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All-small-molecule organic solar cells with over
14% efficiency by optimizing hierarchical
morphologies
Ruimin Zhou1,2,3,4,7, Zhaoyan Jiang1,2,7, Chen Yang1,2, Jianwei Yu5, Jirui Feng6, Muhammad Abdullah Adil1,2,

Dan Deng1, Wenjun Zou1, Jianqi Zhang 1, Kun Lu 1*, Wei Ma6*, Feng Gao 5* & Zhixiang Wei1,2*

The high efficiency all-small-molecule organic solar cells (OSCs) normally require optimized

morphology in their bulk heterojunction active layers. Herein, a small-molecule donor is

designed and synthesized, and single-crystal structural analyses reveal its explicit molecular

planarity and compact intermolecular packing. A promising narrow bandgap small-molecule

with absorption edge of more than 930 nm along with our home-designed small molecule is

selected as electron acceptors. To the best of our knowledge, the binary all-small-molecule

OSCs achieve the highest efficiency of 14.34% by optimizing their hierarchical morphologies,

in which the donor or acceptor rich domains with size up to ca. 70 nm, and the donor crystals

of tens of nanometers, together with the donor-acceptor blending, are proved coexisting in

the hierarchical large domain. All-small-molecule photovoltaic system shows its promising

for high performance OSCs, and our study is likely to lead to insights in relations between

bulk heterojunction structure and photovoltaic performance.
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Organic bulk heterojunction (BHJ) solar cells have attrac-
ted wide attention due to their advantages of lightweight,
low cost, flexibility and compatibility with large-area

printing fabrication1–7. Currently, considerable progress in the
design and synthesis of efficient non-fullerene acceptors, as well
as the device structure optimization has led to a rapid increase in
the power conversion efficiency (PCE) of the organic solar cells
(OSCs). Therefore, the PCE of the polymer solar cells (PSCs) with
the non-fullerene acceptor has boosted to over 16%8. However,
the batch-to-batch reproducibility of polymers still potentially
limits their application on the industrial scale. In comparison
with polymer donors, small-molecule donors possess the advan-
tages of well-defined molecular weight, easy purification and
small batch-to-batch variations9–13. Furthermore, enhanced
crystallization, as well as their tendency to obtain high phase
purity and tune crystal orientations enables fabrication of OSCs
with high charge mobility and low energy losses (Eloss= Eg−
qVOC)12,14,15. Despite all their advantages, the all-small-molecule
organic solar cells (SM-OSCs) still have not shown the same level
of device performance as the PSCs. The biggest challenge is to
control the interpenetrating networks in SM-OSCs, since the
inefficient charge transport pathways would lead to excessive
exciton recombination, decreased charge carrier mobility and
unbalanced charge-transport ability16–18. Hierarchical morphol-
ogy provides a potential strategy for a balanced charge separation
and charge transport simultaneously in this regard14,18–20.
Therefore, the design and synthesis of small-molecule donors that
are matched well with the acceptor materials are vastly important
for optimal morphology and efficient devices.

As a notable aromatic analog of benzodithiophene (BDT),
dithieno[2,3-d:2′,3′-d′]benzo [1,2-b:4,5-b′]dithiophene (DTBDT)
holds a larger coplanar core and an extended conjugation length,
which can effectively improve the properties of photovoltaic
materials compared to BDT-based molecules, such as the charge
carrier transport, reduction in the conformational disorder of the
backbone, and increase the molecular planarity to facilitate electron
delocalization in the solid-state. Accordingly, stronger crystallinity
and more ordered morphology in thin films can be realized21–29.
Sun et al. reported a DTBDT-based polymer PDBT-T1 that
exhibited a high FF of 75% due to the formation of optimized fibril
network morphology21, which is beneficial for efficient photo-
generated exciton dissociation and charge collection. BDT units
have been successfully incorporated into the small-molecule donors
for both fullerene and non-fullerene solar cells17,18,30–35, among
which the highest PCE of 11.50% and 13.63% has been attained for
non-fullerene based binary and ternary blends, respectively30,36.
However, the DTBDT unit has seldom been introduced into the
small-molecule donors in the literature27–29, since blending them
with non-fullerene acceptors could only yield a low PCE of 4.38%,
as reported by Kwon et al.28. The exciton decay loss, that is driven
by an inappropriate phase separation of the small molecules has
been proved to be a crucial factor limiting photocurrent generation
in the SM-OSCs. These results thus suggest that the ability to
modulate the phase separation is the key factor to improve the
photovoltaic performances of SM-OSCs.

In this work, we report a DTBDT-based small-molecule donor
named ZR1 with an A-π-D-π-A architecture. The electron-rich
DTBDT is utilized as the donor (D) unit to effectively extend the
conjugated plane and improve the planarity of the molecule.
Instead of the conventional trithiophene, bithiophene was chosen
as a π bridge to deepen the HOMO level and to increase the
rigidity unit ratio. Owing to the complementary and broad
absorption, the optimized ZR1:Y6 based devices reached the
highest PCE of 14.34% (certified PCE of 14.1%) and exhibited a
low Eloss of 0.52 eV. The single-crystal structure of ZR1 showed
high planarity and a compact molecular packing with a short π−π

stacking, which was well matched with the molecular stacking in
the ZR1:Y6 blend. Hence, the hierarchical morphology plays a
key role in improving charge extraction efficiency and reducing
charge recombination in the corresponding devices. Likewise, a
non-fullerene acceptor IDIC-4Cl with good crystallinity was
synthesized and blended with ZR1. The results showed an
interesting hierarchical phase separation, demonstrating the lar-
gest and smallest domain size of 147.4 nm and 6.2 nm, respec-
tively. The ZR1:IDIC-4Cl blend films exhibited a highest PCE of
9.64%, which is limited by the relatively higher Eloss and wider
bandgap of IDIC-4Cl as compared to Y6.

Results
Materials design and device properties. The molecular structures
of ZR1, IDIC-4Cl, and Y6 are shown in Fig. 1a, while the detailed
synthesis, purification, and characterization procedures are pro-
vided in Supplementary Methods. The small-molecule donor ZR1
was synthesized through the Knoevenagel reaction with high yields
of over 70% (Supplementary Fig. 1). Due to long side chains on its
2D-conjugated thiophene units and rhodanine end acceptor, ZR1
exhibited excellent solubility in chloroform. Hexyl substituted
rhodanine was selected as the ending acceptor (A) group, as our
previous result showed that such configuration leads to the highest
performance37. A recently reported narrow bandgap small-
molecule Y6 with absorption edge more than 930 nm, and a
home-designed acceptor IDIC-4Cl were selected as the electron
acceptors38. The non-fullerene acceptor IDIC-4Cl was also pre-
pared through Knoevenagel condensation with a high yield. IDIC-
4Cl and Y6 also exhibited good solubility in chloroform, which is
beneficial for the fabrication of photovoltaic devices.

The normalized absorption spectra of ZR1, IDIC-4Cl and Y6 in
chloroform solutions and as-cast thin films are shown in Fig. 1b.
The absorption edge of the ZR1 donor is located at ca. 675 nm in
the film, corresponding to a medium optical bandgap of 1.84 eV.
Likewise, the absorption edge of Y6 and IDIC-4Cl acceptor films
are located at ca. 930 nm and ca. 810 nm, corresponding to a
relatively narrow optical bandgap of 1.33 eV and 1.53 eV,
respectively. (Supplementary Table 1). Therefore, the ZR1 donor
can effectively provide complementary absorption for both IDIC-
4Cl and Y6 non-fullerene acceptors, which is beneficial to achieve
high short circuit current density (JSC). Importantly, a large
bathochromic shift of 90 nm from solution to film is observed for
Y6, indicating a good aggregation of the molecular backbone and
π–π interactions in the solid-state.

Cyclic voltammetry (CV) measurements were employed to
evaluate the electrochemical properties of the donor molecule and
the acceptors(Supplementary Fig. 2)39. The onset oxidation and
reduction potentials were used to calculate the HOMO and
LUMO energy levels, and the absolute energy level of FeCp+2/0

was set as −4.8 eV as a reference. The HOMO and LUMO energy
levels of ZR1, IDIC-4Cl and Y6 were calculated to be at –5.32 eV
and –3.53 eV, –5.72 eV and –4.10 eV, and –5.91 eV and –4.10 eV,
respectively (Fig. 1c). Therefore, the ZR1 donor exhibited
appropriate molecular energy level alignment with acceptors
IDIC-4Cl and Y6, necessary for the efficient thermodynamic
driving force for charge separation.

Conventional devices with a device architecture of ITO/poly(3,4-
ethylenedioxythiophene): poly(styrenesulfonate)(PEDOT:PSS)/active
layer/Al were fabricated to evaluate the photovoltaic performance
of the ZR1 donor with IDIC-4Cl and Y6 as the acceptors. The
current density-voltage (J–V) characteristics of the devices were
tested under AM 1.5 G illumination with an intensity of 100 mW
cm−2. The ZR1: Y6 devices were certified at an accredited
laboratory, producing a certifying PCE of 14.1% (Supplementary
Fig. 3). Notably, all devices were fabricated without any additives
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and electron-transporting layer, making them an important
prospect for future industrial manufacturing. The donor/acceptor
ratios of the blending films were carefully optimized to improve
the device performance. Thermal annealing (TA) treatment was a
key factor for improving the morphology of the active layers and
hence further increased the PCE. The ZR1:IDIC-4Cl blends
exhibited the best photovoltaic performance with a D:A ratio of
1:0.7, followed by thermal annealing (TA) at 120 °C for 10 min.
Without TA, the ZR1:IDIC-4Cl devices showed poor photovoltaic
performance with low JSC and fill factor (FF). The highest PCE of
ZR1:IDIC-4Cl blend film reached 9.64%, demonstrating an open-

circuit voltage (VOC) of 0.776 V, a JSC of 18.27 mA cm−2 and a FF
of 67.96% (Fig. 1d, and Table 1, while the device results under
different D:A ratio are summarized in Supplementary Table. 2).
Similarly, the optimized devices with ZR1 as donor and Y6 as
acceptor attained a highest PCE of 14.34% with a VOC of 0.861 V,
a JSC of 24.34 mA cm−2 and a FF of 68.44%, while maintaining a
D:A ratio of 1:0.5 and post-spin coating TA treatment at 120 °C
for 10 min (Fig.1d). Altering the TA temperature to 110 °C
and even 140 °C led to a reduction in device performance as a
VOC of 0.870 V and 0.837 V, a JSC of 24.02 mA cm−2 and 24.49
mA cm−2, FF of 66.20% and 67.90% and a PCE of 13.62% and
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Fig. 1Molecular structures, properties and photovoltaic performance. a ZR1, Y6, IDIC-4Cl molecular structures. b Normalized UV–vis absorption spectra of
ZR1, Y6, IDIC-4Cl in solution and thin films. c Energy diagrams of ZR1, Y6, IDIC-4Cl. d Optimized J–V curves for conventional devices. e EQE corresponding
to devices in d.
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13.91%, respectively were observed. Without TA treatment, the
ZR1: Y6 blends showed poor photovoltaic performance as a VOC

of 0.876 V, a JSC of 14.23 mA cm−2 and an FF of 40.5% was
observed, ultimately leading to a PCE of 5.05% (Supplementary
Table. 3,4). Likewise, the solvent vapor annealing (SVA) did not
show a positive impact as compared to the solely thermal
annealed devices, as a decrease in the JSC and FF was observed
when the corresponding devices were solvent vapor annealed
with THF (Supplementary Table 5). Two donor small molecules
with monothiophene and trithiophene as π bridges, namely ZR1-
T and ZR1-3T, respectively, were also synthesized for the sake of
comparison. The molecule structure, UV-absorption spectrum,
molecule energy levels and device performance are exhibited in
Supplementary Figs. 4, 5, and Supplementary Table 6, respec-
tively. The devices based on ZR1-T:Y6 blends exhibited extremely
poor performance as the HOMO of ZR1-T and Y6 lie at almost
the same energy levels, and hence cannot provide enough driving
force for exciton dissociation and charge transport. For ZR1-3T
blend, a relatively higher HOMO level led to a low VOC of 0.754 V
as compared to 0.861 V for the ZR1 system. Likewise, the JSC and
FF of ZR-3T: Y6 blends were also lower than ZR1-3T: Y6 blends,
resulting in much lower efficiency than ZR1.

The EQE curves of these two systems were measured to
explicate the discrepancy in the JSC values of the devices. The EQE
spectra in Fig. 1e showed that both these systems exhibited broad
absorption, but due to a wide absorption range from Y6, the ZR1:
Y6 curve extended up to 950 nm. These results are identical with
the UV-vis absorption spectra for the molecules. Meanwhile, the
JSC values calculated from the EQE measurements were in
accordance with the J–V results, as shown in Table 1. The
considerable discrepancy in FF values of the two systems could be
resulted by the different crystallinities of the three molecules and
the distinguishing differences in morphologies of the blend films,
which will be discussed in the next section.

Molecular stacking of pristine and blend films. Grazing inci-
dence wide-angle X-ray scattering (GIWAXS) measurements
were performed to study the molecular stacking and crystallinity
of the pure and blend films. The 2D scattering patterns and
intensity profiles in the out-of-plane (OOP) and in-plane (IP)
direction are shown in Fig. 2a–g, and Supplementary Fig. 6,
respectively. The small-molecule donor ZR1 shows an edge-on
orientation demonstrated by the π–π peak located in the IP
direction. Interestingly, after thermal annealing, the ZR1 exhib-
ited strong molecular stacking with diffraction peaks at qz= 1.1
to 1.8 Å−1 that can be associated with the polycrystalline ordering
of ZR1 at 1.71 Å−1 with a π–π stacking distance of 3.67 Å. Single-
crystal X-ray diffraction analysis was performed to further ana-
lyze the molecular structure and packing in their condensed state
(Fig. 2h, i, and Supplementary Fig. 7). The single crystals of ZR1
were prepared by the way of slow diffusion of methanol (poor
solvent) to their chloroform (good solvent) solution. The dihedral
angles between the DTBDT core and π bridge came out to be
3.13° which indicated a high degree of planarity and rigidity in
ZR1. Furthermore, ZR1 showed highly ordered and compact

molecular packing with a short π–π stacking distance with 3.58 Å,
which would definitely improve hole transport. Similar to the
most non-fullerene acceptors, pure Y6, IDIC-4Cl film exhibits
face-on orientation indicated by the π–π peak located at qz=
1.75,1.84 Å−1 (d= 3.59 Å, 3.41 Å), respectively.

It can be seen from the as-cast blend film that the π–π stacking
peak area is located at 1.72 Å−1, which is dominated by the peak of
Y6, and the d-spacing is slightly larger than that of the neat thin film
(Fig. 2c). The strong (010) peak in the out-of-plane direction
indicates a preferable face-on orientation of molecules relative to the
substrate. By increasing the TA temperature, the intensity of (100)
and (010) peaks, as well as the ratio of (010) in the out-of-plane
direction is also increased. Furthermore, for the TA temperatures of
120 °C and 140 °C, an additional peak at 0.59 Å−1 in the IP and
OOP direction is observed, indicating the presence of ZR1 crystals.
A clear feature comprising of face-on and edge-on crystallites was
observed in the thermally annealed films at 120 °C and 140 °C,
suggesting the co-existence of vertical and parallel charge
transportation channels in the sandwich device structure. In
comparison, the pristine blend film of ZR1: IDIC-4Cl also exhibited
face-on orientation with relatively weak peak intensities (Supple-
mentary Fig. 3). Upon thermal annealing, significantly stronger
peaks with narrower widths, accompanied by the presence of new
peaks, such as the secondary and third lamellar peaks from donor
component, were clearly discernible. Furthermore, the stronger and
sharper lamellar (100) and (200) diffraction peaks of IDIC-4Cl
appeared, indicating significantly enhanced crystallinity of the
donor and acceptor as a consequence of thermal annealing.

The Scherrer equation was employed to calculate the crystal
coherence lengths (CCL) of the crystallites40. The CCL (100) in
the OOP direction of pure ZR1 film came out to be 7.31 nm and
10.89 nm, before and after TA, respectively, indicating improved
crystallinity post thermal processing. Likewise, the CCL (100) of
the ZR1:Y6 film in the OOP direction turned out to be 4.07 nm,
6.21 nm, 6.50 nm, 6.90 nm for the as-cast and films annealed at
110 °C, 120 °C, and 140 °C, respectively.

Morphology analysis. The morphological evaluation of the ZR1:
Y6 and ZR1:IDIC-4Cl blends were investigated by using the
transmission electron microscopy (TEM) and Resonant soft X-
ray scattering (RSoXS) measurement (Fig. 3). Astonishingly, the
primary domain sizes of ZR1:Y6 blends and ZR1:IDIC-4Cl were
relatively large, which is normally believed to be a drawback for
exciton diffusion and dissociation. After TA treatment, phase
separation got even more enhanced as a consequence of even
larger domain sizes. Moreover, increasing the TA temperature
beyond 120 °C led to the formation of numerous aggregates with
a large aspect ratio, which can be assigned to the ZR1 donor
which is consistent with the GIWAXS measurements. Since the
best performance transpires when the devices are thermally
annealed at 120 °C, the presence of a small number of ZR1
crystals are indicative of facilitating the charge transport, while
excessive crystals would lead to a reduction in the charge gen-
eration efficiency as a consequence of ineffective D:A interaction
at the interface. ZR1:IDIC-4Cl blends, on the other hand, show
fibrous features with more evenly distributed domains. Such
fibrous morphology may be beneficial for the bi-continuous
interpenetrating networks, essential for efficient charge transport
and hence enabling relatively high JSC and FF.

RSoXS was employed for investigating the phase separation
and phase purity of the blending films. The photon energy of
284.2 eV was selected to achieve the optimized material contrast.
The large domain sizes for ZR1:Y6 based blends, for as-cast and
films annealed at 110 °C, 120 °C, and 140 °C came out to be 73.4,
72.3, 73.9, and 83.4 nm, respectively (Supplementary Table 7),

Table 1 Detailed photovoltaic parameters of the OPV cells.

Donor/
acceptor

VOC [V] JSC [mA cm−2] FF [%] PCE [%]

Best Averagea

ZR1:Y6 0.861 24.34 68.44 14.34 14.27
ZR1:IDIC-4Cl 0.776 18.27 67.96 9.64 9.58

aThe average PCE values were obtained from top 10 devices
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and exhibited a relatively increasing tendency along with
increasing thermal temperature, which matches well with TEM
results above. Moreover, the small phase area appeared to be
coexisting at the same time for ZR1:Y6 based blend films, under
as-cast, 110 °C, 120 °C, and 140 °C thermal annealing conditions,
at a domain size ca. 10 nm. The relative domain purities of ZR1:
Y6 blends for as-cast and films annealed at 110 °C, 120 °C, and
140 °C were calculated to be 0.87, 0.90, 0.95, and 1, respectively,
and also exhibited an increase along with increasing thermal
temperature. For ZR1:IDIC-4Cl films annealed at 120 °C, the
domain size of the coexisting large and small phase area turned
out to be 147.4 nm and 6.2 nm, respectively (Fig. 3h). These
results suggest the formation of a hierarchical morphology within
the blend i.e., a smaller donor phase, having a size very close to
the exciton diffusion length of ca. 10 nm which accounts for the
efficient charge separation, along with a larger donor phase that is
responsible for the efficient charge transport within the system. In
contrast to the previous reports about the SM-OSCs’ hierarchical
morphology18, the donor crystals, about 100 nm long and 30 nm
wide, were also observed. The presence of these optimized
hierarchical morphologies indicated that the nano-structural
characteristics with multiple length scales, as well as coexisting
crystals are among key factors for high performance.

To understand the role of this hierarchical morphology, the
charge transport properties were investigated for as prepared
pristine and blend films, as well as for the blend films at the
optimized device conditions. The space charge limited current
(SCLC) method was employed to measure the mobility of the
mentioned systems. A device architecture of (ITO/PEDOT:PSS/
active layer/MoOx/Ag) was maintained for examining the hole only
devices, whereas for electron-only devices, an architecture of (ITO/
ZnO/Active layer/Al) was employed. The hole (μh) mobilities of the
ZR1: IDIC-4Cl and ZR1: Y6 films were calculated to be 3.30 × 10−4

cm2 V−1 s−1 and 1.32 × 10−4 cm2 V−1 s−1, respectively, whereas

the electron (μe) mobilities came out to be 4.55 × 10−4 cm2 V−1 s−1

and 3.92 × 10−4 cm2 V−1 s−1, respectively. (Supplementary Table 8).
Thus, these results reflect that the hierarchical morphologies of both
systems are efficient for charge transport.

Energy loss. According to the Shockley–Queisser (SQ) limit, the
energy loss (qΔVOC) in solar cells can be sorted into three parts 41:

qΔVOC ¼ Eg � qVOC ¼ Eg � qVSQ
OC

� �

þ qVSQ
OC � qV rad

OC

� �þ qV rad
OC � qVOC

� � ð1Þ

¼ Eg � qVSQ
OC

� �
þ qΔV rad; below gap

OC þ qΔVnon�rad
OC ð2Þ

¼ qΔV1 þ qΔV2 þ qΔV3 ð3Þ
Where VSQ

OC is the maximum voltage in the SQ, and V rad
OC is the

open-circuit voltage when there is only radiative recombination
in the device. It is widely known that qΔV1 is inevitable for
any solar cell and relies only on the band gap (Eg) of the
absorber for a definite solar spectrum and temperature. Here,
we used the photovoltaic band gap energy (EPVg), which is
extracted from EQE spectra to determine the qΔV1

42 and the
Eloss (ZR1:Y6, Eloss= 0.52 eV). As shown in Table 2, ZR1:Y6
blends show the qΔV1 value of 0.26 eV, which is similar to that
of ZR1:IDIC-4Cl (0.28 eV). qΔV2 (qΔV2= q V rad;below gap

OC ) is due
to the extra radiative recombination from the non-step function
absorption below the gap. Hence, Fourier-transform photo-
current spectroscopy external quantum efficiency (FTPS-EQE)
was applied to evaluate the qΔV2 in the both systems. For
the ZR1:IDIC-4Cl blends, due to their large HOMO offsets, a
sub-gap absorption by charge-transfer (CT) states is clearly
visible in the FTPS-EQE spectra (Fig. 4)43. While for ZR1:Y6
blends, which show reduced HOMO offsets, the FTPS-EQE
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onset is almost equal to that of the Y6. The electroluminescence
(EL) spectra were also in agreement with the FTPS-EQE mea-
surements as a spectrum close to the pristine devices was
observed for the ZR1:Y6 blends, while the ZR1:IDIC-4Cl blends
show strong redshift as compared to the pristine devices
(Supplementary Fig. 8). Hence a significant difference in the
qΔV2 values is observed for the two systems (0.04 and 0.12 eV,
respectively) due to distinct and red-shifted CT absorption in
the latter system. Interestingly, in contrast to the other low
energy loss OSCs, which have minimized energy offsets, ZR1:Y6
blends possess relatively large energy offsets. Even though no
conspicuous and red-shifted CT absorption was observed,
leading to a quite small qΔV2 of 0.04 eV15. The physical

mechanisms behind it are still unclear, which is out of our scope.
qΔV3 (qΔV3= qΔVnon�rad

OC =−kT ln(EQEEL) is observed due to
nonradiative recombination, where EQEEL is radiative quantum
efficiency of the photovoltaic device when charge carriers are
injected in dark conditions. The enhancement of the EQEEL
indicates reduced nonradiative recombination losses in the cor-
responding system. As shown in Table 2, the EQEEL for ZR1:Y6
(1.1 × 10−4) is significantly higher than ZR1:IDIC-4Cl blends
(5.0 × 10−7), which indicates a low qΔV3 value for ZR1:Y6 (0.24
eV) whereas, a high qΔV3 for ZR1:IDIC-4Cl (0.38 eV) system. As
a result, the ZR1:Y6 system manages to demonstrate modest
energy losses and ultimately, leads to enhanced device perfor-
mance under optimized hierarchical morphologies.

ZR1:Y6 as-prepared ZR1:IDIC-4Cl as-prepared

ZR1:Y6 As-prepared

ZR1:IDIC-4Cl 120 °C

ZR1:Y6 110 °C

ZR1:Y6 120 °C ZR1:Y6 140 °C
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Fig. 3Morphology analysis of ZR1:Y6 and ZR1:IDIC-4Cl blends. a–f TEM images of blends films obtained at different annealing temperatures, and the scale
bars are all 200 nm. g,h RSoXS profiles of blends films.

Table 2 Detailed VOC losses of the ZR1: Y6, ZR1: IDIC-4Cl-based OPV cells.

Devices Eg(eV) EQEEL qVSQ
OC(eV) qVrad

OC (eV) ΔE(eV) ΔE1Egap � qVSQ
OC(eV) ΔE2 qVrad;blew gap

OC (eV) ΔE3 qVnon�rad
OC (eV) Vcal

OC(eV)

ZR1:Y6 1.38 1.1 × 10-4 1.12 1.08 0.54 0.26 0.04 0.24 0.84
ZR1:IDIC-4Cl 1.55 5.0 × 10-7 1.27 1.15 0.78 0.28 0.12 0.38 0.77
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Discussion
Herein, we report the synthesis of a DTBDT-based small-mole-
cule donor, ZR1, and fabricated SM-OSCs by individually blending
it with Y6 and IDIC-4Cl as acceptors. The ZR1:Y6 OSCs were able
to produce an excellent PCE of 14.34% (certified PCE of 14.1%),
courtesy a characteristic high JSC of 24.34mA cm−2 due to a rela-
tively broader absorption spectrum of Y6 small molecule. Fur-
thermore, TEM and RSoXS results revealed the ZR1:Y6 blends to
form an optimizing hierarchical morphology due to the high
crystallinity of ZR1.The strong crystallinity of small molecules
generally increase the possibility of forming oversized phase-
separated domains in the blended films, leading to low JSC and FF
values. In this study, however, the existence of hierarchical
morphologies is important for the charge separation and transport,
and ultimately led to a high PCE. Considering all the evaluations,
especially the CCL analysis, a certain number of ZR1 crystals and
amorphous ZR1-Y6 intermixed regions within large ZR1-rich
domains contributed to exciton dissociation in the bulk hetero-
junction. This assumption is further verified by the decrease of
device efficiency after being annealed at 140 °C, in which excessive
ZR1 nanocrystallite aggregates led to unbalanced charge transfer
with lower FF. Besides ZR1’s high crystallinity that facilitates
excellent charge transport, the energy loss in ZR1:Y6 has also been
simultaneously reduced. A steep FTPS-EQE spectrum tail is
observed in the ZR1:Y6 configuration and thus leads to a much
smaller qΔV2 (0.04 eV). Similarly, the EQEEL measurements for the
ZR1:Y6 based device displays a high EQEEL of 1.1 × 10−4, also
indicating that the calculated non-radiative energy loss here is as

low as 0.24 eV. All these reductions in Eloss therefore, contribute to
the increase VOC of the corresponding devices. Hence, this work
provides opportunities to design highly efficient small-molecule
donors for SM-OSCs by optimizing their hierarchical morphologies.

Methods
Materials. The small-molecule donor ZR1 and the acceptor IDIC-4Cl were syn-
thesized via referencing the reported literature. The detailed synthetic methods and
characterizations of the molecular structures have been included in Supplementary
Information.

Fabrication and measurement of OSC device. The devices were fabricated with a
conventional structure of glass/ITO/PEDOT:PSS/active layer/Al. The ITO-coated
glass substrates were cleaned by ultrasonic treatment in detergent, DI water, acetone
and isopropyl alcohol for 20min at each step. An interlayer of PEDOT:PSS was
spin-coated at 4000 r.p.m. onto the ITO surface. The substrates were baked at 150 °
C for 15min and then transferred into a nitrogen-filled glove box. The total con-
centration of mixture of ZR1 and Y6/IDIC-4Cl was ca. 15mgml−1/17mgml−1,
and the mixture solution was stirred at 50 °C in chloroform for ca. 0.5 h until the
solute was fully dissolved. Subsequently, the active layer was spin-coated from
mixture solutions of ZR1+Y6 or ZR1+IDIC-4Cl. Finally, a layer of 100 nm Al layer
by vacuum vapor deposition (cal. 1 × 10−5 Pa) was used as top electrode

Newport Thermal Oriel 91159 A solar simulator was used for J–V curves
measurement under AM 1.5 G (100 mW cm−2). Newport Oriel PN 91150 V Si-
based solar cell was applied for light intensity calibration. J–V measurement signals
were recorded by a Keithley 2400 source-measure unit. Device area of each cell was
approximately 4 mm2. Oriel Newport system (Model 66902) equipped with a
standard Si diode was used for EQEs test in air condition.

UV visible absorption and molecular energy level measurements. JASCO V-
570 spectrophotometer was used for UV visible spectra. The energy levels were
tested by the way of Cyclic voltammetry (CV) measurement which were conducted
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in a 0.1 mol L−4 tetrabutylammonium phosphorus hexafluoride (Bu4NPF6) in
acetonitrile solution. Pt electrode coated with ZR1, IDIC-4Cl, Y6 films was used as
working electrode, Pt plate was used as counter electrode, and Ag/Ag+ electrode was
used reference electrode, respectively. Redox potentials were internally calibrated
using the ferrocene/ferrocenium (Fc/Fc+) redox couple (−4.8 eV). The experiment
was carried out at an electrochemical workstation (VMP3 Biologic, France).

Charge carrier mobility, TEM, and GIWAXS characterizations. The procedures
of the device for charge carrier mobility measurement were the same for solar cell
devices, except the top electrode was Au (100 nm). The current density-voltage (J–
V) curves in the range of 0 to 5 V were gained by a Keithley 2400 Source-Measure
Unit in the dark in the air. Tecnai G2 F20 U-TWIN TEM instrument was used for
Transmission electron microscopy (TEM) test. Films for the TEM test were made
by spin-coating in the same condition for solar cell devices on ITO substrates. After
annealing, the blending films were immersed in water, and the floating active layers
were transferred to the TEM grid.

GIWAXS and RSoXS characterization. GIWAXS was measured using the
beamline of 7.3.3 and R-SoXS transmission was measured at a beamline of 11.0.1.2
at the Advanced Light Source (ALS). The blending or neat films for GIWAXS and
R-SoXS transmission were made by the same method for device active layer except
for the substrate as Si/PEDOT:PSS.

FTPS-EQE spectra and EQEEL. FTPS-EQE measurement was performed at a
Vertex 70 from Bruker Optics, which equipped with a quartz tungsten halogen
lamp, quartz beam-splitter and external detector option. The amplification of the
photocurrent product was achieved by using a low-noise current amplifier (SR570)
on the illumination of the photovoltaic devices with light modulated by the Fourier
transform infrared spectroscopy (FTIR). The external detector port of the FTIR
gathered the signals from the current amplifier for output voltage. A Keithley 2400
SourceMeter was used for supplying voltages and recording injected current, and a
Keithley 485 picoammeter was used for measuring the emitted light intensity.

Data availability
The data supporting the results of this work are available from the corresponding author
upon reasonable request. The supplementary crystallographic data for this work could be
checked in The Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.
uk/data_request/cif by the series number as 1954438.
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