
Parallel Processing of Burst Detection in

Large-Scale Document Streams and

Its Performance Evaluation
Kaishi Hirahara, Keiichi Tamura, Hajime Kitakami, and Shingo Tamura

Abstract—Online documents on the Internet are represented as
a document stream because the documents have a temporal order.
This has resulted in numerous studies on extracting a frequent
phenomenon (involving keywords, users, locations etc.) known
as a burst. Recently, with the growth of interest in social media,
the number of documents created on the Internet has increased
exponentially. Therefore, the speed-up of burst detection in
a large-scale document stream is one of the most important
challenges. In this paper, we propose a novel parallelization
method for the parallel processing of Kleinberg’s burst detection
algorithm in a large-scale document stream. Specifically, we
present a technique to combine the inter-task parallelization
model with the intra-task parallelization model. This combination
can achieve seamless dynamic load balancing and detect bursts
in a large-scale document streams in memory.

Index Terms—document stream; burst detection; parallel pro-
cessing; dynamic load balancing; text mining;

I. INTRODUCTION

TOPIC detection and tracking in documents on the In-

ternet, as well as those on micro-blogs (e.g., Twitter),

online news, and blogs, has been attracting researchers in

the text mining domain ever since people began to exchange

information through the Internet [1]. In particular, with the

growth of interest in social media, documents on the Internet

have begun including not only technical but also social topics.

Therefore, extracting specific patterns from these documents is

one of the most important challenges in social topic analysis,

mark analysis, emergency management, and search engine

performance improvement.

Documents on the Internet are represented to as a document

stream because the documents have a temporal order [2]. Thus,

numerous studies have been conducted on the extraction of

a frequent phenomenon (involving keywords, users, locations

etc.) known as a burst. Burst measurement is one of the

simplest ways of detecting a sudden increase in the frequency

of a certain phenomenon. Detecting bursts in a document

stream assists topic detection and tracking, because increased

attention of people on certain events and topics increases the

frequencies of terms related to the events and topics in a

document stream.

Kleinberg’s burst detection algorithm [3] was proposed for

detecting bursts in a document stream. Kleinberg defines a

Manuscript received Oct 26, 2012
K.Hirahara, K.Tamura, H.Kitakami and S.Tamura are with the Graduate

School of Information Sciences, Hiroshima City University, 3-4-1, Ozuka-
Higashi, Asa-Minami-Ku, Hiroshima 731-3194, Japan; corresponding e-mail:
(ktamura@hiroshima-cu.ac.jp).

bursty term as one that increasingly occurs in a document

stream. Some terms are highly bursty in the sense that the

frequency of their occurrence rises when a particular event

or topic attracts public attention. Kleinberg’s burst detection

algorithm aims to find certain time periods in which terms

occur with a high frequency. When a term related to an

attention-attracting event or topic becomes extremely bursty,

the interarrival time between documents that include the term

becomes smaller. Therefore, the time period when a term be-

comes extremely bursty can be detected using the interarrival

time between the documents.

Recently, with growing worldwide interest in social media,

the number of documents created on the Internet has increased

exponentially. In this situation, burst detection presents three

challenges. First, the computation time for detecting bursts in

a document stream is increasing, because there are numerous

terms in a large-scale document stream. Second, the size of

the time-series data of a term is increasing. Kleinberg’s burst

detection algorithm needs memory space equal to the product

of the number of occurrences of a term and the number of

states. Thus, when the document stream is large, the algorithm

is unable to perform efficiently using only the main memory

of the computer. This causes serious performance degradation.

Third, it is difficult for a simple parallelization model to

balance loads efficiently because terms occur with widely

varying frequencies.

In this paper, we propose a novel parallelization method for

the parallel processing of Kleinberg’s burst detection algorithm

in a large-scale document stream. The main contributions of

this study are as follows:

(1) To parallelize Kleinberg’s burst detection algorithm, we

define two types of parallelization models: the inter- and

intra-task parallelization models. The processing of burst

detection for one term in a document stream is defined

as a task. The burst detection for each term using Klein-

berg’s burst detection algorithm can be performed inde-

pendently. Thus, tasks can be performed concurrently.

The inter-task parallelization model is defined as one in

which tasks are performed simultaneously. Conversely,

the time-series data of one term can be divided into

several sub-time-series data called partitions. The intra-

task parallelization model is defined as one in which

burst detection for each partition using Kleinberg’s burst

detection algorithm is performed simultaneously.

(2) To balance work loads dynamically, we propose com-

bining the inter- and intra-task parallelization models. If

DOI: 10.5176/2251-3043_2.4.206

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

29 © 2013 GSTF

the frequency of term occurrence in a task is less than a

threshold σ, the proposed parallelization model performs

the task normally. Otherwise, the task is divided into

several sub-tasks comprising partitions that constitute

the entire time-series data of the task. Sub-tasks are

performed simultaneously. By adjusting the size of the

partition, we can perform large tasks in a computer’s

main memory.

(3) To evaluate the proposed model for parallel processing

of Kleinberg’s burst detection algorithm, we used an ac-

tual large-scale document stream composed of crawling

tweets on Twitter. The number of tweets is 1,280,000

and they were collected from June to December in

2009. The experimental results show that the proposed

parallelization model addresses the above three chal-

lenges faced by burst detection in a large-scale document

stream.

The rest of this paper is organized as follows: Section 2

overviews related work. Section 3 defines a burst and describes

Kleinberg’s burst detection algorithm. Section 4 explains the

problem definition and proposes our novel parallelization

method. Section 5 presents the experimental results of perfor-

mance evaluation experiments. Section 6 concludes this paper.

II. RELATED WORK

With the widespread of use of the Internet, many techniques

for topic detection and tracking have been proposed [1]. In par-

ticular, many studies have been conducted on topic detection

and tracking in a document stream. This section overviews

related work on burst detection and parallel processing of the

Viterbi algorithm and dynamic programming, which is based

on Kleinberg’s burst detection algorithm.

To track and detect topics in a document stream that have

public appeal, burstiness is the simplest but the most effective

criterion. A number of studies have been conducted on burst

detection algorithms [3], [4] [5], [6], [7], [8], [9], [10], [11].

Of these, Kleinberg’s burst detection algorithm [3] has had

the most significant impact on many studies. It is based on a

queuing theory for bursty network traffic. The shorter the data

arrival time interval, the higher is the degree of burst state and

vice versa. The algorithm is explained in detail ahead in the

paper. It is applicable to various document streams such as

e-mails [3], blogs [4], [5], online publications [6], and social

tags [11].

Kleinberg’s burst detection algorithm is known as one of

the most efficient algorithms for burst detection. However,

with the rapid growth of social media sites, the number of

online documents created on the Internet has been increasing

exponentially. Thus, we meet a new challenge: How do we

detect bursts in large-scale document streams? Kleinberg’s

algorithm is based on the Viterbi algorithm. Several studies

have attempted to parallelize the Viterbi algorithm on the

basis of hardware [12], [13], [14]. Hui et al. [12] proposed

a method for parallelizing the Viterbi algorithm using a multi-

microprocessor. Yeo et al. [13] performed parallelization on

a certain hardware chip, while Wang et al. [14] used a field-

programmable gate array (FGPA). These studies focused on

document stream
t

document stream

interarrival time xt

dt!1 dt dt+1dt+2 dt+3 dt+4t 2 t 3 t 4

highly bursty

Fig. 1. Document stream, in which documents arrive in a temporal order.

real-time processing on hardware. However, our goal is to

develop an efficient parallelization method for use on software

and not hardware.

The Viterbi algorithm involves dynamic programming.

Many studies have been conducted on the parallel processing

of dynamic programming [15], [16], [17], [18], [19], [20].

Recently, several parallelization methods for dynamic load

balancing on multi-core processors were proposed [18], [19],

[20]. These methods focus on memory or cache use efficiency.

However, almost all studies on parallelization for dynamic

programming address the processing of only one large task. To

the best of our knowledge, little attention has been paid to the

case where many dynamic programming tasks are executed.

In this study, we propose a novel parallelization method for

this case.

III. BURST DETECTION

In this section, we define a document stream and burst detec-

tion, and briefly explain Kleinberg’s burst detection algorithm.

A. Document Stream

A document stream, which resembles a data stream, is

defined as a sequence of documents that have a temporal order.

Fig.1 shows an example of a document stream. In this figure,

the documents arrive in a temporal order. The time interval

xt between document dt+1 and document dt is called the

interarrival time. Examples of a document stream include, but

are not limited to, tweets on Twitter. Tweet i is represented as

document di. The interarrival time xi is defined as the time

interval between the posting time of tweet i + 1 and that of

tweet i.

B. Burst

The number of documents that include particular terms

related to a certain event or topic increases gradually as more

and more people become interested in that event or topic and

vice versa. Furthermore, as the number of documents that

include a term related to a certain event or topic increases

in a document stream, the interarrival time between these

documents becomes smaller. A term is considered highly

bursty during a period in which the interarrival time is shorter

than usual.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

30 © 2013 GSTF

C. Kleinberg’s Burst Detection Algorithm

Kleinberg defined a model with an infinite-state automaton

in which bursts are represented as state transitions. Suppose

that there are m states in the infinite-state automaton. Each

interarrival time is a probabilistic output that depends on the

internal states of the infinite-state automaton. In the model, a

state is associated with the degree of burstiness: a higher state

indicates a higher degree of burstiness, and vise versa.

Let the sequence of interarrival times between document

postings be x = (x1, x2, · · · , xn). The problem is de-

fined as finding the optimal state-transition sequence s =
(s1, s2, · · · , sn) that will minimize the cost function

C(s|x) = (

n−1
∑

i=1

τ(si, si+1)) + (

n
∑

i=1

−lnfsi(xi)). (1)

The function τ(si, si+1) returns a state-transition cost from

state i to state j. It is defined as

τ(i, j) =

{

(j − i)γ, if j > i,
0, otherwise,

(2)

where γ(> 0) is a user-given parameter and n is the number

of documents in the concerned document stream. Equation

(2) indicates that moving to a higher state incurs a cost which

moving to a lower state incurs no cost.

Function fk(xi) is the exponential density function for the

probability of outputting the interarrival time xi in state k, and

is defined as

fk(xi) = λke
−λkxi , (3)

where λk is the arrival rate of documents associated with state

k and is defined as

λk =
n

T
βk, (4)

where n is the number of documents, T is the entire time

range, and β(> 1.0) is a user-given parameter.

The Viterbi algorithm for hidden Markov models, which

is a dynamic programming approach, is the most effective

solution for determining an optimal state-transition sequence

s = (s1, s2, · · · , sn) to minimize Equation (1). First, we

calculate the cost Cj(i):

Cj(i) = −lnfj(xi) +minl(Cl(i − 1) + τ(l, j)), (5)

where Cj(i) is the minimum cost of a state-transition sequence

that ends with state j at the i-th time interval in the document

stream. Equation (5) can be calculated using the previous (i−
1)-th Cl(i−1)(0 ≤ l ≤ m−1). Second, we find the minimum

cost in Cj(i)(0 ≤ j ≤ m−1). Suppose that the minimum cost

in Cj(n)(0 ≤ j ≤ m− 1) is Cmin(n). Finally, we trace back

with Cmin(n) as the starting point.

IV. PROPOSED METHOD

This section gives the problem definition, and presents two

types of parallelization models: the inter- and intra paralleliza-

tion models. Furthermore, we propose a novel parallelization

model that combines these two models.

T k P lTask Pool

Task1 Task2 Taskm

PE PE PEPE1 PE2 PEp

Fig. 2. A parallelization environment containing task pool and several PEs.

A. Problem Definition

Let a document di on a document stream DS =
{d1, d2, · · · , dn} be di =<altimei, texti>, where texti is

the text data and alvtimei is the arrival time. In addition,

we consider a set of all the terms appearing in text data,

T = {term1, term2, ..., termm}. The number of documents

termi is denoted by |termi|. Here, we define the inter-arrival

time sequence of documents that include termi as

TALTi = (talti,1, talti,2, · · · , talti,|termi|), talti,j ∈ ALT,
(6)

where ALT = {altime1, altime2, · · · , altimen} is a set of

all arrival times for all the documents.

The goal of this study is to parallelize the processing of

burst detection that extracts all the state-transition sequences

of all the m terms using Kleinberg’s burst detection algorithm.

B. Parallelization Model

In this subsection, we describe the inter- and intra-task

parallelization models. There are many parallelization envi-

ronments for parallel processing (e.g., PC clusters, multi-core

CPUs, SMPs, and GPUs). In this study, we focus only on

environments in which the task pool model is executable

(Fig.2). In the task pool model contains a task pool and a

Processor Element (PE). The task pool stores tasks and a

PE is a processing unit such as a CPU and a CPU-core in

a multi-core CPU. Each PE gets a task out of the task pool

and performs the task while the task pool is not empty.

1) Inter-Task Parallelization Model: The processing of

burst detection for one term in a document stream is defined as

a task. Thus, if there are m terms in a document stream, there

are m tasks. In the inter-task parallelization model, tasks are

performed simultaneously, because each task can be performed

individually (Fig.3).

The procedure steps of the inter-task parallelization model

are as follows:

(1) For each interarrival time sequence, TALTi is put into

the task pool as task i.
(2) Each PE gets a task from the task pool. Suppose that

the task is the k-th term. The PE obtains the state-

transition sequence s, which is an output of performing

Kleinberg’s burst detection algorithm on the inter-arrival

time sequence TALTk. A pair of the term termk and

the state-transition sequence s is put into the result pool.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

31 © 2013 GSTF

T k P lTask Pool

Taskp+1 Taskm

PE PE PE

Task1 Task2 Taskp

PE1 PE2 PEp

Fig. 3. Inter-task parallelization model.

T k P lTask Pool

Task2 Taskm

PE PE PE

Sub!Task11 Sub!Task12 Sub!Task1p

PE1 PE2 PEp

Fig. 4. Intra-task parallelization model.

(3) When a PE finishes a task, it gets its next task out of

the task pool and performs the task while the task pool

is not empty.

2) Intra-Task Parallelization: Each interarrival time se-

quence is divided into several sub-sequences called partitions.

The intra-task parallelization model is defined as parallel

processing in which burst detection is simultaneously for each

partition using Kleinberg’s burst detection algorithm (Fig.4).

First, the inter-arrival sequence TALTi is divided into p

partitions. Let a partition PTALT l
i be

PTALT l
i = (talti,d×l, talti,d×l+1, · · · , talti,d×l+d−1),

talti,j ∈ ALT, 1 ≤ l ≤ p,

where

d =
|TALTi|

p
. (7)

For each PTALTi, the intra-task parallelization model

obtains the sub-state-transition sequence, sk, by performing

Kleinberg’s burst detection algorithm on PTALTi, as follows:

s = s1 ∪ s2 · · · ∪ sp (8)

Following are the procedure steps of the intra-task paralleliza-

tion model:

(1) For each inter-arrival time sequence, TALTi is put into

the task pool as task i.
(2) A task is obtained from the task pool. Suppose that the

task is the k-th term’s task. We divide TALTk into

p (p is the number of PEs) partitions. The partition

PTALT l
k is assigned to the l-th PE. Each PE that is

assigned a partition performs Kleinberg’s burst detection

algorithm on that partition. The state-transition sequence

s constitutes all the sub-state-transition sequences si
after all the sub-tasks are finished. A pair of the term

termk and the state-transition sequence s is put into the

result pool.

(3) We get the next task out of the task pool and perform

the task according to Steps (1) and (2) while the task

pool is not empty.

C. Inter-Task with Intra-Task Parallelism

The inter-task parallelization model is the simplest paral-

lelization model; however, there are two inherent issues: (1) It

is difficult for this model to balance loads efficiently because

the frequency of term occurrences differs very widely; (2)

Kleinberg’s algorithm cannot perform on memory in a large-

scale document stream because it needs memory space equal

to the product of the number of term occurrences and the

number of states.

To address these two issues, we combine the inter-task

parallelization model with the intra-task parallelization model.

In our parallelization model, each PE performs a task indi-

vidually in the same manner as in the inter-task paralleliza-

tion model; however, in our model, a PE divides the task

into sub-tasks if |TALTi| ≥ σ. The task is divided into

div = |TALTi|/range partitions. A sub-task is one that

finds the optimal state-transition sequence on a partition. We

call a regular task an “ordinary-task” and call this sub-task a

“divided-task.”

Below are the procedure steps of the proposed paralleliza-

tion model are:

(1) For each inter-arrival time sequence, TALTi is put into

the task pool as ordinary-task i.
(2) Each PE gets a task from the task pool.

a) If the task is an ordinary-task and |TALTk| < σ,

the PE gets the state-transition sequence s, which

is the output of performing the Kleinberg’s burst

detection algorithm for the inter-arrival time se-

quence TALTk. A pair of the term termk and

the state-transition sequence s is put into the result

pool.

b) If the task is an ordinary-task, but |TALTk| ≥
σ, TALTk is divided into div (div =
(|TALTi|)/range) partitions. For each partition,

the partition PTALT l
k is put into the task pool as

a divided-task.

c) If the task is a divided-task, the PE performs

Kleinberg’s burst detection algorithm on it.

(3) When a PE has finished the task, it obtains the next task

out of the task pool and performs the task according to

Step (1) and Step (2), while the task pool is not empty.

V. PERFORMANCE EVALUATION

To evaluate the proposed parallelization model, we per-

formed three experiments. This section presents the experi-

mental results.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

32 © 2013 GSTF

1

2

3

4

5

6
sp
e
e
d
u
p

1 2 3 4 5 6

0

Number of Threads
inter_task intra_task

interintra_task

Fig. 5. Speed-up ratio (Task-100).

1

2

3

4

5

6

sp
e
e
d
u
p

1 2 3 4 5 6

0

Number of Threads

inter_task intra_task

interintra_task

Fig. 6. Speed-up ratio (Task-1000).

A. Experimental Setup

We implemented the proposed parallelization model on a

multi-core CPU using the master worker model with multi

threads. In our implementation, therefore, a thread on a CPU

core represents a PE. We used a PC that having a multi-core

CPU (CPU: Phenom II X6 1090T Six-Core/3.2G/L3, Memory:

4GB RAM).

Our performance evaluation constituted three experiments.

Experiment 1 was performed to evaluate the speed-up ratios

of the inter-task, intra-task, and the proposed parallelization

model. Experiment 2 showed the error in the results of intra-

task parallelization. Experiment 3 compared the inter-task

parallelization model with the proposed one in terms of the

perspective of adaptive ability.

In the experiments, we used an actual large-scale document

stream composed of crawling tweets on Twitter. The number

of tweets was 1,280,000; they were collected from June

to December in 2009. We extracted 10,000 terms from the

documents. We created three types of tasks: task-100, task-

1000, and task-10000, which consisted of 100, 1,000, and

10,000 tasks and detected the bursts of 100, 1,000, 10,000

terms, respectively.

B. Experiment 1

In Experiment 1, we compared the speed-up ratios of

the inter-task, the intra-task, and the proposed parallelization

model. Figs.5, 6, and 7 show the results of task-100, task-1000,

and task-10000, respectively. The vertical axis represents the

speed-up ratios, while the horizontal axis shows the number

1

2

3

4

5

6

sp
e
e
d
u
p

1 2 3 4 5 6

0

Number of Threads

inter_task intra_task

interintra_task

Fig. 7. Speed-up ratio (Task-10000).

10

20

30

40

50

ti
m
e
(s
)

1 2 3 4 5 6

0

Number of Threads
inter_task intra_task

interintra_task

Fig. 8. Processing time (Task-1000).

of threads. In these figures, “inter task,” “inter task,” and

“interintra task” denote the inter-task parallelization model,

the intra-task parallelization model, and the proposed par-

allelization model. The length of the divided range in the

interintra-task parallelization model is 1,000. The gamma

value is 1.1, and the beta value is 0.05.

There is no difference between the performance of the

inter-task and the proposed parallelization model for task-

100, because load unbalancing does not occur in either of the

cases. However, the intra-task parallelization model performs

poorly in comparison with both these models. The intra-task

parallelization model is necessary to synchronize each other

thread. In the case of task-1000, the proposed parallelization

model outperforms inter-task parallelization. Fig.8 shows the

processing time of each thread. Load unbalancing occurs in

the inter-task parallelization model, which leads to a decline

in the performance of the inter-task parallelization model.

On the other hand, in the case of task-10000, the inter-

task parallelization model outperforms the other parallelization

models. task-10000 contains many small-sized tasks; therefore,

it does not benefit from dividing the task.

To evaluate the length of the divided range in the proposed

parallelization model, we changed its size to 1,000, 5,000, and

10,000 terms. Fig.9 shows the speed-up ratio of each divided

range size. The results show that for the small divided tasks

of 1,000 and 5,000, the performance of the proposed model is

good. This indicates that by reducing the size of the divided

task, overload can be reduced.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

33 © 2013 GSTF

1

2

3

4

5

6

p
e
e
d
u
p

1 2 3 4 5 6

0

1

Number of Threads

S
p

1000 5000 10000

Fig. 9. Speed-up ratio (Task-1000).

2

3

4

5

6

7

A
v
e
ra
g
e

 e
rr
o
r

100 1000 10000 100000

0

1

Number of Doucuments

A

Fig. 10. Average error.

C. Experiment 2

In Experiment 2, we investigate the precision of the intra-

task parallelization model. Errors occur in this model, because

it divides an inter-arrival time sequence into partitions and

detects bursts in each partition individually. In this experiment,

we measured the error between a state transition sequence

obtained in the proposed model and an original state transition

sequence that is obtained using Kleinberg’s burst detection

algorithm. An average error is defined as

averageerror =

∑|s|
i=1

|si − srk|

|s|
(9)

Fig.10 shows all the average errors. The vertical axis of the

figure represents the average error while the horizontal axis

denotes the number of documents that include a certain term.

Overall, almost all the average errors are less than 1.5. This

indicates there is no problem to assessment of accuracy.

D. Experiment 3

In Experiment 3, we created six virtual tasks in which the

length of the inter-arrival time sequence is 4.6 million. Not

more than one task can be performed on the memory in a PC.

because the size of the required memory is more than that of

the PC. We compare the proposed, inter-task, and intra-task

parallelization models.

Table 1 shows the results of the experiment. In the case

of more than two threads, the inter-task parallelization model

needs more processing time. In the inter-task parallelization

model, two tasks are performed at the same time. Therefore,

TABLE I
RESULT OF EXPERIMENT 3.

Thread

Inter-Task
Parallelization

Model(s)

Intra-Task
Parallelization

Model(s)

Proposed

Parallelization
Model(s)

2 4299.58465 369.043796 294.083362

3 29897.8395 263.967795 202.185169

6 - 183.964157 120.792438

the parallelization model uses considerably more memory than

the main memory. This causes OS thrashing. On the other

hand, the processing times of the proposed parallelization

model and intra-task parallelization do not increase. The

proposed parallelization model performs tasks on memory

because it utilizes the intra-parallelization model.

VI. CONCLUSION

In this paper, we proposed a novel parallelization model for

burst detection in a large-scale document stream. The proposed

method combines the inter-task and intra-rask parallelization

models. This combination provides seamless dynamic load

balancing, and detects burst in a large-scale document stream

on memory. The experimental results showed the efficiently

of the proposed method. In our future work, we intend to

investigate the trade-off relationship between speed-up and

accuracy. In addition, we will develop a real time algorithm

for burst detection in a large-scale document stream using

parallelization.

ACKNOWLEDGEMENT

This work was supported in part by a Grant-in-Aid for

Young Research (B) (No. 23700124) from the Ministry of

Education, Culture, Sports, Science and Technology, Japan and

a Grant-in-Aid for Scientific Research (C) (2) (No. 20500137)

from the Japanese Society for the Promotion of Science, Japan.

REFERENCES

[1] J. Allan, R. Papka, and V. Lavrenko, “On-line new event detection and
tracking,” in Proceedings of the 21st annual international ACM SIGIR

conference on Research and development in information retrieval, SIGIR
’98, pp. 37–45, 1998.

[2] J. Kleinberg, “Temporal dynamics of on-line information streams,” in IN

DATA STREAM MANAGEMENT: PROCESSING HIGH-SPEED DATA,
Springer, 2006.

[3] J. Kleinberg, “Bursty and hierarchical structure in streams,” in Proceed-

ings of the eighth ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’02, pp. 91–101, 2002.
[4] Y. Zhu and D. Shasha, “Efficient elastic burst detection in data streams,”

in Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 336–345, 2003.
[5] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins, “On the bursty evo-

lution of blogspace,” in Proceedings of the 12th international conference

on World Wide Web, pp. 568–576, 2003.
[6] K. K. Mane and K. Börner, “Mapping topics and topic bursts in pnas,”

Proceedings of the National Academy of Sciences of the United States

of America, vol. 101 Suppl 1, pp. 5287–5290, 2004.
[7] G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu, “Parameter free bursty

events detection in text streams,” in Proceedings of the 31st international

conference on Very large data bases, pp. 181–192, 2005.
[8] X. Wang, C. Zhai, X. Hu, and R. Sproat, “Mining correlated bursty

topic patterns from coordinated text streams,” in Proceedings of the

13th ACM SIGKDD international conference on Knowledge discovery

and data mining, pp. 784–793, 2007.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

34 © 2013 GSTF

[9] Q. He, K. Chang, E.-P. Lim, and J. Zhang, “Bursty feature represen-
tation for clustering text streams,” in Proceedings of the Seventh SIAM

International Conference on Data Mining, 2007.
[10] D. He and D. S. Parker, “Topic dynamics: an alternative model of

bursts in streams of topics,” in Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and data mining,
pp. 443–452, 2010.

[11] J. Yao, B. Cui, Y. Huang, and X. Jin, “Temporal and social context based
burst detection from folksonomies,” in Proceedings of the Twenty-Fourth

AAAI Conference on Artificial Intelligence (AAAI 2010), 2010.
[12] Z. Hui, Y. Xiaokang, S. Toru, and K. Iwane, “Parallel viterbi decod-

ing implementation by multi-microprocessors,” IEICE transactions on

communications, vol. 76, no. 6, pp. 658–666, 1993.
[13] E. Yeo, S. Ausburger, W. R. Davis, and B. Nikolic, “Implementation of

high throughput soft output viterbi decoders,” in Proceedings of IEEE

Workshop on Signal Processing Systems, pp. 146–151, 2002.
[14] L. Wang and Z.-y. Li, “Design and implementation of a parallel

processing viterbi decoder using fpga,” Memory, pp. 77–80, 2010.
[15] P. Edmonds, E. Chu, and A. George, “Dynamic programming on a

shared-memory multiprocessor,” Parallel Computing, vol. 19, no. 1,
pp. 9–22, 1993.

[16] Z. Galil and K. Park, “Parallel algorithms for dynamic programming
recurrences with more than o(1) dependency,” Parallel Computing,
vol. 21, no. 2, pp. 213–222, 1994.

[17] D. G. Morales, F. Almeida, C. Rodrı́guez, J. L. Roda, I. Coloma,
and A. Delgado, “Parallel dynamic programming and automata theory,”
Parallel Computing, vol. 26, no. 1, pp. 113–134, 2000.

[18] G. Tan, N. Sun, and G. R. Gao, “A parallel dynamic programming
algorithm on a multi-core architecture,” in Proceedings of the nineteenth

annual ACM symposium on Parallel algorithms and architectures, SPAA
’07, pp. 135–144, 2007.

[19] R. A. Chowdhury and V. Ramachandran, “Cache-efficient dynamic
programming algorithms for multicores,” in Proceedings of the twentieth

annual symposium on Parallelism in algorithms and architectures, SPAA
’08, pp. 207–216, 2008.

[20] G. Tan, N. Sun, and G. R. Gao, “Improving performance of dynamic
programming via parallelism and locality on multicore architectures,”
IEEE Trans. Parallel Distrib. Syst., vol. 20, pp. 261–274, 2009.

Kaishi Hirahara is a student at the Department of
Intelligent Systems, Graduate School of Information
Sciences, Hiroshima City University, Hiroshima,
Japan. His research interests include parallel com-
puting.

Keiichi Tamura received his B.Eng., M.Eng., and
Ph.D. degrees in Information Science from Kyushu
University, Fukuoka, Japan, in 1998, 2000, and
2005, respectively. He is presently Associate Profes-
sor at the Department of Intelligent Systems, Gradu-
ate School of Information Sciences, Hiroshima City
University, Hiroshima, Japan. He has been Treasurer
of IEEE SMC Hiroshima Chapter since 2012. His
research interests include parallel computing, data
engineering, data mining, high performance comput-
ing and evolutionary computation.

Hajime Kitakami received his M.Eng. from To-
hoku University in 1976 and Ph.D. in engineering
from Kyushu University in 1992. He has been a
Professor in the Department of Intelligent Systems,
Graduate School of Information Sciences, Hiroshima
City University in Japan since 1994. His paper was
recorded as the 25th Anniversary Best Paper Award
of Information Processing Society of Japan (IPSJ)
in 1985. He received Paper Award from Japanese
Society for Engineering Education (JSEE) in 2003.
His research interests’include database, data mining,

distributed parallel processing, and bioinformatics. He has been an editorial
board member for Transactions on Mathematical Modeling and its Applica-
tions (TOM), Journal of the Information Processing Society of Japan (IPSJ)
since 2006. Also, he has been an editorial board member for Journal of the
Database Society of Japan (DBSJ) since 2008.

Shingo Tamura is a student at the Department
of Intelligent Systems, Graduate School of Infor-
mation Sciences, Hiroshima City University, Hi-
roshima, Japan. His research interests include docu-
ment stream.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

35 © 2013 GSTF

