
 
Abstract—This work examines how a predominantly 

graphical approach to software development, that was designed 

to be deployment platform agnostic, can be used to target 

embedded software systems. The general aim of the approach 

was to provide engineers with a development method that was 

general enough to be applied across a multitude of problem 

domains. The development technique employs a component 

centric approach, in which target platform specifics are hidden 

from the language design. Deployment specific mapping tools are 

then used to target each type of system. Embedded software 

systems however are probably the most demanding type of 

target system, due to limited resources and lack of software 

infrastructure support. This paper describes a method of 

mapping an example component based design to a target 

embedded system. 

Index Terms—software, graphical, component, embedded 

I. INTRODUCTION 

odern software engineering often involves the use of 

many different development languages, run-time 

platforms and deployment architectures.  The decision of 

which tools and techniques to be used is often dictated by the 

nature of the target system. Broadly speaking target systems 

can be classified as being desktop applications, mobile 

applications, embedded systems, web applications, and 

distributed applications including Service Oriented 

Architectures (SOAs). Many of these systems are multi-tier of 

course, meaning that many modern solutions are actually a 

hybrid of the aforementioned categories. 

The presence of multiple deployment possibilities has led 
to fragmented development approaches, not just at a language 
level but also at a tools level. For example, embedded systems 
development is vastly different to SOA development in terms 
of implementation languages, development approaches, 
tracing, debugging etc. Work was undertaken to provide a 
single development technique capable of supporting different 
target platforms. This paper not only discusses the general 
technique but also extends upon this to examine how an 
example model can be used to target an embedded system 
developed in the ‘C’ programming language [1], which is a 
very common language used to target embedded systems. 

The general development technique, which is currently 
known as the Razor Development Environment (RDE), 
consists of a component oriented graphical notation supported 
by an underlying 3GL type language. The enforced use of a 
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component based structure and strong support for re-use 
among components allows the majority of a solution to be 
developed using existing generic components which do not 
include any target specific information. A small number of 
platform specific components can then be linked with the main 
solution to produce a deployable system. 
 

II. THE DEVELOPMENT ENVIRONMENT 

A. General Architecture 

The RDE provides a selection of tools and techniques that 
allow the development of software systems using a reusable 
component based approach. At the core of the environment sits 
a Document Object Model (DOM) that provides a canonical 
representation of the application under development. This 
DOM defines the available components along with how they 
are configured and connected via their interfaces. It may be 
populated using a graphical notation, a textual 3GL type 
language or an XML document. All representations are 
semantically equivalent; hence DOM contents can be 
manipulated using any representation, independent of the 
original input method. Any number of deployment tools can 
then be developed to produce systems via interrogation of the 
DOM. A graphical representation of the environment is shown 
in Fig. 1. This highlights the deployment to embedded system 
targets.   

A developer may work on components with only a limited 
regard for the architecture on which they are to be deployed, 
hence most components are generic re-usable objects. Only 
target specific components need to take into account 
deployment and domain specifics. Due to loose coupling and 
strong reusability support, both generic and platform specific 
components can be easily sewn together to provide a complete 
solution. 
 

 
Fig.  1. The Razor Development Environment (embedded systems) 
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The RDE has implicit support for automated testing. The 
ability to specify compliance tests when defining component 
interfaces provides support for concepts such as Programming 
by Contract [2] and Test Driven Development (TDD) [3]. 
Implicit testing support also allows for better independent 
development of components, since associating well defined 
tests with specific interfaces provides a mechanism of ensuring 
semantic compliance. 

B. Design Philosophy 

The RDE was designed by taking into account many 
commonly agreed upon design principles, mainly derived from 
the Object-Oriented paradigm. Many of these concepts 
enhance the capability for component re-use, which is 
fundamental to the RDE approach. 

The RDE is extremely interface centric in nature. In fact, 
only interface definitions may represent a type within the 
system (languages such as Java, C++ and Objective C allow 
implementation classes to be used as the type of variables and 
parameters). This design principle is very important for re-use 
since only interfaces are ever passed as values between 
component services, also the inheritance model is simplified 
since implementation inheritance is no longer required. The 
demotion of the traditional Class may seem radical but it 
allows for much better support of the Open-Closed principle 
[4] and helps address the well known fragile base class 
problem [5] since inheritance hierarchies are interface based, 
rather than implementation based. The Liskov Substitution 
Principle [6] is also well supported due to the interface centric 
nature and the ability to ensure semantic compliance. 

Systems are defined by identifying component instances 
and binding them together via their external ports. Each port 
represents a service, attribute or compound port (i.e. nested 
ports based on other interfaces). Support for compound ports is 
a very important abstraction mechanism and allows interfaces 
which are commonly used together to be wrapped into a single 
conduit type port. 

Each component instance acts as an implementer of one or 
more interfaces, either directly through terminal ports or by 
delegation to sub-components. This multi-interface ability 
supports the Interface Segregation Principle [7] which 
promotes the idea of providing many fine grain interfaces in 
order to help reduce dependencies.  

The rules that determine the legality of port bindings 
between components are based on a signature which does not 
include the name of the port, only the type information. This 
loosens the coupling somewhat between components, again 
promoting re-use. Within the RDE lower level components can 
be connected via ports rather than being embedded within the 
higher level components. This enhances support for the 
Dependency Inversion Principle [8] that suggests higher level 
components should not be dependent on lower level 
components. The dependency injection pattern [9] is also 
supported by the binding together of higher and lower level 
components. The weakened port binding semantics also mean 
that components can be independently developed, since their 
visible namespace is only defined within the component itself. 
Hence, the implementation never needs to be aware of port 
names that exist outside of the immediate component. 

Finally, well known classical design patterns [10] are 
generally much easier to support in an interface centric 
component based approach which exhibits low coupling. 

C. The Graphical Notation 

One of the primary aims of the RDE was to support a 
predominantly graphical model based approach to 
development. Abstracting to a graphical representation not 
only simplifies development but better supports the ability to 
hide deployment specifics. It has been suggested that model 
driven approaches are better placed to deal with the 
complexities of modern platforms, while also allowing better 
representation of problem domain concepts [11]. 

A graphical notation has been defined to allow a 
declarative style definition of RDE based software systems. 
This notation, known as (Razor's) EDGE, allows for the 
construction of an entire system via the use of a single diagram 
type. Rather than base this on an existing notation, for example 
by defining a UML profile [12], the decision was made to 
create the simplest notation possible; while still supporting all 
required concepts of the underlying DOM.  

The key elements represented within the notation are 
interface and component definitions. Both are represented 
using the same graphical shape, which allows for the use of a 
single model to define all parts of a system. Both host a 
number of provided and required ports, which in essence 
identifies the direction of dependency when a port is bound. 
The nature of a port, which determines whether it provides a 
service; stores an attribute; or is compound, is identified using 
a small icon shown adjacent to the port symbol.  

An example of a component is shown in Fig. 2. This 
defines a simple ‘Counter’ that counts to a value determined 
via a required attribute port.  Once the wrap value is reached 
the counter resets and a call is made to an outgoing service 
port. An accompanying example that makes use of the 
‘Counter’ is shown in Fig. 3. This highlights the reuse of other 
components as parts, and the binding of ports between those 
parts.  Each time the first counter (c1) wraps, it causes the 
second counter (c2) to be incremented.  Once the second 
counter wraps, it causes the main service to terminate.  The 
first counter wraps on the value of 16, the second counter 
wraps on the value of 8. 

 
 
 
 
 
 

Fig.  2. A component defined using the graphical notation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  3. A component with nested ‘parts’ and port ‘bindings’ 
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Notice that the wrapped service port of part ‘c1’ is bound 

to the incCounter service port of part ‘c2’. Although the 

signatures of these ports vary somewhat, i.e. the incCounter 

returns an integer and the wrapped port has a void return type, 
this binding is permitted and the returned value is simply 
discarded.  

As well as being able to represent the internals of a 
component using a structural model, components can also be 
defined as finite state machines. This allows for the definition 
of control processes which are often used in embedded real-
time control systems. Configuration values and configuration 
types are also provided and used to support customization of 
components during instantiation. These are analogous to 
constructor parameters and generic types respectively. 

Terminal service implementation code may be defined 
directly using a simple 'C' like grammar or as native code. The 
built-in language only consists of standard statements and 
expressions. Support for creating new objects (run-time 
instantiation) is handled using components, since this is a 
deployment specific aspect and is not always supported by 
certain domains such as resource constrained embedded 
systems. 

 

D. The Model Definition Language 

A Model Definition Language (MDL) was developed as an 
alternative mechanism for populating the RDE DOM. 
Although regular use of the EDGE graphical notation is the 
eventual aim, the ability to quickly change the grammar rules 
within a parser make a 3GL textual language more appealing 
during the research and development phase. 

The MDL provides the same constructs as the graphical 
notation as keywords within the legal grammar. The language 
supports definitions of interfaces, components (using the 
‘implementation’ keyword) and binding of ports. The service 
implementation code uses exactly the same grammar as it does 
within the EDGE graphical notation; hence MDL is a superset 
of the imperative code used in the EDGE model. MDL code 
that is equivalent to the previous example is shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.  4. A component defined using MDL based code 

A more in-depth discussion of the RDE approach is 

available [13] and serves as a more verbose source of 

information for the interested reader. 

 

III. TARGETING EMBEDDED SYSTEMS 

The most obvious way of mapping an RDE defined system 

to an embedded system is to generate ‘C’ code from the 

populated DOM. There are of course alternatives to this 

including the direct generation of assembly language. However 

at the moment the generation of ‘C’ is seen as the best 

compromise between portability and performance.  This does 

not rule out other techniques however and the fact that the 

RDE is deployment agnostic means this could be achieved by 

building alternative mapping solutions.  Since ‘C’ is currently 

generated, the building of a system includes the use of a 

traditional tool-chain in order to compile then link the object 

code. 

A. General Considerations 

Embedded systems are often constrained in terms of 

available memory (especially RAM), performance and 

software infrastructure. i.e. many embedded systems are said 

to be bare-metal in the sense that no operating system is 

present.  These limitations must be taken into account when 

mapping from an RDE model to implementation code. 

Since the RDE is a component based approach in which re-

usable elements are sewn together via external ports it is 

necessary to replicate these relationships in generated systems.  

When targeting embedded systems it is important that as little 

configuration information is generated as possible (to reduce 

overhead) and that this information is stored in ROM 

whenever possible.  There are situations of course when 

different component instances require their own data, e.g. to 

store attribute port values. Hence, there is usually a need to 

divide configuration information between RAM and ROM on 

the target system. 

The code which implements the services must be sharable 

between all instances once compiled. e.g. if there are ten 

instances of a particular component the machine code should 

only exist once, rather than multiple times. Hence the 

information regarding externally defined ports, which is stored 

within the generated configuration information, needs to be 

passed as a parameter to each service.  This approach is 

exactly the same as the passing of the implicit ‘this’ pointer in 

languages such as C++ and Java. Also service call overhead 

should be as minimal as possible, given that the performance 

level of the target CPU may not be particularly high. 

B. Use of Control Blocks 

The bulk of the generated code is in the form of control 

blocks which represent the configuration information. In 

practice these are generated as initialized variable definitions 

within the ‘C’ files. It would be also possible to generate the 

service implementation code directly from a populated DOM, 

but for now the use of native services is assumed. i.e. the 

service implementation code is provided as ‘C’ code by the 

developer. The implementation code of the services interacts 

with other components by referring to the control block 

variables declared within the #include’d header files. 

implementation HexByteCount { 

 

      provides { 

void go(); // entry point 

      } 

 

parts { 

 // Two contained counter part instances. 

Counter c1(); 

Counter c2(); 

 

// Boolean type part 

Boolean finished(false);  

} 

 

bindings { 

 

 // bindings for the out ports of the contained parts 

 c1.wrapped -> c2.incCount; 

 c1.wrapValue = 16; 

 

 c2.wrapped { finished = true; } 

 c2.wrapValue = 8; 

 

 // binding for the provided ’go’ port 

 go { while ( !finished ) c1.incCount(); } 

} 

} 
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Each instance within a populated DOM requires a control 

block, mainly to represent the external port bindings. Given 

the aforementioned constraints of embedded systems however 

it is important to share control block data between instances 

whenever possible. In order to achieve this the approach taken 

was to generate common ROM based control blocks, then 

share these between instance specific RAM based data 

whenever possible.  In order to maximize sharing opportunities 

any control block data which refers to other control block data 

does this via relative offsets.  The intricacies of why this helps 

are difficult to explain in such a short paper, but the use of 

relative offsets means that it is possible to share a much higher 

proportion of ROM based control block data than would be 

possible if absolute values were used.  

The typical generation pattern used to create embedded 

system code from a populated DOM model is shown in Fig. 5. 

A single system.c file is generated which contains the 

initialized control block values for a particular system.  This 

ensures that the code generated for each individual component 

can be re-used by any system which makes use of those 

components.  In other words, the component code is 

independent of any particular usage scenario, again promoting 

reusability even at the generated code level. 

C. Mapping the ‘Counter’ example 

In order to help clarify the type of code generated from a 

populated DOM model, an actual system.c file which 

contains the control block data for the ‘Counter’ example, is 

shown in Fig. 6. This has been annotated to identify how 

relative offsets, rather than absolute values, are used within the 

generated data. Notice the use of the ‘const’ keyword within 

certain variable definitions. This is to ensure that the linker 

places the data within a read-only section [14] when 

generating the final binary, thus placing configuration data into 

ROM when possible. Although not shown here, a header file 

for each component is also generated that defines the struct 

types to be populated within the system.c file. 

 

 

Fig.  5. Generation pattern for embedded systems 

 

 
Fig.  6. Generated ‘system.c’ file. 

External ports which refer to a service require two entries in 

the control block. The first is a function pointer to the 

implementation code, and the second is the relative offset to 

the control block instance ‘this’ pointer to be passed as the first 

parameter. 

In this particular example the textual name of each instance 

has also been included in the control block data. Generally this 

information would be omitted; however it is useful to produce 

in cases where a reflective style API is to be supported, or for 

logging purposes during testing. 

D. Accessing External Ports 

Providing the control block data is extremely important but 

it is only part of the final generated system.  The service 

implementation code must know how to use this information 

in order to access external ports. This could be achieved by 

generating wrappers that provide code that automatically 

forwards function calls using information obtained from the 

control block data.   This would be fine for many types of 

system but it does add additional overhead to each function 

call, which is not a good thing in a resource constrained 

system.  Hence, as an alternative, macro s are generated which 

provide a more direct route to the external ports. As an 

example consider the implementation file for the ‘Counter’ 

shown in Fig. 7.  By examining the defined macros the use of 

the control block data can be seen. Notice how offsets are 

added to the local control block value. This is due to the 

references being stored in a relative fashion. 
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Fig.  7. Generated ‘counter.c’ file. 

IV. RELATED WORK 

This work was originally derived from the development of 
a configuration tool designed to support the use of an Autosar 
[15] compliant embedded operating system [16]. Hence this 
work has its roots within the embedded systems domain. Since 
then it has evolved considerably however, which has brought it 
more into line with other component based technologies. 
These have been well established for many years of course. 
Technologies such as DCOM [17], Corba [18] and JavaEE 
[19] tend to focus on higher level distributed components 
however. Hence, they represent a different layer in the 
software stack than the RDE which constructs systems from 
components but does not necessarily deploy them in a 
distributed fashion. OSGi [20] has a little more in common 
with the RDE since it is not specifically designed to create 
distributed systems. However it has not been designed to be 
deployment agnostic and requires a very specific run-time 
environment. 

In many ways the RDE is similar to the Fractal Project 
[21]. This too is a component based approach in which models 
can be graphically defined. An Architectural Description 
Language [22] is supplemented with C++ or Java in order to 
build a full system. Although there are similarities they are 
also differences regarding environment semantics and the 
graphical notation. Also the bindings between components 
within Fractal can be representative of higher level network 
connections etc. 

The RDE is in effect an instance of the Model Driven 
Engineering (MDE) approach. Hence, from a modeling point 
of view the UML and related MDA technologies [23] cannot 
be ignored. The model driven paradigm as defined by the 
Object Management Group (OMG) aims at providing platform 
independent models which are mapped to platform specific 
models using transformation rules rather than the direct 
generation approach taken within this paper. 

In terms of purely graphical development of software 
systems, the MIT App Inventor software [24] and its 
underlying technologies seem to be based on similar concepts 
to the RDE. However, the graphical aspects of the RDE are 
provided to support an architectural level of design, whereas 
the App Inventor supports graphical design of the user 
interface along with the procedural aspects of the system. 

Hence the RDE EDGE notation provides a higher level of 
abstraction with the lower level imperative code being defined 
using a 3GL type language (MDL).   

The fundamental difference between the RDE and the 
related work is that its primary aim is to provide a single 
format that allows for the definition, exchange, and 
deployment of components which when combined can be used 
to create software solutions for a diverse set of application 
domains. In many respects it is synonymous to the philosophy 
that drove the development of the XML, but instead of being 
data centric, it is behavioral centric in nature.  The tools and 
techniques developed within the RDE are all specifically 
designed to provide a realization of this core concept. This 
paper has focused upon only one of many possible deployment 
targets.  

V. EVALUATION AND CONCLUSIONS 

The code produced for the example ‘Counter’ system 
discussed within this paper compiles and executes as expected. 
Examination of the generated binaries shows that control block 
data was indeed placed in a read-only section of the produced 
binary, as desired. Now the mapping rules for an embedded 
target have been defined the entire process, including the 
automated generation of service implementation code, needs to 
be completed prior to full evaluation. 

With regard to the RDE itself, a Java based implementation 
of the DOM and MDL parser tools has shown the whole 
concept to be a viable approach. Java was chosen to build the 
development tools since these have been produced with a 
commercial strength product in mind. Hence the ability to 
easily integrate the tools into an industry standard IDE such as 
Eclipse [25] was seen as paramount.  

Although a full implementation of the EDGE notation is 
not yet complete a prototype has been developed as an Eclipse 
based GEF [26] dependent plug-in. At the moment this is not 
yet functional enough to support development of test systems, 
thus all current evaluation has been done using the purely 
textual based language (MDL).  

The development of several test systems (including the 
simple counter example described in this paper) has gone some 
way to validating the supported constructs along with the 
mechanics of the approach.  This work has also shown 
however that development via the textual based language alone 
is a fairly difficult process when compared to traditional OO 
based programming in languages such as Java or C++.  This 
appears to be due to the fact that the RDE was always designed 
to be predominantly graphical in nature; hence using a textual 
language to define the architectural properties of a system 
sometimes seems counterintuitive. 

The development of the supporting tools has identified that 
there is a large amount of complexity involved in ensuring that 
bindings between compound ports are configured correctly 
during target system generation.  The ability to pre-examine 
models and produce optimized compiled code is likely to 
reduce this problem in the future. 

Once a full set of development tools are available the 
system will need to be more thoroughly evaluated via the 
production of some industrial strength solutions. The available 
set of tools will be applicable to the development of all Razor 
based systems irrespective of the target platform. Only the 
deployment specific compilers or run-time environments need 
to be target aware. 
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VI. FUTURE WORK 

There needs to be more work undertaken on creating both 
generic and deployment specific components. When 
considering embedded systems the production of a typical 
TCP/IP network protocol stack [27] is an initial priority since 
such components are not only commonly required, but are also 
likely to work well in a component based environment due to 
their stack based design philosophy. i.e. a software stack is 
effectively a vertical set of components connected via well 
defined interfaces.  The development of components to 
represent other aspects typically present within embedded 
systems, such as vector tables and interrupt handlers, is also an 
area to be worked upon in the near future. 

Once an appropriate library of components is available the 
tool can be released to a wider audience in order to gather 
feedback. The creation of an open source tool chain, along the 
same lines as the GNU GCC project [28], would help 
maximize availability of the proposed approach and provide a 
low cost of entry for prospective developers.  

The compilation of Razor compliant components into 
native machine code via ARM based assembly language [29] 
is currently being worked upon. The ARM architecture has 
been chosen due to its high levels of popularity within the 
embedded systems market along with its powerful addressing 
modes. These abilities make it possible to manipulate control 
block information in an efficient manner, thus reducing 
overhead. 
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