
46

GSTF Journal on Computing (JoC) Vol.4 No.4, April 2016

© The Author(s) 2016. This article is published with open access by the GSTF

A Proposal for UI-flexible, Loosely-coupled
Programming Learning System for Undergraduates

 Abstract—As the scale and the complexity of computer
systems increase, the importance of programming education in
universities enlarges in these days. In this paper, to improve the
quality of programming education in universities, we propose a
programming learning system for undergraduates who learn
programming. Our proposed system provides a similar
experience to pair programming by using static code analyzers as
teachers, which means that the system can teach undergraduates
many aspects of programming. We designed the system to have
UI (User Interface) flexibility and to be loosely-coupled by using
REST (Representational State Transfer) in order to increase the
maintainability of the system. We implemented the system as an
SPA (Single-page Web Application) in order to increase the
interoperability between the system and LMSs (Learning
Management Systems). We evaluated the system and conclude
that the system is a great help for such undergraduates.

Keywords—e-learning; programming; web service; REST; SPA

I. INTRODUCTION
As the scale and the complexity of computer systems

increase, the importance of programming education in
universities enlarges in these days. Nowadays undergraduates
who are going to be a computer engineer are required to
understand many aspects of programming to realize robust and
reliable computer systems. For example, it is essential for
better design and implementation to understand not only
“algorithms and data structures” but also detailed knowledge of
programming languages. This is because each programming
language has different characteristics, and sometimes a lack of
language-specific knowledge causes serious bugs.

As a programming education technique, pair programming
plays an important role. In pair programming, each trainee (an
undergraduate, in case of universities) has his/her own trainer
(a teacher, in case of universities), and they develop software
together on a shared PC. Although pair programming spends
more time than individual programming, pair programming
reduces the number of defects than individual programming.

We believe that pair programming plays an important role
in universities to teach undergraduates many aspects of
programming. This is because each undergraduate's
programming understanding tends to vary considerably;
someone struggles with fundamental structures of a
programming language such as if and for, while another one
has a difficult time with recursive calls of a function. If each
undergraduate had his/her own teacher, he/she could be taught

by the teacher that some potential problems exist in his/her
source codes that seem to be correct.

However, we consider that it is difficult to do pair
programming in most universities owing to lack of the number
of teachers. Although pair programming requires as many
trainers (teachers) as trainees (undergraduates), an ordinary
university class consists of a few teachers and a large number
of undergraduates. To do pair programming in universities, we
need a solution to compensate the lack.

Generally, to compensate the lack of the number of teachers
and to improve the quality of education in universities, using
LMSs (Learning Management Systems), such as Moodle [1]
and Sakai [2], can be a solution. This is because LMSs can
provide a wide variety of educational contents, and
undergraduates can learn from the contents at any time on
LMSs. As we already know, using an LMS is a good idea in
most cases.

Nevertheless, we consider that using LMSs cannot be a
great help for programming education owing to the reasons
discussed in Section II-A. In short, most LMSs intend to be
used for general education, not for programming education.

In this paper, to improve the quality of programming
education and to compensate the lack of the number of teachers
in universities, we propose a programming learning system for
undergraduates who learn programming. (Since we have
already published a brief concept of the system [3, 4], we
describe the details of the system in this paper.) The system
provides a similar experience to pair programming for
undergraduates by using static code analyzers as teachers (as
discussed in Section II-B), meaning that undergraduates can
learn many aspects of programming from the system, not from
a human teacher. We designed the system to have flexible UIs
(User Interfaces) and to be loosely-coupled by using REST
(Representational State Transfer) in order to increase the
maintainability of the system. We implemented the system as
an SPA (Single-page Web Application) in order to increase the
interoperability between the system and LMSs. We evaluated
the system and conclude that the system is a great help for
undergraduates who learn programming.

This paper is organized as follows. Section 2 introduces
related work. Section 3 describes our proposed system. Section
4 and 5 give design and implementation of the system,
respectively. Section 6 shows results of our evaluation. Section
7 presents our conclusion.

Computer Science Dept., School of Science and Technology, Meiji University,
214-8571, Kawasaki, Japan

Tomokazu Hayakawa, Chika Nishikado, and Teruo Hikita

DOI: 10.5176/2251-3043_4.4.343

47

GSTF Journal on Computing (JoC) Vol.4 No.4, April 2016

© The Author(s) 2016. This article is published with open access by the GSTF

II. RELATED WORK

A. LMS (Learning Management System)
LMSs (Learning Management Systems), such as Moodle

and Sakai, are some kind of Web applications that can provide
a wide variety of educational contents for their users, thereby
increasing the quality of education.

However, it is difficult to use LMSs for programming
education because of the following three reasons.
(1) Most LMSs intend to be used for general education, not for
programming education. This means that they lack
functionalities for programing education.
(2) Although most LMSs provide APIs (Application
Programming Interfaces) to develop their plugins/extensions to
extend their functionalities, developing an LMS-dependent
plugin for programming education causes another issue. The
developer of such a plugin/extension is required to maintain the
plugin/extension whenever the underlying LMS becomes
updated or obsolete; otherwise the plugin/extension can no
longer be used in the near future.
(3) Most existing LMS-dependent programming education
plugins/extensions seem to have a fixed UI. However, we
consider that such a fixed UI is not suitable for programming
education as discussed in Section III-B-1.

B. Static Code Analyzers
Static code analyzers are tools for checking source codes to

identify potential problems. For Java, for example, there are a
large number of static code analyzers such as CheckStyle [5],
FindBugs [6], and PMD [7]. They are already widely used in
practice to increase the quality of source codes.

We have decided to use static code analyzers as teachers in
our proposed system. Although static code analyzers may not
be sufficient as teachers in comparison with human teachers,
we presume that static code analyzers can be of great help
because of the fact that they are already widely used in practice.

C. Online Web Sites
There are some Web sites, such as codepad.org [8] and

Ideone.com [9], to write a source code and execute it on a Web
browser. Such Web services and our proposed system are
similar in that both provide online editing and online execution
functionalities. However, such Web services are not designed
for programming education, lacking functionalities to identify
potential problems in submitted source codes.

VirtualPairProgrammers.com [10] is a Web site that
provides video training courses to learn Java. The Web site
claims that the video training courses are the best way to learn
new Java programming skills. The Web site and our proposed
system are similar in that both consider pair programming as
the effective method for programming education. However, the
Web site and our system are different in how to provide virtual
pair programming environment. The Web site uses videos,
which are one-way communication from teachers to students,
to provide educational information. On the other hand, our
system uses static code analyzers as teachers to realize two-
way communication; when a user of our system changes

his/her source codes, newly detected potential problems are
immediately pointed out, if any, on the screen.

D. Related Studies
Although there are some researches that are somewhat

similar to ours, few researches aim to improve each
undergraduate's programming understanding by using static
code analyzers without heavily depending on LMSs.
Jelemenska et al. [11] propose a system that provides SystemC
functionalities on Moodle. It is different from our proposed
system in that their proposed system is focusing on SystemC
and it can run on Moodle only. Itou et al. [12] propose a
method that uses Web services to increase functionalities of
LMSs. Their research and ours are similar in that both aim to
realize a loosely-coupled architecture by using REST. However,
both are different in that their research does not aim to increase
the UI flexibility. Novak et al. [13] propose an automated
testing in programming courses. Their proposal and ours are
similar in that both use static code analyzers to check users'
source codes. However, both are different in that their main
objective is to reduce the labor of teachers in programming
classes, while our main objective is to improve the quality of
programming education in universities. Yulianto et al. [14]
propose an automatic grader for programming assignment by
using static code analyzers. Their proposal and ours are similar
in that both use static code analyzers. However, both are
different in that their main objective is to automate grading of
submitted source codes, while our main objective is to improve
the quality of undergraduates' source codes.

III. OUR PROPOSED SYSTEM

A. Motivation
In our programming education experiences in our

university, there seem several understanding levels among
undergraduates. The following is a part of the levels.
(1) Some undergraduates think that if a source code is
successfully compiled, then the source code is correct.
(2) Some undergraduates think that if an executable file
compiled from a source code (e.g., a.out) correctly runs with
a few test cases, the source code is correct.
(3) Some undergraduates think that if an executable file
compiled from a source code (e.g., a.out) correctly runs with
a large number of test cases, the source code is correct.

In any level, almost all undergraduates seem to share the
goal, i.e., they try to write and revise a program until they are
sure that their program is “correct.”

On the other hand, unfortunately, few undergraduates pay
attention to the quality of their source codes such as readability
and maintainability. Although the quality of a source code may
not affect the execution result of the source code, ignoring the
quality definitely increases the risk of having potential
problems in the source code.

Through the above-mentioned experiences, we have
decided to develop a system that teaches undergraduates many
aspects of programming in terms of the quality in addition to
the correctness.

48

GSTF Journal on Computing (JoC) Vol.4 No.4, April 2016

© The Author(s) 2016. This article is published with open access by the GSTF

B. Objectives
The objectives of our proposed system are to be UI-flexible

and loosely-coupled as discussed later in this section. Fig. 1
shows a main difference between an ordinary design and our
design. As the figure shows, the main difference is how strong
the UI and the logic are coupled each other. An ordinary design
is to implement a system as a part of an LMS by using APIs of
the underlying LMS. However, by this design, the UI and the
logic are tightly-coupled each other, thereby making it difficult
to maintain themselves when the UI or the logic is required to
be modified or when the underlying LMS becomes updated or
obsolete. On the other hand, our design aims to be loosely-
coupled by splitting the system into two layers, a flexible UI
layer and a logic layer. The UI layer enables easy development
of multiple UIs, and the logic layer enables easy modification
of functionalities of the system. By this design, the UI and the
logic can separately be modified or updated.

1) Flexible UI
To easily prepare multiple UIs for undergraduates in

proportion to their understanding levels, we have decided to
design and implement our proposed system to have flexible UI
functionalities. This is important because, although we believe
that UIs play one of the most important roles in programming
education, it is difficult to provide exact one, appropriate, fixed
UI for undergraduates owing to the fact that each
undergraduate's programming understanding tends to vary
considerably as discussed in Section I. This means that
“appropriateness” of such UIs depends on each undergraduate's
understanding level of programming. For example, a UI that
has a large number of functionalities sometimes confuses
beginners, while a too-simplified UI tends to be unsatisfactory
for intermediates and seniors.

2) Loosely-coupled Architechture
To increase the maintainability of our proposed system, we

have decided to design and implement the system to be
loosely-coupled. This also means that the system can be used
with LMSs, if needed, without heavily depending on them.
This is important because heavily depending on LMSs causes
the maintenance issues discussed in Section II-A.

C. Overview
Fig. 2 shows a screenshot of our proposed system. As the

figure shows, undergraduates learn programming by the
following instructions. (Here, we assume that undergraduates
already have their own programming exercises, such as “write
a quick sort program in Java”).
(1) Undergraduates launch their Web browsers and input the
URL of the system to access it.
(2) Undergraduates input their source codes into the online
source code editor on the screen.
(3) Undergraduates compile their source codes by choosing one
of the compilers from the compiler list, and compile warnings
and/or errors, if any, are visually reported on the screen.
(4) Undergraduates analyze their source codes by choosing one
of the static code analyzers from the analyzer list, and warnings
and/or errors, if any, are visually reported on the screen.
(5) Undergraduates execute their source codes with data for the
standard input, if necessary, after successfully compiling them.
(6) Undergraduates follow these instructions until no warnings
and errors are reported on the screen.
All the reported warnings and errors are shown as highlighted
lines (the red lines in the editor) and as annotations (the marks
on the left of the line numbers) on the screen.

With this system, undergraduates receive the following
benefits.
(1) Undergraduates can be visually noticed that there are some
potential problems in their source codes on the screen.
(2) Undergraduates can improve the quality of their source
codes by revising their source codes in accordance with the
reported diagnostic messages on the screen.

Figure 1. Difference between an ordinary design and our design.

(The left is an ordinary one, and the right is ours.)

Figure 2. Screenshot of our proposed system.

49

GSTF Journal on Computing (JoC) Vol.4 No.4, April 2016

© The Author(s) 2016. This article is published with open access by the GSTF

D. System Requirements
Users of our proposed system need only an HTML5

compliant Web browser such as Chrome, Firefox, and Opera.
They can edit, compile, analyze, and execute their source codes
without installing any other software on their Web browsers.

IV. DESIGN OF OUR PROPOSED SYSTEM

A. Overview
Fig. 3 shows an overview of the design of our proposed

system. As the figure shows, the system is designed as follows.
(1) If an LMS is required to cooperate with the system, the
LMS is required to only embed the flexible UI layer. This
design reduces the number of lines of code needed for LMS-
dependent plugin/extension implementation.
(2) The flexible UI layer uses functionalities provided by the
logic layer. Owing to the flexibility of the UI layer, we can
easily modify the UI, if needed. For example, in addition to
typical UI components for online programming, such as a text
editor, a message window that shows messages from compilers,
we can easily add a dialog box with a few lines of code.
(3) The logic layer provides the functionalities needed by the
UI layer, e.g., text editing, revision control, compilation, code
analyzation, execution, unit testing, and so on.

B. SPA (Single-Page Application)
To cooperate with many kinds of LMSs, we have designed

the whole system so that the system is fully SPA conformant.
(An SPA is a Web application that properly runs without
changing its URL.) This is important because LMSs generally
need to control their URLs by themselves to properly run. In
other words, if a plugin/extension of an LMS changes the
underlying LMS's URL, the LMS could no longer be able to
run properly.

C. REST (Representational State Transfer)
To keep our proposed system loosely-coupled, we have

designed the system by using REST. Table I shows a part of
the REST endpoints of the system. As the table shows, each
functionality is implemented as a single REST endpoint, and
JSON (JavaScript Object Notation) is used as the data format
between the UI layer and the logic layer. Since the logic layer
provides its functionalities by using REST, it is easy to extend
its functionalities. Concretely, if a new functionality is needed,
the developer is required to only add the functionality by
adding a new REST endpoint in the logic layer.

V. IMPLEMENTATION OF OUR PROPOSED SYSTEM

A. Software
We have implemented our proposed system by using the

software shown in Table II. The UI layer has been
implemented as an HTML5 Web application, in combination
with Ace [15] as an online editor, jQuery UI [16], and jQuery
[17]. The logic layer has been implemented by using Slim [18]
as a PHP framework, Paris [19] as an Active Record
implementation, and Idiorm [20] as an O/R mapper.

Figure 3. Overview of design of our proposed system.
(The UI layer and the logic layer are loosely-coupled.)

TABLE I. LIST OF REST ENDPOINTS OF OUR PROPOSED SYSTEM

No. Method URI Request MIME Response MIME Description

1 POST /sources/{sourceName} text/plain application/json Creates a new source code.

2 GET /sources/{sourceId} (empty) application/json Obtains a source code specified by the
sourceId.

3 PUT /sources/{sourceId} text/plain (empty) Updates a source code specified by the
sourceId.

4 DELETE /sources/{sourceId} (empty) (empty) Removes a source code specified by the
sourceId.

5 GET /languages/{langName}/analyzers (empty) application/json Obtains the list of static code analyzers for a
specific language specified by the langName.

6 GET /languages/{langName}/compilers (empty) application/json Obtains the list of compilers for a specific
langauge specified by the langName.

7 GET /analyzers/{analyzerId} (empty) application/json Obtains a static code analyzer specified by the
analyzerId.

8 GET /compilers/{compilerId} (empty) application/json Obtains a compiler specified by the
compilerId.

9 POST /analyzation application/json application/json Analyzes source codes specified by the JSON.
10 POST /compilation application/json application/json Compiles source codes specified by the JSON.

11 GET /analyzation/{analyzationId} (empty) application/json Obtains the result of an analyzation specified
by the analyzationId.

12 GET /compilation/{compilationId} (empty) application/json Obtains the result of a compilation specified by
the compilationId.

50

GSTF Journal on Computing (JoC) Vol.4 No.4, April 2016

© The Author(s) 2016. This article is published with open access by the GSTF

Although the design of the system does not depend on a
specific programming language, it would be better to use script
languages such as PHP and JavaScript. This is because script
languages enable developers to develop their applications on a
trial-and-error basis with less cost when compared to non-script
languages such as Java.

B. Asynchronous Processing
To increase the scalability of our proposed system, we have

implemented the system to have the capability for
asynchronous processing by using Gearman [21]. This is
important to handle a large number of the processing requests
(e.g., compilation, analyzation, execution, and so on) from its
users. If the system did not have the capability, the system
could soon be unresponsive to a large number of the requests
from its users, owing to the shortage of computer resources
such as memory space and processor time.

VI. EVALUATION OF OUR PROPOSED SYSTEM

A. Evaluation of System Usability
To evaluate the usability of our proposed system, we

conducted a questionnaire survey in our class named “Object

Oriented Programming,” in which the Java language was used
to teach programming to the members of the class. There were
42 second-year undergraduates in the class, and their Java
experience is approximately half a year.

We found the following results from the questions and the
answers shown in Table III.
(1) Approximately 93% (39/42) of the members are interested
in improving the quality of their source codes.
(2) Approximately 98% (41/42) of the members did not know
the existence of static code analyzers.
(3) Approximately 83% (35/42) of the members found some
discoveries related to their source codes.
(4) Approximately 79% (33/42) of the members thought that
the system helps them improve the quality of their source codes.
(5) Approximately 86% (36/42) of the members thought that
the system is useful to improve the quality of their source codes.
(6) Approximately 40% (17/42) of the members did not want to
use static code analyzers if the members were required to
install such analyzers before using them.
(7) Approximately 79% (33/42) of the members wanted to use
static code analyzers if the members were not required to
install such analyzers before using them.
(8) Approximately 74% (31/42) of the members thought that it
is significant to use the system in the class.

From the results, we conclude that it is important to prepare
a system that facilitates use of static code analyzers with less
effort, and therefore, our proposed system is a great help for
undergraduates who learn programming.

B. Evaluation of UI flexibility
To evaluate the flexibility of the UI layer of our proposed

system, we measured the number of lines of HTML5 code to
add a new UI component and the number of lines of HTML5
code to modify the place of an existing UI component to
elsewhere.

As a result, in both cases, we needed only a few lines of
HTML5 code. This is because each UI component in the UI
layer is represented as a single div element as shown in Fig. 4.
The developer of the UI layer is required to only add such a
code fragment into the desired position or modify the place of
such a code fragment to elsewhere in the UI layer.

From the result, we conclude that the UI layer of our
proposed system has enough UI flexibility to provide several
kinds of UIs for its users.

TABLE II. USED SOFTWARE FOR SYSTEM IMPLEMENTATION

Software Version Description

Ace 1.2.2 JavaScript-based online code editor

jQuery UI 1.11.4 UI library based on jQuery

jQuery 2.1.4 JavaScript library

Slim 2.6.2 PHP micro framework that supports
REST

Paris 1.5.4 Active Record implementation based
on Idiorm

Idiorm 1.5.1 O/R mapper implementation in PHP

PHP 5.6.15 Server-side script language

Apache HTTPD 2.4.17 Web server

Gearman 1.1.12 Job server

MariaDB 5.5.46 RDBMS

CentOS 7.1 OS

TABLE III. QUESTIONS AND ANSWERS ABOUT OUR PROPOSED SYSTEM

No. Question Yes No

1 Are you interested in increasing the quality (e.g., readability, maintainability, and so on) of your source codes? 39 3
2 Do you know static code anlyzers such as Checkstyle, FindBugs, and PMD? 1 41
3 Is there any discovery (e.g., about language specification) by using the system? 35 7
4 Do you think that the system help you improve the quality of your source codes in practice? 33 9
5 Do you think that the system is useful to improve the quality of your source codes? 36 6
6 Do you want to use static code analyzers even if you are required to install them on your computer? 25 17
7 Do you want to use static code analyzers if you are not required to install them on your computer? 33 9
8 Do you think it is significant to use this system in the class? 31 11

51

GSTF Journal on Computing (JoC) Vol.4 No.4, April 2016

© The Author(s) 2016. This article is published with open access by the GSTF

C. Evaluation of Loose-coupling
To evaluate the degree of coupling between the UI layer

and the logic layer, we measured the number of lines of
JavaScript code in the UI layer and the number of lines of PHP
code in the logic layer in order to add a new analyzation
functionality in the logic layer. In this experiment, we prepared
two systems; one is our proposed system and the other is a
system that has the same functionalities as ours, but it is based
on an ordinary MVC (Model-View-Controller) design.

As a result, the needed number of lines of code decreased
by approximately 64% in the UI layer and decreased by
approximately 30% in the logic layer, as shown in Table IV. In
particular, the reduction rate of the UI layer is significant
because of the UI flexibility.

From the result, we conclude that the UI layer and the logic
layer are enough loosely-coupled to improve ease of
development of the system.

VII. CONCLUSION
In this paper, we have proposed a UI-flexible, loosely-

coupled programming learning system for undergraduates who
learn programming. The results of our evaluation show that our
proposed system is a great help for such undergraduates. In
addition, we have reconfirmed that REST and SPA are
indispensable to realize a UI-flexible, loosely-coupled system.

REFERENCES
[1] Moodle, https://moodle.org/.
[2] Sakai, https://www.sakaiproject.org/.
[3] A. Sureka, Y. R. Reddy, P. Muenchaisri, and M. Tsunoda, “A report on

Software Engineering Education Workshop 2014 co-located with Asia-
Pacific Software Engineering Conference 2014,” ACM SIGSOFT
Software Engineering Notes, vol. 40, issue 1, pp. 40–43, January 2015.

[4] T. Hayakawa, C. Nishikado, and T. Hikita, “A proposal for loosely-
coupled programming learning system for undergraduates,” Proc. of 6th
Annual International Conference on Computer Science Education:
Innovation & Technology (CSEIT 2015), pp. 174–177, Octber, 2015.

[5] Checkstyle, http://checkstyle.sourceforge.net/.
[6] FindBugs, http://findbugs.sourceforge.net/.
[7] PMD, http://pmd.sourceforge.net/.
[8] codepad, http://codepad.org/about.
[9] Ideone, https://ideone.com/.
[10] VirtualPairProgrammers.com, https://www.virtualpairprogrammers.com/.
[11] K. Jelemenska and P. Cicak, “SystemC modeling skills assessment in

Moodle environment,” Proc. of IEEE 17th International Conference on
Intelligent Engineering Systems, pp. 351–356, June 2013.

[12] K. Itou, Y. Mima, and A. Ohnishi, “A linkage mechanism between
course-management-system and coursework-checking-functions over

web services,” IPSJ Journal, vol. 52, No. 12, pp. 3121–3134, December
2011, (in Japanese).

[13] M. Novak and M. Binas, “Automated testing of case studies in
programming courses,” Proc. of 9th International Conference on
Emerging eLearning Technologies and Applications, pp. 157–162,
October 2011.

[14] S.V. Yulianto and I. Liem, “Automatic grader for programming
assignment using source code analyzer,” Proc. of International
Conference on Data and Software Engineering, pp. 1–4, November 2014.

[15] Ace, https://ace.c9.io/.
[16] jQuery UI, https://jqueryui.com/.
[17] jQuery, https://jquery.com/.
[18] Slim, http://www.slimframework.com/.
[19] Paris, https://github.com/j4mie/paris.
[20] Idiorm, https://github.com/j4mie/idiorm.
[21] Gearman, http://gearman.org/.

AUTHOR’S PROFILE

Tomokazu Hayakawa was born in Ichikawa, Japan in 1982. He earned B.Sc.,
M.Eng., and D.Eng. degrees in computer science from Meiji University,
Kawasaki, Japan, in 2004, 2007, and 2013, respectively. He joined TG
Information Network Co., Ltd., where he worked as a computer engineer.
Since 2014, he has been an assistant professor at Dept. of Computer Science
of Meiji University, Japan. His research interests include Web applications
(especially RIA technologies), software engineering, and e-learning. He is a
member of the Information Processing Society of Japan.

Chika Nishikado was born in Ohtawara, Japan in 1993. She earned B.Sc.
degree in computer science from Meiji University, Kawasaki, Japan, in 2015.
Since 2015, she has joined RAKUS Co., Ltd., where she has worked as a
computer engineer. Her main research interest is e-learning.

Teruo Hikita (M'79) was born in Nishinomiya, Japan in 1947. He earned
B.Sci in 1970, M.Sci in 1972, and D.Sci in 1978, all from University of Tokyo.
He was at University of Tokyo and Tokyo Metropolitan University, and since
1989 he is at Dept. of Computer Science of Meiji University in Kawasaki,
Japan. His current research interests are in Web technologies. Professor Hikita
is a member of ACM, IPSJ and SIAM.

TABLE IV. NUMBER OF LINES OF CODE TO ADD NEW FUNCTIONALITY

Layer Ordinary
System

Our Proposed
System

Reduction
Rate (%)

UI 118 42 64.4

Logic 275 194 29.5

Figure 4. Example of HTML5 code fragment of UI component.

(Each UI component is represented as a single div element, and therefore it
is easy to add another component or to change the place of a component.)

