
Balanced Abstract Web-MVC Style: An Abstract

MVC Implementation for Web-based Applications

Nalaka R. Dissanayake

Department of Computing

Informatics Institute of Technology

Colombo 6, Sri Lanka

nalakadmnr@gmail.com

G. K. A. Dias

University of Colombo School of Computing

Colombo 7

Sri Lanka

gkad@ucsc.cmb.ac.lk

Abstract—The features and the capabilities of web applications

are growing rapidly, and the complexities and difficulties of

web applications engineering are also growing in parallel. If

the architectural formalism of these advanced web applications

is well realized, the complexities could be understood, thus the

difficulties could be reduced. Model-View-Controller (MVC)

has been recognized as a well-formed architectural style, and

has been widely used in web applications engineering in

various forms of implementations. These MVC

implementations are heavily dependent on specific set of

technologies and/or some other facts; hence, they do not

provide an abstract realization to be used in a wider range of

web application engineering. We propose an implementation of

MVC in more abstract form, which – we think – will increase

the realization of the advanced web applications, thus lower the

engineering complexities and difficulties of web applications.

We believe that this implementation is more applicable in a

wider range of environments and technologies, and will upturn

the architectural properties like performance and

modifiability. Based on this implementation we introduce an

MVC based architectural style for web applications. In future,

we expect to improve this further towards supporting Rich

Internet Applications.

Key words- MVC; Software architecture; Web applications

I. INTRODUCTION

The World Wide Web and the Internet have become
popular, and web applications have marked their domain
within the world of information systems, containing
dedicated methodologies, Techniques and Technologies
(TTs), which is rapidly growing [1]. The demand towards the
web applications is increasing [2], since the web applications
have been evolved, up to large-scale enterprise-level systems
[1]. A large amount of related TTs in a wider range have
been introduced throughout the last decade, to support the
web application engineering.

This paper proposes an implementation of popular
architectural style named Model-View-Controller (MVC) for
the web application development, indicating the pros of its’
use, against the cons of available MVC based TTs. This
implementation utilizes a novel approach to adopt MVC into
the web application development, introducing a new MVC
based architectural style, which is not depending on TTs,
thus abstract.

This section discusses the target problem, which the
paper is focusing on, and the motivation, then the
methodology we utilized in this research. Section II provides
the background of the domain, giving an overview of the
web applications, software architectures, and MVC, then
gives a detailed discussion about the classic MVC and its’
adoption in desktop applications development. Section III

reviews the available work related to the MVC adoption in
the web, highlighting the cons of available MVC
implementations for the web, which are supposed to be
addressed by the MVC implementation introduced by this
paper. Section IV discusses the abstraction of the concept of
the MVC towards the web applications development, then
section V delivers the derivation of the proposed
architectural style, based on the discussed abstract MVC
version for the web. Section VI evaluates the introduced
style, and finally section VII concludes the paper, stating
limitations and future work.

A. Problem and Motivation

The web applications have evolved into more advanced
systems and their complexity has grown significantly [1],
where diverse types of components are integrated into
various ways in modern web applications, therefore causing
difficulties in understanding the architectural formalism of
them. This setting affects the engineering processes of the
web-based systems in a negative manner. To address the
related issues and support web engineering, numerous
concepts, and TTs have been introduced. These supporting
artifacts come with additional learning curves along with
their pros and cons.

However, the foundation of these advanced web
applications is still laid on the Client-Server (C-S) model,
which is the basic architectural form of any web application
[3]. Therefore, we assume that there are common
characteristics – mainly related to the architectural formalism
– among the web applications, regardless the scale and the
TTs used in the development. Furthermore, if this common
architectural formalism is well identified and specified, it
may assist in increasing the realization of the web
applications, and thus in reducing the complexities and
difficulties, in advanced web applications development.

There are architectural styles already available, which
help in reducing complexity by increasing the realization of
the formalism of the web applications; however, we note that
they are heavily depending on some specific set of TTs, thus
not abstract. The term abstract is used in this paper to denote
the independency of the concepts from TTs. The notion of
the term “abstract” can be well explained through an
example. The concepts like Object Oriented Programming
(OOP) and C-S style can be given as abstract concepts,
which are independent from any TTs. Once the concept is
understood, they can be easily adopted into development
regardless the TTs used. TTs independency provides
advantages like: conceptual abstraction of common
characteristics, increased realization, knowledge and
experience sharing, lower learning curve, and assistance in
better TTs selection and adoption [4]. Deep discussions

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF
DOI: 10.5176/2251-3043_5.3.375

27

about the TTs independency and its pros and cons are
intentionally kept out of the scope of this paper.

The architectural style introduced in this paper – based on
the proposed implementation of the MVC for the web
applications – is abstract thus independent from TTs. In this
style, we attempt to increase the visibility (separation of the
components) in the web applications in an abstract manner,
increasing the realization of the formalism of the web
applications, based on the proposed implementation of the
MVC. We worked on identifying the ground basic TTs when
designing the proposed architectural style, to make it more
abstract, hence TTs independent. We think that the
abstraction provided by this style will make it more flexible,
thus will offer easy adoption in web development, in wider
environments, while highly satisfying architectural properties
such as performance, modifiability, and scalability.

B. Methodology

A literature survey was conducted to gain the domain
knowledge of the areas of the web applications, software
architecture and architectural styles, conceptual abstraction
and TTs independency, MVC, and the TTs used to develop
MVC based web applications.

It was noted that there is lack of literature for TTs
independency and the concept abstraction. Therefore to gain
that related knowledge through experiencing the utilization
of available TTs into MVC based web development –
towards gaining empirical evidence – a series of experiments
was conducted. The experiments were prototype based and
conducted in an incremental manner. Facts learned in
literature were tested in early iterations, in the direction of
identifying the bottlenecks and issues, then solutions for the
identified problems were tested in later iterations. Identified
solutions were continuously refined to verify that they do not
conflict with the artifacts found in later iterations.

To develop the web pages of the prototypes, HTML5 and
CSS3 were used; the client-side component development was
done using JS and jQuery; for the development of the server-
side components PHP was used. Apache was used as the web
server and MySQL was used for database development,
which were hosted locally utilizing the XAMPP tool.

The empirical evidence gained through the experiments
can be considered as the backbone of this research, and they
were utilized to formulate the requirements for the
introducing style and derive it. Additionally, some parts of
the research were presented in research conferences, and the
feedback received was taken into the considerations.

II. BACKGROUND

In this section, an overview of the web applications,
software architecture, architectural styles, and their
evaluation, and overview of MVC is given. Then the
background of classic MVC and its adoption in desktop
application development is discussed, to lay the foundation
for the rest of the paper.

A. Overview

This section provides an overview of the web
applications, software architectures, architectural styles, and
how they are evaluated, and overview of MVC, in order to
deliver the basics of the domain covered in this paper.

1) Web Applications
The web provides a platform for the multi-user systems

with centralized control and management. Discussions on the
web, the web applications, and other web-based systems
have their own larger space. In this section, we focus on the
basics of the web applications, which run on the browser,
providing an overview of their components and development
TTs.

The fundamental architectural model of a web application
is the C-S architecture, which involves two separate nodes,
the client and the server. The C-S model – in other words, the
two-tier architecture – is the key for centralized control and
management of the web applications [5], yet it makes the
components of the web applications location/partition-
dependent (components are depending on either client or
server nodes), therefore not run in a single address space [6].
The web applications use the request-response model for
communication between the client and the server nodes – and
between other nodes if available – over the HTTP protocol
[3].

Since there are multiple components in the web
applications, and they run in multiple locations and
environments (mainly – and at least – in client and server
nodes) – which are different in platforms from each other –
these components are heavily technology-dependent. For
example in client-side, for the web browser platforms, for
Graphical User Interface (GUI) components, languages like
HTML and CSS are used, for client-side application
component development JavaScript (JS), and various JS-
based libraries are used; and for server-side components,
languages like PHP or JAVA, and related TTs like servers,
platforms, frameworks, etc. are used.

The web applications nowadays are evolved and very
advanced, and they are usually compounded with customized
navigation topologies, and they support for triggering
transactions in their underlying corporate applications [7].
The size and the capabilities of these web applications have
grown within a short period of time. All these facts – location
and TTs dependencies, complex structures, variable size, and
higher capabilities – together have made the web application
today a very advanced and complex entity. Therefore
realizing the abstract formalism of them is essential towards
hazel-less development.

2) Software Architectures and Architectural Styles
Software architecture provides a high-level abstract view

of the components within the system and their relationships,
at the run time [8]. Architecture can be seen as the
foundation of the software system, and it offers a strong
structure with many advantages, for carrying out smooth
engineering operations [9]. Fielding [8] classifies the
architectural elements within a system into three main types:
the processing components, communication connector
components, and data elements; and the integration
relationships of these elements is referred as Configuration.

Architectural patterns – in other words, architectural
styles – provide means for capturing the knowledge about
successful solutions in software development. According to
Fielding [8], “an architectural style encapsulates important
decisions about the architectural elements and emphasizes
important constraints on the elements and their
relationships.” Architectural styles can be designed by
adding constraints to the null style – which represents the
style with no constraints – or to an existing style [8]. When
designing styles, identification of abstract architectural

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

28

elements and their configuration, separating the components
well enough towards lowering coupling is essential.
Furthermore, constraints addition may align to a desired set
of architectural properties, to be satisfied by the end result.

This paper is focusing on the architectural properties
below [8].

1: Simplicity – Employment of the ‘separation of
concerns’ principle [10], to effectively allocate
functionalities within the component(s) through proper
modularization.

2: Modifiability – Ability of tolerating the changes made
to the application architecture in both initial engineering and
post-deployment stages. This is described under four sub
sections as below. Again, the modifiability also can be
increased with proper modularization.

2.1: Evolvability – The degree to which component(s)
can be changed without negatively affecting other
components.

2.2: Extensibility – Ability to add functionality to the
system, without negatively affecting other functions.

2.3: Customizability – Ability to temporarily specialize
the behavior of an architectural element, so that it can then
perform the service in a different way. For example: a
component is customizable if it can be changed for one
client, without adversely impacting other clients who get the
service of the same component.

2.4: Configurability – This is related to both
extensibility and reusability in a way that it refers to post-
deployment modification of components, or configurations
of components.

3: Reusability – The property of an application
architecture, if its components, connectors, or data elements
can be reused – without modification(s) – in other
applications. The primary mechanisms for inducing
reusability within architectural styles is by reducing the
coupling (knowledge of identity) between components and
constraining the generality of component interfaces. This
also can be gained through efficient modularization of the
system.

4: Performance – Performance can be increased by
gaining the maximum utilization of client-side processing
power via proper modularization.

5: Scalability – Ability to scale, serving a high number of
clients, through effective modularization. Additionally
consider the ability to utilize the WS, in order to address the
C10k scalability issue [11].

Dedicated methodologies such as SAAM [12] and
ATAM [13] are utilized to objectively evaluate the
architectural styles, without implementing them. This
research uses the method specified by Fielding [8], which
uses a derivation tree to indicate the architectural properties
induced by the application of the constraints.

3) MVC
MVC can be seen as one of the available architectural

patterns, which is a popular and widely used pattern [14].
The MVC concept was introduced in 1970s by the company

named Xerox Parc, with their development environment
called Smalltalk-80. MVC can be considered as a use of
protocols to define components, instead of using concrete
implementations [15]. The MVC paradigm is elegant,
simple, and different from the traditional programming
approaches [16]. Currently, the MVC is widely accepted as
both a design pattern and an architectural style, in both
desktop and web-based systems, engineered using Object-
Oriented paradigm, in corporate software development [14]
[17].

Selfa et al. have discussed some advantages the MVC is
engaged with, such as: less coupling, higher cohesion, bigger
flexibility and agility provided by the Views, more design
clarity, and facilitations for the maintenance [14]. Prakash et
al. explain the benefits of MVC, such that “migration of
legacy programs has become easy since the model and
controller are totally separated in MVC and it makes
tailoring the user category or platform much simpler” [18].

B. Classic MVC

This section discusses the features of the original version
of the MVC as introduced by Smalltalk, in the direction of
understanding the abstract concept behind its formulation.

MVC provides a responsibility-based modularization for
software components, explicitly for the software systems
with GUIs [15]. Modularity of the components in a software
system provides some good benefits. For example, it helps in
isolating functional units from each other as much as
possible with low coupling, which makes it easier for the
application designer and the developer to understand and
modify each particular component, without having to know
everything about the other components [19]. Also,
modularity helps the conceptual development of the system,
and also allows reusability of the components [19].

Modularization in MVC separates the parts, which
represent the logic of the underlying domain, from the ways
the information are presented to the user, and from the ways
the user interacts with the system, using three modules,
namely the Model, the View, and the Controller [19]. This
module separation enables different teams of developers to
independently work on each module either in series or in
parallel [20]. And, this separation helps to lower the coupling
between the modules, and hence reduce the complexities in
architectural design, which leads to increase the flexibility
and code reuse [21]. Fig. 1 shows the classic MVC as
presented by Krasner et al. [19].

1) Modules in MVC
This section discusses the modules of the MVC paradigm

as it was introduced by the Xerox Parc in Smalltalk-80,
indicating the rationale for them.

Model: The module, which represents the knowledge of
the domain, is called the Model. The Model is developed of
classes, which are responsible for the application domain
specific information [19]. It should be noted that the Model
contains and manages both the behavior and the data of the
domain [16].

View: A View displays the application’s state, which is
developed as a GUI window; and the Views can be
considered as the user’s version of the Model [19].

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

29

Figure 1. MVC as in Smalltalk [19]

Controller: The Controller is the middleware between its
associated View, Model, and the input devices [22], and it
also provides an interface between the associated View and
Model [19]. The Controller interprets the user inputs via
keyboard or mouse into commands to the Model or/and the
View to change as appropriate [16]. We can imagine the
Controller as an event-handling mechanism like in modern
event-driven programming frameworks such as JAVA,
which has a built-in event loop, so that the developers have
to code only for the event-handlers.

2) The Communication between the Modules
The View holds the responsibility for establishing the

intercommunication within an MVC triad [16]. Each View is
closely associated with a unique Controller and vice versa,
and they maintain a tight coupling [16]. View and Controller
classes have a certain set of messages that they have to
respond to [15]. Since the View and the Controller are
explicitly meant to work together, the communication
between the View and its associate Controller is
straightforward [16].

The modules’ knowledge of the existence of the other
modules is as follows: the Views and the Controllers need to
know about their Model explicitly, but the Models need not
know about their Views or Controllers [19]. Views register
themselves as dependent on their Model and respond to
Model’s change updates [15]. As per Krasner et al., each
View has exactly one Model, but a Model may have many
View-Controller pairs [19]; nevertheless, there cannot be any
Model-View pair without a Controller [16].

The Model responds to the requests of the state changes
from the Views, and to the instructions to change the state
from the Controllers [16]. The Model’s communication can
be divided into two modes, the passive mode and the active
mode [16]. In passive communication mode, the user initiates
the process and the Model acts on the commands of the
Controller [16]. In active mode, the Model broadcasts the
updates to all the dependent Views, when its state is changed
[15] [16].

A complete cycle of a process within the modules – and
the user – is called an interaction cycle. Krasner et al.
describe the standard interaction cycle of MVC as follows:
“the user takes some input action and the active Controller
notifies the Model to change itself accordingly. The Model
carries out the prescribed operations, possibly changing its
state, and broadcasts to its dependents (Views and

Controllers) that it has changed, possibly telling them the
nature of the change. Views can then inquire of the Model
about its new state, and update their display if necessary.
Controllers may change their method of interaction
depending on the new state of the model.” [19]

C. MVC adoption in desktop application engineering

This section discusses how the MVC has been adopted in
desktop application development. The knowledge provided
by this section can lead towards identification of the
limitations of the use of MVC in the web (refer section A
under the section IV for details of the limitations of using
MVC in the web).

Smalltalk framework had its own implementation for
MVC development; however, when we adopt MVC in other
development environments, we have to follow or design
suitable implementation(s). Some languages have
incorporated MVC into their frameworks, and additionally
there are libraries to enable MVC adoption. Conversely,
different environments utilize different techniques, and they
have tailored the MVC concept to align to their environment
towards better adoption. In this section, we briefly discuss
how the MVC is interpreted by various researches, to be
adopted in desktop applications engineering.

1) MVC Modules Definitions, as per Related Researches

for Desktop Development Environments
View: There can be one or more Views for the Model,

and they know the existence of the Model [17]. The Views
present the data in the Model based on the current state – as
the output to the user – and they receive inputs from the user
[20].

Controller: Controller allows manipulation of the View,
and the Controller handles the inputs [17]. Controllers know
their Views and have the knowledge of the
platform/operating system to manipulate the Views, and the
events do come from the Controller [17].

As per Morse et al. [20], the Controller coordinates the
activities between the View and the Model, and is
responsible for processing inputs from the user. Based on the
user input, the Controller determines: which methods of the
Model should be invoked and which View should be updated
with the results. Furthermore, the Controller provides the
event-handling, and responds to the events triggered by the
user on the GUI of the View. Morse et al. specify, that for

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

30

the moment, there is no way for the Controller to respond to
the events triggered by the Model [20].

Model: According to John Decon [17], the Model is
supposed to be a singular term, which represents the domain,
and consists of a set of classes. John explains that the Model
supports the underlying problem, and tends to be long-lived
stably, as the problem itself. Moreover, he notes that the
classes of the Model do not need to know anything about the
connection to the outside world. John Decon suggests that “a
better acronym for the architecture would be: MdMaVC,”
where Md is the Domain-Model and Ma is the Application-
Model. As per John, what Smalltalk programmers sometimes
mean by “Model” is the Application-Model, and what the
analysts and designers would think of “Model” is the
Domain-Model. The Domain-Model supports and models the
problem, where the Application-Model – which knows the
existence of the Views – communicates with the Views,
utilizing the Domain-Model. In other words, the Application-
Model is the interface between the Views and the Domain-
Model, and the Application-Model acts as a coordinator [17].

As per Morse et al. [20], the Model contains both data
and methods of the application, and is often referred to as the
business logic of the system. The same set of business logic –
or parts of the Model – may be used by numerous different
Views.

2) Communication between MVC Modules in Desktop

Development
According to John Decon [17], there can be multiple

Views for a given situation, and they need to know the
existence of their Model. The events come from the
Controller, and the Views register the handlers for the events
they wish to control. When events occur, messages will be
sent from View to Application-Model via Controller; then,
the Application-Model utilizes the Domain-Model to process
the message.

III. REVIEW OF RELATED WORK

Since the web applications are partition-dependent (refer
overview of the web applications in section II Background,
for partition-dependency) they have their own set of
characteristics over the desktop/standalone applications. The
MVC had been originally introduced for partition-
independent systems, which means that all the Model, View,
and Controller modules reside and execute in a single
address space; hence, partitioning-related issues do not arise
[6]. Adoption of MVC in location-dependent web-based
systems is a difficult task [6]; therefore, the adoption of
MVC in the web applications may need some specific
techniques or features.

In this section, we review how the MVC had been
adopted in web development, by experts, in various works.
We have identified some related work done by different
researchers; each of them has its specific
enhancements/modification/implementation of MVC, and we
present these features under the work they have done.

The review is done in the context of the architectural
properties presented in the overview section of the software
architecture in section II background, along with facts:
partition independency, TTs independency, and lower
learning curve.

A. Oracle’s Model2 architecture [23]

An architecture based on the MVC had been used in early
JAVA-based web application development, which is called
Model1, which uses JAVA-based TTs, such as JSP and
JavaBeans. The advanced and enhanced version of the
Model1 is called Model2, which utilizes the servlets. This
Model2 architecture has been introduced for JAVA-based
web applications, thus the development is based on Oracle
JAVA and related TTs. The Model2 is shown in Figure 2.

Figure 2. Oracle model 2 architecture [23]

The Model of Model2 comprises JavaBeans classes,
which define the internal state, and the actions that can
change the state. The View is a web page constructed using
JSP or Oracle ADF UIX technology. The Oracle ADF
framework facilitates binding data of the Model layer to the
Views in Model2. The primary component of the Controller
is the servlet. The Controller focuses on receiving requests
from the View(s) in the client-side browser, decides what
business logics should be performed, and then delegates the
responsibility to the appropriate View for producing the next
phase of the UI.

Model2 adopts MVC entirely in server-side, therefore
adequate support for performance and scalability
requirements cannot be expected due to the higher load on
the server. Since the client-side components are completely
ignored, Model2 does not sufficiently satisfy the simplicity.
Model2 is based on JAVA and related TTs, therefore the
modifiability can be high, however within JAVA
development environment; and also adoption into JAVA
based systems could be adequately supported, with a lower
learning curve, due to its abstract JAVA implementation.
Since Model2 architecture is highly coupled with JAVA and
related TTs, it does not provide an abstract MVC adoption
for the web-based applications, hence adoption of Model2 in
other development environments is not feasible.

B. Dual-MVC: Developing Highly Responsive User

Interfaces with DHTML and Servlets [24]

The authors of this work, Betz et al. introduce an MVC-
based alternative architecture, named Dual-MVC. As per
their analysis – in terms of the classical MVC – the Model is
a set of business objects, which entirely resides in the server.
The View resides in the client-side browser, where the code
and the logic for View generation reside in the server. A part
of the Controller code – like button-click event-handlers, to
submit forms to the server – resides in the client, and most of
Controller code – to receive the client’s HTTP request and
invoke the appropriate methods – reside in the server.

As per Betz et al., the classical MVC-based server-centric
approach has the simplicity, but the server must always be
involved with the client’s screen-update requirements.

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

31

Resulting overhead and latency of the communication may
degrade the response time, and hence lower the user
experience.

According to the analysis of Betz et al., the mixed
approach addresses the performance problems associated
with the server-centric approach, combining a limited form
of client-side processing using JS. User input validations in
mixed approach can reduce the round-trips and increase the
performances. However, the refreshes need to engage with
the server, since the Model resides in the server.

The Dual-MVC approach, proposed by the authors of this
paper, addresses many issues in both classical server-centric
and mixed approaches. This solution adds the classical MVC
implementation to the client-side, and the client also
maintains an MVC of its own, which does not rely on the
server-Model. The client-Model corresponds to a relevant
subset of the server-Model, and the state of the client-Model
is typically more current than the server-Model. This
technique enables the screen refreshes, entirely in client-side
in certain cases, and therefore improves performance.

The implementation of the Dual-MVC contains two
frames. An invisible frame called anchor frame, which is
consisted of 1) the client-Model, developed using JS, which
maintains a set of JS variables; 2) a View, which generates
DHTML source that represents the client-Model, then writes
the DHTML to the interaction frame; and 3) the Controller,
which is invoked by the interaction frame, when the client
input changes and does not require server processing. The
other frame, which is visible and called the interaction frame
is similar to the screen in mixed approach. When the user
requests for a screen refresh, interaction frame’s JS processes
the user inputs and updates the client-Model in the anchor
frame. If the refresh does not need to be involved with the
server, then the anchor frame updates its View to reflect the
changes of the updated client-Model, and then writes the
anchor frame View to the interaction frame. When the server
must be involved with the refresh, the anchor frame sends an
HTTP request to the server, the server runs its Controller,
updates the Model, generates the View, and returns to the
anchor frame. Then, this View will be mapped into an
updated client-Model by the anchor frame. However, the
synchronization between the client-Model and the server-
Model lacks in this architecture; to maintain a better
synchronization, some better techniques need to be used.
Figure 3 illustrates the Dual-MVC architecture.

Conceptually, the application of separate MVC tirades in
both server and client will increase the Simplicity; and as
authors specify, the Dual-MVC also increases the
performance. Since the Dual-MVC decreases the
communication with the server, it will also increase the
scalability. The simplicity provided by the Dual-MVC will
address the modifiability, if the initial learning curve is
ignored.

When the development aspects are considered, Betz et
al., had used JAVA for the server-side development,
however the server-side development is not tightly coupled
with JAVA; which indicates that this concept can also be
adopted in other environments. Anyhow, this approach is
consisted with new types of components like anchor frame
and interactive frame, therefore it is associated with a high
initial learning curve; thus the adoption is not straight
forward. And also, maintaining two separate MVC tirades in
both server and client will introduce additional development
workload, lowering the maintainability and the modifiability.

Figure 3. Dual-MVC architecture [24]

C. Web Application Development Using the

Model/View/Controller Design Pattern [6]

According to the research by Leff et al., Views display
the information to the user, together with the Controller,
which processes and responds to the user’s interactions. The
Model contains both: the data presented by the Views, and
the logic used to process the data, while responding the
user’s interactions. Authors approve that like in any other
interactive software systems, the web applications can also
benefit from the MVC. However, as they highlight, the
problem with using MVC in the web is that the web
applications are intrinsically partitioned between the client
and the server. The View is displayed on the client, however
– as they say – “the Model and the Controller can
(theoretically) be partitioned in any number of ways between
the client and server,” which makes the situation more
complicated and difficult.

Leff et al. note that neither the thin-client or thick-client
is ideal for many environments. Furthermore, they specify
that the web application could use MVC when the correct
partitioning is known and if the available technological
infrastructure is compatible with that partitioning. They
introduce a concept named Flexible Web Application
Partitioning (fwap) to enable more natural usage of MVC in
the web applications.

Leff et al. analyze the MVC-based web application into
three separate groups and discuss the adoption of MVC in
these three groups by applying the fwap concept. The three
categories are: 1) Single-MVC (smvc), which is the classical
MVC application and more suitable for desktop applications;
2) Thin-client applications where Model and Controller
reside and execute in single address space in the server, and
generate View, which is rendered on the client; and 3) Dual-
MVC (dmvc) where Model and Controller reside in both the
client and the server [24].

The fwap is an approach of decision-making for
designing of partitioning features between the client, the
server, and the MVC modules. It does not provide any
specific designing or implementation details; it is purely
conceptual and the quality of the results mainly depends on
the design and the experience of the designer. Therefore the
satisfaction of the architectural properties in based on how
the fwap is applied and the system is designed. However, as
a conceptual approach fwap is TTs independent, thus may
assist in wider environments.

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

32

D. The Research of PHP Development Framework Based

on MVC Pattern [21]

This research introduces an MVC-based framework for
PHP development environment. In this framework, the
components in the server are partitioned into three layers:
Data persistence layer, Business logic layer, and Web layer.
The Data persistence layer and the Business logic layer are
fulfilled by the Model, which contains the domain logic to
add meaning to the raw data. According to the authors Cui et
al., “MVC does not specifically mention the data access
layer because it is understood to be underneath or
encapsulated by the model.”

The Web layer corresponds to the Views and Controller.
The key of the View is to separate the code of HTML and
PHP using templates, and this architecture uses a template
engine to detach the program code from HTML entirely. The
View renders the Model into a form, which is suitable for
interactions with the user, by means of GUI. Multiple Views
can exist for a single Model for different purposes. This
implementation uses a dual-caching technique to prevent
regeneration of same Views after the first visit.

The Controller helps in the separation of the Model and
View layers, allowing the same Model to be accessed by a
variety of Views. Controller receives the user requests,
processes, and responds to the events; selects the right View
to return to the user; and also may indirectly invoke
changes/updates on the Model. The Controller is split into
two, the Front-end-Controller and the Action-Controller,
where the Front-end-Controller is used to achieve the
centralized control of the framework, authentication, data
validation, and other functions, and the Action-Controller is
an adapter between the customer requests and the business-
logic handling, which separates the business logic from the
request(s).

The architecture of this research is illustrated in figure 4.
This paper also includes some development-related details
and sample code snippets in PHP.

Figure 4. The architecture of the research PHP development framework

[21]

This architecture uses MVC only in server-side, thus lack
in simplicity, performance, and scalability. The thin client
nature of this solution, however, may increase the assistance
for modification and testing, by limiting the relevant
activities to the server-side. Even though the development is
targeted at PHP, the adoption of its abstract concept in other
environments is also viable, since the development is not
based on any PHP only techniques. However, the approach
used in this architecture is novel, thus it may incorporate high
learning curve.

E. Other Related Researches

This section provides brief discussions about some other
minor MVC related work we identified in the literature
survey.

1) A Database and Web Application Based on MVC

Architecture [14]
The authors of this paper discuss a case study of using

MVC in a web application, and they discuss the designing
and development of the system. For the designing, UML is
used, and for the development, ASP and VB are used. Their
interpretation of the MVC in shown in Fig. 5.

As the authors Selfa et al. explain, the Model contains the
application data and the core functionalities; the View
manages the visual display of the Model, giving feedbacks to
the user; and the Controller gets the mouse and keyboard
inputs from the user, commanding the Model and the View
to change appropriately. They use a passive pattern, where
the Model does not know the existence of View or
Controller, but in most cases the Model must have a link to
the View to inform the changes made to the Model’s state,
caused by internal procedures. Each View is associated with
a unique Controller and vice versa, where these particular
Views and the Controllers are always connected. The Model
can have more than one View-Controller pair at a time.

Figure 5. MVC adoption in the research - A Database and Web
Application Based on MVC Architecture [14]

The Controller communicates with the View to determine
which objects are being manipulated by the user, and call
Model methods to make changes to these objects. Then, the
Model carries out the changes according to the Controller’s
commands and notifies the View to update.

2) MVC Architecture Driven Design and Agile

Implementation of a Web-Based Software System [18]
This paper reports design and implementation of a web-

based system in JAVA environment, using Oracle’s Model2
[23] architecture. The authors of this paper explain that
“Generally, in model2 web applications the web server (e.g.
Tomcat in the case of TMS) contains view and controller
both at application run time while data storage is done in
third tier named as Model.” Their specification about the
Controller is such that the Controller is a component of the
web server, which processes the incoming requests from the
client to a single servlet instance. Since there is a heavy load
of processing requests, the authors call this Controller a fat-
Controller.

This paper presents a complete case study of
implementing a web-based system, using UML for designing
and JAVA-based development using Struts. The authors
focus on the agile methodology based implementation and
conclude that the idea had been implemented successfully.

3) A Software Architecture for Structuring Complex

Web Applications [7]
In this paper, Jacyntho et al. discuss their views on the

web applications in a perspective of object models, and
justify the needs for improving current web architectures.
They describe the Object Oriented Hyper Media Design

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

33

Model (OOHDM)-Java2 architecture, and present a case
study using the OOHDM-Java2. The authors discuss a good
set of literature, state an analysis of the limitations of MVC,
and present an overview of OOHDM-Java2 architecture.
Jacyntho et al. also introduce a mapping between the design
model and the OOHDM-Java2 architecture, and discuss the
design of the case study using UML. Furthermore, they
discuss the development of the sample scenario in JAVA
environment, giving the sample codes for various sections.

4) MVC Web Design Patterns and Rich Internet

Applications [25]
This paper presents and discusses the concepts of MVC

implementation, in the web applications and Rich Internet
Applications (RIAs). The authors introduce the terms: 1)
Server-side MVC, which contains all three modules in the
server; 2) the Mixed client-side and server-side MVC, which
gives more functionality to the client by taking some features
of the Controller and View to the client; and finally 3) the
RIA MVC, which takes the Controller and the View modules
completely to the client, and keeps the Model in both server
and client. Chaparro et al. review the three concepts
indicating their limitations, and also discuss their iteration
cycles.

The paper covers a good conceptual research and
proposes an extended version of their architecture called RIA
Deeper MVC for Rich Internet Applications. The authors do
not discuss the implementation details and how these
concepts can be designed and developed, yet the concepts
presented are more abstract and – as they conclude –
applicable.

F. MVC Adoption in Web Frameworks

In web application frameworks, mostly the MVC is
adopted as single-sided-MVC, either in the server-side or
client-side, or both sides separately. Some examples for
server-side MVC frameworks are: CodeIgniter and Zend for
PHP; Struts and Spring for JAVA; ASP.NET MVC for ASP
environment. For client-side, frameworks like AngularJS and
EmberJS are available, and the development using them is
supposed to be based on JS.

Since all these frameworks are heavily technology-
dependent and do not provide abstract concepts, we avoid
deep discussions about them.

IV. CONCEPTUAL ABSTRACTION OF THE MVC FOR WEB

Despite all the advantages of the MVC, there are
limitations when trying to adopt into the web. Adopting all
the features of classic MVC into the web-based systems is
not practical and feasible, due to these limitations. This
situation can be seen as a reason for why still there are
researches conducted, and various concepts and solutions are
introduced for adopting MVC into the web applications
development [7].

Moreover, these limitations might cause the cons of the
available work as pointed in the literature review. One of the
main and common characteristics of these available solutions
is that they are highly dependent on technologies and/or
some other facts. Thus, they do not provide abstraction – as
expected from an architecture – which is needed for
implementation in wider environments. These
concepts/solutions add an additional learning curve into the
process, and as they depend on a technologically limited
environment, they also add constraints to the engineering
process.

In this section, based on the literature knowledge and
empirical evidence gained through experiments, we discuss
the limitations, which affect adopting MVC into the web; and
then propose a more abstract version of MVC, which can
address the presented limitations, and flexible to be adopted
into the web applications development.

A. Limitations of MVC in Web Adoption

Jacyntho et al. discuss some limitations of MVC in their
paper [7], stating that the MVC does not fulfill the
requirements of the web applications. As they say, MVC is
based on transactional perspective of the software, and does
not consider the navigation aspects in the web applications.
Other than that, as we understand, the complexities engaged
in MVC web adoption are due to two main characteristics of
the web-based systems. And these might be the reason for
most solutions out there to be technology-specific, and hence
not abstract.

Partition dependency: In desktop/stand-alone
applications, the MVC adoption is not much complicated,
since all the components in desktop applications execute in a
single address space, hence partition-independent, and the
MVC is meant to be used in such environments. When it
comes to the web-based applications, they are not partition-
independent; they are always partitioned at least into two
tiers: the client and the server. In greater context, they can
grow up to n-tiers and/or much complex level as in Service-
Oriented Architecture. This partitioned nature of the web
applications can affect the effective adoption of the MVC.

Technology dependency: Different techniques and
technologies are used to design and develop components in
the partitions of the web applications; hence, these partitions
and components in the partitions are technology-dependent.
For example, the server-side components are developed
using server-side technologies like JAVA, PHP, ASP, etc.
The client-side components are mainly developed using JS
and/or JS-based frameworks/libraries. The GUIs are
developed commonly using HTML and CSS, and
additionally either server-side or client-side, or both
technologies can be used to generate the GUI components
too. When it comes to adopting MVC into the web, which
modules of MVC should be in which partition, and which
TTs should be utilized to develop them must be decided
carefully.

For MVC to be adopted into the web-based applications
in a more-practical and less-complex manner with lower
learning curve, more abstract implementation is required.
Taking the two limitations discussed above into
consideration, we propose that this abstraction should be
partition and TTs independent; therefore, it can be used in a
wider range of environments, despite the TTs.

B. Generalization of MVC in the Perspective of Web

Applications

In this section, we propose a version of MVC, which we
think is more suitable for the web environment. Since the
MVC is used in an architectural perspective, we propose that
the adoption of MVC in the web could be more abstract and
free from technological dependencies. The conceptual
presentation should be: easy to realize, without introducing
additional learning curves. Additionally, the adoption of the
abstract MVC into the web applications engineering should
support the architectural properties presented in the
background.

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

34

Without trying to address the issues related to the
partitioning and technology constraints, in our approach we
focused on identifying the features of these constraints, and
utilize them in an advantageous way. Our approach can be
seen as applying the features of the web into MVC, instead
of applying the MVC into the web. First, we prepare the
MVC in a more abstract version – which we suggest as more
suitable for the web – and then apply the partition and
technology constraints, deriving an architectural style, as
discussed in Section V. While generalizing the MVC for the
web – in the conceptual level – we ignore the facts that the
web applications are partition- and technology-dependent.
The preparation of the abstract version of MVC are discussed
below.

1) Modules and Their Association
Model: The Model contains both the data structures,

which hold the data at runtime, and the business logic to
process these data. The data structures could be variables,
objects, etc. and the data stored in these structures could be
user’s inputs or data read from any source like a file, a
database, etc. or fetched/received from an external source
like a web service, etc. The business logic could contain the
code for reading data from external sources or from users as
inputs, processing them and saving for persistence as needed
in files or databases, etc. The Model is responsible for
performing Create, Read, Update, and Delete (CRUD)
operations on data sources; and any other business-related
processing – based on the requests of the View/Controller –
and produce the results back to the View/Controller.

View: The web pages are the GUIs of the web-based
systems, and they can be seen as the Views. They may
display some static content and/or dynamically generated
non-data-related contents such as UI components and/or
information (processed data) based on the state of the Model.
The users interact with the Views by means of the inputting
data using input devices – mainly the keyboard and the
mouse – and receiving information, which is visually
rendered on the GUI, and/or generated as audio and/or
multimedia. Additionally, the outputs also could be files for
downloading via the Views.

Controller: Controller is a very controversial module,
which is interpreted, designed, and developed in many
different ways by different experts. We would like to go
alone with the original concept of the classic MVC,
considering the Controller as an interface between the View,
Model, and the input devices, which provides the event-
handling and mediation between the View and the Model
[22]. The Controller is an active module, which mediates
between the passive View and Model, performing the event
handling.

Association between modules: We would like to align to
the idea of considering the Model as a single component [5].
There can be multiple classes in the Model according to the
scenario; and there can be multiple Views and Controllers as
in classic MVC. Each View is closely associated with a
unique Controller and vice versa, and they maintain a tight
coupling [16]. One View-Controller couple may associate
with one or more classes in the Model, and a class in Model
could be associated with one or more View-Controller
couple. This association is illustrated in figure 6.

Figure 6. Association between modules in Abstract Web-MVC

2) Communication and Basic Interaction Cycle
We modify the classic MVC slightly as shown in figure

7, to make it less complex and easier to be adopted into the
web applications.

The user interacts with the View(s) by inserting inputs
and/or triggering events associated with the UI elements
using input devices like keyboard or mouse. For example,
typing text in a textbox, selecting an item from a list, clicking
on a button, etc. The View fires the events, then the
respective event-handler in the Controller will be invoked,
who knows the action to be taken. The Controller will read
data from the View if needed, and prepare/format data, to
send to the Model for processing, and send the data along
with commands to the Model. Model processes the data as
commanded by the Controller and sends the response back to
the Controller. Then, the Controller may process/format and
prepare data further to be displayed on the View, and render
them as information on the View.

Sometimes, View(s) may need to render information on
GUI in the initial loading. In such situations, View(s) may
communicate directly with the Model, requesting for
Model’s state. The Model may respond to such requests by
rendering the necessary information on the UI directly
without interacting with the Controller, and this entire
communication will be done in the server.

V. DERIVING THE BALANCE ABSTRACT WEB-MVC

The core of this paper is to propose and introduce an
architectural style based on an abstract implementation of
MVC. This section presents the derivation of the proposed
style, based on the abstract MVC version discussed in the
previous section.

A. Requirements for BAW-MVC style

It is important to identify the requirements, which can be
utilized as constraints and architectural properties to be
satisfied by the end result, in the direction of deriving an
architectural style. Based on the knowledge gain from the
literature survey and empirical evidence gained through
experiments, we have identified the requirements below, to
be satisfied by and abstract MVC based style for the web
applications development.

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

35

Figure 7. Proposed modifications in MVC architecture for web adoption

1) Functional requirements
Considering the constraints to be utilized for the

derivation of the proposed style, the functional requirements
are set as below.

FR1. Multi-tier expansion supportive Client-Server
partitioning: The proposed architectural style, should be
based on basic Client-Server architecture, and should support
expansions up to multi-tier architecture or SOA based larger
systems, by adding new layers to the basic model. The
property, which is expected to be satisfied by the FR1 is the
Extensibility of the system, and additionally Evolvability,
Portability, and Adoptability also could be provided.

FR2. MVC based modularization: Proposed style
should provide a good modularization of the features, based
on MVC pattern, satisfying the modularization expectations.
Simplicity is the main property to be satisfied via this
requirement, however, it will ensure the Scalability,
Modifiability, Reusability, Portability, and Adoptability as
well.

2) Non-functional requirements
The architectural properties presented in the overview

section are utilized as non-functional requirements to be
satisfied by the proposed style.

NFR1. Simplicity

NFR2. Evolvability

NFR3. Extensibility

NFR4. Customizability

NFR5. Configurability

NFR6. Reusability

NFR7. Performance

NFR8. Scalability

3) Technical requirements
Considering core requirement for the introduction of

abstract MVC version for the web, the technical
requirements are set as below.

TR1. Platform independency: The style should not be
based on specific platform or environment including
operating system, servers, and browser/non-browser client
platform. This requirement is related to the portability.

TR2. Development Technology independency: The
style should not be based on any language, framework,

library, or any other specific technology (like JAVA in
model 2 architecture), or specific technique (like iframes in
dual-MVC). This ensures the ability to utilize the developers’
usual tools and knowledge, minimizing the learning curve of
use; therefore also increases the adoptability of the available
TTs into the development when the proposed style is used.

TR3. Low learning curve and easy adoptability:
Proposed style should incorporate a lower learning curve,
hence easy adoption. This can be ensured by making the
concept of the style more abstract; and also the learning
curve can be lowered by incorporating the knowledge of
well-known concepts into the proposed style.

B. Deriving the proposed style

This section presents the derivation of the proposed style,
by adding constraints to the null style. The functional
requirements are utilized to formulate the constraints and the
non-functional requirements are considered as the
architectural properties induced by the application of the
constraints.

1) Start deriving the proposed style with null style
The derivation of the proposed style begins with the Null

style, which represents an empty set of constraints. In the
context of the research, the Null style is represented as a
web-based application, in the domain of the web. Figure 8
illustrates the Null style to begin the derivation of the
proposed style.

Figure 8. Null style for the RiWAArch style

2) Application of the Constraint 1 – Partitioning
This section applies the first constraint to the Null style,

focusing on layering the system for Extensibility and
Evolvability. Partitioning is done in two steps based on two
criteria, to satisfy the FR1 completely and for the easiness of
the evaluation. The first criterion focuses on the degree of the
likeliness, the style offers towards supporting the

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

36

development of the standalone web-based applications based
on C-S style. The second criterion indicates the degree of the
support, the style offers for the extension of the standalone
web-based application up to a multi-tier application.

For the partitioning constraint, as the candidate styles, C-
S architecture, three-tier architecture, multi-tier architecture,
and SOA were considered. Analyzing the features of these
candidates, it was noted that the basic formalism, which all
these architectural styles are based on is the C-S style. And
also C-S style is capable of addressing the standalone web-
based applications, which are consisted of only the client and
the server layers. Furthermore, the C-S style can be extended
by adding more layers; in other words, the other candidate
styles can be seen as an extension of C-S style. Considering
these facts, the C-S style was selected for partitioning.

a) Constraint 1 - Step 1: Client-Server Partitioning

Figure 9 illustrates the first step of partitioning by
applying the C-S style to the Null style. This can be
considered as the basic style of the standalone web-based
applications. This style shows the client-node containing the
client-component, and server-node, containing the server-
component at runtime.

Figure 9. Client-Server partitioning for web-based applications

The Client-component sends the request to the web
server, and the server directs the request to the proper server-
components. Here the web server’s processing components
are not considered as a part of the system. The server-
component processes the request and responds to the client-
component with the result. For the browser-based web
applications the response is mostly a web page, and can also
be either an image or another type of file.

The client-component’s communication is directed to the
web server, instead directly to the server-component, since
the target of the request might not be pointed to the exact
server-component. The identification of the correct server-
component and directing the request to it can be controlled
by either using server configurations or a dedicated

component in the server. However, this part is considered as
a duty of the server itself, hence not included into the style.
This will be re-discussed later, in the context of
modularizing.

b) Constraint 1 - Step 2: Multi-tier Extension

The second step of the partitioning constraint specifies
that the style should support expansion of the system to
multi-tier or SOA by adding more layers. The layers other
than the basic client and server layers are considered as
external layers, which extend the web application to a multi-
tier application. There can be layers dedicated for file(s) or
databases for persistence, Web Services, or even Enterprise
Service Bus (ESB) in the case of SOA. The server-side
component can communicate with these external layers, and
provide the client with necessary data/information. Figure 10
illustrates the Multi-tier Extensive Client-Server style
(MECS), which satisfies the FR1 for the proposed style by
providing functions: Client-Server based, and extensive up to
multi-tier or SOA, by adding external layers with more
functionalities.

Additionally, nowadays the client-components are
capable of performing Cross-Origin Resource Sharing
(CORS) [26], communicating with external servers. In such
applications, the setting of the client-component from the
original domain and the server-components from the external
domains can be considered as a separate system; and this
separate system can be applied with the MECS style – or any
other style – accordingly.

3) Application of the Constraint 2 – Modularizing
This section presents the application of the second

constraint of the style derivation process. Modularizing
constraint is expected to induce the properties: Simplicity,
and Modifiability, including Evolvability, Extensibility,
Customizability, and Configurability. Additionally
Performance, Testability, Maintainability, Reusability, and
Scalability can also be expected.

The candidate MVC versions for this constraint are:
Model2 [23], Dual-MVC [24], and the MVC web version
introduced in previous section. Considering the TTs
independence and the conceptual abstraction, the MVC web
version was selected to be utilized for the proposed style.

This section discusses the adoption of MVC into the
MECS style. The resulting style is named as the Abstract
Web-MVC (AW-MVC), and it is extended to the style
named Balanced Abstract Web-MVC (BAW-MVC) towards
better performance of the style.

Figure 10. Multi-tier Extensive Client-Server style for the web-based applications

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

37

Figure 11. The Abstract Web-MVC style

a) Derive the Abstract Web-MVC Style

This section discusses the unison of the MECS and MVC
web version, resulting the AW-MVC style, which is
illustrated in figure 11.

This unison of the MECS style and the MVC web version
in the AW-MVC style preserves the first constraint for the
proposed style. The MVC module separation of the AW-
MVC is discussed below.

Model: Primarily, the Model is placed in the server.
When extensibility is needed, the extra layers are connected
to the Model, and the Model contains the logic and the code
for handling communication with these extra layers. An
external layer could be a dedicated layer or even an ESB,
which can handle more advanced communication with other
external layers/components/nodes in favor of the Model. By
including all the business logic into the Model, the NFRs
Reusability, Testability, and Maintainability can be
augmented.

View: The lifetime of the View is mainly reserved to the
client-side; however, a View can contain some server-side
code, which needs to be executed in the server, in the initial
processing, before loading to the client. Therefore a View
has an expanded lifetime between both the server and the
client. This scenario is denoted by illustrating the View in
both client and server layers. However, note that the Views
in both partitions are grouped into a single module using a
dotted line, to indicate the complete View component. The
set of arrows from server-View to the client-View indicates
that the same View is executed in the server – in the initial
load, once the View is requested – and then loaded to the

client and continues the rest of the lifetime in the client, till
the next View is requested, loaded and the current View is
replaced.

Controller: The idea of seeing the Controller as a
request-handler in the server, like in model2 [23] or similar
solutions [27] is highly discouraged in this paper. Since the
GUI of the View runs and interacts with the user in the
client-side, the events are also triggered in the client-side.
Thus, the best place for the Controller is to be in the client-
side. Unlike in the Dual-MVC [24] or the mixed client-side
and server-side MVC [25], this work proposes to take the
Controller entirely to the client-side, preserving the concept
of the MVC web version introduced in the previous section.

The web server is natively included with the event-
handling for the HTTP requests, hence it handles the requests
implicitly. Therefore, the request handling is not a part of the
web application; it is a part of the server. Considering this
fact, the request-handling is not needed to be included into an
architecture for the web applications. However, if needed,
explicit request-handling techniques could be used within the
web application, and in-depth discussions of these techniques
are kept out of the scope of this section. In such scenarios, a
dedicated component could be developed for explicit
request-handling as shown in figure 12.

Since this request-handling component is optional, and
also not related to either business logic or GUI-related
events-handling, it is not considered as a part of the MVC.
Furthermore, this request-handling component is based on
some common knowledge and practice; hence, it is not
explicitly included into the proposed style.

Figure 12. The Abstract Web-MVC with explicit request handling

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

38

Figure 13. Balanced Abstract Web-MVC (BAW-MVC)

b) Derive the Balanced Abstract Web-MVC (BAW-

MVC)

In Dual-MVC [24] and RIA MVC [25], the Model is
partitioned between the server and the client, for better
performance. This concept of partitioned Model can be
integrated into the Abstract Web-MVC concept, with the
help of client-side-Controller, as denoted in the MVC web
version. It is not a must developing a client-Model, and it
depends on the requirements of the scenario. However, the
web-based applications engineering may find this concept
useful, as the modern advanced web applications like Rich
Internet Applications (RIAs) are expected to be highly
interactive and perform better.

In the AW-MVC, even though the Controller is
completely taken to the client-side, the business logic is still
contained and executed in the Model, which is in the server.
Hence, an AW-MVC based system as in figure 11, can be
seen as a thin-client system. While experimenting, some
features of the Model had been identified, which can be
taken to the client-side, to form a client-Model. Figure 13
illustrates the architecture with a client-Model component.
All the basic input validations – such as identification of
blank text boxes, non-selected option lists, etc. – can be
developed in this client-Model. Additionally, some basic
logic and processing – such as calculation of the age based
on the input date-of-birth – which are not critical or sensitive,
also can be developed in this client-Model. The client-Model
may additionally contain some data structures to temporarily
hold data, till they are synchronized with the server-Model.

It is sensible to consider the client-Model as an essential
component, and this paper suggests to consider the web
applications with a client-Model – with the mentioned
features – as a balanced system, instead of a thick-client.
Engineers can decide to keep the Model completely in the
server and make the system a thin-client application; or take
more logic and/or data structures to the client, and make the
system a thick-client application – referred to the balanced
criteria. This version of the AW-MVC style, based on the
aforementioned balanced web application criteria, we name it
as the “Balanced Abstract Web-MVC” (BAW-MVC).

Note that the client-Model does not contain any direct
communication links with other components than to the
Controller. Both the View and the client-Model play a
passive role in the client. The Controller behaves as the

active component in the system, by handling the events
triggered by the user on the View, and commanding the
client-Model to act. The Controller may also receive the
results from the client-Model, and at the end, the Controller
can update the View with the results, by partial rendering the
necessary sections of the GUI, without reloading the page.
The client-Model decreases the need for communicating with
the server, thus increases the Performance and Scalability.

VI. EVALUATION OF THE BAW-MVC STYLE

This section evaluates the introduced BAW-MVC style in
two steps. First, it evaluates the BAW-MVC itself, by
indicating the induced properties – by the application of the
constraints – using a derivation tree [8]. This helps to
understand a list of properties the BAW-MVC style supports.
The second step evaluates the BAW-MVC against the
available similar styles, discussing how the induced
properties are satisfied.

A. Architectural properties induces by the derivation of the

BAW-MVC style

The derivation tree for the BAW-MVC style is illustrated
in the figure 14. The application of the first constraint to the
null style derives the MTCS style, inducing basic Simplicity
via partitioning; and Extensibility and Evolvability via
multitier expansion capability. Applying modulating to the
null style, the MVC has being derived, and applying it to the
MTCS style the AW-MVC has being derived, inducing
Modifiability, Reusability, and improved Simplicity. The
AW-MVC is further improved into the BAW-MVC,
inducing Performance and Scalability.

Figure 14. Derivation tree of the BAW-MVC style

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

39

B. Evaluate BAW-MVC against similar available styles

A tabular format of styles versus requirements [8], has
been used to visualize the comparison between the styles.
The symbols below are used to denote the comparative
values of the effects of the evaluated facts.

(NA) – Not Applicable/Associated

(--) – Very less or no effect

(-) – Negative effect

(-+) – Moderate effect

(+) – Positive effect

(++) – Very high effect

Since the evaluated aspect are qualitative, the comparison
is based on the knowledge gained through the literature and
the empirical evidence. It should be noted that the values
represented by the above symbols denotes the relative results
among the artifacts compared, therefore not an indication of
the perfection or imperfection. In the case of similar styles, it
should be noted that they are evaluated in the perspective of
this research; therefore even though they may show some
positive/negative effects in their own scopes, they might not
indicate similar effect in the perspective of this research.

Table 1 contains the evaluation of the BAW-MVC style
as a contextualized comparison. The Mode column in the
table indicates the application of the MVC is limited to either
server-side (S) or client-side (C), or spread across server and
client (S-C). The intended mode is the S-C, towards higher
Simplicity, Performance, and Scalability.

Since the available style are reviewed in section III, they
are not reviewed or discussed again here, compared to the
BAW-MVC; instead, BAW-MVC is reviewed in detail in the
direction of evaluation.

Additionally, the derived BAW-MVC is more suitable
for browser-based applications, and the support for non-
browser-based applications is not straight forward.

The mode of the BAW-MVC is (S-C), and helps in
higher module separation across server and client, with lower
coupling, which enriches the Simplicity of the system. The
Simplicity delivered via lower coupling assists changes in
components or adding new functionalities into the system in
module level, without or with a minimal effect on the other
components, increasing the Evolvability and the
Extensibility. The Simplicity also supports customizing the
components without impacting the non-targeted users, and
also the post-deployment modifications to become easier,
enriching the Customizability and Configurability.
Furthermore, the higher separation of the modules increases
the Testability in the module level, and also increases the
Reusability, especially for the server-Model, which can be
developed using OODD practices. Additionally, the client-
Model lowers the communication with the server, which can
increase the Performance and the Scalability of the system.

The BAW-MVC style provides an abstract
implementation of MVC for the web applications, which is
independent from platforms and TTs. The concept of the
BAW-MVC delivers a firm abstract architectural formalism,
hence helps one to realize the modularization of the web-
based applications, with a minimal learning curve.

The main limitation of the BAW-MVC compared to the
classic MVC can be mentioned as follows. The Model in the
classic MVC is capable of broadcasting the state changes to
all the related Views. In the web applications, there can be
multiple users interacting with Views related to the same
Model components; however, broadcasting the Model
changes to all the running Views for all the connected users
is not feasible in BAW-MVC. This can be achieved by
incorporating data-push or push-simulation Rich Internet
Application TTs.

TABLE I. EVALUATION OF BAW-MVC STYLE

S
ty

le

M
o
d

e

S
im

p
li

ci
ty

E
v
o
lv

a
b

il
it

y

E
x
te

n
si

b
il

it
y

C
u

st
o

m
iz

a
b

il
it

y

C
o
n

fi
g
u

r
a
b

il
it

y

T
e
st

a
b

il
it

y

R
e
u

sa
b

il
it

y

P
e
r
fo

r
m

a
n

c
e

S
c
a
la

b
il

it
y

T
R

1
.

 P
I

T
R

2
.

T
T

sI

T
R

3
.

L
L

C

Model2 S -
+

+

+

+
+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-

+

Dual-

MVC

S

-

C
-

-

-

-

+
- - -

-

+
+

-

+
- - -

BAW-

MVC

S

-

C

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

40

VII. CONCLUSION AND FUTURE WORK

The introduced BAW-MVC provides an abstract
conceptual implementation of MVC for the web
applications, which does not depend on technologies. The
concept of the BAW-MVC delivers a firm architectural
formalism, and hence helps one to increase the realization of
the web applications. We believe that it can be adopted in a
wider range of development environments with a minimal
learning curve.

BAW-MVC helps in higher module separation with
lower coupling, which supports more for nonfunctional
requirements related properties like Performance,
Maintenance, Modifiability, etc.

The Model in the classic MVC is capable of broadcasting
the state changes to all the Views related. In the web
applications, there can be multiple View components –
related to the same Model components – used by a user; or
multiple users are interactive with the Views related to the
same Model components; however, broadcasting the Model
changes to all the running Views is not feasible in BAW-
MVC, without incorporating the Rich Internet Application
TTs.

The usage of the BAW-MVC – as discussed in this paper
– has been introduced for the classical web applications, and
not for the RIAs. Therefore, the rich user experience as in
RIAs could not be gained using the BAW-MVC, but if the
system is designed carefully, with the help of client-side
Controller and Model, better user experience than the
traditional web applications could be gained.

The adoption of TTs into this style should be
experimented, presented, and discussed in a separate forum
towards utilizing this style practically. In future, we expect
to extend the BAW-MVC architecture, to offer an abstract
architectural formalism for RIAs, to reduce the RIA
engineering complexities and difficulties by increasing the
realization.

REFERENCES

[1] A. Ginige and S. Murugesan, "Web engineering: an introduction,"
IEEE MultiMedia, pp. 14-18, March 2001.

[2] A. Mesbah, A. v. Deursen and D. Roest, "Invariant-Based

Automatic Testing of Modern Web Applications," IEEE
Transactions on Software Engineering, vol. 38, no. 1, pp. 35-53,

2011.

[3] L. Shklar and R. Rosen, Web Application Architecture Principles,
protocols and practices, England: John Wiley & Sons Ltd, 2003.

[4] N. R. Dissanayake and G. K. A. Dias, "Abstract concepts: A

contemporary requirement for Rich Internet Applications

engineering [Accepted]," in 9th International Research Conference

of KDU (KDU-IRC 9), Colombo, Sri Lanka, 2016.

[5] J. Conallen, "Modeling Web Application Architectures with UML,"

Rational Software, 1999.

[6] A. Leff and J. Rayfield, "Web-Application Development Using the
Model/View/Controller Design Pattern," 2001.

[7] M. D. Jacyntho, D. Schwabe and G. Rossi, "A SOFTWARE

ARCHITECTURE FOR STRUCTURING COMPLEX WEB
APPLICATIONS," Journal of Web Engineering, vol. 1, no. 1, 2002.

[8] R. T. Fielding, "Architectural Styles and the Design of Network-

based Software Architectures," University of California, Irvine,

2000.

[9] A. Solutions, The Importance of Software Architecture, Architech

Solutions, 2014.

[10] W3C, "Architecture of the World Wide Web, Volume One," 15

December 2004. [Online]. Available:

http://www.w3.org/TR/webarch/. [Accessed 28 10 2015].

[11] D. Kegel, "The C10K problem," 05 02 2014. [Online]. Available:

http://www.kegel.com/c10k.html. [Accessed 20 04 2015].

[12] R. Kazman, G. Abowd and M. Webb, "SAAM: A Method for

Analyzing the Properties of Software Architectures," in Proceedings

on 16th International Conference on Software Engineering, 1994.

[13] R. Kazman, M. Klein and P. Clements, "ATAM: Method for

Architecture Evaluation," Carnegie Mellon Software Engineering

Institute, Pittsburgh, 2000.

[14] D. M. Selfa, M. Carrillo and M. d. R. Boone, "A Database and Web

Application Based on MVC Architecture," in Electronics,

Communications and Computers, 2006. CONIELECOMP 2006.

16th International Conference, 2006.

[15] M. Model, "Model View Controller History," [Online]. Available:

http://c2.com/cgi/wiki?ModelViewControllerHistory. [Accessed 10

08 2015].

[16] S. Burbeck, Applications Programming in Smalltalk-80™: How to

use Model-View-Controller (MVC), Softsmarts, Incorporated, 1987.

[17] J. Deacon, Model-View-Controller (MVC) Architecture, 2009.

[18] S. Prakash, A. Kumar and R. B. Mishra, "MVC ARCHITECTURE

DRIVEN DESIGN AND AGILE IMPLEMENTATION OFA

WEB-BASED SOFTWARE SYSTEM," International Journal of

Software Engineering & Applications (IJSEA), vol. 4, no. 6, pp. 13-

28, 2013.

[19] G. E. Krasner and S. T. Pope, "A Cookbook for Using the Model-

View-Controller User Interface Paradigm in Smalltalk-80," Journal

of Object Oriented Programming, pp. 26-49, 1988.

[20] S. F. Morse and C. L. Anderson, "Introducing Application Design

and SE Principles in Introductory CS Courses MVC Java

Application Framework," Journal of Computing Sciences in

Colleges, vol. 20, no. 2, pp. 190-201, 2004.

[21] W. Cui, L. Hung, L. J. Lang and J. Li, "The Research of PHP

Development Framework Based on MVC Pattern," in 2009 Fourth

International Conference on Computer Sciences and Convergence

Information Technology, 2009.

[22] K. Brown, "Whatsa Controller Anyway," [Online]. Available:

http://c2.com/cgi/wiki?WhatsaControllerAnyway. [Accessed 10 09

2015].

[23] Oracle, "About the Model 2 Versus Model 1 Architecture,"

[Online]. Available:

http://download.oracle.com/otn_hosted_doc/jdeveloper/1012/develo

ping_mvc_applications/adf_aboutmvc2.html. [Accessed 15 06

2015].

[24] K. Betz, A. Leff and J. Rayfield, "Developing Highly-Responsive

User Interfaces with DHTML and Servlets," IBM, 1999.

[25] R. Morales-Chaparo, M. Linaje, J. C. Preciado and F. Sánchez-

Figueroa, "MVC Web design patterns and Rich Internet

Applications," in Proceedings of the Jornadas de Ingenierıa del

Software y Bases de Datos, 2007.

[26] W3C, "Cross-Origin Resource Sharing," 16 Jan 2014. [Online].

Available: https://www.w3.org/TR/cors/#resource-requests.

[Accessed 26 10 2015].

[27] W. Cui, L. Hung, L. J. Lang and J. Li, "The Research of PHP

Development Framework Based on MVC Pattern," in 2009 Fourth

International Conference on Computer Sciences and Convergence

Information Technology, Seoul, 2009.

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

41

