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ABSTRACT
Background During the investigation of causative 
variants of Mendelian disorders using next-generation 
sequencing, the enormous number of possible candi-
dates makes the detection process complex, and the use 
of multidimensional methods is required. Although the 
utility of several variant prioritization tools has been re-
ported, their effectiveness in Japanese patients remains 
largely unknown.
Methods We selected 5 free variant prioritization 
tools (PhenIX, hiPHIVE, Phen-Gen, eXtasy-order 
statistics, and eXtasy-combined max) and assessed 
their effectiveness in Japanese patient populations. To 
compare these tools, we conducted 2 studies: one based 
on simulated data of 100 diseases and another based on 
the exome data of 20 in-house patients with Mendelian 
disorders. To this end we selected 100 pathogenic vari-
ants from the “Database of Pathogenic Variants (DPV)” 
and created 100 variant call format (VCF) files that 
each had pathogenic variants based on reference human 
genome data from the 1000 Genomes Project. The later 
“in-house” study used exome data from 20 Japanese 
patients with Mendelian disorders. In both studies, we 
utilized 1-5 terms of “Human Phenotype Ontology” as 
clinical information.
Results In our analysis based on simulated disease 
data, the detection rate of the top 10 causative variants 
was 91% for hiPHIVE, and 88% for PhenIX, based 
on 100 sets of simulated disease VCF data. Also, both 
software packages detected 82% of the top 1 causative 
variants. When we used data from our in-house patients 
instead, we found that these two programs (PhenIX 
and hiPHIVE) produced higher detection rates than 
the other three systems in our study. The detection rate 
of the top 1 causative variant was 71.4% for PhenIX, 
65.0% for hiPHIVE.
Conclusion The rates of detecting causative variants 
in two Exomizer software packages, hiPHIVE and 
PhenIX, were higher than for the other three software 
systems we analyzed, with respect to Japanese patients.
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Next-generation sequencing (NGS) can exhaustively 
analyze genes in one sequencing process, and this new 
capability has dramatically altered the fields of genomic 
research and medical genetics. In particular, many 
undiagnosed patients have been receiving benefit from 
genetic diagnoses by exhaustive gene analysis. Our 
previous study showed the utility of genetic diagnoses 
for patients with Mendelian disorders using NGS.1 
Research methods of nationwide large-scale genomic 
studies, such as Genomics England and the Initiative of 
Rare and Undiagnosed Diseases project in Japan, have 
also been based on NGS technology.

Variant prioritization plays a central role in the 
genetic diagnosis of patients with Mendelian disorders 
when using NGS techniques, including whole genome 
sequencing and whole exome sequencing (WES). WES 
can detect some 30,000 more variants compared to 
human reference sequences, and approximately 10,000 
of these represent nonsynonymous amino acid substitu-
tions, alterations of conserved splice site residues, or 
small insertions or deletions.2 Therefore, to detect the 
causative variant among an enormous number of pos-
sibilities, subsequent prioritization steps are required. 
For example, to interpret variants, we utilize several 
reference databases and software systems, including a 
common variant database, pathogenic variant databases, 
and in-silico prediction tools. Ultimately, detailed 
consideration by clinicians and bioinformaticians is 
needed for detecting the causative variant.1 In such 
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variant prioritization processes, clinical information is 
essential. Specifically, we use gene lists that have been 
made by clinicians for each specific analysis. Such 
records can help select related variants for a given pa-
tient’s symptoms, but in those cases where the causative 
gene is omitted from such a list, we would not be able 
to detect the causative variant. Identification of disease-
causing variants for patients with Mendelian disorders 
is very complicated and easily qualifies as a “needle in a 
haystack” challenge.3

Several phenotype-driven software tools are 
now available to help select differential diagnoses.4 
Additionally, to rank the candidate variants in the 
context of the enormous number of variants that can be 
detected by NGS, several software systems use both the 
patient’s phenotypic information and the NGS-derived 
genotypic data.5–12 These software packages are also 
able to directly reference a variety of diverse databases 
and ancillary software systems (Table 1). Comparative 
evaluations of these software products using patient 
data from Western countries has already been pub-
lished,13 and their utility for causative variant detection 
is well described. However, the utility of these variant 
detection software systems using data from Japanese 
patients’ data is unknown.11 The genetic basis of differ-
ences among ethnic groups has been under-investigated. 

However, we cannot rule out that differences in indi-
vidual single nucleotide variants (SNVs) in each ethnic 
group can affect genetic testing results.14 Therefore, we 
proceeded to undertake the first effort to evaluate their 
capabilities with regard to Japanese patients.

MATERIALS AND METHODS
To our knowledge, 11 software packages have been 
established as variant prioritized tools using Human 
Phenotype Ontology (HPO).15 In this research, software 
was selected using the following criteria using exome 
sequencing data and available as downloaded packages. 
We finally selected five variant prioritization software 
packages PhenIX,12 hiPHIVE,12 Phen-Gen,10 eXtasy-
order statistics,8, 16 and eXtasy-combined max.8 These 
products, except for the Phen-Gen package, have 
already been compared in a previous report.13 To test 
these software packages, we selected 1–5 HPO terms 
corresponding to specific variant call format (VCF) 
files.15 The HPO provides a common lexicon of pheno-
typic abnormalities found in human diseases, and has 
been utilized in many databases and NGS projects.17 For 
our analyses using PhenIX and hiPHIVE, we settled 
on a cut-off of allele frequency at 1%. We ran all the 
software programs in the form we received them via 
downloads. In this research, we performed two different 

Table 1. Comparison of phenotype-based variant detection tools8, 10, 12

Software Availability Population,Disease-Specific, 
and Sequence Databases

In Silico Predictive  
Algorithms

Framework Algorithm

eXtasy- 
order statistics

Website and 
Command line

1000 Genomes Project 
dbNSFP database 
HGMD

Polyphen2 
SIFT 
MutationTaster 
CAROL 
LRT 
PhastCons 
Phylop

Phenomiser algorithm 
Endeavour algorithm  
Random Forest learning 
Haploinsufficiency prediction score

eXtasy- 
combined 
max

Phen-Gen Website and 
Command line HGMD Polyphen2 

SIFT

Bayesian framework  
Unifying framework  
Genomewide approach  
Phenomiser algorithm  
Random-walk-with-restart algorithm

PhenIX Website and  
Command line

1000 Genomes Project 
ESP 6500

Polyphen2 
SIFT 
MutationTaster

Phenomiser algorithm

hiPHIVE Website and 
Command line

1000 Genomes Project 
ESP 6500 
MGD 
IMPC

Polyphen2 
SIFT 
MutationTaster

Phenomiser algorithm
PhenoDigm algorithm
Random-walk analyses
Random-walk-with-restart algorithm

CAROL, Calculated Combined Annotation Scoring Tools; dbNSFP, database for nonsynonymous SNPs’ functional predictions; ESP 
6500, Exome Server Project; HGMD, Human Gene Mutation Database; IMPC, International Mouse Phenotyping Consortium; LRT, 
Likelihood-Ratio Test; MGD, Mouse Genome Database; SIFT, Sorting Intolerant from Tolerant. Software version: eXtasy (Sifrim et al. 
2013)8 ver.0.1, Phen-Gen (Javed et al. 2014)10 ver.1.0, PhenIX and hiPHIVE (Smedley et al. 2015)12 ver. 10.0.1.
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analyses, one using artificially simulated data and the 
other using actual data from in-house Japanese patients 
(Fig. 1). We retained the default parameter settings in 
all the software products. In addition to the comparison 
of variant detection rates across the various software 
products, we also compared variant types and detection 
rates. To classify each variant type, we utilized the 
guidelines of the American College of Medical Genetics 
and Genomics and the Association for Molecular 
Pathology, which were developed in 2015. In that 
statement, null variants including nonsense, frameshift 
and splice sites variants, were classified as very strong 
pathogenic criteria.18

Simulated disease data analysis
For this part of our study, we created 100 VCF files 
using reference genome bam data (1000 Genomes 
Project,19 http://www.internationalgenome.org/home). 
In addition, we randomly selected 100 pathogenic vari-
ants from the “Database of Pathogenic Variants (DPV), 
http://dpv.cmg.med.keio.ac.jp/dpv-pub/variants).” This 
database contains germline pathogenic variants in 
Japanese patients with Mendelian disorders. We then 
created 100 simulated patient VCF files using each 
pathogenic variant.

The HPO of each disease was randomly selected 
using the “Phenomizer15, 20 system (http://compbio.
charite.de/phenomizer).” With this tool, we can pick up 
causative disorders using the HPO. Additionally, the 
HPO terms with regard to each disease are described 
on this site. We analyzed data on 100 simulated patients 
with the five software packages, using each VCF file 
and between 1 to 5 selected HPO terms.

In-house patient data analysis
In the second part of this research project, we analyzed 
20 exome samples collected from Japanese patients 
with Mendelian disorders. All samples were sequenced 
using the TruSight One sequencing panel (Illumina, San 
Diego, CA). Sequencing and variant detection methods 
have already been described in our previous research.1 
We performed WES using the Ion AmpliSeq TM 
Exome RDY kit (Thermo Fisher Scientific, Waltham, 
MA) for undiagnosed patients despite having performed 
TruSightOne sequencing. All causative variants were 
validated by Sanger sequencing. Clinical geneticists 
selected 1 to 5 HPO of each patient based upon a review 
of their medical records. Using both the HPO and VCF 
information, we evaluated the detection rate of each 
software program. This study was approved by the 
ethics committee at Tottori University (dated September 
22, 2014, approval number G152).

RESULTS
Simulated disease data analysis
We analyzed 100 simulated disease VCF data using the 
five different software packages (Fig. 2a). The detection 
rates of causative variants revealed that the best two 
systems at detecting the top ten variants were hiPHIVE 
at 91%, and PhenIX at 88%. In addition, both products 
detected 82% of the top 1 variant. We also note that 
both of the eXtasy software packages (eXtasy-order 
statistics and eXtasy-combined max) have limitations 
on their HPO terms available for analysis and that they 
could not analyze 20 VCF data items. The detection rate 
of the top 10 causative variants in eXtasy-order statistics 
was 19.0%, and in eXtasy-combined max product was 
21.0%. In addition, the percentage of variants that could 
be detected as the chief cause was 6.0% in the order sta-
tistics system and 10.0% in combined max product. In 
Phen-Gen software, the detection rate of the top 5 caus-
ative variants was 29%, the top 10 was 33%, and the top 
1 was zero percent. Detailed results from the simulated 
disease data analysis are presented in Supplementary 
Table S1.

PhenIX and hiPHIVE could detect a total of 82 
causative variants as being the most critical. They also 
produced higher detection rates than the other three 
software products (Phen-Gen, eXtasy-order statistics 
and eXtasy-combined max), which correctly detected a 
total of only 12 variants as being the most critical. We 
confirmed that the difference in productivity between 
PhenIX or hiPHIVE and the three other products was 
quite statistically significant (P < 0.001, by Fisher’s 
exact test). Similarly, PhenIX and hiPHIVE detected 87 
causative variants as being the first to fifth main factors 
and showed a higher detection rate than the other three 
systems (Phen-Gen, eXtasy-order statistics and eXtasy-
combined max), which only detected 40 variants as 
being in the first to fifth factors. We also confirmed the 
significance of this difference between the PhenIX or 
hiPHIVE systems and the three other software pack-
ages using the detection rates regarding the top first to 
fifth data (P < 0.001, by Fisher’s exact test).

Subsequently, we compared the results of PhenIX 
and hiPHIVE against each other. A total of 79 variants 
were detected as the top causative factors by both prod-
ucts. The hiPHIVE system detected 7 causative variants 
as having a higher priority than did the PhenIX product 
(ID 3, 7, 30, 60, 72, 88, 96), but the PhenIX software 
detected 6 causative variants as higher priority than did 
the hiPHIVE product (ID 29, 38, 59, 70, 71, 73).

In this simulated disease aspect of our study, the 
analyzed variants consisted of 51 missense mutation 
variants (Fig. 2b) and 44 null variants (Fig. 2c). Because 
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five variants were deleted from the DPV site, we ex-
cluded these from our comparison of the detection rates 
and variant types. We found that Exomiser’s two kinds 
of software (PhenIX and hiPHIVE) correctly detected 
80% of the VCF files as the top 1 through 5 for both the 
missense mutations and null variants. For Phen-Gen, no 
remarkable difference was found in the detection rate 
in distinguishing between these variant types. For the 
eXtasy-order statistics package, the “not ranked” detec-
tion rate was 64% (28/44) of the null variants and only 
11.8% (6/51) for the missense variants. “Not ranked” 
means that the software did not remarkably detect any 
causative variants within the top 1–100. This tendency 
was also observed in the eXtasy-combined max pro-
gram, where 64% (28/44) of the null variants and 11.8% 
(6/51) of the missense variants were also not detected.

In-house patient data analysis
We also analyzed the data from our 20 in-house patients 
with Mendelian disorders (Fig. 3) using each of the 
five software products. The detection rate of the top 

10 causative variants for the hiPHIVE system was 
85.7%, and for the PhenIX product this was 76.2%. 
Also, the percentage of variants that could be detected 
as the chief cause was 61.9% in hiPHIVE and 71.4% 
in PhenIX. In our analysis of eXtasy, we found that it 
discovered the principal causative variant in only 5% of 
the cases, and its finding of the top 10 factors was only 
10%. Remarkably, we also found that, for eXtasy, the 
combined max analysis could not detect any of the main 
causative variants, nor any within the top 10. Likewise, 
Phen-Gen also generated poor results, identifying zero 
of the top five causative variants, only 5% of the top 10, 
and zero of the chief causes. Detailed results of variant 
data analysis are described in Supplementary Table S2.

PhenIX could detect 15 of the top causative vari-
ants and showed a higher detection rate than the other 
three software products (Phen-Gen, order statistics, and 
combined max eXtasy), each of which only detected one 
top variant. We confirmed the significance of the differ-
ences between PhenIX and these three other software 
products (P < 0.001, by Fisher’s exact test).

Fig. 1. Overview of the prioritization software comparison study.
Two separate investigations were performed, one using data from in-house patients, and the other based on simulated data. We compared 
5 different software products (PhenIX, hiPHIVE, Phen-Gen, eXtasy-order statistics and eXtasy-combined max). These systems use 
variant call format (VCF) files and the human phenotype ontology (HPO). In simulated disease analyses, we created 100 virtual patient 
VCF files, and added pathogenic variants based on reference to the VCF files in the 1000 Genome Project. We selected 100 pathogenic 
variants from the Japanese pathogenic variant database (http://dpv.cmg.med.keio.ac.jp/dpv-pub/variants). Additionally, we selected sev-
eral HPO files for each VCF from the Phenomizer site (http://compbio.charite.de/phenomizer). For the in-house patient analysis, we used 
VCF files and HPO for specific patients with Mendelian disorders.
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Fig. 2. Simulated disease analysis data ranked by category.
(a) Ranking of causative variant detection in simulated disease data analysis (n = 100). (b) Ranking of missense causative variants 
detection in simulated disease data analysis (n = 51). (c) Ranking of null causative variants detection in simulated disease data analysis 
(n = 44). The term “not ranked” means software could not detect causative variants; “could not analyze” means the software could not 
perform the analysis.
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Fig. 3. In-house patient data ranked by category.
(a) Data from 20 patients was used in the analysis of each software product. (b) Ranking of missense causative variants detection regard-
ing in-house patient data analysis (n = 11). (c) Ranking of null causative variants detection of in-house patient data analysis (n = 8). The 
term “not ranked” means software could not detect causative variants; “could not analyze” means the software could not perform the 
analysis.
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Similarly, PhenIX detected 15 of the top 1–5 
causative variants and in this regard also showed a 
higher detection rate than the other three software 
systems (Phen-Gen, order statistics, and combined max 
eXtasy), which only detected two variants, respectively. 
We again confirmed this statistical difference between 
PhenIX and three software (P < 0.001, by Fisher’s exact 
test).

In a similar pattern, hiPHIVE could detect 13 
causative variants as being the top 1, and 17 variants 
as being in the top 1–5. This software also produced 
a higher detection rate than the three other software 
systems (Phen-Gen, order statistics, and combined max 
eXtasy), which detected only one variant as a top 1 
and 2 variants as being among the top 1–5 causes. We 
likewise confirmed this difference in top 1 and top 1–5 
detection rates between hiPHIVE and three software 
as being statistically significant (P < 0.001, by Fisher’s 
exact test).

We subsequently compared the results produced by 
the PhenIX and hiPHIVE systems against each other 
and found that the same 13 variants were detected as the 
top causes by both products. For three causative variants 
(patients 1, 16, 19), hiPHIVE identified them as having 
a higher priority than did PhenIX. In contrast, PhenIX 
detected two causative variants as having a higher prior-
ity than hiPHIVE (patients 6, 10).

Over the course of this in-house study, we analyzed 
11 missense mutation variants (Fig. 3b) and 8 null vari-
ants (Fig. 3c). Because patient 3’s variant types were 
missense mutation and null variant, we excluded the 
case from our comparison of the detection rates and 
variant types. With the Phen-Gen product, we found 
no remarkable difference in the detection rate despite 
the distinction of the variant types. In Exomiser’s two 
types of software (PhenIX and hiPHIVE), the detection 
rate of causative variants within the top 10 was 100% 
in the analysis of the null variants, and also quite high 
for the missense variants: PhenIX at 72.7% (8/11) and 
hiPHIVE at 81.8% (9/11). In addition, the detection rates 
of “not ranked” for both software were 18.2% (2/11) in 
the missense variants analysis. With the two eXtasy 
software products (order statistics and combined max) 
the proportion of “not ranked” results was 25% (2/8) for 
the null variants data and 27% (3/11) for the missense 
variants.

DISCUSSION
Our simulated disease data analysis indicated that the 
detection rates with PhenIX and hiPHIVE were sub-
stantially higher than those with the remaining 3 tools; 
this trend was corroborated by the previously reported 

results.13 However, the utility of these two software 
packages, specifically regarding Japanese patients, had 
previously been unknown. Our present research indeed 
showed that the two software systems generated high 
detection rates when using simulated Japanese patient 
data and also when using the data from our in-house 
patients. We provide detailed information available to 
us regarding each software product in Table 1, but only 
looking at this information, we do not understand why 
there is such a substantial difference in the detection 
rates across the various products. Software update 
frequency might be one of the most important factors 
in improving detection rates. In fact, frequent updates 
are done for Exomiser. For example, integration of a 
usable database and adding the most recent algorithms 
are done continuously.17 The detection rate of the top 10 
causative variants in hiPHIVE was 20.0% in the previ-
ous report,13 whereas the present research detection rate 
of this software was 90.0%. Certain mechanisms are 
unknown, but frequent software updates in Exomizer 
might be one of the key elements of improving the 
identification rate.

The detection rate of the causative variants 
for hiPHIVE and PhenIX was higher than for the 
other software except for the data related to ID 71 
(Supplementary Table S1). In this case, with c.755G > C, 
and p Arg252Pro in the PAH gene, we found that Phen-
Gen and eXtasy-order statistics detected the causative 
variant as in the top 3, while eXtasy-combined max 
detected it among the top 7. In contrast, hiPHIVE 
recognized it as being among the top 10, and PhenIX 
identified it as among the top 14.

Similarly, other variants of the PAH gene in ID 
70 and 72 also had relatively low detection results in 
hiPHIVE and PhenIX. In comparison, the detection 
rate of ID 73 in the PAH gene for hiPHIVE and PhenIX 
was higher than in the two eXtasy software programs. 
Also, Phen-Gen could detect more than could the two 
eXtasy products. We considered many possible reasons 
for this particular result regarding the PAH gene, but 
we could not reach a conclusion about the mechanism 
involved due to a lack of more detailed information 
about each software product and the methods they use. 
Nonetheless, this result suggests that the detection rates 
can differ depending on the gene.

Associations between the detection rate and the 
variant type were not found for hiPHIVE, PhenIX, and 
Phen-Gen products, except for the eXtasy software 
systems. Notably, in the two types of eXtasy software, 
usable HPOs were limited, and we could not analyze 
20/100 (20%) of the VCF files. Although statistical 
analysis could not be performed because of our small 
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sample size, this result suggests that the detection rate 
of the 2 eXtasy software products might be inadequate 
with regard to the analysis of null variants.

In this simulated study, we created VCF files to 
simulate patient genomic data. The 100 bam data files 
registered in the 1000 Genome Project were randomly 
selected in this study. These bam data files contain not 
only Japanese data files but also non-Japanese data 
files, and we cannot deny that specific SNVs related 
to non-Japanese data affected the analysis results. In 
our subsequent analyses using this simulated data, we 
obtained results similar to what we found using data 
from actual in-house patients. As a result, we speculate 
that this approach of using simulated patient data might 
indeed be more broadly useful for the comparisons of 
other variant prioritization tools.

From in-house patient data analysis results involv-
ing ranked comparisons, it is clear that the causative 
variant detection rate of hiPHIVE and PhenIX was 
higher than that of the other software products. We 
particularly note that hiPHIVE was able to detect all 
the causative variants within the top 10 except for 
only the two ECHS1 items. Indeed, these two ECHS1 
gene variants from patients 7 and 12 were missed by 
all five software products. The ECHS1 gene was not 
included in our TruSight One sequencing panel, and 
we only detected these variants in the ECHS1 gene 
using WES. We suggest that since the mitochondrial 
short-chain enoyl-CoA hydratase 1 deficiency due to 
ECHS1 mutations was first reported only in 2014,21 it 
is possible that the software packages we examined 
might be unable to readily detect such relatively new 
disorders (Fig. 3). All five software products use the 
Phenomizer program described in Table 1 of this paper, 
and we hypothesize that this relatively new gene was 
not listed in it. However, since these software packages 
and their related databases are updated daily, we have to 
assume that Phenomizer was updated at the time of our 
analyses.

Several variants cause specific phenotypes in 
Mendelian disorders. N540K in the FGFR3 of hy-
pochondroplasia and S2G in the SHOC2 of Noonan-
like syndrome with loose anagen hair are well-known 
variants related to specific phenotypes among clinical 
geneticists. We found that hiPHIVE and PhenIX could 
detect these variants, but the other software products re-
markably could not. This failure is noteworthy because 
we would expect that purpose-built causative variant 
prioritization tools should be easily able to detect these 
well-known variants.

Exomiser, including its use in hiPHIVE and 
PhenIX, recently received the approval of the 

International Rare Diseases Research Consortium as 
a recognized resource.17 Overall, the detection rates of 
causative variants with hiPHIVE and PhenIX was high-
er than with the other software products in our study. 
This result is the same found in previous research.13

As a technical note, we should mention that 
although one can find many diagnostic software tools 
online using HPO and VCF files,11 in our present study, 
this would have required uploading sensitive patient 
data. Therefore, to fully adhere to the protection of per-
sonal information, in this present research, we operated 
all five software as downloaded packages.

HPO provides a comprehensive bioinformatic 
resource for the analysis of human diseases and pheno-
types.15 It has therefore been adopted as the standard for 
phenotypic terms in international rare affected tissues, 
registries, clinical laboratories, biomedical resources, 
and clinical software tools.17, 22–27 The description of 
phenotypic variations has become critical for genomic 
medicine and translational research,28–31 and our having 
“computable” descriptions of human diseases using 
HPO phenotypic profiles is a key element in the use of 
Phenotype-based exome analysis tools. Further studies 
of HPO setting methodologies for these tools are needed 
to enable us to detect causative variants more efficiently.

In conclusion, we confirmed the utility of causative 
variant prioritization tools with regard to Japanese 
patients. In particular, the detection rate of causative 
variants in two Exomizer software products, hiPHIVE 
and PhenIX, was higher than in that of the three other 
systems we analyzed.
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