

Abstract—This work examines how a predominantly

graphical approach to software development, that was designed

to be deployment platform agnostic, can be used to target

embedded software systems. The general aim of the approach

was to provide engineers with a development method that was

general enough to be applied across a multitude of problem

domains. The development technique employs a component

centric approach, in which target platform specifics are hidden

from the language design. Deployment specific mapping tools are

then used to target each type of system. Embedded software

systems however are probably the most demanding type of

target system, due to limited resources and lack of software

infrastructure support. This paper describes a method of

mapping an example component based design to a target

embedded system.

Index Terms—software, graphical, component, embedded

I. INTRODUCTION

odern software engineering often involves the use of

many different development languages, run-time

platforms and deployment architectures. The decision of

which tools and techniques to be used is often dictated by the

nature of the target system. Broadly speaking target systems

can be classified as being desktop applications, mobile

applications, embedded systems, web applications, and

distributed applications including Service Oriented

Architectures (SOAs). Many of these systems are multi-tier of

course, meaning that many modern solutions are actually a

hybrid of the aforementioned categories.

The presence of multiple deployment possibilities has led
to fragmented development approaches, not just at a language
level but also at a tools level. For example, embedded systems
development is vastly different to SOA development in terms
of implementation languages, development approaches,
tracing, debugging etc. Work was undertaken to provide a
single development technique capable of supporting different
target platforms. This paper not only discusses the general
technique but also extends upon this to examine how an
example model can be used to target an embedded system
developed in the ‘C’ programming language [1], which is a
very common language used to target embedded systems.

The general development technique, which is currently
known as the Razor Development Environment (RDE),
consists of a component oriented graphical notation supported
by an underlying 3GL type language. The enforced use of a

Manuscript received September 10, 2012. Mark Dixon is with the School

of Computing and Creative Technologies at Leeds Metropolitan University,
England, where he undertakes teaching, research and Ph.D. supervision.

email: m.dixon@leedsmet.ac.uk.

component based structure and strong support for re-use
among components allows the majority of a solution to be
developed using existing generic components which do not
include any target specific information. A small number of
platform specific components can then be linked with the main
solution to produce a deployable system.

II. THE DEVELOPMENT ENVIRONMENT

A. General Architecture

The RDE provides a selection of tools and techniques that
allow the development of software systems using a reusable
component based approach. At the core of the environment sits
a Document Object Model (DOM) that provides a canonical
representation of the application under development. This
DOM defines the available components along with how they
are configured and connected via their interfaces. It may be
populated using a graphical notation, a textual 3GL type
language or an XML document. All representations are
semantically equivalent; hence DOM contents can be
manipulated using any representation, independent of the
original input method. Any number of deployment tools can
then be developed to produce systems via interrogation of the
DOM. A graphical representation of the environment is shown
in Fig. 1. This highlights the deployment to embedded system
targets.

A developer may work on components with only a limited
regard for the architecture on which they are to be deployed,
hence most components are generic re-usable objects. Only
target specific components need to take into account
deployment and domain specifics. Due to loose coupling and
strong reusability support, both generic and platform specific
components can be easily sewn together to provide a complete
solution.

Fig. 1. The Razor Development Environment (embedded systems)

Generating Embedded Systems Software using

a Component Based Development Approach

Dr. Mark Dixon

M

DOI: 10.5176/2010-3043_2.3.188

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

65 © 2012 GSTF

The RDE has implicit support for automated testing. The
ability to specify compliance tests when defining component
interfaces provides support for concepts such as Programming
by Contract [2] and Test Driven Development (TDD) [3].
Implicit testing support also allows for better independent
development of components, since associating well defined
tests with specific interfaces provides a mechanism of ensuring
semantic compliance.

B. Design Philosophy

The RDE was designed by taking into account many
commonly agreed upon design principles, mainly derived from
the Object-Oriented paradigm. Many of these concepts
enhance the capability for component re-use, which is
fundamental to the RDE approach.

The RDE is extremely interface centric in nature. In fact,
only interface definitions may represent a type within the
system (languages such as Java, C++ and Objective C allow
implementation classes to be used as the type of variables and
parameters). This design principle is very important for re-use
since only interfaces are ever passed as values between
component services, also the inheritance model is simplified
since implementation inheritance is no longer required. The
demotion of the traditional Class may seem radical but it
allows for much better support of the Open-Closed principle
[4] and helps address the well known fragile base class
problem [5] since inheritance hierarchies are interface based,
rather than implementation based. The Liskov Substitution
Principle [6] is also well supported due to the interface centric
nature and the ability to ensure semantic compliance.

Systems are defined by identifying component instances
and binding them together via their external ports. Each port
represents a service, attribute or compound port (i.e. nested
ports based on other interfaces). Support for compound ports is
a very important abstraction mechanism and allows interfaces
which are commonly used together to be wrapped into a single
conduit type port.

Each component instance acts as an implementer of one or
more interfaces, either directly through terminal ports or by
delegation to sub-components. This multi-interface ability
supports the Interface Segregation Principle [7] which
promotes the idea of providing many fine grain interfaces in
order to help reduce dependencies.

The rules that determine the legality of port bindings
between components are based on a signature which does not
include the name of the port, only the type information. This
loosens the coupling somewhat between components, again
promoting re-use. Within the RDE lower level components can
be connected via ports rather than being embedded within the
higher level components. This enhances support for the
Dependency Inversion Principle [8] that suggests higher level
components should not be dependent on lower level
components. The dependency injection pattern [9] is also
supported by the binding together of higher and lower level
components. The weakened port binding semantics also mean
that components can be independently developed, since their
visible namespace is only defined within the component itself.
Hence, the implementation never needs to be aware of port
names that exist outside of the immediate component.

Finally, well known classical design patterns [10] are
generally much easier to support in an interface centric
component based approach which exhibits low coupling.

C. The Graphical Notation

One of the primary aims of the RDE was to support a
predominantly graphical model based approach to
development. Abstracting to a graphical representation not
only simplifies development but better supports the ability to
hide deployment specifics. It has been suggested that model
driven approaches are better placed to deal with the
complexities of modern platforms, while also allowing better
representation of problem domain concepts [11].

A graphical notation has been defined to allow a
declarative style definition of RDE based software systems.
This notation, known as (Razor's) EDGE, allows for the
construction of an entire system via the use of a single diagram
type. Rather than base this on an existing notation, for example
by defining a UML profile [12], the decision was made to
create the simplest notation possible; while still supporting all
required concepts of the underlying DOM.

The key elements represented within the notation are
interface and component definitions. Both are represented
using the same graphical shape, which allows for the use of a
single model to define all parts of a system. Both host a
number of provided and required ports, which in essence
identifies the direction of dependency when a port is bound.
The nature of a port, which determines whether it provides a
service; stores an attribute; or is compound, is identified using
a small icon shown adjacent to the port symbol.

An example of a component is shown in Fig. 2. This
defines a simple ‘Counter’ that counts to a value determined
via a required attribute port. Once the wrap value is reached
the counter resets and a call is made to an outgoing service
port. An accompanying example that makes use of the
‘Counter’ is shown in Fig. 3. This highlights the reuse of other
components as parts, and the binding of ports between those
parts. Each time the first counter (c1) wraps, it causes the
second counter (c2) to be incremented. Once the second
counter wraps, it causes the main service to terminate. The
first counter wraps on the value of 16, the second counter
wraps on the value of 8.

Fig. 2. A component defined using the graphical notation

Fig. 3. A component with nested ‘parts’ and port ‘bindings’

int wrapValue
int incCount()

void wrapped()

T int value(0)

Counter()

value++;

if (value >= wrapValue) {

 value = 0;

 wrapped();

}

return value;

#

HexByteCount()

void go()

T

boolean finished(false)

while (!finished) {

 c1.incCount();

}

int wrapValue
int incCount()

void wrapped()

Counter c1()

int wrapValue
int incCount()

void wrapped()

Counter c2()

finished = true;

T

T

= 8

= 16

T

#

#

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

66 © 2012 GSTF

Notice that the wrapped service port of part ‘c1’ is bound

to the incCounter service port of part ‘c2’. Although the

signatures of these ports vary somewhat, i.e. the incCounter

returns an integer and the wrapped port has a void return type,
this binding is permitted and the returned value is simply
discarded.

As well as being able to represent the internals of a
component using a structural model, components can also be
defined as finite state machines. This allows for the definition
of control processes which are often used in embedded real-
time control systems. Configuration values and configuration
types are also provided and used to support customization of
components during instantiation. These are analogous to
constructor parameters and generic types respectively.

Terminal service implementation code may be defined
directly using a simple 'C' like grammar or as native code. The
built-in language only consists of standard statements and
expressions. Support for creating new objects (run-time
instantiation) is handled using components, since this is a
deployment specific aspect and is not always supported by
certain domains such as resource constrained embedded
systems.

D. The Model Definition Language

A Model Definition Language (MDL) was developed as an
alternative mechanism for populating the RDE DOM.
Although regular use of the EDGE graphical notation is the
eventual aim, the ability to quickly change the grammar rules
within a parser make a 3GL textual language more appealing
during the research and development phase.

The MDL provides the same constructs as the graphical
notation as keywords within the legal grammar. The language
supports definitions of interfaces, components (using the
‘implementation’ keyword) and binding of ports. The service
implementation code uses exactly the same grammar as it does
within the EDGE graphical notation; hence MDL is a superset
of the imperative code used in the EDGE model. MDL code
that is equivalent to the previous example is shown in Fig. 4.

Fig. 4. A component defined using MDL based code

A more in-depth discussion of the RDE approach is

available [13] and serves as a more verbose source of

information for the interested reader.

III. TARGETING EMBEDDED SYSTEMS

The most obvious way of mapping an RDE defined system

to an embedded system is to generate ‘C’ code from the

populated DOM. There are of course alternatives to this

including the direct generation of assembly language. However

at the moment the generation of ‘C’ is seen as the best

compromise between portability and performance. This does

not rule out other techniques however and the fact that the

RDE is deployment agnostic means this could be achieved by

building alternative mapping solutions. Since ‘C’ is currently

generated, the building of a system includes the use of a

traditional tool-chain in order to compile then link the object

code.

A. General Considerations

Embedded systems are often constrained in terms of

available memory (especially RAM), performance and

software infrastructure. i.e. many embedded systems are said

to be bare-metal in the sense that no operating system is

present. These limitations must be taken into account when

mapping from an RDE model to implementation code.

Since the RDE is a component based approach in which re-

usable elements are sewn together via external ports it is

necessary to replicate these relationships in generated systems.

When targeting embedded systems it is important that as little

configuration information is generated as possible (to reduce

overhead) and that this information is stored in ROM

whenever possible. There are situations of course when

different component instances require their own data, e.g. to

store attribute port values. Hence, there is usually a need to

divide configuration information between RAM and ROM on

the target system.

The code which implements the services must be sharable

between all instances once compiled. e.g. if there are ten

instances of a particular component the machine code should

only exist once, rather than multiple times. Hence the

information regarding externally defined ports, which is stored

within the generated configuration information, needs to be

passed as a parameter to each service. This approach is

exactly the same as the passing of the implicit ‘this’ pointer in

languages such as C++ and Java. Also service call overhead

should be as minimal as possible, given that the performance

level of the target CPU may not be particularly high.

B. Use of Control Blocks

The bulk of the generated code is in the form of control

blocks which represent the configuration information. In

practice these are generated as initialized variable definitions

within the ‘C’ files. It would be also possible to generate the

service implementation code directly from a populated DOM,

but for now the use of native services is assumed. i.e. the

service implementation code is provided as ‘C’ code by the

developer. The implementation code of the services interacts

with other components by referring to the control block

variables declared within the #include’d header files.

implementation HexByteCount {

 provides {

void go(); // entry point

 }

parts {

 // Two contained counter part instances.

Counter c1();

Counter c2();

// Boolean type part

Boolean finished(false);

}

bindings {

 // bindings for the out ports of the contained parts

 c1.wrapped -> c2.incCount;

 c1.wrapValue = 16;

 c2.wrapped { finished = true; }

 c2.wrapValue = 8;

 // binding for the provided ’go’ port

 go { while (!finished) c1.incCount(); }

}

}

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

67 © 2012 GSTF

Each instance within a populated DOM requires a control

block, mainly to represent the external port bindings. Given

the aforementioned constraints of embedded systems however

it is important to share control block data between instances

whenever possible. In order to achieve this the approach taken

was to generate common ROM based control blocks, then

share these between instance specific RAM based data

whenever possible. In order to maximize sharing opportunities

any control block data which refers to other control block data

does this via relative offsets. The intricacies of why this helps

are difficult to explain in such a short paper, but the use of

relative offsets means that it is possible to share a much higher

proportion of ROM based control block data than would be

possible if absolute values were used.

The typical generation pattern used to create embedded

system code from a populated DOM model is shown in Fig. 5.

A single system.c file is generated which contains the

initialized control block values for a particular system. This

ensures that the code generated for each individual component

can be re-used by any system which makes use of those

components. In other words, the component code is

independent of any particular usage scenario, again promoting

reusability even at the generated code level.

C. Mapping the ‘Counter’ example

In order to help clarify the type of code generated from a

populated DOM model, an actual system.c file which

contains the control block data for the ‘Counter’ example, is

shown in Fig. 6. This has been annotated to identify how

relative offsets, rather than absolute values, are used within the

generated data. Notice the use of the ‘const’ keyword within

certain variable definitions. This is to ensure that the linker

places the data within a read-only section [14] when

generating the final binary, thus placing configuration data into

ROM when possible. Although not shown here, a header file

for each component is also generated that defines the struct

types to be populated within the system.c file.

Fig. 5. Generation pattern for embedded systems

Fig. 6. Generated ‘system.c’ file.

External ports which refer to a service require two entries in

the control block. The first is a function pointer to the

implementation code, and the second is the relative offset to

the control block instance ‘this’ pointer to be passed as the first

parameter.

In this particular example the textual name of each instance

has also been included in the control block data. Generally this

information would be omitted; however it is useful to produce

in cases where a reflective style API is to be supported, or for

logging purposes during testing.

D. Accessing External Ports

Providing the control block data is extremely important but

it is only part of the final generated system. The service

implementation code must know how to use this information

in order to access external ports. This could be achieved by

generating wrappers that provide code that automatically

forwards function calls using information obtained from the

control block data. This would be fine for many types of

system but it does add additional overhead to each function

call, which is not a good thing in a resource constrained

system. Hence, as an alternative, macro s are generated which

provide a more direct route to the external ports. As an

example consider the implementation file for the ‘Counter’

shown in Fig. 7. By examining the defined macros the use of

the control block data can be seen. Notice how offsets are

added to the local control block value. This is due to the

references being stored in a relative fashion.

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

68 © 2012 GSTF

Fig. 7. Generated ‘counter.c’ file.

IV. RELATED WORK

This work was originally derived from the development of
a configuration tool designed to support the use of an Autosar
[15] compliant embedded operating system [16]. Hence this
work has its roots within the embedded systems domain. Since
then it has evolved considerably however, which has brought it
more into line with other component based technologies.
These have been well established for many years of course.
Technologies such as DCOM [17], Corba [18] and JavaEE
[19] tend to focus on higher level distributed components
however. Hence, they represent a different layer in the
software stack than the RDE which constructs systems from
components but does not necessarily deploy them in a
distributed fashion. OSGi [20] has a little more in common
with the RDE since it is not specifically designed to create
distributed systems. However it has not been designed to be
deployment agnostic and requires a very specific run-time
environment.

In many ways the RDE is similar to the Fractal Project
[21]. This too is a component based approach in which models
can be graphically defined. An Architectural Description
Language [22] is supplemented with C++ or Java in order to
build a full system. Although there are similarities they are
also differences regarding environment semantics and the
graphical notation. Also the bindings between components
within Fractal can be representative of higher level network
connections etc.

The RDE is in effect an instance of the Model Driven
Engineering (MDE) approach. Hence, from a modeling point
of view the UML and related MDA technologies [23] cannot
be ignored. The model driven paradigm as defined by the
Object Management Group (OMG) aims at providing platform
independent models which are mapped to platform specific
models using transformation rules rather than the direct
generation approach taken within this paper.

In terms of purely graphical development of software
systems, the MIT App Inventor software [24] and its
underlying technologies seem to be based on similar concepts
to the RDE. However, the graphical aspects of the RDE are
provided to support an architectural level of design, whereas
the App Inventor supports graphical design of the user
interface along with the procedural aspects of the system.

Hence the RDE EDGE notation provides a higher level of
abstraction with the lower level imperative code being defined
using a 3GL type language (MDL).

The fundamental difference between the RDE and the
related work is that its primary aim is to provide a single
format that allows for the definition, exchange, and
deployment of components which when combined can be used
to create software solutions for a diverse set of application
domains. In many respects it is synonymous to the philosophy
that drove the development of the XML, but instead of being
data centric, it is behavioral centric in nature. The tools and
techniques developed within the RDE are all specifically
designed to provide a realization of this core concept. This
paper has focused upon only one of many possible deployment
targets.

V. EVALUATION AND CONCLUSIONS

The code produced for the example ‘Counter’ system
discussed within this paper compiles and executes as expected.
Examination of the generated binaries shows that control block
data was indeed placed in a read-only section of the produced
binary, as desired. Now the mapping rules for an embedded
target have been defined the entire process, including the
automated generation of service implementation code, needs to
be completed prior to full evaluation.

With regard to the RDE itself, a Java based implementation
of the DOM and MDL parser tools has shown the whole
concept to be a viable approach. Java was chosen to build the
development tools since these have been produced with a
commercial strength product in mind. Hence the ability to
easily integrate the tools into an industry standard IDE such as
Eclipse [25] was seen as paramount.

Although a full implementation of the EDGE notation is
not yet complete a prototype has been developed as an Eclipse
based GEF [26] dependent plug-in. At the moment this is not
yet functional enough to support development of test systems,
thus all current evaluation has been done using the purely
textual based language (MDL).

The development of several test systems (including the
simple counter example described in this paper) has gone some
way to validating the supported constructs along with the
mechanics of the approach. This work has also shown
however that development via the textual based language alone
is a fairly difficult process when compared to traditional OO
based programming in languages such as Java or C++. This
appears to be due to the fact that the RDE was always designed
to be predominantly graphical in nature; hence using a textual
language to define the architectural properties of a system
sometimes seems counterintuitive.

The development of the supporting tools has identified that
there is a large amount of complexity involved in ensuring that
bindings between compound ports are configured correctly
during target system generation. The ability to pre-examine
models and produce optimized compiled code is likely to
reduce this problem in the future.

Once a full set of development tools are available the
system will need to be more thoroughly evaluated via the
production of some industrial strength solutions. The available
set of tools will be applicable to the development of all Razor
based systems irrespective of the target platform. Only the
deployment specific compilers or run-time environments need
to be target aware.

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

69 © 2012 GSTF

VI. FUTURE WORK

There needs to be more work undertaken on creating both
generic and deployment specific components. When
considering embedded systems the production of a typical
TCP/IP network protocol stack [27] is an initial priority since
such components are not only commonly required, but are also
likely to work well in a component based environment due to
their stack based design philosophy. i.e. a software stack is
effectively a vertical set of components connected via well
defined interfaces. The development of components to
represent other aspects typically present within embedded
systems, such as vector tables and interrupt handlers, is also an
area to be worked upon in the near future.

Once an appropriate library of components is available the
tool can be released to a wider audience in order to gather
feedback. The creation of an open source tool chain, along the
same lines as the GNU GCC project [28], would help
maximize availability of the proposed approach and provide a
low cost of entry for prospective developers.

The compilation of Razor compliant components into
native machine code via ARM based assembly language [29]
is currently being worked upon. The ARM architecture has
been chosen due to its high levels of popularity within the
embedded systems market along with its powerful addressing
modes. These abilities make it possible to manipulate control
block information in an efficient manner, thus reducing
overhead.

REFERENCES

[1] B.W. Kernighan and D. Ritchie, The C Programming Language, 2nd
Edition. Prentice Hall, 1988.

[2] B. Meyer, Applying "Design by contract," Computer (IEEE), vol. 25,
issue 10, October, 1992, pp. 40–51, doi:10.1109/2.161279.

[3] K. Beck, Test-Driven Development by Example. (The Addison-Wesley
Signature Series), Addison Wesley, 2002.

[4] B. Meyer, Object Oriented Software Construction. Prentice Hall, p 23,
1988.

[5] L. Mikhajlov and E. Sekerinski, “A study of the fragile base class
problem,” in Proc. ECOOP'98 - 12th European Conference on Object-
Oriented Programming, Brussels, Belgium, 1998, pp 355-382.

[6] B. Liskov and J. Wing, “A behavioral notion of subtyping,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol
16, issue 6, November, 1994, pp. 1811 - 1841.

[7] R. Martin, The Interface Segregation Principle, C++ Report, August,
Available: www.objectmentor.com/resources/articles/isp.pdf, 1996.

[8] R. Martin, The Dependency Inversion Principle, C++ Report, May,
Available: www.objectmentor.com/resources/articles/dip.pdf, 1996.

[9] M. Fowler, Inversion of Control Containers and the Dependency
Injection Pattern, Available:
http://martinfowler.com/articles/injection.html, Jan 2004.

[10] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley,
1995.

[11] D. C. Schmidt, “Model Driven Engineering,” Computer (IEEE), vol. 39,
issue 2, February, 2006, pp. 25-31.

[12] J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling
Language Reference Manual, 2nd Edition. Object Technology Series,
Addison Wesley, Chapter 12, 2004.

[13] M. Dixon, “Supporting component oriented development with reusable
autonomous classes,” ARPN Journal of Systems and Software, vol.1,
no.5, August 2011, pp. 182-193, ISSN 2222-9833.

[14] M. Barr, Programming Embedded Systems in C and C++,
O’Reilly,1999, Chapter 3.

[15] AUTOSAR Partnership, Automotive Open Systems Architecture,
Available: http://www.autosar.org, 2003.

[16] K. Tindell and M. Dixon, ‘Scalios’, A scalable Real-Time Operating
System for resource-constrained embedded systems, computer software.
Published by JK Energy Ltd. 2008. Available:
https://github.com/jkenergy/scalios/

[17] T. L. Thai, Learning DCOM, O’Reilly Media, 1999.

[18] Object Management Group, Common Object Request Broker
Architecture (CORBA), Available: http://www.omg.org/spec/CORBA,
1997.

[19] J.Farley and W.Crawford, Java Enterprise in a Nutshell, O’Reilly
Media, 3rd Edition, 2005.

[20] OSGi Alliance, “OSGi Service Platform Release 4,” OSGi Alliance
Specifications, Available:
http://www.osgi.org/Specifications/HomePage, 2009.

[21] OW2 Consortium, The Fractal Project, Available: http://fractal.ow2.org,
2009.

[22] M. Leclercq, A.-E. Ozcan, V. Quéma and J.-B. Stefani, “Supporting
heterogeneus architecture descriptions in an extensible toolset,” in Proc.
29th International Conference on Software Engineering (ICSE 2007),
Minneapolis, MN, USA, May 2007.

[23] A.Kleppe, J.Warner and W.Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise. Object Technology Series,
Addison Wesley, 2003.

[24] D.Wolber, H.Abelson, E.Spertus and L.Looney, App Inventor, May
2011. O’Reilly.

[25] The Eclipse Foundation, The Eclipse IDE, Available:
http://www.eclipse.org/, 2012.

[26] The Eclipse Foundation, The Graphical Editing Framework (GEF),
Available: http://www.eclipse.org/gef, 2012.

[27] K. Fall and R. Stevens, TCP/IP Illustrated: Volume 1, Second Edition,
Addison Wesley, 2011.

[28] Free Software Foundation, GCC, the GNU Compiler Collection,
Available: http://gcc.gnu.org/, 2011.

[29] A.Sloss, D.Symes and C.Wright, ARM System Developer's Guide:
Designing and Optimizing System Software, Morgan Kaufmann, 2004.

About the author:

Mark Dixon achieved a B.Sc. in Computing

majoring in Software Engineering (1994)

followed by a Ph.D. in Computer Science

(1997). His employment history includes

working as a software engineer for Dabs Press

(now Dabs.com); an embedded software engineer at Taylor

Nelson Sofres (TNS - London); a real-time systems software

engineer at Live Devices (York); and as a consultant in

software engineering and model based development. Current

research interests include software engineering, model based

development and embedded systems development. Dr. Dixon

is currently employed at Leeds Metropolitan University in

England and is responsible for Ph.D. supervision along with

various teaching and research activities.

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

70 © 2012 GSTF

http://www.objectmentor.com/resources/articles/isp.pdf
http://www.objectmentor.com/resources/articles/dip.pdf
http://martinfowler.com/articles/injection.html
http://www.omg.org/spec/CORBA/
http://www.osgi.org/Specifications/HomePage
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/

