    1   1 

  Start enter string to dictionary 

0   0   -   - 

2   00   2   00 

1   1   3   001 

3   001   4   10 

1   1   5   0011 

1   1   6   11 

 

Fig. 2.  Example of decompressing an array of integers to a binary string. 

 

 
Real number 0.03 1.98 2.20 4.79 4.01 

 
input 0 1 2 4 4 

 
output 0 1 0 1 0 1 0 0 1 0 

 

Fig. 3.  Converting a real value chromosome to an integer chromosome and 

decompressing it to a binary chromosome. 

 
algorithm that can solve problems with more complex 

structures is more sophisticated and is likely to solve a 

problem with a simpler structure. 

In [4], the author applied DE to solve the following 

discrete optimization problems: OneMax, Royal Road, Order-

3 Deceptive, and Long Path problems. We test the 

performance of our algorithm using the same benchmark. 

Every benchmark problem is a maximization problem.  

However, since DE is a global minimizer, the fitness is 

transformed by multiplying the cost function with −1. 

A. OneMax Problem 

The OneMax problem [11] (or bit counting) is a widely 

used problem for testing the performance of various genetic 

algorithms. Formally, this problem can be described as 

finding a string � = {�, �, … , �}, where  ∈ {0,1}, that 

maximizes the following equation: 

Algorithm LZW Decompress 

 add entries 0 and 1 to the dictionary 

 read one code from input to c 

 output str(c) 

 p = c 

 while input are still left 

  read one code from input to c 

  if the code c is not in the dictionary 

   add str(p) + fc(str(p)) to the dictionary 

   output str(p) + fc(str(p)) 

  else 

   add str(p) + fc(str(c)) to the dictionary 

   output str(c)  

  else if 

  p = c 

 end while 

 

The variable c stores a code read from input. 

The variable p is the previous value of c. 

The function str(code) returns a string associated with code. 

The function fc(string ) returns the first character in string. 
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B. Royal Road Problem 

Royal Road problem [12] is designed to investigate the role 

of GA crossover and building block hypothesis. The problem 

can be solved using GA which uses crossover. However, it is 

difficult for a hill climbing algorithm or GA with a single-bit 

mutation to solve the problem. 

This function involves a set of schemas S and is defined as: 

ss

Ss

cXF σ∑
∈

=)(  (3) 

where x is a bit string, each cs is a value assigned to the 

schema  s. 

 

C. Deceptive Order-3 Problem 

In Deceptive problem [13], an individual composes of 

several blocks.  Each of the blocks is evaluated by a deceptive 

function. The deceptive function can fool the gradient-based 

optimizers to favor zeros, but the optimal solution is 

composed of all ones. It is a fundamental unit for designing 

test functions that resist hill-climbing algorithms. The order-3 

deceptive function is defined as: 

 
f(000) = 28 

f(001) = 26 

f(010) = 22 

f(100) = 14 

f(011) = 0 

f(101) = 0 

f(110) = 0 

f(111) = 30 

 

The deceptive problem can be decomposed to several 

deceptive functions. The problem, denoted by fm , is defined 

as: 

3}1,0{

1

),()...1( ∑
=

∈=
m

i
K iK ifK mKf m

 
(4) 

 

D. Long Path Problem 

Long Path problem [14] is a problem that can be solved by 

a hill-climbing algorithm. However, it is not practical to solve 

this problem using hill climbing algorithm. This is because 

climbing the hill (or the path) takes exponential time. Each 

point in the path is differed by one bit. The path is constructed 

such that is exponentially long. The height from the 

bottommost of the hill to the top is equal to: 

 
  223)( 2/)1( −+×= −

llHillHeight
l  

(5) 

 

where  l  is a chromosome length. 

V. EXPERIMENT 

We conducted the experiment to compare the performance 

of LZWDE with Gong and Tuson’s binary adapted DE 

operators [4] and with simple real to binary conversion DE.  

The latter scheme, which is simply called DE, converts a real 

value to a binary using the rule (Xi < 0.5 ? 0 : 1) 

Table I shows the experimental parameters. The length of 

an LZWDE chromosome is less than DE chromosome which 

are 1/5 of OneMax problem size, 1/4 of Royal Road problem 

size, 1/12 of Deceptive order-3 problem size, and about 1/3 of 

Long Path problem size. Before a fitness evaluation, the 

compressed chromosome is decoded and decompressed with 

LZW decompression algorithm. The length of the 

decompressed binary chromosome is varied depending on the 

code in the integer array.  If the length is more than the size of 

the problem size, the excess bits are discarded. However, if 

the length is less than the problem size, LZWDE will evaluate 

the fitness of available bits. All experimental results are the 

average performance obtained from 30 runs. 

 
TABLE I 

EXPERIMENTAL PARAMETERS 

Parameter OneMax 
Royal 

Road 

Deceptive 

order-3 

Long 

Path 

Population size 50 30 100 30 

Problem size 500 80 300 29 

LZW chromosome 

length 
100 20 25 10 

Maximum generation 500 500 2000 300 

VI. RESULTS 

Gong and Tuson [4] used different sets of parameters for 

OneMax, Royal Road, Deceptive Order-3 and Long Path 

problems.  They reported the result of 4 DE strategies which 

are: 1) any-change mutation and exponential crossover-

DE/any/exp, 2) any-change mutation and binomial crossover-

DE/any/bin, 3) restricted-change mutation and exponential 

crossover-DE/res/exp, and 4) restricted-change mutation and 

binomial crossover-DE/res/bin for each problem. We choose 

the best of their experimental results and compare them with 

our best parameters for each problem. 

For each benchmark problem, we compare the performance 

of binary-adapted DE, DE (simple real to binary conversion), 

and LZWDE. The result is shown in Figure 4. The X-axis 

shows the number of generations and the Y-axis shows the 

average-best fitness. LZWDE outperforms both DE and 

binary-adapted DE. Moreover, it is interesting to see that the 

performance of simple conversion is comparable to binary-

adapted DE in Royal Road problem and better than binary-

adapted DE in Long Path problem. 

Table II shows the average evolution time.  We ran the 

experiment on Intel Core i5 with 4GB of RAM.  In this table, 

we report only the time that DE successfully finds the 

solution. The number in the parenthesis is the success rate.  

LZWDE can find the solution for every run.  We do not have 

the data for binary-adapted DE. Therefore, we only compare 
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the time of  DE  and  LZWDE.  In LZWDE, there is  an  LZW  

decompression step. Even with an additional step, the 

algorithm can still find a solution faster than DE. Simple DE 

cannot find a solution for Deceptive Order-3 problem.   

 

TABLE II 

AVERAGE EVALUATION TIME (IN MILLISECONDS) 

Problem 
Algorithm 

DE LZWDE 

OneMax 388.43 (100) 6.50 (100) 

Royal Road 36.42 (87) 29.10 (100) 

Deceptive order-3 - (0) 113.97 (100) 

Long Path 13.53 (100) 45.69 (98.84) 

VII. FITNESS LANDSCAPE ANALYSIS 

In this section, we tried to explain why LZW encoding help 

improve the performance of DE.  

A. Binary Fitness Landscape 

The difficulty of a problem depends on two factors: the size 

of search space and the shape of fitness landscape. A problem 

with a larger search space is usually more difficult to solve.  

In addition, a problem with a more complex fitness landscape 

is more difficult.  Example of complex fitness landscape is the 

one with many local minima or the one that leads 

evolutionary search away from the global minima. 

To visualize the fitness landscape for binary optimization 

problem, we enumerate every possible chromosomes, 

evaluate their fitness and measure distance from the solution, 

then plot the graph using the fitness and the distance. Fig. 5(a) 

shows the fitness landscape of a 9-bit OneMax problem. The 

X-axis is the number of bits by which a chromosome differs 

from the solution. The Y-axis is the chromosome's fitness 

value. The darker area indicates a higher chromosome 

density. As shown in Fig. 5(a), as the fitness increases, the 

chromosome is closer to the OneMax solution. Since 

evolutionary algorithm use fitness value to guide a search 

process, OneMax is an easy problem because the fitness value 

can guide the search to the correct direction.   

Fig. 5(c) shows the fitness landscape of a 9-bit Trap 

problem. The problem is more difficult to solve than OneMax 

because the fitness landscape deceives the search into moving 

away from the global optima. As the fitness increase, the 

chromosome is more different from the solution. If we try to 

solve the Trap problem using a local search which produces a 

neighbor with 1 bit different from the current position, the 

search will not be able to find the optimal solution. 

Fig. 5(a) and (c) visualize the fitness landscape of two 

extreme. We can easily tell from the graph which problem is 

easier.  However, for a problem with difficulty in between, a 

subjective judgment should not be used to judge the 

complexity of fitness landscape. Therefore, we quantify the 

shape of a fitness landscape as one single number called 

fitness-distance correlation (fdc). We compute fdc or a 

correlation between fitness and distance using the formula 

given below. 

��� =
���(�, �)

�(�)�(�)
 (6) 

 

where cov(F,D) is a covariance of fitness F and distance D. 

�(�), �(�) is a standard deviation of F and D respectively. 
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(d) Long Path 

 

 
 

 

Fig. 4.  The average-best fitness plotted against generation 
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(e) Long Path 
 

Fig. 5.  The fitness landscape for binary optimization problems which are (a) 

OneMax, (b) Royal Road, (c) Trap, (d) Deceptive-3, and (e) Long Path. All 

problem sizes are 9-bit. 

 
 

The fdc of the test problem is shown in Table III. For GA, 

OneMax's fdc is –1, which is the lowest. Deceptive problem 

has positive fdc which means that as the fitness increase, the 

chromosome is getting further from a solution. 

 
TABLE III 

THE FDC OF THE TEST PROBLEM 

Problem 
Algorithm  

GA DE LZWDE 

OneMax -1.00 -0.63132 -0.78203 

Royal Road -0.65 -0.44755 -0.65961 

Deceptive order-3 0.32 0.16866 -0.08296 

Long Path 0.02 -0.00091 -0.07498 

 

B. Real-value Fitness Landscape 

Our paper use DE to solve binary problem. DE use real 

value vectors. The fdc cannot be calculated using the same 

method as in the previous subsection because of we cannot 

enumerate all possible real-value vectors as we enumerate all 

possible binary chromosome. For a binary optimization 

problem, there are finite amount of chromosomes given a 

fixed length binary string. A problem size n bit has 2
n
 possible 

chromosome. However, a single real-value in a DE vector, in 

theory, can have infinitely uncountable possible values. 

Since we cannot enumerate all possible chromosomes, we 

instead explore the fitness landscape using random walk.  

While an analysis procedure performs random walk, it records 

a fitness and distance to a solution. Each step of random walk 

imitates a trial vector generation process in DE. 
 

����� !"� = ����� ! + �( #$��%_'$(�_����� ) (7) 

 

In this paper, we set the value of F equals to 0.1 in order to 

make the step not too long.  For each problem, an analysis 

procedure explores 100 random starting points. For each 

starting point, the procedure random walks for one million 

steps. A real value in the vector is constrained within the 

range [0, 1]. 

Another difference between binary and real value analysis 

is as follows. For a binary problem, we calculate a Hamming 

distance from a chromosome to an optimal solution. In DE, 

Euclidean distance is calculated. The distance calculation 

depends on how real-to-binary conversion is done. In this 

paper, the rule for converting is Xi < 0.5 ? 0 : 1.  Therefore, if 

a one bit of binary solution is 1, and the corresponding real 

value is in the range [0.5, 1), the distance would be zero. 

Otherwise, the distance would be 0.5 – Xi.  If a binary solution 

is 0, the distance would be zero when the corresponding real 

value is in the range [0, 0.5). Otherwise, the distance would 

be Xi – 0.5. 

Table III shows fdc for each problem. Real value fdc and 

binary fdc are different due to the way we measure the 

distance and perform the random walk. 

C. LZW Real-value Fitness Landscape 

Although both DE and LZWDE use real value vectors, the 

procedure to calculate the distance is different. In LZWDE, a 

real-value vector has to be converted to an array of integers 

before decompression and fitness evaluation. Thus, the 

distance calculation depends on how real to integer 

conversion is done. In this paper, conversion is done simply 

by truncating a fraction part of a real number. An example of 

measuring the distance is as follows. Suppose that one integer 

in a solution array is 3. If the corresponding real value Xi is in 

the range [3, 4), the distance would be zero. If Xi is less than 

3, then the distance would be 3 – Xi. Otherwise, the distance 

would be Xi – 4. To calculate a distance of a vector to a 

solution vector, the Euclidean distance formula is used. 

The random walk process is similar to the previous 

subsection. The difference is that each real value Xi is 

constrained to the range [0, i+2). The value within this range 

can be converted to a valid input for LZW decompression 

algorithm.  

For some problem such as OneMax, the original binary 

encoding has only one solution. However, when the problem 

is encoded with LZW, there might be more than one solution.  

For example, an LZW chromosome of length 4 has 2 

solutions for 9-bit OneMax problem. In that case, the 

minimum distance from a vector to both solutions is used to 

compute fdc. 
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Table III shows fdc for each problem. For each test 

problems, LZW encoding has lower fdc than the original 

encoding. This explains why LZWDE performs better than 

DE.  

VIII. CONCLUSION 

This paper proposes two methods to apply DE to solve 

discrete optimization problem.  The first is simple real-to-

binary conversion.  The second is using LZW encoding.  We 

compared the result with binary-adapted DE using the same 

benchmark problems. The result shows that LZWDE 

outperforms binary-adapted DE and DE with simple real-to-

binary conversion. In addition, in term of computation time, 

LZWDE is very fast even it has to decompress the 

chromosome. It can solve all benchmark problems in less than 

one second using a mid-range computer. 

Using LZW can speed up evolutionary search because of 

reduction in search space and transformation of fitness 

landscape. The latter points are backed up by the analysis. 

This paper proposed two distance metrics, one for DE and 

another for LZWDE, to analyze simple real-to-binary 

conversion and LZW encoding. These metrics in used with a 

neighborhood function to compute fitness distance correlation 

(fdc). The result shows that, in the benchmark problems, LZW 

encoding can simplify the fitness landscape.  
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