
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IR@CGCRI - Central Glass and Ceramic Research Institute (CSIR)
Activating ZnO nanorods photoanodes in visible light by CdS surface sensitiser
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Thin films of c-axis aligned uniform ZnO nanorods (NRs) were fabricated on to fluorine-doped tin oxide-coated soda lime glass substrate by a
two-step chemical route. Thereafter ZnO NRs/CdS core shell structures were successfully synthesised by depositing CdS layer on top of
vertically aligned ZnO NRs using less hazardous nanocrystal layer deposition technique. The presence of CdS in ZnO NRs/CdS core shell
structures was confirmed by energy dispersive X-ray analysis. Examination of structure and morphology of the fabricated films by X-ray
diffraction (XRD) and field emission scanning electron microscopy (FESEM) revealed that both films have one-dimensional hexagonal
wurtzite structure. Optical properties evaluated from ultraviolet–visible and photoluminescence spectra demonstrated better photo response
of ZnO NRs/CdS core shell structure with respect to bare ZnO NR structure. Optical to chemical conversion efficiency of ZnO NRs/CdS
photoanode was found to be ∼1.75 times higher than bare ZnO NRs photoanode in photo electrochemical water splitting under visible light.
1. Introduction: In the present decade, development of nano-
structured materials with core/shell type structure is drawing interest
in the field of photovoltaic, photo electrochemical (PEC), opto-
electronic, biological and chemical applications [1, 2]. PEC pro-
cesses are presently being used in the conversion of clean and
earth abundant solar energy to storable chemical energy. ZnO
is being extensively studied as a semiconductor photoelectrode
material for PEC water splitting due to its low cost, wide band
gap, non-toxicity, high electron mobility and high mechanical and
thermal stability [3, 4]. However, a very small percentage of light
[mainly ultraviolet (UV)] present in the solar spectrum can be
absorbed and utilised by ZnO due to its wide band gap of
∼3.37 eV. To exploit the visible region of the solar spectrum,
various narrowband gap semiconductors such as CdS, CdTe,
CdSe, PbS, and PbSe are used as sensitising materials with large
band gap ZnO [2, 5–7] for increasing its efficiency during PEC
water splitting. Among them, CdS can be the semiconductor of
choice for sensitising ZnO due to well visible light harvesting
capability, high abundance and low production cost [2, 5–16].
The similarity in the crystal structure, congruousness in band
alignment and wide spectrum utilisation make CdS compatible to
ZnO to construct efficient core/shell type heterostructure composite
which results in increased photo-generated charge carriers and their
separation [7]. CdS have a higher electron affinity than ZnO.
According to Anderson’s model, between CdS and ZnO a type II
heterostructure is formed. As the visible light is radiated on the
ZnO nanorods (NRs)/CdS composite, the electron is generated in
the conduction band of CdS and it jumps to the conduction band
of ZnO by ballistic diffusion [17]. The time required for an electron
to be transferred from the conduction band of CdS to the conduction
band of ZnO is about 18 ps, which is less than the lifetime of
an electron in CdS [18]. Hence, it is expected that high PEC conver-
sion efficiency can be achieved when ZnO NRs sensitised with
CdS are used as photoelectrodes.
In the present study, synthesis and characterisation of one-

dimensional (1D) ZnO NRs & ZnO NRs/CdS core shell structures
are reported. After a detailed structural and morphological examin-
ation, the optical properties are correlated with PEC properties.
From experimental results, it was observed that the ZnO NRs/
CdS core shell shows better photo response and high PEC activity
in the visible region than bare ZnO NRs. The mechanism behind
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the improved optical and PEC properties of ZnO NRs/CdS core
shell in the visible region is also discussed.

2. Experimental
2.1 Chemicals: All reagents were of analytical grade and
purchased from Sigma-Aldrich and Merck. Potassium nitrate
(KNO3, 98%), zinc acetate di-hydrate [Zn(CH3COO)2·2H2O,
99%], di-ethanolamine (C4H11NO3, 99%), isopropanol (C3H8O,
99%), cadmium sulphate (CdSO4, 99%), nitric acid (HNO3, 70%)
and thioacetamide (C2H5NS, 99%) were used.

2.2 Preparation of ZnO NRs: ZnO NRs were deposited on fluorine-
doped tin oxide (FTO)-coated soda lime glass (SLG) substrate
(Techinstro, sheet resistance 15Ω/□) using spin coating followed
by electro chemical deposition technique. Spin coating was used
at 1500 rpm for 30 s to deposit ZnO seed layer using the precursor
solution which was prepared by adding 0.5 M Zn (CH3COO)2 and
0.5 M di-ethanolamine in isopropanol [19]. The coated sample was
dried on a preheated hot plate at 180°C for 10 min. The process of
coating and drying was repeated five times to obtain the desired
thickness of the seed layer. The prepared seed layer was then ther-
mally treated in air at 400°C for 60 min.

Electrochemical deposition of ZnO NRs was carried out on
to ZnO seed layer in the chronoamperometric mode with
VWE/CE =−1.1 V for 15 min at a temperature of 80°C using
Metrohm Autolab PGSTAT302N electrochemical workstation.
The seed layer coated FTO substrate was used as the working
electrode (WE) while a 99.9% pure zinc plate (Alfa Aesar) was
used as the counter electrode (CE). For deposition of pure ZnO
film, an aqueous precursor solution of 50 mM Zn (CH3COO)2
and 0.1 M KNO3 was used. The pH of the precursor solution was
adjusted to ∼5.8 using 2 mM HNO3 [20]. The electrodeposition
potential was predetermined using linear sweep voltammetry
(LSV) performed in the precursor solution. The as-deposited
films were washed with distilled water and air dried at room tem-
perature and placed for annealing at 400°C for 60 min in the air.
Uniform and well adhered pure ZnO film was found to be deposited
on the seed layer.

2.3 Deposition of CdS layer: CdS buffer layer was coated on the
surfaces of the prepared ZnO NRs using nanocrystal layer
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deposition (NCLD) technique [19, 21]. An aqueous precursor solu-
tion containing 20 mM CdSO4 and 20 mM thioacetamide were
mixed and sonicated for 10 min. ZnO NRs deposited on FTO sub-
strate were placed in the solution for 60 min at room temperature.
Once deposition was complete, the colour of the transparent sub-
strate became yellow. The as-deposited samples were thoroughly
cleaned with deionised water and dried in air. Finally, the
as-prepared FTO/ZnO/CdS samples were annealed in air at 350°C
for 30 min. The various steps needed for the formation of ZnO
NRs/CdS core shell is schematically shown in Fig. 1 and the
photo of the deposited thin film is shown in Fig. 2

The NCLD technique is a modified chemical bath deposition
(CBD) approach that enables selective deposition on to ZnO NRs
only. Being an amphoteric compound, ZnO easily suffers from
leaching under both low and high pH conditions at the (002)
facet which has low surface energy [21]. So the pH of NCLD pre-
cursor solution was kept near ∼6.6 in order to minimise the possi-
bility of etching of ZnO surface.

2.4 Thin film characterisation: X-ray diffraction (XRD) studies
were carried out for phase identification using a Bruker D8
Advance Davinci XRD System with Cu Kα radiation (λ= 1.54Å,
1.6 kW, 40 mA, scan rate = 0.05°/s, 2θ= 20°–80°). The morpho-
logical properties of the ZnO NRs and ZnO NRs/CdS core shell
were studied using a ZEISS (SIGMA) field emission scanning elec-
tron microscope (FESEM). For this study, the sample was prepared
by giving a coating of a thin layer of graphite using high vacuum
evaporation (carbon evaporator, make: Edwards (UK)) to avoid
charging effect and to improve the signal-to-noise ratio. The
energy dispersive X-ray (EDX) analysis of ZnO NRs/CdS core
shell was carried out using EDAX model X-Max manufactured
by Oxford instrument (UK). The UV–visible (Vis) optical
absorption spectrum was recorded on a Shimadzu UV3600PC
UV–Vis–near-infrared spectrophotometer and photoluminescence
Fig. 1 Schematic representation of the formation of ZnO NRs/CdS core
shell thin film

Fig. 2 Optical image of fabricated thin films
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(PL) spectrum was measured by a Perkin Elmer LS55 spectro-
photometer using an excitation wavelength of 350 nm at room tem-
perature. For investigation of PEC behaviour, ZnO NRs and ZnO
NRs/CdS shell photoanodes were used as a working electrode
(WE), Pt wire was used as a counter electrode (CE) and Ag/
AgCl/3 M KCl was used as a reference electrode. 0.5 M Na2SO4

was used as the electrolyte. Electrochemical work station
(Metrohm Autolab PGSTAT302N), a 150 W Xenon Arc Lamp
with illumination intensity of 100 mW cm−2 (AM1.5), a 420 nm
glass filter (used to block UV light), a quartz wafer filter (used to
remove infrared radiation >800 nm) and a light chopper unit were
employed for chronoamperometry ( j–t) and linear sweep volta-
mmetry ( j–v) experiments. The overall transmittance (T ) for
visible light illuminating the photoanode was 0.8.

3. Results and discussion
3.1 Structure and morphology: The phase and crystal structure of
the prepared thin films were confirmed by XRD analysis (Fig. 3).
Prior to CdS deposition, one main peak corresponding to
ZnO (002) was confirmed at 34.4548°. Unit cell parameters
a= 3.253 Å and c = 5.206 Å are calculated using the lattice equa-
tion of the wurtzite structure (1) [22]

a = dhkl

�����������������������������
4

3
h2 + hk + k2
( )+ l2

a

c

( )2√
, (1)

where h, k, and l are miller indices and dhkl is the interplanar dis-
tance. The calculated values of a and c agreed well with the
ICDD pdf card no. 01-082-8987. The intense (002) ZnO diffraction
peak confirmed that the ZnO NRs were highly crystalline with a
hexagonal wurtzite structure. In addition, the preferential growth
of the ZnO NRs was perpendicular to the substrate, which was con-
firmed by FESEM images shown in Fig. 4a. Since ZnO NRs were
single crystals with c-axis aligned along their longitudinal axis, the
degree of crystallographic orientation indicated the verticality of the
NRs (1D). The results confirmed that ZnO NRs were well-shaped
c-axis oriented hexagonal columns and improvement of these
characteristics is attributed to the use of ZnO seed layer [23]. The
remaining weak diffraction peaks were observed and positioned
at 31.7596°, 36.2516°, 47.5481°, 56.5576°, 62.8625°, 65.4727°,
67.9053° and 72.6534° corresponding to 100, 101, 102, 110,
103, 200, 112 and 004 reflecting planes of ZnO crystallites,
respectively.

The CdS layer deposited by NCLD was not observed from XRD
analysis. This might be due to the smaller amount of CdS nanocrys-
tal deposition on the surface of ZnO NRs [19].

FESEM images were obtained to study the surface morphology
of the prepared ZnO NRs and ZnO NRs/CdS core shell thin
films. The top view of FESEM micrograph of ZnO NRs (Fig. 4a)
shows a compact hexagonal wurtzite surface morphology with
dense and uniform hexagonal NRs along the c-axis (1D). The
Fig. 3 XRD pattern of bare ZnO NR and ZnO NRs/CdS core shell thin films
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Fig. 4 FESEM images of
a ZnO NRs, (inset) cross-sectional view
b ZnO NRs/CdS core shell, (inset) cross-sectional view

Fig. 6 UV–Vis absorption spectra of ZnO NRs and ZnO NRs/CdS core shell
nanostructure
diameters of the ZnO NRs are∼ 50 nm. From the cross-sectional
view (Fig. 4a inset) of the ZnO NRs, it is observed that the
lengths of the ZnO NRs are ∼2 µm. The top view of the FESEM
micrograph of ZnO NRs/CdS shell (Fig. 4b) depicts that CdS nano-
particles are embedded into the surface of ZnO NRs forming a
uniform cell layer. The cross-sectional view of ZnO NRs/CdS
shell (Fig. 4b inset) further shows that the length and diameter of
ZnO NRs are not affected due to CdS shell layer deposition.
EDX analysis of ZnO NRs/CdS core shell was carried out to

analyse the chemical composition. The EDX spectrum in Fig. 5
shows the elemental composition, which confirms the presence of
Zn, O, Cd, and S.

3.2 Optical properties: From the UV–Vis absorption spectrum of
bare ZnO NRs (Fig. 6) thin films, it is observed that the films are
a good absorber of UV light. From the absorption spectra of ZnO
NRs/CdS core shell nanostructure, it has been observed that there
is a considerable increase in absorbance in the visible region after
coating with a CdS shell layer. The absorption edge of bare ZnO
NRs at 391 nm is red shifted to 523 nm after the coating, thus
Fig. 5 EDX spectrum of ZnO NRs/CdS core shell thin film
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covering most of the visible region. This is one of the most import-
ant reasons behind the use of CdS as a sensitiser to ZnO NRs.

Optical band gaps for both ZnO NRs and ZnO NRs/CdS core
shell thin films were derived using Tauc’s equation (2)

ahn( )2= A hn− Eg

( )
, (2)

where hν is the photon energy, Eg is the optical band gap, A is a con-
stant and α is the absorption coefficient.

Values of optical band gaps for ZnO NRs & ZnO NRs/CdS core
shell were found to be 3.165 and 2.368 eV, respectively (Fig. 7),
which agree well with previously reported values in the literature
[24–26]. The measurement values also indicate the presence of
CdS with ZnO nanostructure.

Fig. 8 shows room temperature PL spectrum of prepared samples
at an excitation wavelength of 350 nm. It is observed that the
spectrum consists of near-band edge (NBE) as well as deep level
emissions. The bare ZnO NRs emit a strong UV luminescence
NBE peak at 387 nm. This NBE emission is attributed to radiative
recombination of free excitons [7, 27]. Another luminescence peak
Fig. 7 Optical bandgap determination of bare ZnO NRs and ZnO NRs/CdS
core shell nanostructure
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Fig. 8 PL spectra of ZnO NRs and ZnO NRs/CdS thin films Fig. 10 Change in photocurrent density as a function of applied bias
potential
appearing at 485 nm is responsible for blue emission and it origi-
nates due to the electron transition from the shallow donor level
(ionised oxygen vacancies/zinc interstitials) to the top of the
valence band [28]. The emission (NBE as well as a deep level)
from ZnO NRs is greatly reduced in case of ZnO NRs covered
with CdS shell layer. Reduction in PL intensity is partly due to
the absorption of incident light and emissions from ZnO NRs by
CdS shell layers. The band alignment in ZnO NRs/CdS core shell
structures facilitates spatial separation of charges, which efficiently
suppresses the radiative recombination of photo-generated electrons
and holes and resulted in PL quenching [7]. The spatial charge sep-
aration and resultant PL quenching should be the major factor for
PL intensity reduction in the measured PL spectrum of ZnO NRs/
CdS. The green emission peak centred at 522 nm in PL of ZnO
NRs/CdS is attributed to NBE emission associated with the radia-
tive recombination of free excitons in CdS at room temperature [7].

3.3 PEC analysis: PEC activity of the ZnO NRs and ZnO NRs/CdS
core shell photoanode was determined using chronoamperometry
(Fig. 9) and LSV (Fig. 10) techniques. The LSV measurements
were conducted at −0.5 to 1.0 V versus Ag/AgCl/3 M KCl in
0.5 M Na2SO4 electrolyte. The photocurrent density versus time
graph of bare ZnO NRs and ZnO NRs/CdS core shell films in
0.5 M Na2SO4 solution was recorded at zero bias potential versus
Ag/AgCl/3 M KCl. As shown in Figs. 9 and 10, photocurrent
density of ZnO NRs/CdS core shell photoanode is much higher
than bare ZnO NRs photoanodes. The maximum photocurrent
density observed for ZnO NRs/CdS core shell photoanodes was
1.75 mA cm−2 at zero bias potential, which is similar in value
reported by Yang et al. [7] (1.7 mA cm−2 at 0 V versus saturated
calomel electrode (SCE)) and higher than the reported value of
Iyenger et al. [15] (0.21 mAcm−2 versus reversible hydrogen elec-
trode (RHE)) under identical illumination conditions. Fig. 8 shows
photocurrent density of ZnO NRs/CdS core shell photoanode has a
Fig. 9 Change in photocurrent density as a function of time
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transient increase when the light is turned on and a fast decrease
when the light is turned off, indicating that the ZnO NRs/CdS
core shell photoanodes have a fast response speed. A large effective
surface area of ZnO NR structure in close proximity with CdS nano-
particles layer results in fast transport of photo-generated electrons
and holes.

The band gap diagram of ZnO NRs/CdS composite is shown in
Fig. 11. Due to illumination, direct photo excitation occurs that lead
to the generation of electron–hole pair. The electrons generated in
CdS coating by visible light excitation will transfer in the conduc-
tion band of the ZnO NRs and subsequently to the FTO and to Pt
counter electrode to generate H2 through reduction of protons,
while the photo-generated holes in the CdS layer would react
with water to generate O2 [6–8].

The optical to chemical energy conversion efficiency can be cal-
culated using (3) [6, 7]

h %( ) = jph 1.23− VRHE

( )× 100%

TP0
. (3)

Here jph is the photocurrent density (mA cm−2), P0 is the incident
light intensity (100 mW cm−2), T is the transmittance of light inci-
dent on photo electrode (0.8 in this study) and VRHE is the applied
bias potential versus RHE. VRHE is related to the applied potential
versus Ag/AgCl/3 M KCl (VAg/AgCl/3 M KCl), according to the
Nernst equation (4) [7]

VRHE = VAg/AgCl/3M KCl + 0.059 pH+ 0.210. (4)

The optical to chemical conversion efficiencies h
( )

of the photoa-
nodes were calculated according to (3). As shown in Fig. 12, optical
Fig. 11 Schematic representation of energy levels of the ZnO NRs/CdS core
shell structure
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Fig. 12 Optical-to-chemical conversion efficiency of the bare ZnO NRs and
ZnO NRs/CdS core shell photoanodes
to chemical conversion efficiency (η) of 1.07% is obtained at 0 V
versus Ag/AgCl/3 M KCl for ZnO NRs/CdS core shell photoanode,
compared to 0.19% for the bare ZnO NRs photoanode. The
maximum efficiency for ZnO NRs/CdS core shell photoanode is
∼2.357% (at 0.305 V versus Ag/AgCl/3 M KCl), which is about
1.75 times higher than that of bare ZnO NRs (1.35% at 0.406 V
versus Ag/AgCl/3 M KCl) indicating the enhanced PEC activity
of ZnO NRs/CdS core shell photoanode. The achieved photocurrent
conversion efficiency (PCE) in this work is much higher than that
reported by Rokade et al. [6] (0.29% at 0.5 V versus SCE) and
Yang et al. [7] (1.35% at 0.17 V versus RHE) under identical illu-
mination conditions.
All these results suggest that the addition of the CdS layer on ZnO

NRs’ arrays is beneficial for higher light absorption in the visible
region. It results in enhancement of interfacial charge transport
and separation efficiency of photo-generated charges, which leads
to improvement of photocurrent conversion efficiency in water split-
ting. Besides, the bottom layer of the ZnO NRs/CdS core shell
photoanode has a uniform, dense, 1D, long ZnO NRs structure,
which facilitates faster and unidirectional electron transport [29, 30].
In most of the previous works, CdS was deposited on to ZnO

NRs by conventional solution-based (CBD or Successive Ion
Layer Absoption and Reaction (SILAR)) techniques [2, 5, 6] or
more complex pulsed laser deposition techniques [7]. In CBD or
SILAR techniques, contact between solution and ZnO NRs
results in degradation of ZnO NRs. Reduction in the length of the
ZnO NRs results in loss of support for the adherent CdS nano-
crystals. Also, in conventional solution-based techniques, growth
of isolated CdS particle was observed instead of ZnO NRs/CdS
core shell structures. In this present work, pH of NCLD precursor
solution was kept at ∼6.6, which minimised leaching of ZnO
NRs. The NCLD technique also enabled selective deposition of
CdS nanocrystals on top of ZnO NRs which led to the formation
of uniform CdS shell layer preserving ZnO NRs core structure.

4. Conclusion: Vertically aligned uniform 1D ZnO NRs and ZnO
NRs/CdS core shell structures have been successfully synthesised
on FTO-coated SLG substrate employing cost effective chemical
routes and less hazardous NCLD technique. Hexagonal wurtzite
1D structures of the thin films were confirmed by the XRD and
FESEM studies. Vis light absorption ability of wide band gap ZnO
NRs was enhanced by coating narrow band gap CdS on the surfaces
of ZnO NRs. ZnO NRs/CdS core shell showed improved optical
band gap, increase in absorption in the Vis region and higher PCE
activity. An optical-to-chemical conversion efficiency of 2.357%
was achieved for ZnO NRs/CdS core shell photoanode which is
about 1.75 times higher than ZnO NRs photoanodes (1.35%).
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