
 

  

Abstract— In this paper, we investigate the impact of species’ 

spatial and spatiotemporal distribution information on 

speciation, using an individual-based ecosystem simulation 

(Ecosim). For this purpose, using machine learning techniques, 

we try to predict if one species will split in near future. Because of 

the imbalanced nature of our dataset we use smote algorithm to 

make a relatively balanced dataset to avoid dismissing the minor 

class samples. Experimental results show very good predictions 

for the test set generated from the same run as the learning set. It 

also shows good results on test sets generated from different runs 

of Ecosim. We also observe superior results when we use, for the 

learning set, a run with more species compare to a run with less 

species. Finally we can conclude that spatial and spatiotemporal 

information are very effective in predicting speciation. 

 
Index Terms— smote, spatial distribution, spatiotemporal 

information, speciation, speciation prediction  

 

I. INTRODUCTION 

HERE are more than twenty definitions for species 

concept in literature [1] however the most commonly used 

by most biologists is a group of organisms that are able to 

exchange genes within themselves but are reproductively 

isolated from other such groups. It means that there is no gene 

flow between two of such community [2]. They have separate 

ancestor-descendent tree of life with different tendencies and 

evolutionary path. 

Speciation is the division of one single species into two or 

more genetically distinct ones. This process extends through 

time and leads to a hierarchal tree of historical relationship 

between species. Two steps are entailed in speciation: [3] a 

new population should be established which could be in the 

same habitat or completely separated of the main population 

depending on speciation mechanism; then a reproductive 

isolation should occur, due to different habitats, physical 

barrier, etc., to reduce or prevent gene flow between 
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organisms of the different species. The spatial distribution of 

individuals in one species can act as an isolator and be a 

leading phenomenon for speciation [3], [4], [5]. For example, 

in [6] it has been proved that there is a linear relationship 

between genetic and geographic distance. It means that 

increasing the physical distance between individuals increases 

the probability of speciation.   

Because speciation is a continuous ongoing process, the 

current spatial distribution of a species is not necessarily a 

reliable index of the species' historical distribution during its 

life time. Losos et al. mentioned three evidences in [7] 

showing that the present spatial distribution of a species is 

greatly different from the one at its creation time. Therefore, 

observing species during its whole life time is also important 

to understand and eventually predict speciation. 

 Observing and studying species in nature to extract their 

spatial distribution information is a highly difficult and time 

consuming process. For this reason using computer science 

techniques to simulate such a system is a good alternative 

solution. One special type of such simulator is individual-

based simulation [8] in which individual specificities affecting 

the overall system are modeled. In this paper we use Ecosim
1
  

[9], developed by Gras et al., which is an individual-based 

evolving predator-prey ecosystem simulation. In this program 

two organism types, prey and predator, are simulated in a 

torus like world which is a 1000×1000 matrix of cells. Every 

cell can contain some amount of grass and meat which are 

food for prey and predator respectively. Each individual, 

based on its type, is able to perform some actions. For 

example prey can move, eat grass, escape from predator, mate 

with other prey if they are genetically similar enough and 

produce an offspring with a modified combination of its 

parent’s genome, etc. Predators can move, eat meat, hunt prey, 

mate with other predator, etc. All individuals act based on 

their behavioral model implemented by a fuzzy cognitive map 

(FCM). A FCM is a weighted graph, each node being a 

sensitive(such as the distance to food, to a friend or to a sexual 

partner), internal(such as fear, hunger or satisfaction) or action 

(like escape, eat or reproduce) concept in our case, and each 

edge is a level of influence between two concepts. The FCM is 

coded inside the genome of each individual and therefore 

 
1
 More information about Ecosim can be find at 

http://sites.google.com/site/Ecosimgroup/research/ecosystem-simulation 
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subject to the evolutionary process. As a consequence, every 

individual as a unique behavioral model inherits from its 

parents. In this simulation species concept is also represented 

as a set of individuals having a high level of genetic similarity. 

Depending on the evolution of the system, speciation or 

extinction may happen for every species at any time step. 

Speciation is done by a 2-means clustering algorithm 

presented in [10]. Initially the system starts with one species 

of prey and one species of predator and due to the evolution of 

the individual’s population, when the maximum genetic 

distance among two individuals of a species becomes greater 

than a predefined threshold, two new species emerged. 

Information about all individuals and the world is saved for 

each time step. Several studies have been done using Ecosim. 

For example in [11] Devaurs et al. have shown that the 

behavior of the simulation is realistic by comparing the 

species abundance pattern in the simulation environment with 

real communities of species. Also, the chaotic behavior of the 

system with multi-fractal properties has been proven in [12], 

[13] as it also has been observed for real ecosystems.   

Although there are many factors involved in speciation, in this 

paper we want to answer to the questions such as how spatial 

and spatiotemporal patterns influence speciation? Which 

metrics are important and in what extent? For answering such 

questions, we have applied machine learning techniques on the 

data generated by Ecosim to evaluate if spatial distribution and 

spatiotemporal information of species can predict splitting of 

species. If we could predict speciation by using this 

information, it means that they have impact on speciation. We 

are also interested to extract predictive rules on speciation 

based on spatial and spatiotemporal information that could 

help to understand this complex phenomenon.  

Subsequent to this introduction, we explain the dataset 

preparation phase in section II. In section III the learning 

algorithm and evaluation metrics are described. Section IV 

discusses experimental results and shows the speciation 

prediction to see if one species split in next 100 time steps. 

Finally section V is the conclusion. 

 

II. PREPARING DATA 

 The information about all the objects in the world i.e. 

species, individuals and food in each time step is stored 

separately. Therefore we have a huge amount of information 

and for this paper we just extract spatial distribution and 

spatiotemporal information for every species. 

A. Spatial Distribution Information 

In individual-based simulation, we have access to all the 

information for each individual. So it is possible to specify the 

location of each individual at any time step in a 3-dimensional 

vector with two spatial and one temporal dimension. In 

Ecosim, the world is a torus which can be easily implemented 

by a rectangular array and allows the individuals to pass 

across one boundary and enter the opposite boundary. Based 

on the circular condition of the world, applying traditional 

statistics is not possible, so we use circular statistics to 

calculate a circular center of the spatial distribution of a 

species as defined in [14]. Afterward we calculate the average 

and the standard deviation of the Euclidian distance of all the 

individuals to the center of their species. 

B. Spatiotemporal Metrics 

 In this part we use some spatiotemporal metrics described 

in [15] and adapt them to EcoSim concepts in order to have 

some historical information about species spatial distribution.  

These metrics are used to characterize the complex 

spatiotemporal dynamics of ecological mosaics or categorical 

maps. This characterization is based on analysis of space-time 

cubes of data with two spatial dimensions x, y and one time 

dimension t and we call it 3D world. This cube includes 

successive spatial information of the environment sampled at 

uniform time intervals. Each spatial image in 3D world is a 

grid of cells or pixels like the cells in the world in Ecosim. By 

adding temporal dimension, each spatial pixel becomes a 3-

dimensional voxel having two spatial and a temporal 

dimension with t=1. Persistent entities, like prey in our 

simulation, occupied 3-dimensional forms consisting of 

several adjacent voxels in space and time dimensions are 

called blob. In the 3D world we may have different kind of 

blob types. For example in the world of Ecosim each species 

is considered as a blob type. Moreover, each voxel in the 3D 

world may belong to different blob types because each cell in 

EcoSim can contain multiple individuals from different 

species. In addition, each blob type may be composed of 

multiple separated blobs in 3D world. For example one 

species blob type may be consisting of four subpopulation 

blobs in the 3D world like the dotted pattern blobs in Fig. 1. 

There are two 3D metrics categories for analyzing blobs: 

composition and configuration metrics. Volume, surface area, 

shape complexity and fractal dimension are examples of 

composition metrics. A blob volume is the number of voxels it 

occupies. Surface area is the number of voxels in a blob with 

faces not shared by adjacent voxels of the same blob type. For 

calculating adjacency, we used 6-voxel vonNeuman neighbors 

(Fig. 1). Shape complexity is a ratio between blob volume and 

volume of its bounding box. For example if the dotted line 

cube volume is 4 in Fig. 1 then the shape complexity of the 

wavy format blob type would be 0.5. 

Fractal dimension is used to quantitatively describe how 

one object occupies its volume. We used count boxing method 

[16] to calculate fractional dimension for each species. 

Moreover, we calculate some other composition metrics. For 

instance, space-time density is the ratio of blob type volume 

and the 3D world volume and population density is the 

number of individual per voxel. Blob number is the number of 

isolated blobs in a specific blob type. 

Contagion and STC (spatiotemporal complexity) are two 

configuration metrics. Contagion is calculated based on (1) to 

measure dispersion of a blob type. This metric is based on 

voxel adjacencies and probability of finding a voxel of one 

blob type next to voxels in other blob types. Lower value of 

contagion shows many small blobs and higher value indicates 

few large blobs. 
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Fig 1. A Simple example of 4 blob types in a 3D world. Arrow shows 2 

adjacent voxels with one shared face. The dashed cube is the bounding box of 

the green (wavy format) blob type. 
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Where ijn is number of adjacencies between voxels of blob 

type j and voxels of blob type i and in  is the sum of all 

adjacencies for all species. 

STC is a measure to describe how one blob type occupies 

the three dimensional space. STC is calculated by counting the 

number of voxels occupied by blob type i in a three- 

dimensional window of dimension n×n×n where n is much 

smaller than the 3D world size (n=5 in our case). This window 

moves successively in the space-time cube and measures the 

different occupation levels from 0 to 3n and then STC is 

calculated by (3). kp  is the relative frequency of occupation 

levels. STC is able to differentiate various patterns like 

uniform blob shapes (for example a column), random and 

complex pattern. STC value is lower for uniform or ordered 

blob shapes and is higher for complex shapes. 
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In total we have three spatial and eleven spatiotemporal 

metrics. Calculating these metrics for every species has been 

done for five independent runs of Ecosim for 10000 time steps 

of the simulation. The size of time dimension t in the 3D 

world for calculating spatiotemporal metrics is assumed to be 

50. By increasing this size we would have more precise 

information about species history but it also increases the 

computational complexity of the defined metrics. So the size 

of the window to calculate spatiotemporal metrics is assumed 

to be 1000×1000×50. 

 

III. LEARNING ALGORITHM AND EVALUATION CRITERIA 

We would like to evaluate the capacity of the mentioned 

metrics in section II to predict speciation or species splitting 

events using the result of 10000 time steps of five different 

runs of Ecosim. Then we applied the following steps: 

1)  In each time step, we calculated the spatial information 
for each species and also 3D spatiotemporal metrics 
considering the information of the fifty previous time 
steps for each species to construct the blob types and to 
compute configuration and composition metrics.  

2)  Afterward we made one learning and one testing set. 
There are two classes in this dataset, Positive (Pos.) and 
Negative (Neg.), which specify if the speciation event 
will happen in next 100 times. 

Repeating theses steps for all runs lead to five learning sets 

and five testing sets from five different runs. The main 

problem in all these datasets is that about 90 percent of 

samples belong to Neg. class and only about 10 percent of 

them are in Pos. class. It means that just 10 percent of species 

split in next 100 time steps. We have therefore an imbalanced 

dataset problem. There are two main approaches to address the 

imbalanced learning set problem [17]. One of them is to assign 

distinct costs to misclassified samples and try to minimize the 

overall cost on the training set. The second one is re-sampling, 

either by under-sampling major class or over-sampling minor 

class. In this research we examined different algorithms and 

finally we found out the smote algorithm [18] surpasses other 

algorithms in our case. For each sample of minority class, 

smote generates synthetic samples by selecting some of the 

nearest neighbors and generates new samples along the line 

segments connecting k minority class nearest neighbors. So we 

apply the smote algorithm on all learning sets. To guaranty 

that our learned models have the capacity to accurately predict 

the initial data, we only use the smote algorithm for the 

learning sets keeping the testing sets with the initial 

imbalanced properties of the whole dataset. Then we apply the 

C4.5 [19] algorithm to build decision tree based on attributes 

mentioned in section II for all learning sets. The interest of 

using such approach is that the obtained trees can be used for 

both speciation events prediction and rules extraction. These 

rules can effectively specify the most important factors in 

speciation according to spatial and spatiotemporal 

information. Then we evaluate the classifier performance on 

the test sets. To investigate the impact of different learning set 

on speciation event prediction, we repeat the above procedure 

for the four other datasets. Finally the last step is to assess the 

obtained results.  

The performance of a machine learning algorithm is 

typically evaluated by overall accuracy. However it is not 

applicable for an imbalance dataset where only 10 percent of 

species split. For example, when there are 95% negative and 

5% positive samples in a given dataset the accuracy of one 

classifier that detects 100% of Neg. class and 0% of Pos. class 

will be 95%. In this case the learning algorithm mostly learns 

the major class (Neg. class) while the minor class is highly 

important because it shows the correct prediction of samples 

x 

t 

y 
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with a speciation event. Consequently, simple overall accuracy 

is not a good measure to evaluate our classifiers performance. 

For evaluating these classifier performances we use two 

metrics [20]; Recall and area under ROC curve (AUC) in 

addition to the overall accuracy based on confusion matrix for 

a 2-class classification problem. Recall shows the percentage 

of the given class correctly classified. ROC curve is used to 

show the classifier performance based on the Recall and false 

positive rate. Area under ROC curve (AUC) is a useful metric 

to measure how classifier performances are close to optimal. 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we discuss the results of our experiments 

and also investigate the effect of the different attributes we 

used for speciation prediction. 

A. Classification with Spatial and Spatiotemporal Features 

As mentioned in section II, we have five different runs of 

Ecosim to generate one learning set and five testing sets. 

Afterward we applied the smote algorithm on the learning sets 

to make them balanced. However we do not change the class 

distribution of the testing sets. Finally, we applied the C4.5 

algorithm using 10-folded cross validation to build the 

decision tree. 

Tables I gives the distribution of learning sets for the 5 

different runs before and after applying the smote algorithm. 

In all test sets we have in average approximately 10% Pos. 

class instances and the rest are in Neg. class. The three 

experiments Run1, Run2 and Run4, have almost the same 

number of species and they lead to very similar results. To 

simplify the presentation of the results we therefore chose to 

present in detail only the results for the Run3, Run4 and Run5 

representing respectively situation with small, medium and 

large number of species. When we did the experiment before 

applying smote, we reached a high value for overall accuracy 

(above 90%) but very low Recall for minor class (less than 

0.3). This happens because the classifier tends to learn the 

samples from the majority class and almost ignoring the ones 

from the minority class. 
TABLE I 

LEARNING SET DISTRIBUTION PERCENTAGE AND NUMBER OF SPECIES PER 

RUN 

Learning 

Set 

Pos. class 

 percentage 

Pos. Class Percentage 

after Smote 

Number of 

Species 

Run1 9.5% 48.6% 218 

Run2 10% 48.6% 195 

Run3 9.5% 48.3% 115 

Run4 9.5% 48.4% 238 

Run5 9.5% 43.4% 438 

 

As mentioned in section III, because of the imbalance 

nature of our dataset, we examine true positive rate or Recall, 

AUC and overall accuracy to compare and evaluate the 

obtained results. In all the results, the oversampling method 

highly improved the Recall and the AUC values especially for 

minor class. As expected, we observed that we always have 

better prediction for the test sets coming from the same run as 

the learning set. For example in Fig. 2, Test5 and learning set 

Run5 are from the same run. It shows that the classifier comes 

out very good result for Test5 in compares to other test sets. 

Although the results for the test sets from the other runs 

(Test1, Test2, Test3 and Test4 in Fig. 2) is not as good as 

Test5, it shows that the classifier have learned some general 

rules of Ecosim speciation event. Some similar results have 

been obtained with Run3 too (Fig. 3). 

By observing the results we noticed three different cases: 

1) As mentioned in Table I, number of species in Run5 is 

438. It means that for Run5 we can expect to have more 

valuable information in that dataset compared with other 

datasets like Run3 with 115 species. It is effectively 

confirm by our results; when we use Run5 as learning set 

we have better predictions for all the testing sets as it 

appears clearly in Fig. 2. 

2) On the other hand, the worst results is when we used 

Run3 learning set and use it to predict the class for testing 

sets samples (Fig. 3). We can see also that the results are 

much more variables than with the other learning sets, 

confirming the lack of pertinence of the learned model. 

3) Run4, Run1 and Run2 have an intermediate situation 

between case 1 and 2 when we have around 190 to 250 

species.  

Therefore, we found out that if we use a run with more 

species to make a classifier it has better generalization ability 

than a classifier that has been trained with a learning set from 

a run with lower species. It also means that some general rules 

about speciation exist in our system, as having more examples 

of speciation in one run help to predict speciation in another 

run with different conditions. 

This is a strong result that comforts the choice of an 

individual-based system for understanding the speciation 

process. Our results also show a good capacity to predict 

speciation using spatiotemporal information. Even for the 

worst TP rate i.e. 22%, it indicates that the predictor 

effectively capture some important properties of speciation. It 

is even clearer if we consider that the average TP rate is 86% 

for prediction in the same run and 51% for prediction on other 

runs. Moreover, we observed that to obtain the best prediction 

results, we should have almost an evenness distribution of our 

two classes; Pos. and Neg., in the datasets (Table I). 

B. Comparing the Effect of Spatial Distribution and 

Spatiotemporal Information on Prediction 

To answer our initial questions we investigate the effect of 

the different attributes we used for speciation prediction. For 

example it is interesting to know which information; spatial or 

spatiotemporal metrics (information from 2D world or 3D 

world respectively); is more effective in the prediction. This 

will be helpful to extract some biological rules involved in 

speciation event.  

For this purpose, we repeat the procedure described in 

section III two more times with different combination of 

attributes; first with only spatial distribution information and 

second with only spatiotemporal metrics. Fig. 4, Fig. 5 and 

Fig. 6 show the results summary. 

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

101 © 2012 GSTF



 

 

 
Fig. 2. Run5 is learning set and others are testing sets 

 

 
Fig. 3. Run3 is learning set and the others are testing set 

In these figures, for Pos. class we represent the average of 

overall accuracy, Recall and area under ROC curve for all the 

learning and testing sets together (the column showed by All 

label), testing sets from the same run, learning sets, testing sets 

from other runs and finally all testing sets for all five runs. For 

figure legends, ST means the result for the dataset with only 

spatiotemporal metrics, S means only spatial information and 

ST+S means all the attributes. 

By considering these figures, it is clear that the best results 

are when all the attributes are used in the learning process i.e. 

ST+S dataset. The most important results are for Testing 

(others) as they show the generic prediction capacity of our 

models, but the results for Testing (same run) are also 

important as they show that some specific property of each run 

have been captured which can be useful to characterize a 

specific run. Even though S has only three attributes while ST 

contains eleven metrics, when comparing them, the latter has 

only better result for overall accuracy on Testing (others). It 

means that spatial information has good capacity to learn 

generic rules and indicates that just using three spatial 

attributes leads to a relatively good prediction. Therefore 

spatial distribution information of individual in the world of 

Ecosim is very effective in predicting speciation. However it 

does not mean that dataset ST is not helpful in prediction, 

spatiotemporal information seems to be able to find specific 

properties of each run as depicted in Fig. 4, Fig. 5 and Fig. 6 

where ST has better results for testing sets from the same run. 

Moreover, adding spatiotemporal information to the spatial 

ones increases the quality of the prediction significantly. If we 

build the classifier based on datasets S and S+ST before 

oversampling; Recall or TP rate is very low for minor class 

(about 0.05 to 0.08) in S while that of S+ST is around 0.20 to 

0.3 with approximately the same overall accuracy. It also 

improves AUC about 15% on average. Therefore it shows that 

by adding spatiotemporal metrics, the classifier is able to 

predict more minor class samples in presence of unbiased 

dataset. On the other hand, for biased datasets we observed 

5% improvement for both overall accuracy and AUC for 

dataset S+ST on average for all runs in compare to that of S. 

However, if we consider the Testing (same run), it improves 

AUC, overall accuracy and Recall for 10%, 8% and 10% 

respectively.  

These results show that spatial information of individuals in 

the world has great effect in speciation event prediction and 

spatiotemporal metrics can improve it. We also observed this 

fact in the rules extracted from the classifiers. For example for 

most of the predictors, spatial standard deviation is the 

decision tree root showing its importance for speciation 

prediction. However, more in deep analysis of the set of rules 

generated still need to be done. 

V. CONCLUSION 

In this research, we wanted to study how effective spatial 

and spatiotemporal information are in speciation prediction in 

an artificial ecosystem. We used 14 measures to extract this 

information and applying oversampling technique to build 

classifiers.  

We obtained very good results for the test set coming from 

the same run as the learning set. Reasonably good results have 

been also obtained for the test sets from different runs 

showing that classifier can extract general rules about 

speciation that exist in our system. For all datasets; S, ST, 

S+ST, we also observed that the classifier performance goes 

up when the number of species contained in its learning set 

increases. It means that giving more examples of speciation 

events, even if they come from the same run, make the 

predictor more generic, which in turn means that some generic 

traits exist in our simulation that characterize the speciation 

events. This is highly important for the potentiality of our 

approach to discover some information useful for real 

prediction. Finally, we noticed that spatial information of 

individuals in Ecosim has tremendous effect on speciation 

prediction, as it has also been observed in real ecosystems, 

while spatiotemporal information can improve it in some 

extent. 

For future work, we will study more in detail the results of 

speciation prediction and extract some important rules 

involved in speciation. It is also possible to work on other 

information of species like their genome or mating factors, to 

give better prediction for speciation. 
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Fig. 4. Comparing overall accuracy for three combinations of attributes 

 

 
Fig. 5. Comparing Recall (Pos. Class) for three combinations of attributes 

 

 
Fig. 6. Comparing AUC for three combinations of attributes 
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