
Using a Class-Wide, Semester-Long Project to
Teach Software Engineering Principles

Paul E. Young

Department of Computer Science
University of Central Arkansas

Conway, AR, USA
pyoung@uca.edu

Donald M. Needham
Computer Science Department
United States Naval Academy

Annapolis, MD, USA
needham@usna.edu

Abstract—A senior-level, project-based Software Engineering
course taught at the University of Central Arkansas serves as
the capstone course for the Computer Science Program and
introduces students to the theory, tools, and techniques used to
build large-scale software systems in a project-driven setting.
Foundational to the course is the use of a class-wide, semester-
long course project to emphasize the theoretical aspects of the
software process and the system used for scoring student
performance on the project. One project is selected for the
entire class with students divided into teams of four to six
students to support different functional requirement areas. A
milestone-driven approach is used following a modified
version of the Unified Process for project development.
Student scores on the project are divided into a group score,
assignable via a rubric-like grade sheet, and an individual
score which is determined by the individual’s effort as
assigned using the task-management tool, Issue-Tracker.
Experiences gained and lessons learned in teaching the course
are provided as a guide for those wishing to follow a similar
approach to teaching Software Engineering in the future.

Keywords—Software Engineering; Teamwork; Course
Project; Project Grading; Software Process; Software Life-
Cycle; Software Engineering Pedagogy

I. INTRODUCTION

Teaching Software Engineering (SE) at its core involves
providing an understanding of such traditional topics as the
software life cycle, the software process, requirements and
specification engineering, software design, software
implementation, and software testing. Some texts, such as
those by Pressman [1], Sommerville [2], and Pfleeger [3]
provide a more theoretical approach in addressing these
topics, whereas others such as Berzins [4] take a formal
methods approach in explaining the software development
process. Still others, such as Schach [5], combine the
theoretical with the practical, covering these topics in the
context of designing and implementing some type of course
project. Having been introduced to all three methods in our
study of SE, a practical approach to teaching SE was chosen,
partially as a result of personal bias and partially due to the
results of studies such as that conducted by Prince which
indicate higher retention rates attained by active learning and
collaborative approaches [6].

This paper highlights the methodology used in taking
such an applied approach toward teaching SE, as used in the
senior-level SE course at the University of Central Arkansas
(UCA). The UCA SE course evolved from similar courses
taught previously by Needham at the United States Naval
Academy (USNA) and by Coppit at the College of William
and Mary. UCA’s course extends the efforts of Needham
and Coppit to create a project-driven SE course where
students learn the principles of the software development
process through hands-on experience in a team environment.

The introduction of a milestone-driven process is taken
from Needham’s work at USNA where teaching of the
principles of the software development process is inter-
woven with the phases of developing a suitable software
product. Needham‘s students would divide into a number of
teams where each team could choose from among one or
two pre-selected projects or suggest one of their own. From
Coppit comes the idea of selecting one project for the entire
class, the self-selection of the project topic by the class, plus
the method used for tracking project progress and measuring
and scoring the level of individual participation.

This paper explains how these methods are employed in
teaching the SE course at UCA. It also describes how those
efforts were expanded to define the process used for project
selection, how composition of project teams was modified to
enhance student leadership opportunities, and how the
planned iteration of the project deliverables was used to
enable students to learn from their mistakes and improve not
only their sense of achievement but also the satisfaction of
their customer and professor alike.

Projects are selected using a student-driven process.
Students are first tasked to brainstorm ideas for the project,
with each student providing a brief description of their
project. From this initial list of projects, students vote to
narrow the list to four or five, dependent on class size. A
final project for the course is then picked from this list based
on student preference and a set of criteria provided by the
professor.

One of the criteria provided by the professor is the
project scope. The project size must be such that it can be
accomplished over the course of the remainder of the
semester by a single project team comprised of all of the
members in the class. Unlike some approaches where the
class is divided up into small teams that either work on
separate projects or where each team works on the same
project separately [7], one project is selected for the entire
class to work on together. Separate sub-teams may be used
to develop different segments of this project’s functionality,
but all are responsible for the overall project success.

The project is developed using a modified Unified
Process [8], dividing the project into a number of milestones
with specific deliverables required for each one, as
illustrated in Appendix A. In addition to the required
deliverables, an oral presentation to the product customer(s)
and other class members is required for each milestone.
Prompt feedback is provided by the professor at each
milestone, with corrections and recommendations expected
to be incorporated into the next milestone’s deliverables.

Adapted from Coppit’s work on Implementing Large
Projects in Software Engineering Courses [9], the UCA SE

DOI: 10.5176/2251-3043_3.3.281

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

118 © 2013 GSTF

course uses a modified version of the Issue-Tracker task
management system for tracking project progress and for
determining individual contributions to the project. The
Issue-Tracker system is used to define individual tasks
required to complete the project, assign them to members of
the team, track progress of task completion and determine
the level of work performed by each member of the team.
This is used in combination with a pseudo-rubric used to
gauge the quality of the work that was performed in order to
assign an individual score for the project to each student.

The remainder of this paper provides a high-level
description of the course plus an explanation of the
outcomes expected to be satisfied by students completing it.
The modified Unified Process used in developing the course
project as well as an example of the milestones used to mark
the various workflows or increments defining the project are
reviewed. An explanation of the team-based approach used
for developing the project together with the structure of the
project team and mechanisms used for project participation
enforcement is provided. Then, a detailing of the task
management system Issue-Tracker is included to show how
it is used in tracking project and individual performance and
in contributing to a student’s project score. Finally, a look at
the lessons learned through combining and enhancing
previous contributions by Needham and Coppit, as well as
suggested areas for future work and improvement are
provided.

II. COURSE OVERVIEW

A. UCA Catalog Description

The methodology described in this paper is that used in
CSCI4490, a senior-level SE course at UCA. The UCA SE
course evolved from SI334 taught previously by Needham at
the United States Naval Academy [10] and from CSCI435
taught by Coppit [9] at the College of William and Mary. As
described in the UCA catalog, CSCI4490 is a “required
course for majors that introduces basic principles of software
engineering, including requirement analysis, specification
design, testing, and software maintenance” where a “non-
trivial computer software system from initial concept to a
working system is developed in a team environment.” [12]
Similarly, the USNA catalog offered a similar description
for its SI334 Software Engineering course: “An introduction
to the basic principles of software engineering. Structured,
object-oriented, and formal approaches are studied, with an
emphasis on life cycles, object-oriented techniques and
team-oriented software development.” [13] The Naval
Academy also offered the IT320 course for students in the
Information Technology (IT) major, with IT320 designed to
only cover system analysis and design. In practice, however,
IT320’s syllabus closely resembled that of SI334. The Naval
Academy curriculum has since been restructured with all CS
and IT students required to take both IC470, which is the
same course offered previously as SI334 but which is now
required by both CS and IT majors, and IC480, which “is a
capstone course that ties together concepts from the
information technology and computer science curricula to
solve a practical problem” in which “team-oriented project
solutions will include the requirements gathering, analysis,
design and development of a computing system involving a
large, multi-layer organization using appropriate information
management and computing technologies.” [13]

As stated in the catalog course description, CSCI4490 is
formed around teaching the basic principles of software
engineering. As such, Figure 1 contains a listing of the major

topics taught in CSCI4490. These same topic areas were also
covered in SI334 and IT320 at the Naval Academy.

B. UCA Course Outcomes

In addition to teaching the basic principles of software
engineering, the course description requires development of
a “non-trivial computer software system from initial concept
to a working system … developed in a team environment” as
part of the catalog requirements [12]. These two major
components of the course are satisfied using an integrated
active learning approach where students learn the
fundamentals of software engineering practice while putting
them to use in building a large-scale project involving all
members of the class. This integrated active-learning
approach is used to satisfy the expected course outcomes
contained in Figure 2.

Figure 1. CSCI4490 Software Engineering Course Syllabus

CSCI4490 includes the following major topics:

• Introduction, Scope of Software Engineering

• Software Life Cycle, including classical and
contemporary life-cycle models

• The Software Process, including the classical and
object-oriented paradigms

• Project Management, including the project
management life-cycle, measures of project success,
project management tools and techniques,
configuration management, and version control

• Requirements, to include techniques for soliciting
customer needs, the use of rapid prototyping to
validate customer requirements, and the employment
of use-cases for capturing customer requirements

• Classical Analysis, including informal, semiformal
and formal methods for capturing a system’s
specification

• Object-Oriented Analysis, including functional, class
and dynamic modeling

• Classical Design, including architectural design,
detailed design and design testing

• Object-Oriented Design, covering interaction diagram
development, Program Description Language (PDL)
creation and detailed design testing

• Effective Module Design, outlining the evolution in
the development from modules with high cohesion and
low coupling to the creation of highly reusable objects

• Non-Execution Based Testing to include walkthroughs
and code inspections

• Implementation, including the choice of appropriate
programming language, the use of good programming
practice, and alternative integration strategies

• Execution Based Testing, including glass-box and
black-box testing and the use of equivalence classes
and boundary value analysis to optimize test case
selection

• Program Correctness Proofs, to include loop invariant
determination

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

119 © 2013 GSTF

Figure 2. CSCI4490 Software Engineering Course Outcomes

III. COURSE PROJECT

The foundation used for teaching the software
engineering principles contained in Figures 1 and 2 is the
course project. The course project provides the platform for
satisfying the course requirements outlined in the catalog
description and further defined in the required outcomes for
the course. This section describes the details of how the
course project has been employed in CSCI4490 and how
students are graded on its implementation.

The software process describes the way a particular
software product is built. Thus, the implementation of the
course project for CSCI4490 is first described in terms of the
software process. Included with the description of the course
project is the mechanism used to grade students’ work on the
project.

A. The Course Project Software Process

As stated by Schach, the software process includes the
methodology used for product development, the underlying
software life-cycle model, the people used in its
development, and the techniques and tools used in building
the software [5]. Each of the components of the software
process used in developing the course project is discussed
next.

1) Methodology. The methodology used for software
development is often used to describe a component of the
software process and has been used to distinguish such

practices as modular or procedural styles from functional or
object-oriented practices. As mentioned previously, a
modified version of the Unified Process [8] is used in
developing the course project. The Unified Process,
originally introduced as the Unified Software Development
Process (USDP) by Jacobsen, Booch, and Rumbaugh [8], is
the de facto standard for building object-oriented software
products. It defines a two-dimensional life-cycle model for
the development of object-oriented systems, loosely
corresponding to the iteration and incrementation life-cycle
model [5]. The first dimension defines five workflows
which are used to describe the type of activity to be
performed in each workflow, such as requirements,
analysis, design, implementation, and test. The second
dimension defines the timing of the activities to be
performed. In practice four phases are typically defined,
corresponding to the increments in a standard incremental
and iterative life-cycle model [5].

2) Model Used for CSCI4490 Project Development. The
model used for development of the course project included
several components. First, a milestone-based approach was
used to set a specific timeline for the completion of the
project’s components. Next, size of the projects was
specifically chosen to best simulate the situation students
might be exposed to in a corporate environment. Finally,
the methodology used for selecting the course project was
purposely selected to maximize the “buy-in” of students to
the project on which they would be working.
Milestone-Based Approach: In CSCI4490, four phases are
defined for the class project- inception, elaboration,
construction, and transition. A milestone-driven approach
is used to mark the completion of the phases as indicated in
Figure 3. The methodology used is referred to as being a
modified version of the Unified Process for the following
reason. As depicted in Figure 3, the end of each of the
phases mentioned above is not clearly defined by a
milestone. Generally, the theory, techniques, and tools
needed for completion of the project are provided on a just-
in-time basis. This, plus difficulty in applying the object-
oriented paradigm to a real-world problem causes many
students to struggle to complete a workable set of UML
project diagrams [23] on their first attempt. However, the
ability to provide a usable set of these diagrams to the

Figure 3. CSCI4490 Course Milestones

Upon successful completion of this course, students
shall be able to:

• Demonstrate an understanding of the basic
components of the software life cycle and how to
document each step of the software process.

• Demonstrate an understanding of the techniques for
planning and monitoring the progress of a large-scale
software project.

• Demonstrate an ability to work as a team and to focus
on getting a working project done on time with each
student being held accountable for their part of the
project.

• Demonstrate an understanding of the ethics and
societal impact involved in writing software in a team
environment, integrating code, and giving appropriate
credit.

• Demonstrate an ability to communicate their ideas
effectively both with members of the development
team and with actual or potential customers from both
inside and outside the computing profession.

• Demonstrate a self-directed ability to acquire new
knowledge in computing, including the ability to learn
about new ideas and advances, techniques, tools, and
languages, and to use them effectively; and to be
motivated to engage in life-long learning.

• Demonstrate an ability to conduct execution and non-
execution based testing, including the use of program
correctness proofs, to assess the extent to which the
product under development meets its requirements and
specification.”

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

120 © 2013 GSTF

detailed design team is critical. Consequently, Analysis,
Design, and Implementation are each split across two
milestones in order to enable students to learn from their
mistakes and improve the likelihood of producing an
acceptable product at the end. Thus, the milestones
incorporate planned iteration into a basic incremental
approach where the milestone-based increments are taken
from the four phases of a typical Unified Process project and
the planned iterations allow for rework of the most critical
project deliverables. The type of work performed in each
milestone will likely span multiple workflows, as seen with
the Analysis and Design Workflows in Milestone 3 and the
Design and Implementation Workflows in Milestone 5.

a) Small vs. Large Project Approach: As pointed out
by Coppit, there are two competing schools of thought in
assigning capstone projects, which he refers to as the “small
project” vs. “large project” approach to project selection
[9]. While the small project approach is generally
considered to be more manageable, both from the student’s
and the professor’s perspectives, choosing a project that can
be completed by a small group of four to six students over
the course of the semester has several disadvantages over
one which requires a significantly larger number of students
to complete. First and foremost is the lack of
communication experience gained in the small project
setting. A common comment received from industry
managers concerns the lack of teamwork experience
exhibited by many graduating students [14][15]. Second, as
members of the small project team generally understand
most, if not all, aspects of the project, they can fail to see
the importance of providing quality up-front deliverables
that another team will be able to understand. Finally,
because members of the small project team understand most
aspects of the project, they fail to gain experience in how to
handle problems that arise when no one individual is able to
understand the entire project [9].

The course inherited by Young at the Naval Academy
used the “small-product” approach. However, upon hearing
Coppit’s presentation at SIGCSE ’05 [11] and relating it to
prior experience working with industry in developing large-
scale software systems, the importance of the “large project”
approach was underscored and subsequently adopted in
teaching CSCI4490 at UCA. Project selection and thus team
composition chronicled in this paper utilizes the “large
project” approach, with a single team containing all of the
members in the class used to work on the same project.

b) Project Selection: In keeping with the decision to
follow the “large project” approach in CSCI4490, a decision
then had to be made as to how the project was to be selected
for each course. Should the project be selected by the
professor, or should students select what they would work
on over the course of the semester? Following the model
suggested by Coppit [9], project selection for CSCI4490 has
been done using a student-driven process.

The project selection process begins as early as the
semester before students take CSCI4490. For the last
homework assignment of the pre-requisite “Object-Oriented
Software Development with Java” course, students are asked
to provide a brief description of a project they would like to
work on in Software Engineering. The primary purpose
behind this assignment is to have students begin the thought
process of project selection early in order that they might
begin the semester with some project ideas in mind, rather
than starting with a blank slate.

The project selection process then continues in earnest
on the first day of the semester with the first homework
assignment and with Milestone 0. For the homework
assignment, due the next time the class meets, students are
required to submit a one to two paragraph description of a
project that they think would be suitable for the class to
consider for the course project. They are permitted to either
resubmit the project idea they provided at the end of the
previous semester, or to submit a new or different idea if
desired. For Milestone 0 students are required to expand the
description of the project idea provided in the first
homework assignment to include at least five functional
requirements the proposed project should satisfy.
Milestone 0 is ideally due one week after the start of class in
order to maximize the time available to later, more involved
milestones. During the Milestone 0 review, three to five
candidate projects are selected to continue into Milestone 1.
The number of candidate projects allowed to advance to
Milestone 1 is dependent on class size, with typically four to
six members chosen to work on each Milestone 1 candidate.

For Milestone 1, and this milestone only, teams work
separately from each other, with each team producing an
independently developed draft Requirements Document, as
specified in Appendix B, as the deliverable for this
milestone. Team membership may be based on a class
member’s interest; each person can select the team whose
project idea best interests them on a first-come, first-served
basis, with a balancing of team numbers guided by the
professor if needed. For the remaining milestones team
membership shall be chosen by the professor in consult with
the project manager. As a means of clarifying and defining
the requirements presented in the Draft Requirements
Documents delivered as part of this Milestone, teams
develop and demonstrate a Rapid Prototype of the
functionality presented by their proposed project.

Following this milestone review, one of the candidate
projects being presented is selected as the course project for
the remainder of the course. Selection is made based on
student input, quality and completeness of the Requirements
Document and Rapid Prototype, and suitability for use as a
course project (size, complexity, ability to implement in
Java, Java Swing graphics, web interface, etc.). Products
which benefit the university, and can identify a willing
product customer receive special consideration.

3) Team Structure: As discussed by Schach, the people
used in the development of a software product are a key
component of the software process and are critical to its
success [5]. This is also true in CSCI4490 and a large
degree of thought was spent in determining the project
approach and subsequently the structure to be used by
members of the class on the project. Following selection of
the course project, the team structure is defined for the
class. Following the structure first recommended by Coppit
[9], the organizational structure used by the class for the
team project consists of the following components:

• Customer- Preference shall be given to those projects
that have an identifiable customer from outside of the
class to interact with and pose questions that an
informed consumer might raise. The customer would
normally be expected to attend all project milestone
deliveries dealing with requirements issues or user
interface design. In the absence of an identifiable
outside customer or other willing faculty member,
the professor serves as customer.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

121 © 2013 GSTF

• Program Manager- The professor serves as the head
Program Manager, providing guidance to the Project
Manager and Team Leaders in executing the
project’s methodology and resolving disputes and
issues that cannot be resolved by the Project
Manager.

• Project Manager- The Project Manager shall be
responsible for the overall conduct of the class
project. The Project Manager is selected by the
professor and is expected to serve for a period to be
determined by the needs of the project, generally for
a minimum of two milestones. When possible, the
Project Manager is a graduate student taking the
graduate companion to CSCI4490, preferably one
who has previously taken CSCI4490 as an
undergraduate.

• Team Leaders- Team Leaders are responsible for the
conduct of their team in executing a functional subset
of the overall project requirements as directed by the
Project Manager. Team leaders are responsible for
defining and analyzing the project’s requirements
and for specifying a design for the product. Team
Leaders are also responsible for the successful
integration of their component into the overall
execution of the project. Team Leaders may be
chosen from available graduate students taking the
graduate companion to CSCI4490, or rotated among
undergraduates otherwise functioning as Developers.
If rotated among undergraduate Developers, they
should expect to serve a maximum of two milestones
as Team Leader, project needs permitting.

• Developers- Developers shall be responsible for
carrying out the directions provided by their Team
Leaders in implementing the design for the project
and testing the result. The typical role for a
CSCI4490 student shall be as Developer.

a) Selecting Team Members: Team leadership and
members shall be selected by the professor based on a
“quality-spread” approach. In this approach class members
are evaluated based on performance in previous courses. At
UCA this evaluation is made easy since the CSCI4490
professor also teaches the pre-requisite Java course.
However, in other situations where this is not the case, such
an evaluation could be conducted by comparing GPAs
earned on courses in computer science, using
recommendations by other professors, etc. In the “quality-
spread” approach team composition is chosen such that no
one team is populated with only top or marginal performers;
instead teams are chosen such that the “quality” of the
performers is spread evenly among the teams such that each
team has a relatively equal chance at success.

b) Regulations to Eject Non-functioning Team
Members: While the “quality-spread” approach is designed
to prevent any team from having an advantage over another,
it can potentially have the unintended consequence of
enabling a lower performing student to “hide” beneath the
cover of the work performed by their stronger performing
teammates. In an effort to curb such occurances, Needham
introduced regulations to eject non-functioning members
from a team, thereby requiring them to complete the project
in its entirety on their own. Communication of violations to
the regulations consisted of the following:

i. a Warning Memo to notify a team member that
the majority of his/her team felt that they were
failing to meet their responsibilities as a team
member;

ii. an Ejection Memo notifying a non-performing
team member that they were being removed
from the team and thus required to complete the
project on their own; and

iii. a Relapse Memo notifying a team member who
had corrected their ways following receipt of a
Warning Memo but subsequently fallen back
into non-conformance.

The Relapse Memo would then be followed by an Ejection
Memo removing the individual from the team. Each of
these memos was to be written by the Team Leader, with
copies to the Project Manager and professor, based on a
majority vote of the team. [10]

4) Techniques and tools used in building the software:
In addition to teaching students about the principles of
software engineering and the techniques and challenges of
team-based work, CSCI4490 also attempts to introduce
students to the techniques and tools used to build large-scale
software systems. The course provides experience in
working with currenttly used operating environments,
development environments, UML authoring tools, version
control software, project management software, and task
management systems.

a) Operating environments: One of the primary
decisions for the curriculum was to use the Java 2
Enterprise Edition (J2EE) for project development [16].
This decision was made for a number of reasons. First, Java
is used by a diverse number of companies from Amazon
[17] to Google [18] to Yahoo [19]. Second, for Graphical
User Interface (GUI) based applications (which the majority
of projects selected to date are), Java offers a rich library for
constructing GUI components with an accompanying event
handling mechanism to enable dynamic interaction between
components. Third, using J2EE introduces students to
advanced concepts such as web services, database
interconnectivity, and remote process invocation which they
did not see in their introductory Java course, but which are
important technologies in the workforce. Finally, as part of
the requirement to teach a second language in the UCA
curriculum, using Java in CSCI4490 reinforces the use of
the concepts taught in the introductory Java course.

b) Integrated development environment: Although
independent text editors, compilers, linkers, debuggers, etc.
still exist and are often preferred by a large segment of
software developers, software development today has
evolved from the era of independent software development
tools into a world where these tools are captured in an
integrated development environment (IDE). For the
implementation and test workflows, instruction was
provided using Sun’s Netbeans [20] IDE. Students were
also permitted to use other IDE’s such Eclipse [21] and
JBuilder [22] if desired, although it was highly
recommended that a single IDE be selected by the class for
building the project.

c) UML authoring tools: A cornerstone in the use of
the Unified Process for software development is the Unified
Modeling Language (UML). UML is the de facto standard

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

122 © 2013 GSTF

for specifying, constructing, visualizing, and documenting
object-oriented systems. At the heart of UML is a series of
diagrams, from Use Case diagrams used to capture a
system’s requirements to Class diagrams used to specify the
structure used in modeling the entities of the system [23].
As a graphical language, assistance in constructing,
modifying and retaining the various UML diagrams used in
system development is critical, especially as systems grow
beyond the “toy” systems constructed in most Computer
Science class projects. As an introduction to such UML
authoring tools, students in CSCI4490 are provided with a
license to use Visual Paradigm™, a full-featured UML
authoring tool, although other tools such as ArgoUML [24],
Violet [25], and Microsoft Visio™ [26] are also available
for use. Again, as with the IDE, it is strongly suggested that
students standardize on a common tool for the class,
preferably one which provides for the sharing of documents
across the class.

d) Version control software: One of the key
components of a project involving multiple developers is
the use of some sort of version and revision control
software. Such software enables multiple users to work on
the same program or documentation without fear of having
recently submitted updates being deleted or overwritten by
someone else working on the same document. Version
control principles following the client-server model are
taught in CSCI4490 using Subversion [27] and
TortoiseSVN [28]. Adding instruction on the distributed
approach to version control is planned for future courses
using Git [29] or similar applications.

e) Project management software: Software to help
control when tasks are scheduled, how resources are
allocated, how budgets are controlled, and to support
decision making during project execution, plays a vital role
in ensuring projects are delivered on-time, within budget,
and that meet specifications. The use of such tools as the
work breakdown structure (WBS), and Gantt and PERT
charts are critical in meeting such expectations. Project
Management software such as is available with Microsoft
Project™ [30] provides the capability to perform such tasks.
Microsoft Project™ has been the application of choice for
CSCI4490 up to now. Although it is proprietary software,
Microsoft Project™ has been readily available under the
MSDN Academic Alliance to which the UCA Computer
Science department subscribes.

f) Task management software: Project size and
complexity are two of the principle factors used in
determining which project is selected at Milestone 1 for the
remainder of the project. One of the premises by which a
project can be chosen whose scope is larger than that which
is typically seen for a course project, is that each member of
the project team would contribute their “fair share” of effort
in developing the project. One tool available for use in
enforcing this assumption is the aforementioned
Regulations to Eject Non-functioning Team Members. Prior
to requiring the use of such an enforcement tool, the
individual performance of team members can be tracked
using a modified version of the task management system
Issue-Tracker and thus discourage such “tailgating”
practices from occurring.

i. Issue-Tracker: Issue-Tracker is a modified web-
based task management system borrowed from Coppit [11].
The original system allows a project’s tasks to be assigned

to different members of the project team, with task progress
tracked as they are completed by the developer, checked by
their team leader, and approved by the project manager. The
original system also provided the capability to attach
supporting documentation to a task to assist in its
completion or to provide to project leadership as evidence
of task completion. The primary modification to Issue-
Tracker provided by Coppit was the addition of a point
system by which a task’s value could be set based on its
difficulty and importance to the project. This value could
then be used to compare the work completed by the various
members of the team to ensure tasks were being assigned
equitably or if not to make appropriate adjustments to an
individual’s project score.

When a task is created, it is assigned a point
value based on its difficulty and importance to the project.
The difficulty value is simply set based on an estimate of the
number of person-hours that would be required to complete
the task; although conceivably some other rubric-based
scheme could be used to set this value. The importance value
is set based on the level of urgency required for completing
this task during the current milestone. An importance value
of between one and five is generally assigned to the task,
with higher priority tasks being assigned a higher value for
importance. Keep in mind that a task which may be
considered low priority at the beginning of the development,
such as developing the User Guide, may be deemed of the
highest priority at Milestone 6.

The score for a task is calculated by first
computing the product of the difficulty and the importance
values. Then a modifier, used for rewarding exceptional
performance or penalizing sub-par effort, is added to this
product to determine the final score for the task. An
individual’s “fair share” of the work can then be calculated
by adding up the points for all tasks required to complete the
project, dividing those by the number of people working on
the project, and comparing this average to the points earned
by an individual. This “fair share” value can also be
calculated at any milestone as well as a running total be
maintained so that a team member may gauge his/her
performance at any point during the development. [11]
Figure 4 provides a sample snapshot of the points earned on
their project’s Milestone 5 tasks by students in UCA’s Fall
2013 CSCI4490 class.

ii. Comparing Issue-Tracker to other individual
performance measurement methods: How does Issue-
Tracker compare to other methods for measuring individual
performance on group projects? Hayes, Lethbridge, and
Port defined seven criteria for evaluating individual
performance on group projects and compared eight common
methods used by instructors against the criteria [31]. Of the
eight methods, “Quiz in class” scored highest with “Each
evaluates self and others” tied for second with three other
methods.

Smith and Smarkusky introduced their
“Competency Matrices for Peer Assessment” which is a
variant on the “Each evaluates self and others” method
identified by Hayes, Lethbridge, and Port. They compared
their Competency Matrix approach to the traditional peer
assessment model in a student survey which showed that
students favored the Competency Matrix method [32].

In Yip, Young, and Marupally [33], a subjective
evaluation compared Issue-Tracker with the Competency
Matrices for Peer Assessment approach. In the assessment,

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

123 © 2013 GSTF

Figure 4. Sample Issue-Tracker Points Earned for Milestone Tasks

six of the seven criteria identified by Hayes, Lethbridge, and
Port [31] were used to measure the suitability of a particular
method for use in grading an individual’s performance.
Criteria included fairness of the method, consistency of
results, level of feedback provided to the student, level of
encouragement provided to students for performance
improvement, resistance to grade inflation, and the grading
overhead required to use the method. In the comparison,
Issue-Tracker was rated as satisfying five out of six criteria
as opposed to Competency Matrices satisfying only two
[33].

Yip, Young, and Marupally’s subjective
evaluation of the two approaches was followed by a
statistical comparison of the relationships between scores
obtained using the two methods over the timeframe of two
semesters to determine whether they provided similar
results. In this evaluation, scores were compared using
Pearson’s and Spearman’s correlation coefficients [34] to
determine the degree of correlation between them. Results of
this comparison indicated that the two methods did, on
average, generally correspond although they did not provide
the same values for an individual in all cases [35].

B. Grading Work

The Issue-Tracker point system used to determine a
student’s “fair share” of the effort can also be used in
determining a student’s score on the course project. In
CSCI4490, a student’s score on the project is computed by
using a combination of Class Grade, which is the same for
everyone in the class, and an Individual Grade computed

using the points they earn in Issue-Tracker from the tasks
they have completed. The final project score is the average
of the Class Grade and the Individual Grade.

1) Class grade. For each milestone, a Milestone Grade
is assigned using a modified rubric called a Milestone
Grade sheet. For each milestone, a Milestone Specification
Document is provided for the next milestone at the end of
the milestone presentation. In the Milestone Specification
Document, an example of which is provided in Appendix C,
the list of deliverables for the next milestone is provided
together with guidance to be used in completion of the
deliverable. For each Milestone Specification Document, a
corresponding Milestone Grade sheet is defined establishing
point values to be assigned for various deliverable
components. This grade sheet serves as a sort of modified
rubric, although the various performance levels for each
area assessed are not explicitly stated due in large part to the
varying point scale used for each deliverable component.
From this grade sheet, a Class Grade is computed for each
milestone which shall be the same for all members of the
class. The average Class Grade for all milestones at the end
of the course is combined with a student’s Individual Grade
to determine their score for the course project. Appendix D
contains a sample Milestone Grade sheet for the above
referenced Milestone 2 Specification Document

2) Individual grade. To determine the student’s
individual grade, ,a total of all of the points earned in Issue-
Tracker for each of the students in the course is first

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

124 © 2013 GSTF

calculated, as seen in Figure 4. Then, this total is divided by
the number of students in the course to determine the target
points per person. For each student, the points earned by the
student are divided by the target points per person to
provide a percentage score for that person. This value is the
Individual Grade for that student which is then averaged
with the Group Grade as discussed above to provide an
overall project score for that individual. Intermediate scores
can be determined at each milestone using the same
technique in order that the individual may be kept aware of
their standing in the class at all times.

IV. PROJECT SUCCESSES AND LESSONS LEARNED

In the process of developing this Software Engineering
course over the timeframe of the last eight years, a number
of successes have been observed as well as several lessons
learned. During this time different approaches have been
tried, particularly with regards to the course project, with
varying levels of success. Teaching the theoretical concepts
of software engineering while actively employing them in
the context of a semester-long course project definitely fits
among the success category.

The experience of working as a team on a single project
involving all members of the class, also ranks as one of the
greatest achievements of the course, eliciting praise from
current students regarding how much they had learned in the
course and from former students on how the course had
prepared them for subsequent employment.

Use of the task management system Issue-Tracker, while
considered a success from the professor’s perspective, did
not always invoke similar positive responses from students.
While Issue-Tracker helped the professors solve the problem
of how to measure individual performance on group projects
and scored comparably with other approaches for resolving
this perpetual problem, students initially are confused on
how the system works and periodically complain about the
additional workload required to identify, track, and resolve
issues using the system.

Issue-Tracker, in conjunction with regulations for
removing non-performing team members, also helped
unmask those attempting to hide under the efforts of stronger
performing team members, although they did not completely
resolve the problem. Finally, using members of the class to
fill Project Manager and Team Leader positions on a rotating
basis provided invaluable leadership and management
experience to those members, enhancing their abilities for
future leadership roles as well as helping them to better
understand and appreciate those serving in those roles.

Along with the elements listed above as successes, there
were lessons learned which were used to improve the
operation of the course or can be used to further improve its
operation in the future. First among these relates to the
process used to fill Project Manager and Team Leader
positions. While it was initially believed that it would be
best to take advantage of the additional experience offered
by graduate students to fill these positions, this did not
always prove to be the case. First, because many of the early
graduate students had undergraduate software engineering
courses that were not project-based, they lacked experience
performing in a team environment from which they could
draw upon in leading the course. In fact, some of the better
undergraduates demonstrated stronger leadership skills than
those that had been placed in positions above them. This
sometimes created friction between the developers and

leaders. Also, by not rotating the leadership positions among
the class members, most of the undergraduates were denied
the valuable experience that comes from being responsible
for the performance of a group. This approach might have
been more successful had the graduate students been
previously given experience on a team-based development
project such as offered by CSCI4490.

In early offerings of the course, students struggled to
complete a workable set of UML project diagrams from
which to implement their projects. Upon observing this, it
was decided to split the analysis, design, and implementation
workflows across two milestones, addressing half of the
requirements for each workflow in the first milestone and
half in the second. This enabled students to learn from their
mistakes in the second milestone and resulted in a better
chance of delivering a product that met project requirements.

Another lesson learned is the specification of the
regulations used to motivate non-functioning team members.
While in principle, the regulations seem to be a beneficial
tool for getting the attention of someone who is not handling
their share of the responsibility in completing the project,
there are two issues with the way the regulations were
originally written First lies in the specification of the issuing
authority for “warning” and “ejection” memos. Although
used on at least two instances at UCA, there were probably
more occasions where a “warning” memo should have been
used but was not due to reluctance of a Team Leader to
“fire” a classmate. This could potentially be resolved by
having the professor serve as the issuing authority for the
memo with the Team Leader or Project Manager notifying
the professor of any instance of sub-par performance.
Second is the need for a relapse memo. As worded, the
“relapse” memo is followed immediately by an “ejection”
memo. Therefore, the two memos should be combined, with
relapse included as a condition for ejection.

A further lesson learned was the initial method used for
Project Manager and Team Leader grading. Initially, the
Individual Grades for those assigned to these positions were
determined using a seven category score sheet, seen in
Appendix E. These proved problematic on two accounts.
First, scores were assigned to these categories subjectively,
so providing substantial evidence to justify scores in each of
these categories often proved difficult. Second, because
categories “Adherence to project schedule” and “Quality of
project deliverables” were generally related to the common
overall project performance, it was sometimes difficult to
differentiate between team leader performance, even if such
differentiation were warranted. Finally, when combined with
the overall course grading requirement for each milestone,
the time required to do a detailed evaluation of the team
leadership made it sometimes difficult to provide feedback
in a timely manner, particularly towards the end of the
project. As a result, the method for providing Individual
Grades for these positions was changed so that the team
leadership was required to identify those tasks they
performed and enter them into Issue-Tracker to be scored the
same as the Developers were.

Finally, it is recommended that the project selection
process begin as early as the semester before students take
their senior-level Software Engineering course. This enables
students to begin thinking of ideas for possible projects
early, in order that they may be better prepared to begin the
software development process as soon as the semester
begins.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

125 © 2013 GSTF

V. CONCLUSION AND RECOMMENDATIONS FOR FUTURE

WORK

Young has adopted Needham’s [10] practice of learning-
by-doing to teach the principles of software engineering
using a project-based approach in UCA’s CSCI4490
Software Engineering course. He has improved upon this
approach by having all members of the class work together
as a team on the same project over the duration of the course
rather than in smaller groups on a lesser project, as
suggested by Coppit [9]. The course project was chosen
from a list of student-provided topics, with final selection
made based on student preference and a set of criteria
provided by the professor. Young followed Needham’s
method [10] of using a milestone-based approach in
developing the project to emphasize the various phases of
the software development process and to ensure steady
progress was made on the project. The task management
system Issue-Tracker [9] was also adopted to encourage
equal contribution by everyone in completing the class
project and to subsequently determine the level of effort
actually put forth by each member of the class. Together,
these components contribute to a course that introduces
students to the principles of large scale software
development while providing them team-oriented experience
which should prove invaluable following graduation upon
entering the computing workforce.

Together with some of the lessons learned mentioned in
the previous section, several Recommendations for
Improvement are provided for possible future
implementation. First, is the possibility of dividing the

course into a one semester course covering Systems
Analysis and Design followed by a second course covering
Implementation and Testing. Students frequently comment
that not enough time is devoted to implementation and
testing, so splitting the course up over two semesters might
enable their concerns to be addressed without reducing the
amount of material which can be covered. While Demurjian
and Needham [10] point out some of the pitfalls of splitting
the course into two semesters, such a recommendation
should be evaluated based on the particular circumstances of
the university.

As detailed in earlier sections, the current Software
Engineering course is taught using the Unified Process for
object-oriented software development. One of the recent
trends in software development has been the use of Agile
development methods, particularly for non-safety critical
systems. It is recommended that the use of Agile methods be
investigated for possible future course project development.
In addition to introducing students to the use of a different
software process, it might also serve as the basis for possible
comparison studies between the two methods.

Finally, rather than having students develop a new
project from scratch, it is recommended that a future class
investigate the modification of an existing project, such as
enhancing an existing open source development. As,
according to Schach [5], up to 75% of all software
development involves maintenance of an existing product,
such a project would give students real experience in the
type of development effort they are most likely to see upon
entering the workforce.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

126 © 2013 GSTF

APPENDICES

Appendix A-Project Deliverable Summary

Milestone Deliverables

Milestone 0 Draft Requirements Document

Milestone 1 Requirements Document

Rapid Prototype

Milestone 2 Extended Prototype

Updated Requirements Document

Specification

Software Project Management Plan (SPMP)

Milestone 3 Updated Specification

Updated SPMP

High-level Design

Traceability Matrix

Milestone 4 Updated Specification

Updated SPMP

High-level Design

Detailed Design

Traceability Matrix

Milestone 5 Updated SPMP

Updated Design

Implementation

Draft User’s Manual

Traceability Matrix

Milestone 6 Final Requirements Document

Final Specification

Final SPMP

Final Design

Final Implementation

Final User’s Manual

Implementation Testing

Final Traceability Matrix

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

127 © 2013 GSTF

Appendix B- Requirements Document Template

(AFTER IEEE 830-1998)

DOCUMENT TITLE

Author(s)
Affiliation

Date

A. Introduction

• Purpose of document
Describe purpose of document, and intended audience.

• Purpose of project
Describe purpose of what software is to accomplish.

B. Background

• Product Sponsor
Provide overview of organization sponsoring development of product.

• Product Need
Provide a brief overview of need for product. Describe essential problem(s) confronted by user community.

C. Project Overview

• Overview
Provide overview of product defined as result of requirements elicitation process. Describe general functionality
required of product. Include all system-wide non-functional requirements. (May include "wish list" of desirable
characteristics.) Describe how and when users interact with system.

• (Optional) Similar System Information
Describe relationship of product with any other products. Specify if it is intended to be a component of larger
product and if so, discuss the relationship.

• Subsystem breakdown
Provide preliminary list of subsystems

D. System Functionality

Provide use case diagrams which capture the functionality of the intended system, including a brief description of each
of the functions defining the system as well as a list and short description of each of the intended users of the system.

E. Subsystem Descriptions

From the above use case diagram, identify natural relationships among use cases where the system may be broken up
into subsystems; for example a previous semester’s Final Exam Scheduler had subsystems for data input and reporting,
the scheduling algorithm, and schedule statistics.

1. Name
2. Description

Describe subsystem including how the user interacts with it.
3. Requirements

List requirements accomplished by subsystem.
4. Technical issues

Describes any design or implementation issues involved in designing/implementing the subsystem and the
respective requirements potentially affected.

5. Dependencies with other subsystems
Describe interactions with other subsystems.

F. Appendices

• Definitions, Acronyms, Abbreviations
Provide definitions of unfamiliar definitions, terms, and acronyms.

• References
Provide citations to all documents referenced or used in preparation of document.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

128 © 2013 GSTF

Appendix C Milestone Specification Document

CSCI4490, Fall 2013
Milestone 2 – Extended Prototype,

Object-Oriented Analysis Increment 1

1. Deliverables:

a. Extended Prototype: Extend the rapid prototype delivered in Milestone 1 to provide a prototyped user interface for
each of the use cases included in the updated Requirements Document to be delivered as per part 1.b below that
define the view your product presents to the actors of that use case. Since this is a Rapid Prototype, your GUI is not
expected to invoke the functionality selected by the various buttons or other GUI components; however, if your
GUI includes multiple interconnected windows then the functionality for operation of each window and interaction
between windows shall be provided.

b. Updated Requirements Document: Provide an updated Requirements Document that includes any corrections
and clarifications to comments raised during the Milestone 1 Review as well as additional functionality needs
discovered during preparations for this milestone. At a minimum, the Milestone 1 Specification Document should
be reviewed to address any comments made by the instructor during the Milestone 1 Review. The Specification
Document shall be developed in accordance with the included Specification Document Template. Any changes to
the requirements contained in this document beyond this milestone shall require written instructor approval using
the provided Change Request Form.

c. Specification Document: Follow the outline for the eight-part Specification Document provided below in
preparing the sections of your Specification Document. In general, your specification document shall cover all
aspects of the project; however, the OOA portion of the document shall be developed in two increments over this
milestone and the next. Details of the phased development are provided below.

1) Introduction (Overview/Problem Statement)

2) Assumptions: Use the Assumptions section to document any assumptions you make as your project
development continues. For this project, we will use the Assumptions section to prevent you from getting
bogged down. If you encounter what you feel are omissions, ambiguities or contradictions in the requirements
description, make whatever reasonable assumption you feel will resolve the problem, documenting all such
assumptions in the Assumptions section. Make only reasonable assumptions. In case you are unsure of how to
proceed in overcoming a requirement description problem, contact the instructor. Note that the Assumptions
section is meant to allow you to progress without having to contact the instructor for guidance except in
extraordinary cases.

3) Glossary (Data Dictionary)

4) Operating Environment (Environment in which system shall run)

5) Interfaces (GUIs (screen shots) for user interfaces, ER diagrams for Datastores/ Databases)

6) Object-Oriented Analysis. In consultation with the instructor, the project manager shall select half of the use
cases specified for the project in the Requirements Document for analysis during this milestone. The
remaining use cases shall be covered in the next milestone. For the selected use cases, the following shall be
provided:

a) Scenarios: Provide scenarios (normal/abnormal) which demonstrate the use of each of the top-level use
cases selected for analysis during this milestone.

b) Class modeling:

(1) Use noun extraction to define the preliminary UML class diagram for your project. This section shall
document all stages of noun extraction, including providing a single paragraph describing the software
product, identifying the nouns from the description, and eliminating abstract nouns or those outside
the problem boundary. Create a preliminary UML class diagram which incorporates the remaining
nouns and identifies any relationships among the classes.

(2) For each class identified in 1.c.6)b)(1) above that is required to implement a use case selected for
analysis during this increment, create a CRC card using the techniques described in the text. With the
CRC card collaboration sections, indicate the 'uses' or 'used by' nature of all collaborations.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

129 © 2013 GSTF

c) Dynamic modeling (to include UML state chart(s)): For each class that provides a control function used
during this first increment, provide a UML state chart that captures the states the class may assume as well
as any actions that may be performed within a state or while transitioning between states.

7) Non-functional requirements: Provide a description of the non-functional requirements to be met by the
system in the following areas:

a) Performance (Performance parameters to which system shall conform, min/max #users, timing
constraints, etc.)

b) Parallelism (Portions of system that execute in parallel)

c) Concurrent Engineering (Portions of the system that can be developed in parallel)

d) Security (What access shall be controlled, passwords)

8) Traceability Matrix: Show how each use case selected from the Requirements Document presented in
Milestone 1 for analysis during this milestone is realized in the specification presented during this milestone.

d. Software Project Management Plan (SPMP): The SPMP shall be used to manage all aspects of the project
development. It is the primary vehicle used by the Project Manager to define and control the work plan for creating
the software product. The SPMP has three main components: the work to be done, the resources with which to do
it, and the money to pay for it all. Your SPMP shall concentrate on the first two components as your labor is free
(from the perspective of this project, anyway!). The SPMP for your project shall cover those use cases selected
from the Requirements Document presented in Milestone 1 for analysis during this milestone and shall include the
following sections (taken from IEEE Standard 1058):

1 Overview.

1.1 Project summary.

1.1.1 Purpose, scope, and objectives.

 1.1.2 Assumptions and constraints. Any assumptions underlying the project, together with
constraints such as the delivery date, resources, and artifacts to be reused.

 1.1.3 Project deliverables. All the items to be delivered to the client, together with the delivery dates.

 1.1.4 Schedule summary. A summary of the overall schedule. See linked Project Schedule Summary

2 Definitions and acronyms.

3 Project organization.

3.1 External interfaces. Provide an overview of the client organization.

3.2 Internal structure. Describe the structure of the development organization itself.

4 Work plan.

4.1 Work activities. Provide a work breakdown structure for the project to include the high-level phases and
activities for the entire project, as well as the detailed tasks required to perform the activities of this milestone.

4.2 Schedule allocation. Provide a Gantt or Pert chart capturing all of the phases, activities, and tasks
captured in the work breakdown structure provided in section 4.1 above.

5 Control plan

 5.1 Requirements control plan. Describe the mechanisms to be used to monitor and control changes to the
requirements, specifying for each milestone who is responsible for configuration control of the primary
program artifacts (Requirements Document, SPMP, Specification, etc.).

e. Task Summary. Team leaders shall provide a detailed breakdown on the tasks completed during this milestone,
including task number, brief task description, task area (requirements, analysis, design, implementation, project
management), and hours completed, for each member on their team.

2. Presentation: The presentation shall include:

a. Demo: A demonstration of your "Extended" prototype software. In your demonstration, show how your prototype
meets the specification, and discuss what other areas of the project will need to be completed before your system
can meet the scenario in an acceptance testing situation.

b. Updated Requirements Document. Provide a presentation of any significant changes to the Requirements
Document since Milestone 1. Emphasis should be on any additions, deletions, or modifications to the list of
requirements contained in the document and shall include the rationale for the change.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

130 © 2013 GSTF

c. Walkthrough of Specification Document/OOA: Conduct a walkthrough of the Specification Document focusing
on the major functional grouping areas specified in the updated Requirements Document delivered in part 1.b.
above. Particular emphasis should be placed on the Object-Oriented Analysis section, covering the items which
demonstrate the use of each of the top-level use cases selected for analysis during this milestone. Each team shall
be prepared with a list of questions and a list of suspected faults concerning the other teams’ functional area to be
raised during the walkthrough. The walkthrough presentation shall include:

1) AT LEAST one of each of the following: Use-Case diagram, UML Class Diagram, and UML StateChart
diagram.

d. Work Activities/Schedule Allocation. Include a slide of the Gantt or Pert chart which captures all of the phases,
activities, and tasks included in the work breakdown structure provided in section 4.1 of the Software Project
Management Plan (SPMP).

e. Static GUI Screenshots: Have slides prepared that show static GUI screen shots of your system in operation that
you can use in the event you have difficulty running your live demonstration. Note that Control-Alt-PrintScreen
will let you copy and paste the active window into PowerPoint.

f. Copies of Slides: In addition to the paper copy of the Specification, Software Project Management Plan,
Requirements Document, and Acceptance Test Plan from section 1 above, also provide a paper copy of all slides
and screen shots used in your oral presentation to your instructor prior to beginning your oral presentation.

Notes:

• Each member shall participate in all portions of the term project, including each oral presentation.

• Each team shall be fully ready to go at the beginning of the presentation period to include handing in a paper copy
of all slides and GUI screen shots used in the presentation/ software demonstration. Each team shall have 20 - 25
minutes to complete their presentation.

• Any team not providing a paper copy of all deliverables (excluding presentation slides) by the time due, or not
providing paper and electronic copies of their presentation by the time due, or not ready to deliver their
presentation/demonstration when called upon, shall have 25 points deducted from their milestone grade and shall go
to the end of the presentation cycle for that day. Presentations not delivered during class on the due date shall earn
a grade of zero, but shall still have to be completed and turned in to receive a passing grade for the course.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

131 © 2013 GSTF

Appendix D: Milestone Grading Sheet

Milestone 2/Presentation Grading Sheet

 COURSE: CSCI 4490 DATE:

 PROJECT:

Weight Topic Score

80%

Deliverables:

• Extended Prototype (25%): prototype of GUI covering all aspects of
user interaction for the entire project

• Updated Requirements Document (10%): Provide an updated
version of your requirements document that corrects any issues
identified at the Milestone 1 review as well as resolves any
discrepancies identified during preparation of the Specification
Document

• Specification Document (30%):
o Introduction/Assumptions/Glossary (3%)
o Operating Environment/Interfaces(3%)
o Object-Oriented Analysis (20%)- includes:

1. Scenarios- at least 2 scenarios for each of the top-level use
cases

2. Class modeling to include noun extraction and corresponding
UML Class Diagrams, and CRC Cards

3. Dynamic modeling to include UML state-charts for each
class which provides a control function for the system

o Non-Functional Requirements (4%) to include:
1. Performance/Parallelism/Concurrent Engineering
2. Security/Risk Analysis
3. Traceability Matrix

• Software Project Management Plan (SPMP) (15%):
o Project Overview(1%)- provide project summary, purpose, scope

and objectives, assumptions and constraints, deliverables, and
schedule summary

o Project Organization (1%)- provide overview of client
organization and development team structure

o Work Breakdown Structure (WBS) (8%)- provide WBS
through the activity level (level 3) for the entire project with
additional tasking to the task level (level 4 and beyond) for the
current milestone

o Schedule Allocation (5%)- provide a Gantt or Pert chart
capturing all of the activities comprising the project (as contained
in the WBS) as well as all interdependencies among activities.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

132 © 2013 GSTF

20%

Presentation:

• Extended Prototype (6%): prototype of GUI covering all aspects of
user interaction for the entire project

• Updated Requirements Document (5%): Provide a presentation of
any significant changes to the Requirements Document since Milestone
1.

• Specification/OOA Walkthrough (5%):
o Presentation team provides walkthrough of the Specification and

Object-Oriented Analysis
o Other teams provide list of questions and suspected faults
o Presentation includes Use Case Diagram, UML Class Diagram,

and UML Statechart Diagram

• Work Activities/Schedule Allocation (4%): Include a slide of the
Gantt or Pert chart which captures all of the phases, activities, and tasks
included in the work breakdown structure for the entire task, focusing
on this milestone.

• Copies of Slides: did not provide a paper copy of all slides and screen
shots used in your oral presentation to your instructor prior to
beginning the oral presentation. (-5%)

• Team Participation: not all members of team involved in
presentation of material (-5%)

• Not Prepared to begin presentation at start of period. (-25%)
Required copies of slides/documentation/GUI screen shots/presentation
grading sheet delivered to instructor at start of presentation

 Total

Comments:

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

133 © 2013 GSTF

Appendix E: Team Leader Grading Sheet

Team Leader Milestone 2 Grading Sheet

COURSE CSCI 4490 DATE:

Team Leader:

Weight Topic Responsibility
Number

Score

15% 1. Conduct adequate planning for project execution 4

10%
2. Effective use of Issue Tracker to manage project

completion
4, 5

15% 3. Adherence to project schedule 5, 6

15% 4. Quality of project deliverables 5, 8, 9

15% 5. Equitable assignment of project tasks 2

15% 6. Effective communication with project manager 1, 6

15% 7. Provide effective direction to team 3, 7, 10

 TOTAL

Comments:

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

134 © 2013 GSTF

REFERENCES
[1] R. Pressman, Software Engineering: A Practitioners Approach, 7th

ed., New York, McGraw-Hill, 2009.

[2] I. Sommerville, Software Engineering, 9th ed., Boston, Addison-
Wesley, 2010.

[3] S. Pfleeger, J. Atlee, Software Engineering, 4th ed., Upper Saddle
River, NJ, Pearson, 2009.

[4] V. Berzins, Luqi, Software Engineering with Abstractions, Reading,
MA, Addison-Wesley, 1991.

[5] S. Schach, Object-Oriented and Classical Software Engineering, 8th
ed., New York, McGraw-Hill, 2010.

[6] M. Prince, “Does Active Learning Work? A Review of the
Research,” Journal of Engineering Education, vol. 93: pp. 223-231.
Jul. 2004.

[7] M. Shaw, and J. Tomayko, "Models for Undergraduate Project
Courses in Software Engineering," Software Engineering Institute, ,
Pittsburgh, PA, Tech. Rep. CMU/SEI-91-TR-010, 1991. Available
FTP: http://www.sei.cmu.edu/library/abstracts/reports/91tr010.cfm

[8] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software
Development Process, Reading, MA, Addison-Wesley, 1999.

[9] D. Coppit, “Implementing Large Projects in Software Engineering
Courses,” Computer Science Education, vol. 16, no. 1, pp. 53-73,
Mar. 2006.

[10] S. Demurjian and D. Needham. (2009). Experiences in Project-Based
Software Engineering: What Works, What Doesn't. Software
Engineering: Effective Teaching and Learning Approaches and
Practices. H. Ellis (ed.), IGI Global, pp. 191-211.

[11] D. Coppit, J. Haddox-Schatz, Large Team Projects in Software
Engineering Courses, In 2005 Proceedings of ACM Special Interest
Group on Computer Science Education (SIGCSE'2005), St. Louis,
Mo., Feb. 23-27, 2005, pp.137~141.

[12] UCA Undergrad. Bulletin 2013-2014, “Courses in Computer
Science”, [Online], Available
http://uca.edu/ubulletin2013/courses/computer-science/

[13] USNA Online Viewbook, “Computer Science Courses,” [Online],
Available http://www.usna.edu/CS/academics/sitcourses.htm#ic470

[14] J. Selingo, “Skills Gap? Employers and Colleges Point Fingers at
Each Other,” The Chronicle of Higher Education, [Online], Sept. 12,
2012, Available http://chronicle.com/blogs/next/2012/09/12/skills-
gap-employers-and-colleges-point-fingers-at-each-other/

[15] L. Ford, “Graduates Lacking Soft Skills, Employers Warn,”
Education Guardian [Online], Jan. 30, 2007, Available
http://www.guardian.co.uk/
money/2007/jan/30/workandcareers.graduates

[16] Java EE at a Glance, [Online], Available: http://www.oracle.com/
technetwork/java/javaee/overview/index.html.

[17] Amazon.com, [Online], Available: http://www.amazon.com/.

[18] Google.com, [Online], Available: https://www.google.com/.

[19] Yahoo.com, [Online], Available: http://www.yahoo.com/.

[20] NetBeans IDE- The Smarter and Faster Way to Code, [Online],
Available: https://netbeans.org

[21] Eclipse, [Online], Available http://www.eclipse.org

[22] JBuilder- The fastest way to develop enterprise JavaTM applications,
[Online], Available: http://www.embarcadero.com/products/jbuilder

[23] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling
Language User Guide, 2nd ed., Reading, MA, Addison-Wesley, Sep
1, 2005.

[24] ArgoUML, [Online], Available: http://argouml.tigris.org/

[25] Violet UML Editor, [Online], Available:
http://sourceforge.net/projects/ violet/

[26] Use UML to create Class, Sequence, Use Case, Activity, or State
diagrams, Microsoft Office Visio, [Online], Available:
http://office.microsoft.com/en-us/visio-help/use-uml-to-create-class-
sequence-use-case-activity-or-state-diagrams-HA102749764.aspx

[27] Apache Subversion- Enterprise-class centralized version control for
the masses, [Online], Available: http://subversion.apache.org/

[28] TortoiseSVN- the coolest interface to (Sub)version control, [Online],
Available: http://tortoisesvn.net/

[29] Git –fast-version-control, [Online], Available: http://git-scm.com/

[30] (Microsoft) Project Online, [Online], Available:
http://office.microsoft.com/en-us/project/

[31] J. Hayes , T. Lethbridge , D. Port, Evaluating individual contribution
toward group software engineering projects, Proceedings of the 25th
International Conference on Software Engineering, May 03-10, 2003,
Portland, Oregon.

[32] H. Smith, III, D. Smarkusky, “Competency matrices for peer
assessment of individuals in team projects,” Proceedings of the 6th
conference on Information technology education, Newark, NJ,
October 20-22, 2005.

[33] V. Yip, P. Young, P. Marupally, “Evaluation of Methods Used for
Measuring Individual Performance on Group Projects,” The 2009
Conference on Applied Research in Information Technology,
Conway, AR, Feb. 2009.

[34] Gravetter, F.J. and Wallnau, L.B., Essentials of Statistics for the
Behavioral Science, 7th edition, Wadsworth Publishing, 2010.

[35] Young, P., Yip, V., Lenin, R.B., “Evaluation of Issue-Tracker’s
Effectiveness for Measuring Individual Performance on Group
Projects,” 50th ACM Southeast Conference, Tuscaloosa, AL,
March 29-31, 2012.

Paul Young received B.S. and M.S.
degrees in Computer Science from the
University of Mississippi and an M.S.
and Ph.D. in Software Engineering
from the U.S. Naval Postgraduate
School. A career Naval Officer, he

served the last five years of his Navy career in the U.S.
Naval Academy’s Computer Science Department and
subsequently transitioned to UCA’s Computer Science
Department where he teaches Computer Science and
Software Engineering. His research interests include
software system interoperability, information search and
retrieval, the Semantic Web and Health Information
Technology systems’ interoperability issues.

Donald Needham is a professor of computer science at the

United States Naval Academy. His research
interests include cyber security, reverse
engineering of malware and safety-critical
software.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

135 © 2013 GSTF

