UNIVERSITY OF THE
WEST of SCOTLAND

OPEN ACCESS

UWS Academic Portal

KASLR-MT
Vano-Garcia, Fernando; Marco-Gisbert, Hector

Published in:
Journal of Parallel and Distributed Computing

DOI:
10.1016/j.jpdc.2019.11.008

Published: 31/03/2020

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):

Vaho-Garcia, F., & Marco-Gisbert, H. (2020). KASLR-MT: kernel address space layout randomization for multi-
tenant cloud systems. Journal of Parallel and Distributed Computing, 137, 77-90.
https://doi.org/10.1016/j.jpdc.2019.11.008

General rights

Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 18 Dec 2022

https://doi.org/10.1016/j.jpdc.2019.11.008
https://uws.pure.elsevier.com/en/publications/f127c80d-49c1-4c81-8ff5-78a23fff7619
https://doi.org/10.1016/j.jpdc.2019.11.008

KASLR-MT: Kernel Address Space Layout Randomization for
Multi-Tenant Cloud Systems

Fernando Vano-Garcia, Hector Marco-Gisbert

School of Computing, Engineering and Physical Sciences, University of the West of Scotland, High St, Paisley PAl 2BE, UK

ARTICLE INFO

Keywords:

Cloud

Virtualization

Security

KASLR

Memory Deduplication
Memory Management
Operating Systems

ABSTRACT

Cloud computing has completely changed our lives. This technology dramatically impacted on how
we play, work and live. It has been widely adopted in many sectors mainly because it reduces the
cost of performing tasks in a flexible, scalable and reliable way. To provide a secure cloud comput-
ing architecture, the highest possible level of protection must be applied. Unfortunately, the cloud
computing paradigm introduces new scenarios where security protection techniques are weakened
or disabled to obtain a better performance and resources exploitation. Kernel ASLR (KASLR) is a
widely adopted protection technique present in all modern operating systems. KASLR is a very ef-
fective technique that thwarts unknown attacks but unfortunately its randomness have a significant
impact on memory deduplication savings. Both techniques are very desired by the industry, the first
one because of the high level of security that it provides and the latter to obtain better performance
and resources exploitation. In this paper, we propose KASLR-MT, a new Linux kernel randomization
approach compatible with memory deduplication. We identify why the most widely and effective
technique used to mitigate attacks at kernel level, KASLR, fails to provide protection and shareabil-
ity at the same time. We analyze the current Linux kernel randomization and how it affects to the
shared memory of each kernel region. Then, based on the analysis, we propose KASLR-MT, the first
effective and practical Kernel ASLR memory protection that maximizes the memory deduplication
savings rate while providing a strong security. Our tests reveal that KASLR-MT is not intrusive, very
scalable and provides strong protection without sacrificing the shareability.

1. Introduction

Cloud computing has become a significant aspect of our
lives. It allows a provider to share pools of configurable re-
sources (hardware/software) through virtualization, yielding
new complex business models that were unpredictable some
years ago. Cloud computing has been widely adopted in
many sectors, mainly because it reduces the cost of perform-
ing tasks in a flexible, scalable and reliable way. From the
user’s point of view, they can benefit from vast computing
power and storage without the need to possess the necessary
hardware resources.

Infrastructure as a Service (1aaS) [28] is considered one
of the fundamental building blocks for cloud services be-
cause at this level, a client is able to configure virtualized
environments with high flexibility without having to con-
cern about deploying large rooms of physical computers.
Hence the service provider supplies the storage, networking
and virtualization so that the client has full control over the
system from OS layer upwards. Efficient resource manage-
ment is fundamental to deal with a proper cloud infrastruc-
ture [43, 51, 20]. Hardware resources are a critical asset in
the business, and they must be managed and utilized ade-
quately. A cloud service provider will obtain more benefits
if he/she is able to operate more virtual machines with the
same resources [37, 48].

%9 Fernando. Vano-Garcia@uws. ac.uk (F. Vano-Garcia);
Hector.Marco@uws.ac.uk (H. Marco-Gisbert)

& www. fervagar . com (F. Vano-Garcia); www. hmarco.org (H.
Marco-Gisbert)

ORCID(S): 0000-0001-6158-8694 (F. Vano-Garcia);
0000-0001-6976-5763 (H. Marco-Gisbert)

Given the significance that cloud computing has in peo-
ple’s lives, it is imperative to offer confidentiality, integrity,
and availability in any cloud computing architecture. Fur-
thermore, there is a stack of services relying on IaaS, for
example Platform as a Service (PaaS), Software as a Ser-
vice (SaaS) or Function as a Service (FaaS) to name a few.
Any security issue affecting the base will affect the upper
layers as well. For that reason, IaaS service providers must
ensure to reach the highest possible level of security in order
to guarantee a suitable quality to their clients.

Since the finding of the first computer bug back in
1947 [3], the sphere has been changing swiftly. Attackers
are aware of the fact that computers are the building blocks
of our society. For this reason, bugs with security implica-
tions are being abused in order to make profit of those vul-
nerabilities. Given the asymmetric nature of the confronta-
tion between attackers and defenders, the former enjoy their
tactical advantage, while the latter design and develop de-
fense mechanisms to prevent the successful exploitation of
the most complex attacks. In recent years, there has been
a transition in the battlefield from userland to kernel, since
the complexity of userland exploits has overtaken the kernel
ones [36]. Furthermore, a successful exploitation of a kernel
vulnerability is much more dainty for an attacker.

Although cloud service providers desire to yield as much
security as possible in their infrastructure, it is not always
possible. Current security protection mechanisms are far
from perfect and, in some cases, they introduce prohibitive
overheads. Kernel randomization is a widely adopted secu-
rity mechanism that introduces a prohibitive overhead [44]
to the memory savings of the memory deduplication. Since

Vano et al.: Preprint submitted to Elsevier

Page 1 of 16

www.fervagar.com
www.hmarco.org

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

it is not recommended to disable the kernel randomization
mechanism, cloud providers will sustain a forfeit of mem-
Or'y resources.

The rest of the paper is organized as follows. Sec-
tion 2 provides a detailed background on memory dedupli-
cation and kernel randomization. Section 3 briefly describes
how kernel randomization is performed in the Linux kernel
v5.0.6 for the x86_64 architecture. Section 4 points out the
reasons why the kernel randomization penalizes the mem-
ory deduplication. In section 5 the Linux kernel random-
ized zones are identified and a comprehensive analysis on
the deduplication effect of randomizing them is presented.
Based on this analysis, section 6 describes the proposed so-
lution, while the implementation of the KASLR-MT tech-
nique in Linux is presented in section 7. Section 8 provides
an evaluation of the implementation. The paper finishes in
section 9 with a discussion on Linux kernel modules and
how position-independent code could alleviate the issue, fol-
lowed by some conclusions and future work in section 10.

2. Background

In this section we explain the memory deduplication
technique used to save physical memory. Then, we ex-
plain the kernel randomization concept and the two main
approaches followed to randomize code. Finally the attacker
model is presented.

2.1. Memory Deduplication

Memory deduplication is a physical memory saving
technique. Given the noteworthy importance of efficient
memory resource utilization on behalf of cloud computing
providers, deduplication is a desired feature. It is able to re-
duce the memory footprint across virtual machines [1, 16],
decreasing the total cost of managing and ownership.

Although in the first instance deduplication was designed
to be used in hypervisors [40, 1, 29, 47], it was gently ap-
plied for memory contents of non-virtualized environments
as well. Then, it was widely adopted by most of the op-
erating systems. For example the Linux kernel included
Kernel Samepage Merging (KSM) in the version 2.6.32 and
Windows introduced Memory Page Combining in Windows
8 [41]. Furthermore, data deduplication is commonly used
in other areas such as databases or web contents [8, 31, 46].

When used with virtualization technologies, memory
deduplication is usually operating at the hypervisor layer,
along with the memory manager of the physical host ma-
chine. In almost all modern operating systems, memory is
organized in pages [6]. Typically, each memory page con-
sumes 4096 bytes of physical memory. This strategy facili-
tates an efficient management of memory resources and en-
ables virtual memory, which is a fundamental feature for vir-
tualization. Thanks to this memory organization, memory
deduplication can merge all pages with identical content into
only one. Note that swapped pages can not be deduplicated
but only the ones that reside in physical memory.

Different architectures support different page sizes [49].
A greater page size implies less page table entries and less

TLB faults, resulting in higher performance [30]. However,
this reduces the chances of finding two pages with equal con-
tent, which reduces the memory saving rate [15]. Thanks to
the memory management virtualization support, it is possi-
ble for hypervisors to implement a memory deduplication
using pages of 4096 bytes independently of the page size
guest view.

In virtualized environments, deduplication is commonly
applied to the entire guest memory region corresponding
to the virtual machine (often called guest physical mem-
ory) [2]. Hence, those pages belonging to that memory re-
gion will be candidates for being shared across all virtual ma-
chines. On the one hand, this increases the chances of find-
ing matching pages to share. On the other hand, it enables
different types of side-channels [17, 42, 23] that might com-
promise the confidentiality. Different solutions have been
researched [45, 32, 21, 35, 21] and, depending on the adver-
sary model of a cloud provider, memory deduplication can
be used without the need to sacrifice security.

2.2. Address Space Layout Randomization

Address Space Layout Randomization (ASLR) [34] is
a security technique that consists in placing the memory re-
gions of a program in random locations. The objective of this
technique is to hinder the successful exploitation of vulnera-
bilities that rely on the knowing program addresses [39, 24].

As a consequence, an attacker must obtain an addresses
where code or data is located in memory in order to trig-
ger a malicious payload [7, 12, 25]. This in part is because
the Data Execution Prevention / No-Execute (DEP/NX) pre-
vents to execute injected code.

ASLR embraces some requirements in order to be ap-
plied correctly. It needs a high-quality entropy source for
generating cryptographically secure random numbers to de-
termine the addresses where the program will be loaded [18,
26]. If this requirement is not fulfilled, the predictability of
the generated addresses will be high and then it will be easier
for an attacker to guess correctly a valid address [10, 11].

Kernel ASLR (KASLR) or kernel randomization is the
application of this technique to the kernel [4]. Locations of
kernel memory regions are determined at boot time and they
are not changed until next shutdown/reboot. Each imple-
mentation has its particularities, but code and data regions
are commonly randomized. It is currently being used by all
the main operating systems: Apple introduced it into Mac
OS X Mountain Lion (Mac OS X 10.8) [50], Microsoft in-
troduced it in Windows Vista and Linux in the kernel version
3.14.

Since the randomization is only applied at boot time,
any information leak revealing a kernel address will de-
randomize the kernel, and the bypass will be effective until
next reboot [13, 19].

2.3. Randomizing Code

In order to randomize code, the loader must be able to
choose an arbitrary address and then load the code at that
address. To achieve this, the code being randomized must

Vano et al.: Preprint submitted to Elsevier

Page 2 of 16

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

be compiled and linked to allow loaders to put them at ran-
dom memory locations [38]. There are mainly two differ-
ent approaches to enable code to be randomized: Position-
Independent Code (PIC) and relocations. Both approaches
can load and run code at random virtual addresses, but they
have implementation differences that have an impact on the
performance and also on the shared memory.

Position-independent code is a piece of machine code
that can be executed regardless of where it is loaded in mem-
ory without any code modification. This feature is crucial for
shared libraries, to keep the code segment as non-writable
and to allow memory sharing by several processes using the
Copy-On-Write (COW) mechanism [9]. Instead of referenc-
ing symbols with absolute addresses, PIC uses indexed ad-
dressing using relative offsets. For example, a data variable
can be referenced relatively using the program’s instruction
pointer. For efficiently accessing symbols and data beyond
the addressable limits of an architecture, userland programs
use a look-up table called Global Offset Table (GOT). This
table is placed in a data segment, private for each process,
and contains absolute addresses of global exported symbols.
Hence, PIC allows to randomize code memory regions with-
out the need of altering its contents.

On the other hand, relocatable code is a piece of ma-
chine code that also can be executed regardless of where it
is loaded in memory, but the executable segment needs to be
patched when it is loaded [22, 33]. Relocation information
is consulted by the loader in order to adjust symbol refer-
ences through different parts of the program with final ab-
solute addresses in-place. Although the final program with
the absolute references can be more efficient than position-
independent code, the load time work of relocatable code
is considerably heavier, as every reference in code must be
fixed-up. In contrast to PIC, relocatable code is not suitable
for shared libraries. The relocations in code pages trigger the
COW mechanism, generating private copies of these pages
for each process using the same library loaded at different
virtual addresses. The result is a decrement of memory shar-
ing among processes, which is the main purpose of shared
libraries.

2.4. Attacker Model

Disabling the kernel randomization protection in favour
of having the highest possible memory deduplication sav-
ing rate introduces serious weaknesses. Vulnerabilities that
rely on knowing where the kernel has been mapped will have
100% of success, since those addresses are not longer a se-
cret that attackers need to obtain.

In a cloud environment where virtual machines can inter-
act with each other, this is even more risky. A kernel vulner-
ability could compromise the entire physical cloud and all its
virtual machines, even if they are running in different tenants
and physical machines. Local, remote, inter-VM, intra-VM,
inter-Tenant and intra-Tenant attackers do not need to per-
form a prior kernel attack to know where the kernel resides
in memory, they already know, and their attacks will always
be successful.

Our goal is to provide kernel randomization while in-
troducing a negligible impact in the memory savings, to en-
able cloud providers to use the KASLR protection along with
the memory deduplication benefits. We assume that the ker-
nel contains a software vulnerability that requires to bypass
the kernel randomization protection to be successfully ex-
ploited. That is, our goal is that attackers exploiting a kernel
vulnerability from local, remote, inter-VM, intra-VM, inter-
Tenant and intra-Tenant must face the full kernel randomiza-
tion protection with almost no effect in the memory dedupli-
cation.

3. Linux Kernel Randomization

This section describes how kernel randomization is per-
formed in the Linux kernel v5.0.6 for the x86_64 architec-
ture. We describe how the bootloader and Linux kernel ran-
domizes its memory.

In Section 2.3, we described two different approaches
to randomize code: position-independent code and reloca-
tions. Current Linux kernel implementation is not PIC com-
pliant. It uses text relocations, patching dynamically all the
position-dependent references after the final address of the
code memory region is randomly calculated.

At the early stages of the boot process, the Linux kernel
is decompressed in memory by the bootloader. One of its
purposes, along with other system initialization operations,
is to place the regular kernel into a random location.

The random numbers used by KASLR are requested at
boot time, and at this stage there is not much entropy avail-
able. Having quality random numbers is key to have an ef-
fective KASLR, otherwise the addresses will be predictable
and the protection useless. In order to obtain random num-
bers, Linux uses different sources of entropy such as rdrand,
rdtsc, system timers, etc. The outcome of all the available
sources is combined by using the XOR operation, and the re-
sult value is diffused by using circular multiplication.

The decompressor uses two random numbers to random-
ize both the physical address and the virtual address where
the kernel will be loaded and mapped respectively. The
physical address determines where the regular kernel image
is going to be decompressed in memory. This image is an
Executable and Linkable Format (ELF) file with a relocation
table appended to it. Relocation information is generated by
the static linker and it is needed for patching the virtual ad-
dresses of every position-dependent reference. Each virtual
address that needs to be updated has its corresponding entry
in this relocation table.

Once the kernel is decompressed into the randomly cho-
sen physical address, the kernel image is parsed to extract
the information about the segments that compose the ker-
nel virtual memory. All the loadable segments are placed
into their corresponding location. Then, relocations are pro-
cessed. The kernel needs to be patched taking into account
the new base address that differs from the base address that
it was linked to. Listing 1 shows the pseudo-code of the loop
processing and fixing relocations.

Vano et al.: Preprint submitted to Elsevier

Page 3 of 16

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

for each relocation do
reloc_addr = <read relocation entry>
// Calculate its current physical location
ptr = (reloc_addr + phys_map)
check_memory_bounds (ptr)

// Update virtual address
*ptr += kaslr_virt_offset

Listing 1: Pseudo-code of relocations update

After the relocations have been applied by the boot-
loader, the execution control is transferred to the kernel.
At this point, some system initialization operations are
performed, including the randomization of the remaining
four memory regions. First, the physical direct mapping
(physmap), the dynamic memory region (vmalloc) and the
virtual memory map (vmemmap) are randomized. Later, when
the first module is loaded, the modules base address is ran-
domly calculated (modules).

Although each region is randomized independently,
there is a position order. The physical direct mapping will
always be placed at a lower virtual address than the vmalloc
region, which also will be placed at a lower virtual address
than the vmemmap region.

The randomization algorithm tries to use the available
entropy in the most efficient way possible. The first region is
bounded to the lower third of the entire virtual space avail-
able for these three regions. A random address within the
bounds is selected to map the memory region. The remain-
ing space, subtracting a padding to avoid region overlapping,
is then divided by two in order to place the second region,
following the same approach. Similarly, the last region is
placed at a random address within the remaining space after
subtracting the padding corresponding to the second one.

The final memory region to be randomized is the zone
where modules are loaded. It uses a different logic from the
previous memory regions, since it is not calculated until the
first module is loaded in the system. When the first module
is loaded, a random number of pages between 1 and 1024
is determined and it is added to a static base address, es-
tablishing the virtual base address where the allocation of
all the loadable modules starts. From that point, subsequent
modules are sequentially allocated in the order as they are
loaded. Once a module is loaded into its final location, re-
locations need to be done to fix-up their references. These
relocations include absolute addresses and relative offsets.
We have found modules with references to different parts of
the memory, including the kernel code and data, the physmap
region, their own memory, and even the memory of other
modules. It is worth noting that even relative offsets depend
on address randomization if they refer to memory regions
being also randomized. In that case, the relative offset may
differ, since the distance between referee and referrer is not
constant. In addition, the module load order is not determin-

istic so the final order, and therefore the relocations applied
to modules, can be different in different kernel boots. This
issue is discussed in more detail in Section 9.

To summarize, the Linux kernel randomizes a total of
six different addresses:

e Kernel Base Physical Address: Physical address where
the kernel is decompressed.

e Kernel Base Virtual Address: Virtual address of the
kernel text mapping, containing the code and data seg-
ments.

e Physmap: Direct mapping of all physical memory. Also
used to dynamically allocate physically contiguous
memory.

e Vmalloc: Memory region to dynamically allocate vir-
tually contiguous memory.

e Vmemmap: Kernel virtual memory map, containing
metadata of physical page frames.

e Modules: Virtual base address where modules are

loaded.

4. The Problem: KASLR vs Deduplication

In this section, we present how kernel randomization re-
duces the effectiveness of memory sharing by deduplication
in virtualized systems.

As detailed in section 2.1, the memory deduplication
mechanism merges pages with equal content. Regardless of
whether they comprise code or data and independently of
their virtual address, two or more pages will be merged if
their contents are identical. On the other hand, as described
in section 2.3, kernel randomization could affect the host’s
memory sharing effectiveness if the relocation randomiza-
tion approach is used. Unfortunately, as we present in sec-
tion 3, we found that current Linux versions uses the reloca-
tions approach for randomizing the kernel.

The main issue is that current Linux kernel randomiza-
tion is following a relocation approach that modifies code
at boot time depending on random addresses, but memory
deduplication requires to have equal content to merge pages.
This conflict results on either having KASLR enabled but re-
ducing the shared memory or disabling KASLR to have the
maximum deduplicated memory.

4.1. Breaking Shared Code

Memory deduplication fails to merge kernel code be-
cause of the randomization. Figure 1 exemplifies this con-
cept. It shows the same hypothetical printk() kernel call
from 2 kernels that were mapped at different base addresses.
Kernel 2 base address is 0x40000 and kernel 3 base address
is 0x80000. The resulting mov $addr, %rdi is patched by the
kernel loader accordingly to the random kernel base address
at boot time.

Vano et al.: Preprint submitted to Elsevier

Page 4 of 16

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

void kern_foo() {
printk ("String in .rodata section");

Kernel 1 Kernel 2 Kernel 3

Kernel 3

Kernel 2

< low addr >
Code
Data
Code
Data Code
Data

S

CODE REGION

< low addr >
B e S &

CODE REGION

. text.

y 0x40000

[————— X
mov ($0x42000,) $rdi

. text.

0x80000

v
mov ($0x82000,

call :
non-pIC

$rdi

call
non-PIC

DATA REGION

DATA REGION

.rodata

| |

.rodata

A

0x42000

"String in .rodata sectioj
.dat [

.data

[
f void *array(]-

’ Hypetvisor ‘ 0x82000| ¥
1 "String in .rodata section
Memory] Deduplication
Manager
Host Machine

void *array[]- |Fet:| Fptr

T

< high addr >

Ty

< high addr >

Figure 1: Overview scenario, with an hypervisor using memory deduplication and running three virtual machines. Kernel memories
of two virtual machines are detailed, showing their load address along with some contents of the code and data regions.

In more detail, the instruction is placing the virtual
address of the string into a register and passing it to the
printk() function, following the System V AMD64 ABI con-
vention [27]. The absolute reference in the mov instruction
differs because the data region was loaded at different ad-
dresses. These absolute addresses need to be fixed-up at
load time, before even running the kernel, altering the page
content. As a consequence, those pages cannot be merged
by deduplication because their content after the relocation
will differ. This is just an example to illustrate the issue that
prevents memory deduplication from merging Linux code.
The Linux kernel is a modern and advanced operating sys-
tem containing many coding tricks to improve both the read-
ability and efficiency of the code, and this issue can appear
in different ways.

Therefore, a full analysis is necessary, presented in sec-
tion 5 to determine, on the one hand, to what extent the code
is being modified because of the randomization and, on the
other hand, which randomization zones produce most kernel
and modules code modifications.

4.2. Breaking Shared Data

Relocations do not only affect to code but also to data
variables whose contents depend on the virtual address of
the memory location being referenced. For example, a data
pointer containing the address of a dynamically allocated ob-
ject. Therefore, the problem occurs when memory contents
depend on the position of the memory location being refer-
enced and this location is randomized. A very known exam-
ple in userland applications is the usage of a GOT/PLT to jump
to libraries. The GOT contains pointers to where library func-
tions reside in memory. Therefore, the fact of randomizing
libraries prevents the merging of the page holding the GoT.

Similarly, the Linux kernel contains structures that hold
pointers to functions. Those pointers depend on the kernel
base address. As a consequence, all pages containing one
single pointer referencing to a randomized address will not
be merged by memory deduplication. This can be extended
to any memory in Linux that holds data, such as vmalloc,
vmemmap and modules data.

Returning to figure 1, we can observe an array of point-
ers in the data section of both kernels, where the second ele-
ment points to an address of its corresponding code section.
Similar to what occurs with the relocation in the mov instruc-
tion, given that the base address of these two kernels differ,
the pointer will differ as well. As a consequence, the host
cannot share these memory pages.

5. KASLR Influence on Deduplication

Randomizing the memory layout of guest kernels re-
duces the effectiveness of memory deduplication. In this
section, in order to design a new compatible KASLR, we
present a comprehensive analysis of the impact of each ran-
domized area to the memory deduplication.

Our goal is to precisely measure to what extent a partic-
ular memory region (Linux code, Linux data, modules code,
modules data, vmalloc and vmemmap) differs when randomiz-
ing memory base addresses (kernel physical address, kernel
virtual address, physical mapping, vmalloc, vmemmap and
modules). Since there are six memory base addresses to be
randomized, we have tested 26 = 64 combinations per each
memory region. For example, enabling randomization for all
memory base addresses except one, all except two, etc. All
tests were executed using Ubuntu 19.04 with Linux v5.0.6
carrying out 8 probes per each combination, resulting in a

Vano et al.: Preprint submitted to Elsevier

Page 5 of 16

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

Linux Code Linux Data
Randomized Base Addresses Randomized Base Addresses
vmalloc/ physical kernel kernel % equal vmalloc/ physical kernel kernel % equal
modules vmemmap A . modules vmemmap) .
ioremap mapping vaddr. paddr. pages ioremap mapping vaddr. paddr. pages

[] [([] [] (@) [100 [J [o (@) (@) [80.8
[[O @] 100 [] @] [J O O O 80.8

[J [J [] O O [} 100 @] [] O O O O 80.8
[J [J ©) [] O [} 100 O O @) O O @] 80.8
[] @) (] ([] (@) [] 100 [] @) O (@) (@) @) 80.7
O [([] [] O [J 100 O O ([] O O @) 80.7
[} [} ([O O @] 100 [] [] [J O O (@) 80.6
[J [J O [] O O 100 [] @] [] O O [} 80.5
[J [J @) O O [] 100 [J [J (@) (@) (@) @] 80.4
[O [] [] O O 100 O [] ([] O O O 80.4
[] @) ([] (@) (@) [100 O @) ([] [] (@) (@) 80.4
[J O O [] O [} 100 [] @] [] [] O O 80.3
O [J ([] [] O O 100 @] [] @) O O [] 80.3
O [J [] O O [] 100 O O ©] [] O O 80.3
@) [o [] (@) [100 O [[] [] (@) [80.2
O O [[O [] 100 [] @] O [J O O 80.2
[J [J O O O O 100 O O [] O O [} 80.2
[J O [] O O O 100 [] @] [] [] O [] 80.1
[] @) (@) [] (@) (@) 100 O [([] [] (@) O 80.1
[O (©] O O [100 O [O [] O O 80.1
O [} ([O O @] 100 O @] O [J O [] 80.1
O [J O [] O O 100 [] [] [] [] O [} 80.0
O [J @) O O [} 100 [} [J [[] (@) O 80.0
O @) ([] [] O O 100 [] O ©] [] O [] 80.0
@) @) ([] (@) (@) [100 O @) ([] [] (@) [80.0
@] @] @) [O [] 100 [] @] O O O [] 80.0
[J O O O O O 100 [] [] [] O O [} 79.8
O [J O O O O 100 [} [J @) [] O [] 79.7
@) @) [] (@) (@) @) 100 [] [(@) [] (@) @) 79.7
O O (©] [] O @) 100 O [(©] [] O [79.7
@] @] @) O O [] 100 (@) [] [J O O [] 71.5
O O O O O O 100 @] @] ©) O O [} 71.2
[J [J [] [[[] 2.6 O O O (@) [] O 64.7
[] [([] [] [] O 2.6 [O (©] O [] [] 64.6
[] [(] (@) [] [J 2.6 @) [[] (@) [] (@) 64.6
[J [J O [] [] [} 2.6 [] [] O [] [] O 64.4
[J O ([] [] [] [} 2.6 [] @] O [] [] [} 64.4
O [J [] [] [[] 2.6 [J [J [] [] [] O 64.3
[[([] (@) [] (@) 2.6 [J [(] (@) [] (@) 64.3
[[(©] [] [] O 2.6 @] O [] O [] O 64.3
[J [J O O [] [} 2.6 @] O [] [[J [} 64.2
[J O [] [] [] O 2.6 [] @] [] O [O 64.2
[@) ([] (@) [] [2.6 O @) (@) [] [] [64.2
[] O (©] [] [] [2.6 [] O (©] O [] O 64.2
@) [[] [] [] O 2.6 [] [J O [] [[} 64.1
O [J [] O [] [} 2.6 [] [] O O [] [} 64.1
O [J @) [] [[} 2.6 O [J [] ([] [] @) 64.1
O @) [] [] [] [] 2.6 O [©] O [] [] 64.1
[] [o (@) [] @) 2.6 @) @) o [] [] @) 64.1
[J O [] O [] O 2.6 [] @] [] [] [] O 64.0
[J O O [] [] O 2.6 @] [] [] O [J [} 64.0
[J O O O [[} 2.6 O [J ©] (©] [] @] 64.0
@) [) [] (@) [] @) 2.6 @) @) O (@) [] [] 64.0
O [(©] [] [] O 2.6 [[([] O [] [63.9
O [J O O [] [} 2.6 [] [] O O [J O 63.9
O O [] [] [] O 2.6 @] [] ©) [] [] O 63.9
O O ([] O [[] 2.6 [J O ([] ([] [] [J 63.8
O @) ©] [] [] [J 2.6 [J O (©] [] [] @) 63.8
[] @) o (@) [] O 2.6 @) @) [] [] [] @) 63.8
O [J O O [] O 2.6 @] @] [] O [] [} 63.8
O O ([] O [O 2.6 @] [] [] [] [[] 63.7
O O @) [] [@] 2.6 [J O ([] (©] [] [J 63.6
@) @) (@) (@) [] [2.6 O [o [] [] [63.5
O O o (@] [] O 2.6 [] [J [] [] [] [} 58.4

Table 1 Table 2

Analysis results of the Linux code memory region.

total of 64 * 8 = 512 virtual machine executions. By com-
paring all the probes of each combination, we can obtain the
percentage of equal pages. By doing this, we can precisely
achieve the following:

1. The KASLR influence: of each combination to iden-

Analysis results of the Linux data memory region.

tify which randomized memory base address have
more impact on memory deduplication.

2. The best combination: for our purpose. In our case,
we aim to fully randomize as many memory base ad-
dresses as possible. To achieve that, we need to obtain

Vano et al.: Preprint submitted to Elsevier

Page 6 of 16

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

Modules Code Modules Data
Randomized Base Addresses Randomized Base Addresses
vmalloc/ physical kernel kernel % equal vmalloc/ hysical kernel kernel % equal
modules vmemmap ioremap mapping vaddr. paddr-. pages modules vmemmap forenap PmaYpping o padr pa:es
O O o o O O 30.4 @) @) M) M) @) @) 48.6
O ° O o 29.4 O @) ° O O 47.8
o (4 ° ° O O 27.2 o ° ° ° o o 46.1
o (4 o o O 14 26.8 e} ° ° ° O ™ 45.8
o} °) O O [25.9 o} °) O O ([44.9
o} O O ° O ° 25.6 o} ° O O O o 44.7
o ° ° o 0 o 25.5 o o ° o 0 o 44.7
o (4 O O O O 24.9 O O @) ° O ° 44.6
@)) O o O (] 24.7 @) Y e} o @) () 441
O O O O O O 24.5 0]) ° o) @) e} 44.0
(@) @) ([] (@) (@) (@) 24.4 ®) ®) Y ° o ° 43.5
O O ® ° O o 24.3 o) @) @) O O o) 43.2
@)) @) O @) (] 23.8 @) o O @) @) () 43.1
e} O ° O O ° 23.7 o O ° O O ° 43.1
e} @) O @) @) [} 23.7 ®) @) ®) O @) () 43.1
e} ° O ° O e} 234 O ° O ° O o 41.8
o O o [O [] 12.2 @) Y Y [[() 41.4
@)) o [o O 12.1 o) O e} o [@) 41.3
([] [] (J O O o 12.1 ®) @) e} O ® @) 41.2
° (4 O O O L4 12.1 o} O ° O ° e} 40.9
o o ® ° O o 12.1 o} ° @) @)) O 40.6
)) O O O O 12.1 @) Y O o [[) 40.1
) o o [@) (] 12.0 @) Y e} @) [() 40.0
® 4 ° L4 o O 12.0 O ° @) ° ° ¢ 39.6
° ° ® o o 4 12.0 o) o) ° @) ° ° 39.6
[] @] [J O O [] 12.0 e} PS P P P e} 39.5
° e} @)) O ° 12.0 o o ° ° ° @) 39.5
e} ° ° O ° e} 12.0 o o o ° ° ° 39.3
O O () @)) ° 12.0 O O () () ()) 39.1
® O o L4 o O 12.0 O ° ° @) ° ¢} 39.0
[) O O O O [) 12.0 @) Y) O) [} 38.9
O o O o o o 12.0 O O @) @) ° ™ 38.4
° o} @) @) O @) 12.0 ° ° ° ° ° o 30.3
O o ° L4 o o 11.9 ° ° ° ° O ° 30.3
o (4 ® O ° o 11.9 ° °) @) ° ° 30.3
° ° O ° ° o} 11.9 ° o ° ° ° ° 30.3
[] [) O [] O [) 11.9 ° ° Py o ° 10) 30.3
[] [] O O [] [) 11.9 ° ° Py e} O ° 30.3
i ©) ® o ° 4 1.9 ° ° o ° ° @) 30.3
° O O ° ° ° 11.9 ° ° 0 o ° ° 30.3
O [) O [] [[) 11.9 ° @) ° ° ° e) 30.3
[] [] @] [] O (@) 119 Py @) PY e} PS ° 30.3
i (4 o o ® ©) 1LY ° O o ° o ° 30.3
° O O ° ° o} 11.9 ° ° ° 0 O o 30.3
©) ©) ® ® ® ©) 11.9 ° ° o ° O o) 30.3
[] O [] @] O (@) 11.9 ° ° O o ° o) 30.3
e} ° @) O ° o} 11.9 ° ° o) o ° 30.3
O O [) o) ® O 11.9 Y O [[O O 30.3
4 ° ° ° ° ® 118 ° o) ° @) ° o) 30.3
[] [] [] [) [) O 11.8 PS e} P 0O 0O PS 30.3
° °) O) ° 11.8 ° o 0 °) ° 30.3
[] [] @] [] [] [) 11.8 Py @) o o PS Py 30.3
4 ©) ® ® ® ® s ° o) o @) ° @) 30.3
L4 O ° L4 ° O 11.8 ° O @) @) O ° 30.3
o °) O ° ° 11.8 ° ° o ° ° ° 30.2
@) O [] [] [] o 11.8 ° ° Y PY o 1e) 30.2
[) (@) (] O [] O 11.8 ° ° o) ° o ° 30.2
L4 O o o ® ® 11.8 ° ¢} ° ° @) ° 30.2
o ° O) ° o} 11.8 ° o o ° ° o 30.2
@) [J O @] [] [) 11.8 ° ° O o o e) 30.2
O (@) O [] [] [) 11.8 ° 10) ® o 0) 10) 30.2
° e} O O ° o) 11.8 ° @) O ° O o} 30.2
O O @) @)) ° 11.8 ° O @) @) @) O 30.2
o} e} O O ° o} 11.8 ° ° ° ° ° ° 30.1
Table 3 Table 4
Analysis results of the modules code memory region. Analysis results of the modules data memory region.
those that have low or zero impact on memory dedu- 3. Not biased and Independent Results: of the num-
plication. As detailed in the solution section 6, those ber of virtual machines. Instead of calculating the
memory base addresses will be randomized as usual memory deduplication differences before and after
and we are not modifying the kernel code that ran- randomization, we are calculating how different or
domizes them. equal a memory region is after applying randomiza-

Vano et al.: Preprint submitted to Elsevier Page 7 of 16

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

Vmalloc Space Virtual Memory Map
Randomized Base Addresses Randomized Base Addresses
vmalloc/ physical kernel kernel % equal vmalloc/ physical kernel kernel % equal
modules vmemmap . . modules vmemmap A .
ioremap mapping vaddr. paddr. pages ioremap mapping vaddr. paddr. pages

[] @) ([] [] (@) [J 3.0 O O o [] (@) @) 42,5
([] [] O O 3.0 [O ([] O O @) 41.8

[] [] ([} [J [} [] 2.9 @] O [] O O O 41.8
[] [] [J O [J @] 2.9 @] @] [] O [] O 41.7
[] @) (] (@) [] [] 2.9 [] @) (@) [] [] @) 41.1
O [([] [] [] O 2.9 O @) (©] O [] O 40.9
@) [o [] [] [] 2.9 [] @) o (@) [O 40.8
[] [] O [J O @] 2.9 [] O [] [J [] O 40.7
[] [] O O [} (@) 2.9 (@) @] O O O (@) 40.7
[[©] O O [2.9 O @) ©] [] [] @) 40.6
[] @) ([] (@) (@) [] 2.9 @) @) [] [] [] @) 40.5
[] @] O [J O [J 2.9 @) O [J [J O O 40.4
@] [] ([} O [} O 29 [] O O O @] O 40.4
@] [] [J O O [] 2.9 [] @] O [J O O 40.3
@) @) [] [] (@) [] 2.9 [] @) [] (@) [] @) 40.2
O O ([] O [] [2.9 [O ([] [] O O 39.1
[] @] ([J O O @] 2.9 [] @] O [J O [] 38.0
[] @] O [J O @] 2.9 [] @] O O O [] 37.9
[] @) (@) (@) (@) [2.9 [@) ([] (@) (@) [37.5
O [([] O O O 2.9 O O ([] [] [J [} 37.4
@) [o [] (@) @) 2.9 @) @) ([] (@) (@) [35.8
@] [] O O O [] 2.9 @] @] O O [[] 35.6
@] O ([} O [} @] 2.9 [] @] [] [} [] [] 35.5
O @) (©] [] [] O 2.9 [O ©] [] [J [} 35.3
@) [O (@) (@) @) 2.9 @) @) o (@) (@) [] 35.2
@] @] @) [O @] 2.9 @] @] (©] [O [] 35.1
@] @] O O [} @] 2.9 [] O O O [] [] 34.8
@] @] O O O O 29 O O O [J [J [] 34.8
[] [[] [] [] @) 2.8 @) @) ([] [] (@) [] 34.7
[] [([] [] O [] 2.8 [O [] [] O [34.6
[] [] [J O [[] 2.8 @] @] [] O o [] 34.0
[] [] O [J [J [] 2.8 [] @] [] O [[] 33.6
[] @] ([} [} [} [) 2.8 [) [] ([} [} [} (@) 0.1
O [([] [] [] [2.8 [[[] [] O [J 0.1
[] [(] [] (@) @) 2.8 [[[] (@) [] [] 0.1
[] [] [J O O [] 2.8 [] [J O [J [J [J 0.1
[] [] O [J [} O 2.8 [] [) [} [} @] (@) 0.1
[] [] O [J O [] 2.8 [] [] [J O [J O 0.1
[[O (@) [] [] 2.8 [] [([] (@) (@) [] 0.1
[O ([] [] [] O 2.8 [] [(©] [] [] O 0.1
[] @] O [J [} [] 2.8 [] [) O O [] [] 0.1
@] [] [J [J O [] 2.8 O [] [J [J [J O 0.1
@) [([] (@) [] [2.8 @) [([] ([] (@) [0.1
O O ([] [] [] [2.8 O [(©] [] [] [0.1
[] @) [] O [] @) 2.8 [] [(] (@) (@) @) 0.1
[] @] O [J [J @) 2.8 [] [J O O [J O 0.1
@] [] ([} [} O (@) 2.8 [) [) O O @] [] 0.1
O [(©] [] [] O 2.8 O [] [] [] O O 0.1
@) [o [] (@) [] 2.8 @) [(] (@) (@) [0.1
@] [] O O [J [J 2.8 @) [J @) [[J O 0.1
@] O ([J [} [} O 2.8 (@) [) O O [] [] 0.1
@] @] O [J [J [] 2.8 [] [] O O O O 0.1
[] [) O (@) (@) @) 2.8 @) [([] (@) (@) @) 0.1
[] @) (©] O [] O 2.8 O [(©] [] O O 0.1
@] [] O O [J O 2.8 O [) O O [} (@) 0.1
@] @] [J [J O O 2.8 [J [J [J [J [J [] 0.0
@] @] [} O O [) 2.8 (@) [] [} [} [} [) 0.0
O @) ©] [] O [] 2.8 [] [] (©] [] O [0.0
@) @) o (@) [] [] 2.8 @) [([] (@) [] [] 0.0
[] @] O O O @) 2.8 [] [J O [J O @) 0.0
@] O ([} O O O 2.8 (@) [) ([} O [] (@) 0.0
@] @] O O O [] 2.8 O [] O [J O [] 0.0
[] [[] (@) (@) @) 2.7 @) [O (@) (@) [0.0
[] O o (@] [] [] 2.7 O [o O O O 0.0

Table 5 Table 6
Analysis results of the vmalloc memory region. Analysis results of the vmemmap memory region.

tion. The first approach could be tuned to obtain al-
most any number by choosing a high number of vir-
tual machines. For example, if half of the memory
of a virtual machine can be deduplicated, then if we
have two identical machines, the memory deduplica-

tion will save 50% of the memory but if we have three,
the deduplication will report 66% of memory saved.
Hence, although this is reflecting the actual savings, it
is not appropriate to know the real impact of KASLR.

Therefore, our analysis focus on obtaining the percent-

Vano et al.: Preprint submitted to Elsevier

Page 8 of 16

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

age of pages that are equal for each case, independently of
the region’s size. Note that our analysis obtains separately
the randomization effect produced to Linux code and Linux
data regions, but it is not possible to randomize both sep-
arately. On the other hand, the fact of randomizing the
physical mapping can influence one or more memory regions,
but this is a special case; it is a virtual mapping to all physical
memory and not actually a memory region, so its contents
must be ignored in the analysis.

Even though the Linux kernel guests use pages of 2 MiB,
the memory deduplication implementation in Linux works
with 4 KiB pages. Therefore, our analysis calculating how
equal a memory region is after applying all randomization
detects differences at page level, that is, a single bit differ-
ence in a page is reported as a full 4 KiB page mismatch.

Tables 1 and 2 show the analysis of the Linux code and
data respectively. Tables 3 and 4 do the same for the code
and data of the modules, table 5 shows the analysis of vmalloc
and finally table 6 presents the results of the vmemmap memory
region. The column % equal pages on the tables indicates
the percentage of similarity between a particular memory
region across all memory base address randomization com-
binations.

5.1. Linux Code Impact

The results of the randomization effects on the Linux code
shown in table 1 point out that the Linux code memory region
is only and drastically affected by the randomization of the
kernel virtual address. When the randomization is applied
to the kernel virtual address, the percentage of equal pages
is reduced from 100% to 2.6%, regardless of whether other
areas are randomized or not. Although we discussed in sec-
tion 3 that Linux is using relocations to implement the ker-
nel randomization, the results indicate that almost all kernel
code pages are altered in this relocation process, resulting in
a non-shared Linux code region.

This result was a bit surprising, not the fact that random-
izing the Linux code will affect to the memory deduplication
of its code pages but obtaining that 97.4% are patched due
to the randomization process, which points out that the relo-
cations are spread throughout the Linux code memory area.

5.2. Linux Data Impact

The results for the Linux data memory region shown in
table 2 show that the percentage of equal pages when all ar-
eas are randomized is 64% in average, and by only disabling
the randomization of the kernel virtual address, this value
is increased to 80%. Hence, only by randomizing the kernel
virtual address causes deduplication to decrease around a
20%.

The Linux data contains absolute addresses referencing
to parts of the kernel itself (to either code and data regions).
Considering that a single absolute reference affects the entire
page, approximately 15% of pages in this region contain this
kind of references. Randomizing other memory areas has
negligible effect on the percentage of equal pages in the Linux
data.

5.3. Modules Code Impact

Regarding the Linux modules code, table 3 points out that
when both kernel virtual address and the modules base
address are not randomized, then around 25-30% percent
have equal content. Any other combination will reduce by
around 52% the sharing rate reaching 11-12% of equal pages.
Therefore, randomizing either the kernel virtual address or
modules is enough to reduce modules code sharing rate by
around 52%.

The latter is not surprising because when modules are
loaded at a random position, all the relocations with abso-
lute addresses alter the contents of the module’s code region
(e.g., accessing to a variable of its data region). However,
why randomizing only the kernel virtual address has the
same effect than randomizing the modules base address could
be less evident. The reason of such behaviour is that any ref-
erence to kernel symbols (e.g., kmalloc() function) must be
fixed up. Then, if the kernel virtual address is randomized,
these relocations will differ. In the case of kernel references,
the issue occurs with any type of relocation (absolute or rel-
ative) [27].

A result that might be seen as unexpected is not hav-
ing the highest percentage of equal pages for the modules
code when the randomization of all memory areas is dis-
abled. This occurs because modules load order is not pre-
served across different kernel boots, even when the kernel
randomization is fully disabled. This issue is further dis-
cussed in Section 9.

5.4. Modules Data Impact

The minimum percentage of equal pages in the data sec-
tion of modules is achieved when the modules base address
is randomized. The obtained value, as table 4 shows, is 30%
and enabling or disabling the rest of memory areas does not
affect to this value. On average, enabling the modules base
address randomization will reduce around 12% the number
of equal pages of the modules data.

When the modules base address is not randomized, the
percentage of equal pages of module data is between 38-48%
(42% average). From this range, the lowest sharing rate is
obtained when the kernel virtual address is randomized.
This confirms that the modules data region contains pointers
to the kernel. However, it can be less obvious to realize that
module data could contain pointers to its own data memory
region, which breaks the shareability because of the unpre-
dictable load module order even when the modules base ad-
dress is not randomized. Around 64% of pages in modules
data contain at least one absolute reference to its own mod-
ule memory (code and data), and 23% to the kernel region.

5.5. Vmalloc Space Impact

The results of the vmalloc memory region shown in ta-
ble 5 reveals a really low percentage of equal pages in all
cases. Therefore the Linux kernel randomization is not af-
fecting the contents of the vmalloc memory region, having in
all cases a 3% of equal pages.

This is not surprising since vmalloc is mainly used to dy-
namically and temporally store data by the kernel, and ran-

Vano et al.: Preprint submitted to Elsevier

Page 9 of 16

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

Impact on Linux Kernel Memory Regions

Randomized Addresses Linux Linux Modules Modules alloc emma
ndomiz r vm vmemm
Code Data Code Data P
Kernel Base (Physical) none none none none none
Kernel Base (Virtual) high med high none none
Physical Direct Mapping | none none none none none none
Vmalloc/ioremap none none none none none none
Vmemmap none none none none none high
Modules none none high med none none
Table 7

Impact of randomizing Linux base addresses on the different memory regions.

none < 5% |

domizing memory areas does not affect to that content. This
memory is always random in our proposal since it has not
effect on memory deduplication.

5.6. Virtual Memory Map Impact

The results for the vmemmap memory region shown in ta-
ble 6 indicates that only by randomizing the vmemmap address,
the percentage of equal pages for this memory region drops
to zero compared to the 38% obtained on average when the
vmemmap memory region is not randomized.

The vmemmap memory region contains lists of objects with
references to previous and next objects that reside in the
vmemmap memory region itself. Therefore, by randomizing
this area all those pointers will be different and the pages
will not be mergeable.

5.7. Analysis summary

In order to summarize the impact of the kernel ran-
domization on each memory region, we classified the rel-
ative sharing loss obtained from tables 1-6 into none, low,
medium and high impact. This measures the relative per-
centage of equal pages that can not be merged when the ker-
nel randomization is enabled. For example, the modules data
memory region loses 28.5% of relative equal pages (from
42% to 30%) when the modules base address is randomized.

Table 7 summarizes the kernel randomization impact on
the different memory regions. Three memory regions are
highly impacted because of the kernel randomization (Linux
code, modules code and vmemmap) and two have a medium im-
pact (Linux data and modules data). As detailed in section 6,
KASLR-MT will handle those five memory regions in order
to restore back the memory sharing rate.

6. KASLR-MT: A Multi-Tenancy KASLR

In this section, we present KASLR-MT, a kernel ran-
domization design for multi-tenant cloud systems which is
compatible with memory deduplication while providing a
strong level of security. As summarized in section 5.7, there
are memory regions with none/low impact and others with
medium/high impact on memory deduplication. Based on
that, we have designed KASLR-MT to keep a strong secu-
rity while maximizing memory deduplication sharing rate,

5-15% | med 15-30% | high > 30%

as analyzed in section 8.

As stated in section 4 and studied in section 5, kernel
randomization produces alterations in memory contents that
breaks memory sharing. To remedy this situation and yield
memory sharing by deduplication in the host, kernel mem-
ory layouts of guest virtual machines should be as similar as
possible.

A quick workaround to achieve this, although it is not
a solution by itself, would be to disable kernel randomiza-
tion in the guests. If kernel randomization is completely
disabled, guest kernels are deterministically placed in a de-
fault address settled at compile time. Comparing guest in-
stances of the same kernel, all of them produce the same
kernel memory layout. As a consequence, relocations that
are different when the kernel is randomized are equal when
itis not. Even though this approach can be a suitable method
in certain environments, for example private clouds properly
secured against external attacks, we do not recommend dis-
abling any security mechanism. As stated in section 2.4, the
fact of disabling KASLR to obtain better memory dedupli-
cation savings introduces serious weaknesses.

In order to properly tackle the randomization-vs-
sharing problem, we propose Kernel Address Space Lay-
out Randomization Multi-Tenancy (KASLR-MT), a para-
virtualization based solution that enables the hypervisor to
provide the kernel memory layout to the guest virtual ma-
chines in multi-tenant cloud environments. It gives the host
machine the ability to decide the locations of different ker-
nel memory regions of guest virtual machines. There are
two possibilities for each kernel memory region:

1. None/Low impact memory regions. If a memory
region has low or negligible impact when all mem-
ory base address are randomized, then this memory
region can be randomized without sharing its base ad-
dress with any other kernel. Note that the base address
of this memory region will be different among virtual
machines in both, same and different tenants.

2. Medium/High impact memory regions: If a mem-
ory region has medium or high impact when any mem-
ory base address is randomized, then this memory re-
gion must be randomized in a per-tenant basis, shar-
ing its base address with other kernels belonging to the

Vano et al.: Preprint submitted to Elsevier

Page 10 of 16

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

Tenant T1 Tenant T2
'' M 1 VM 2 vM 3 VM 4
Host | Guest :
Region C Region C
Tenant ID Key e Region C Region C
H ' Add e Address C
: Tl @_—) P dress —» 4 + Address B-
; T2 K2 E roducer e Address A-._ !
H i
Tn Kn
Region A Region A

Figure 2: Design of KASLR-MT. A tenant key is transferred to the guest to deterministically produce the final addresses of kernel

memory regions.

same tenant. Therefore, the base address of this mem-
ory region will be the same among virtual machines
belonging to the same tenant and different among vir-
tual machines of different tenants.

This solution is designed for multi-tenant cloud systems,
where different tenants are owners of different groups of vir-
tual machines. Thus, virtual machines belonging to a same
tenant can attain a common kernel memory layout, allow-
ing the host machine to share more memory. Security is
kept, since the kernel memory layout is still unpredictable
from the attacker perspective. This is valid even if virtual
machines are not exactly identical, because the granularity
of memory deduplication is 4096 bytes, which enables it to
deduplicate parts of the virtual machines. KASLR-MT will
provide the maximum possible benefit compared with the
memory deduplication when the kernel randomization is en-
abled.

The cloud infrastructure maintains a table with one-to-
one correspondence, linking Tenant-ID and a unique random
key. Each unique key serves to deterministically produce
base addresses of guest kernel memory regions. The table
relation must be bijective so that there are no duplicate keys
in the cloud infrastructure, and keys must be unpredictable.
Otherwise, since the algorithm to produce addresses from a
given key must be highly deterministic, an attacker who can
predict the key of a victim tenant will be able to guess the
kernel address space layout of the victim’s virtual machines.

Figure 2 shows the design of KASLR-MT. The table re-
lating each tenant with its key is stored in the host machine,
so that the hypervisor transfers the corresponding key to a
virtual machine when it is turned on. Guest kernels will use
the key as input to the Address Producer to get memory ad-
dresses of regions that want to randomize. On the right part
of the figure, the kernel memory of four different virtual ma-
chines are depicted. Tenant T1 owns two of them (VM-1 and
VM-2) while the other virtual machines (VM-3 and VM-4)
belong to Tenant T2. Both VM-1 and VM-2 obtain the same
memory layout because both kernels are using the same key
(K1) as input to the Address Producer algorithm. On the
other hand, VM-3 and VM-4 use the key of Tenant T2 (K2),
obtaining a different memory layout.

The table information needs to be distributed to all the
host machines forming the cloud infrastructure. Coherence
of this distributed state in the infrastructure is important to

support virtual machine migration. If, otherwise, the keys
were only kept locally in host machines, a migrated virtual
machine whose kernel memory layout was generated with a
different key would introduce layout diversity within a same
group of virtual machines.

The lifetime of a tenant’s key goes from when its first
virtual machine starts to when its last active virtual machine
turns off, independently of the state of other virtual machines
belonging to different tenants. A key cannot be changed if
any virtual machine is running, since it would introduce lay-
out diversity as well; i.e., kernel memory layout of guests
started after a key change would likely differ from those
started before. When the last virtual machine of a given
tenant turns off, the key can be safely purged. In fact, we
strongly recommend to purge it, in order to force the cre-
ation of a new key for subsequent guest kernels.

With KASLR-MT, kernel memory base addresses can be
randomized in two different ways:

1. Per-Tenant: For a given memory region, a random
key is generated by the host and associated to a tenant.
The key is shared across all virtual machines belong-
ing to the same tenant to enable them to generate the
random base address. Guests will have the same mem-
ory base address (random) for a particular memory
region. KASLR-MT uses a Per-Tenant approach for
memory regions where the impact is high or medium.

2. Per-VM: For a given memory region, a random key
is generated by the host and associated to a virtual
machine. Every time a guest reboots, the region will
have a different memory base address and it will not be
shared across virtual machines belonging to same or
other tenants. KASLR-MT uses a Per-VM approach
for memory regions where the impact is low or none.

KASLR-MT combines the deduplication effectiveness
of disabling kernel randomization and the statistical defense
provided by the kernel randomization protection. The ap-
proach followed by KASLR-MT is similar to the one com-
monly used by some major operating systems (e.g., Win-
dows and Mac OS) to randomize the virtual address of
userspace libraries, using a per-boot ASLR scheme: a ran-
dom system-wide value is computed once at system startup,
and it is used to calculate the virtual address where libraries

Vano et al.: Preprint submitted to Elsevier

Page 11 of 16

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

are loaded at. This random value is not changed until the
next system reboot. Similarly, our design uses a random key,
which determines the guest kernel memory layout, for all the
virtual machines of a tenant until the moment when the last
one shuts down. However, with per-boot userspace ASLR,
a local attacker already knows the address space layout of
the target application. This is not the case for KASLR-MT,
which offers the same protection as KASLR. Further details
can be found in section 8.

7. KASLR-MT Linux Implementation

In this section, we present the KASLR-MT implementa-
tion in the Linux kernel based on the results of section 5.

Table 8 show the randomization approach followed by
KASLR-MT to maximize the deduplication sharing rate in
the Linux kernel. Following this approach, it is expected to
obtain a memory sharing rate similar to that obtained when
kernel randomization is disabled. Although the kernel base
physical address influences on the vmemmap memory region,
we consider that it is not worth to randomize this address
Per-Tenant because of its low impact.

Kernel Base Addresses | Randomization
Kernel Physical Address | Per-VM

Kernel Virtual Address Per-Tenant
Physical Direct Mapping | Per-VM
Vmalloc/ioremap Per-VM
Vmemmap Per-Tenant
Modules Per-Tenant

Table 8
KASLR-MT randomization approach for the different Linux
kernel memory base addresses.

To communicate the random key to the guest Linux ker-
nel, we use the kernel’s command-line parameters, passing
directly its corresponding key value. Since Linux normally
prints the contents of the cmdline to the kernel ring buffer
at the beginning of its boot process, we need to retrieve the
key and clean-up the cmdline buffer before it is printed out,
to avoid leaking this information. If the key is leaked, every
address being randomized from that key could be calculated.

Once the key is obtained, three addresses need to be pro-
duced from it. Actually, for our proof of concept, we need
to get a pseudo-random number per address, which will be

extract key

0 shal prng

[+1
1

cmdline

1 shal prn;

+1

K
K, shal prn,

Figure 3: Block diagram describing our proof-of-concept im-
plementation of the Address Producer component.

776 static unsigned long find_random_virt_addr(...)

778 {
791 slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
792 CONFIG_PHYSICAL_ALIGN + 1;

793

= random_addr = kaslr_get_random_long("Virtual”) % slots;

+++ if (kaslrmt_enabled)

+++ random_addr = kaslrmt_prn[@];

+++ else

+++ random_addr = kaslr_get_random_long("Virtual”) % slots;
798

799 return random_addr x CONFIG_PHYSICAL_ALIGN + minimum;

800 }

Listing 2: Changes in arch/x86/boot/compressed/kaslr.c file of
the Linux source code.

used to calculate deterministically the final virtual address.
To achieve this in a secure and robust way, we could use
a cryptographically secure pseudorandom number generator
(CSPRNG), seeding it with the transferred key to produce
pseudo-random numbers, or a proper key derivation func-
tion (KDF) chain, as used in some encryption algorithms
(e.g., AES-GCM-SIV [14]). However, since our purpose is
to develop a proof of concept to evaluate our design, we have
followed a simple approach to simplify the comprehension,
inspired in these kind of algorithms. The general idea is de-
picted in figure 3. After extracting the key from the kernel
command-line, a digest of the key itself is calculated by us-
ing the sha1 algorithm, and the result is treated as a pseudo-
random number to get the final kernel base virtual address.
The same procedure is done two more times, to extract the
pseudo-random numbers for obtaining the vmemmap address
and the modules base, incrementing the key by one before
the digest calculation.

Each pseudo-random number is used instead of a per-
region random number. Listing 2 exemplifies how the
virtual address of the kernel base is obtained, using the
KASLR-MT pseudo-random number instead of calling to
kaslr_get_random_long(). The remaining addresses are cal-
culated similarly.

Regarding the key length, given that we are using the ker-
nel command-line as input method, we consider that keys
should use common ascii alphanumeric characters. How-
ever, keys should have enough entropy to resist brute force
attacks against a leaked kernel address. If a kernel address is
leaked, an attacker could be able to recover the key by brute
forcing the hash algorithm. Based on that the maximum en-
tropy that can be obtained through get_random_bytes() is 64
bits, we consider this value as a proper entropy for a KASLR-
MT key value. In addition, we want to use common print-
able ascii characters, avoiding the space and DEL characters.
Therefore, the valid ascii characters are from value 0x21 (*!”)
until value 0x7e (‘~’). This is a total of 94 characters in our
alphabet of valid characters for a key. Considering a desired

Vano et al.: Preprint submitted to Elsevier

Page 12 of 16

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

KASLR-MT —*- KASLR OFF —e— KASLR ON —e—

100

~ 90}]

= g} .

>

g 70 |

E 60} .

= 50} .

S 40} 1

_8 30 _W- *——o oo ‘_

=)

B 20} |

T 40}]
0 — ——————

8 10 12 14 16 18 20 22 24 26 28 30
Number of Kernels

2 4 6

Figure 4: Redundant memory curve for different number of
simultaneous kernels.

entropy of 64 bits, the key size must be at least 10 characters:

x % log,(94) = 64 - x = 9.76

8. Evaluation

In this section, we evaluate the memory deduplication
saving effectiveness of KASLR-MT as well as the security
considerations.

8.1. Memory Deduplication Savings

In order to measure how much kernel memory is be-
ing saved by deduplication with KASLR-MT compared with
Linux KASLR, we have launched another experiment, run-
ning from 2 to 30 simultaneous virtual machines running in
the same host. Each virtual machine configuration is the
same as used in section 5, a generic GNU/Linux Ubuntu
19.04 with Linux v5.0.6, with Gnome desktop and full net-
working (NAT mode provided by Qemu). The physical ma-
chine used to run the experiments has an Intel Xeon W-2155
processor (Skylake server microarchitecture) and 32 GiB of
SDRAM memory. The hypervisor used is KVM (Linux ker-
nel 4.19-ARCH) along with Qemu VMM version 4.0.0.

Userspace activities modify the kernel state (changes in
data structures as existing processes, open files, etc.). In-
evitably, even though these alterations are not related with
kernel randomization, they are present in the measurements.
The possible combinations of userspace workloads are end-
less. For this reason, virtual machines run the GNU/Linux
Ubuntu distribution in the experiment with the aim of obtain-
ing a real environment with a representative userland work-
load. However, since the scope of this paper is to study the
effects that kernel randomization has in memory contents,
memory pages belonging to userland should be discarded.

Figure 4 shows the resulting percentage of redundant
memory for each case. With only two kernels, if kernel ran-
domization is enabled there is a 27.65% of redundant mem-
ory, which increases to 45.09% by disabling it. With our so-
lution, the value obtained is close to the latter, a 44.02%. The

100
KASLR ON s
— 90 F KASLR OFF mmmmm 1
2 gl KASLR-MT o |
>
E 70}
5 6o}
E 50 |
S 40}
©
c 30}
=]
8 20}
T 4o}
0

Linux Linux
Code Data Code Data

Kernel Memory Regions

Modules Modules Vmalloc Vmemmap

Figure 5: Percentage of redundant memory per kernel region,
for 30 kernels.

percentage increases logarithmically as more kernel memo-
ries are added, until they approach a theoretical limit, where
the curve grows slower. However, when kernel randomiza-
tion is enabled, the curve has less slope; this is caused by a
greater number of pages with matchless contents. This limit
is approximately 70% when kernel randomization is not en-
abled, 67% in our solution, and 35% when kernel random-
ization is enabled.

Taking a stabilized case, for example with 30 kernels,
we have split the memories of all the kernels by region, as
shown in figure 5. From it, we can confirm which are the
kernel regions benefiting from our solution. The Linux code
region gets exactly the same sharing as when kernel ran-
domization is disabled, while the Linux data region (includ-
ing .data, .bss and other data sections) is close, with only
2.7% of sharing loss. The modules code and data regions are
also benefiting despite the fact that the loading order factor,
which is independent of kernel randomization, is affecting
their contents similarity (elucidated in section 9). Similarly,
vmemmap can share a 34.9% of its contents with our solution,
an 8.3% less than when kernel randomization is disabled; but
still a good portion, considering that its contents are almost
entirely matchless (0.2%) when kernel randomization is en-
abled. With regard to vmalloc, we can see that it has similar
redundant memory, independently of kernel randomization.
Consequently, figure 5 shows that our solution is close to the
best case scenario (i.e., KASLR OFF) in terms of redundant
memory.

8.2. Security Considerations

Regarding security implications of KASLR-MT, it ex-
tends the memory saving benefits keeping the protection pro-
vided by KASLR.

Our proposed solution is intended to be beneficial in
multi-tenant cloud systems, where several tenants are own-
ers of one or more groups of virtual machines, and all of
them share the resources of a single physical machine by
the use of virtualization technologies. With KASLR-MT,
the memory deduplication savings are restored back without
disabling the kernel randomization, enabling Linux systems

Vano et al.: Preprint submitted to Elsevier

Page 13 of 16

: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

KASLR-MT
Boot 1
Module Virtual Address
floppy axffffffffconozaen
pata_acpi axffffffffcoolrenn
i2c_piixd Oxffffffffcoalconn
el@ag exffffffffcon2fonn
ip_tables axffffffffcons2000
psmouse axffffffffcoasbann
autofs4d Oxffffffffcongleon
%x_tables exffffffffcongddons
sch_fg_codel axffffffffcoob8000
irgbypass axffffffffcolvaann
joydev axffffffffcolvfonn
mac_hid axffffffffcolaboen
serio_raw exffffffffcolec3000
input_leds xffffffffcole@nnn
crctladif_pclmul axffffffffcozonee0
nfit axffffffffco2zes000
gemu_fw_cfg exffffffffco237000
crc32_pclmul axffffffffco266000
kvm Oxffffffffco2ebann
kvm_intel axffffffffcoozdosn

Boot 2
Module Virtual Address
floppy axffffffffconozaen
pata_acpi axffffffffcoolrenn
i2c_piixd xffffffffcoalconn
eloag exffffffffcon28000
autofs4d Oxffffffffcondbeooo
psmouse Oxffffffffcoasbann
x_tables axffffffffco0seno0e
ip_tables exffffffffcoaaronn
sch_fg_codel axffffffffcoob7oe0
gemu_fw_cfg Axffffffffcol72000
irgbypass AxffffffffcolTeann
mac_hid axffffffffcola3een
serio_raw exffffffffcolb8oen
input_leds exffffffffcalclonn
crctladif_pclmul axffffffffcolceann
crc32_pclmul axffffffffcolfennn
joydev axffffffffco2oennn
kvm Oxffffffffco24booo
nfit axffffffffcovefonn
kvm_intel axffffffffco8e2000

Figure 6: Name and final virtual address of a list of modules being auto-loaded into the Linux kernel at boot time, for two
different kernel boots, without enabling kernel randomization. The loading order is not preserved across boots.

to have both, high ratios of memory savings and security.

The trade-off for more memory sharing is to share akin
kernel address space layouts among virtual machines be-
longing to the same group. Effectively, this solution main-
tains an equivalent protection offered by kernel randomiza-
tion. On the one hand, it protects against external attackers
including network applications interacting with the kernel
and unknown tenants running virtual machines in the same
host machine. On the other hand, attacks from those virtual
machines that share the same kernel address space layout are
equivalent to local attacks (userspace applications attacking
its own kernel). In all of these cases, the kernel memory
layout is unpredictable from the attacker perspective.

There is a case where KASLR-MT has a drawback: an
attacker successfully bypassing the kernel randomization of
a particular machine will be able to use that leak to bypass
the kernel randomization of another machine belonging to
the same tenant. However, the effort required to bypass
KASLR-MT is the same as KASLR.

9. Discussion

In this section, we discuss some affairs that have not been
thoroughly detailed for being out of scope.

As advanced in previous sections, the loading order of
Linux loadable modules is not deterministic. We are focus-
ing on the kernel’s automatic module loader at boot time,
without explicit user/administrator action once the system is
running [5]. Linux can perform the module auto-loading in
two different ways: by using hardware-driven mechanisms
sending events to userland daemons (e.g., udev) when hard-
ware is discovered, or by using an older mechanism that
uses the request_module() kernel function to load the module
from userspace. In all cases, this job is done when a certain

module is needed and has not yet been loaded. This is com-
mon for device drivers compiled as modules.

Most of the cases, modules auto-loading is done asyn-
chronously, exploiting the advantages of parallelism to in-
crease performance. As a consequence, even if kernel ran-
domization is disabled, a similar effect occurs in the code
and data memory regions of the modules, caused by the in-
trinsic randomization derived from the unpredictability of
their loading order. Furthermore, taking into account that
the list and number of modules being loaded into a kernel
may vary depending on the task in which it is involved, even
if a pre-established loading order is determined for a certain
group of Linux modules, the boundless variety of different
possible modules makes it a complex issue.

Figure 6 compares a list of modules being auto-loaded
into the Linux kernel at boot time for two different kernel
boots (boot 1 and boot 2) when the kernel randomization is
fully disabled. There are modules loaded in different posi-
tions and virtual addresses. For example, the ip_tables is
loaded in position 5 in boot I and in position 8§ in boot 2,
resulting in different virtual addresses where they have been
loaded. A situation that could seem unexpected is when a
module is loaded in the same position in both boots but in
different virtual address. An example is the module e1000,
where the base address in boot 1 is oxffffffffcee2feoe and
oxffffffffcee28000 in boot 2.

This behaviour alters modules memory contents in a sim-
ilar way as kernel randomization does. As a consequence, all
their absolute references (in code and data) will not be equal
when different kernel memories are compared.

Therefore, even fully disabling the kernel randomization,
the load order module and addresses where they are allo-
cated are not the same across different kernel reboots. The
asynchronous userspace module loading requests provide a

Vano et al.: Preprint submitted to Elsevier

Page 14 of 16

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

flexible and time saving boot time but, unfortunately, it also
reduces the memory sharing rate. As a future work, hav-
ing modules compiled and linked as position-independent
code (PIC) could alleviate this issue. Unfortunately, current
Linux versions do not support PIC and an analysis to ob-
tain the real benefit would be necessary since, as we have
discussed, modules also contain references to other kernel
parts that can break the memory sharing.

10. Conclusions

In this paper we presented KASLR-MT, a new Linux
kernel randomization design for multi-tenant cloud systems,
compatible with memory deduplication, which maximizes
memory savings rate while providing a strong security.

We identified why the most widely and effective tech-
nique used to mitigate attacks at kernel level, KASLR, fails
to provide protection and shareability at the same time. To
design KASLR-MT, we performed a deep analysis on how
kernel randomization affects to the shared memory. Then,
we propose KASLR-MT, the first effective and practical Ker-
nel ASLR memory protection that maximizes the memory
deduplication savings rate while providing a strong security.

We have implemented and tested KASLR-MT in the
Linux kernel and our results showed that KASLR-MT is not
intrusive, highly scalable and maximizes the memory sav-
ings rate while providing a strong security.

References

[1] Arcangeli, A., Eidus, I., Wright, C., 2009. Increasing memory density
by using ksm, in: Proceedings of the linux symposium, Citeseer. pp.
19-28.

[2] Binu, A., Kumar, G.S., 2011. Virtualization techniques: a methodical
review of xen and kvm, in: International Conference on Advances in
Computing and Communications, Springer. pp. 399—410.

[3] Computer History Museum, . What happened on september
9th. URL: http://www.computerhistory.org/tdih/September/9/. [Re-
trieved: Sep, 2018].

[4] Cook, K., 2013. Kernel address space layout randomization. URL:
https://outflux.net/slides/2013/1ss/kaslr.pdf. [Retrieved: Sep,
2019].

[5] Corbet,J.,2017. Restricting automatic kernel-module loading. URL:
https://lwn.net/Articles/740455/. [Retrieved: Sep, 2019].

[6] Daley, R.C., Dennis, J.B., 1967. Virtual memory, processes, and shar-
ing in multics, in: Proceedings of the first ACM symposium on Op-
erating System Principles, ACM. pp. 12-1.

[7]1 Evtyushkin, D., Ponomarev, D., Abu-Ghazaleh, N., 2016. Jump
over aslr: Attacking branch predictors to bypass aslr, in: The 49th
Annual IEEE/ACM International Symposium on Microarchitecture,
IEEE Press. p. 40.

[8] Filipe, R., Barreto, J., 2011. End-to-end data deduplication for the
mobile web, in: 2011 IEEE 10th International Symposium on Net-
work Computing and Applications, IEEE. pp. 334-337.

[9] Fabrega, FJ.T., Javier, F., Guttman, J.D., 1995. Copy on write.

[10] Ganz,J., Peisert, S., 2017. Aslr: How robust is the randomness?, in:
2017 IEEE Cybersecurity Development (SecDev), IEEE. pp. 34-41.

[11] Gisbert, H.M., Ripoll, I., 2014. On the effectiveness of nx, ssp, re-
newssp, and aslr against stack buffer overflows, in: 2014 IEEE 13th
International Symposium on Network Computing and Applications,
IEEE. pp. 145-152.

[12] Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C., 2017. Aslr
on the line: Practical cache attacks on the mmu., in: NDSS, p. 26.

[13] Gruss, D., Maurice, C., Fogh, A., Lipp, M., Mangard, S., 2016.
Prefetch side-channel attacks: Bypassing smap and kernel aslr, in:
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, ACM. pp. 368-379.

[14] Gueron, S., Langley, A., Lindell, Y., 2017. Aes-gcm-siv: Specifica-
tion and analysis. IACR Cryptology ePrint Archive 2017, 168.

[15] Guo, F., Li, Y., Xu, Y., Jiang, S., Lui, J.C., 2017. Smartmd: A
high performance deduplication engine with mixed pages, in: 2017
{USENIX} Annual Technical Conference ({USENIX}{ATC} 17),
pp. 733-744.

[16] Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren, A.C., Varghese,
G., Voelker, G.M., Vahdat, A., 2010. Difference engine: Harness-
ing memory redundancy in virtual machines. Communications of the
ACM 53, 85-93.

[17] Harnik, D., Pinkas, B., Shulman-Peleg, A., 2010. Side channels in
cloud services: Deduplication in cloud storage. IEEE Security & Pri-
vacy 8, 40-47.

[18] Herlands, W., Hobson, T., Donovan, P.J., 2014. Effective entropy:
Security-centric metric for memory randomization techniques, in: 7th
Workshop on Cyber Security Experimentation and Test ({CSET} 14).

[19] Jang, Y., Lee, S., Kim, T., 2016. Breaking kernel address space lay-
out randomization with intel tsx, in: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security,
ACM. pp. 380-392.

[20] Kaur, G., Bala, A., Chana, I., 2019. An intelligent regressive
ensemble approach for predicting resource usage in cloud com-
puting. Journal of Parallel and Distributed Computing 123, 1
- 12. URL: http://www.sciencedirect.com/science/article/pii/
S0743731518306063, doi:https://doi.org/10.1016/3. jpdc.2018.08.008.

[21] Kim, S., Kim, H., Lee, J., Jeong, J., 2014. Group-based memory over-
subscription for virtualized clouds. Journal of Parallel and Distributed
Computing 74, 2241 — 2256. URL: http://www.sciencedirect.
com/science/article/pii/S0743731514000033, doi:https://doi.org/10.
1016/j.jpdc.2014.01.001.

[22] Koo, H., Chen, Y., Lu, L., Kemerlis, V.P., Polychronakis, M., 2018.
Compiler-assisted code randomization, in: 2018 IEEE Symposium on
Security and Privacy (SP), IEEE. pp. 461-477.

[23] Lindemann, J., Fischer, M., 2018. A memory-deduplication side-
channel attack to detect applications in co-resident virtual machines,
in: Proceedings of the 33rd Annual ACM Symposium on Applied
Computing, ACM, New York, NY, USA. pp. 183-192. URL: http://
doi.acm.org/10.1145/3167132.3167151, doi:10.1145/3167132.3167151.

[24] Luo, B., Yang, Y., Zhang, C., Wang, Y., Zhang, B., 2018. A sur-
vey of code reuse attack and defense, in: International Conference
on Intelligent and Interactive Systems and Applications, Springer. pp.
782-788.

[25] Marco-Gisbert, H., Ripoll, I., 2018. return-to-csu: a new method to
bypass 64-bit linux aslr. URL: https://www.blackhat.com/asia-18/.
black Hat Asia 2018, Black Hat ; Conference date: 20-03-2018
Through 23-03-2018.

[26] Marco-Gisbert, H., Ripoll Ripoll, I., 2019. Address space layout ran-
domization next generation. Applied Sciences 9, 2928.

[27] Matz, M., Hubicka, J., Jaeger, A., Mitchell, M., 2013. System v appli-
cation binary interface. AMDG64 Architecture Processor Supplement,
Draft v0 99.

[28] Mell, P., Grance, T., et al., 2011. The nist definition of cloud comput-
ing.

[29] Mit6s, G., Murray, D.G., Hand, S., Fetterman, M.A., 2009. Satori:
Enlightened page sharing, in: Proceedings of the 2009 conference on
USENIX Annual technical conference, pp. 1-1.

[30] Mittal, S., 2017. A survey of techniques for architecting tlbs. Con-
currency and Computation: Practice and Experience 29, e4061.

[31] Neves, P., Ferreira, P., Barreto, J., 2013. Leveraging web prefetch-
ing systems with data deduplication, in: 2013 IEEE 12th Interna-
tional Symposium on Network Computing and Applications, IEEE.
pp. 259-262.

[32] Oliverio, M., Razavi, K., Bos, H., Giuffrida, C., 2017. Secure
Page Fusion with VUsion, in: Proceedings of the 26th Sympo-

Vano et al.: Preprint submitted to Elsevier

Page 15 of 16

http://www.computerhistory.org/tdih/September/9/
https://outflux.net/slides/2013/lss/kaslr.pdf
https://lwn.net/Articles/740455/
http://www.sciencedirect.com/science/article/pii/S0743731518306063
http://www.sciencedirect.com/science/article/pii/S0743731518306063
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2018.08.008
http://www.sciencedirect.com/science/article/pii/S0743731514000033
http://www.sciencedirect.com/science/article/pii/S0743731514000033
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.01.001
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.01.001
http://doi.acm.org/10.1145/3167132.3167151
http://doi.acm.org/10.1145/3167132.3167151
http://dx.doi.org/10.1145/3167132.3167151
https://www.blackhat.com/asia-18/

(33]

(34]

(35]

(36]

(371

(38]

[39]

(40]

(41]

[42]

(43]

[44]

[45]

[46]

[47]

(48]

KASLR-MT: Kernel Address Space Layout Randomization for Multi-Tenant Cloud Systems

sium on Operating Systems Principles, ACM, New York, NY, USA.
pp. 531-545. URL: http://doi.acm.org/10.1145/3132747.3132781,
doi:10.1145/3132747.3132781.

Pappas, V., Polychronakis, M., Keromytis, A.D., 2014. Dynamic re-
construction of relocation information for stripped binaries, in: In-
ternational Workshop on Recent Advances in Intrusion Detection,
Springer. pp. 68-87.

PaX, 2003. Pax address space layout randomization (aslr). URL:
https://pax.grsecurity.net/docs/aslr.txt. [Retrieved: Sep, 2018].
Payer, M., 2016. HexPADS: A Platform to Detect “Stealth” Attacks,
in: Caballero, J., Bodden, E., Athanasopoulos, E. (Eds.), Engineer-
ing Secure Software and Systems, Springer International Publishing,
Cham. pp. 138-154.

Perla, E., Oldani, M., 2010. A Guide to Kernel Exploitation: Attack-
ing the Core. Syngress Publishing.

Ranjbari, M., Torkestani, J.A., 2018. A learning automata-based al-
gorithm for energy and sla efficient consolidation of virtual machines
in cloud data centers. Journal of Parallel and Distributed Computing
113, 55 — 62. URL: http://www.sciencedirect.com/science/article/
pii/S@74373151730285X, doi:https://doi.org/10.1016/j.jpdc.2017.10.
009.

Schwarz, B., Debray, S., Andrews, G., 2002. Disassembly of exe-
cutable code revisited, in: Ninth Working Conference on Reverse En-
gineering, 2002. Proceedings., IEEE. pp. 45-54.

Shacham, H., et al., 2007. The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the x86)., in: ACM
conference on Computer and communications security, New York,.
pp. 552-561.

Sharma, P., Kulkarni, P., 2012. Singleton: system-wide page dedu-
plication in virtual environments, in: Proceedings of the 21st inter-
national symposium on High-Performance Parallel and Distributed
Computing, ACM. pp. 15-26.

Steven, S., 2011. Reducing runtime memory in windows
8. URL: https://blogs.msdn.microsoft.com/b8/2011/10/07/
reducing-runtime-memory-in-windows-8/. [Retrieved: Sep, 2018].
Suzaki, K., Iijima, K., Yagi, T., Artho, C., 2011. Memory deduplica-
tion as a threat to the guest os, in: Proceedings of the Fourth European
Workshop on System Security, ACM, New York, NY, USA. pp. 1:1-
1:6. URL: http://doi.acm.org/10.1145/1972551.1972552, d0i:10.1145/
1972551.1972552.

Tziritas, N., Khan, S.U., Xu, C.Z., Loukopoulos, T., Lalis, S., 2013.
On minimizing the resource consumption of cloud applications using
process migrations. Journal of Parallel and Distributed Computing 73,
1690 — 1704. URL: http://www.sciencedirect.com/science/article/
pii/S@743731513001585, doi:https://doi.org/10.1016/j.jpdc.2013.07.
020. heterogeneity in Parallel and Distributed Computing.

Vafio, F., Marco, H., 2018a. How Kernel Randomization is Canceling
Memory Deduplication in Cloud Computing Systems, in: 2018 IEEE
17th International Symposium on Network Computing and Applica-
tions (NCA), IEEE. pp. 373-376. URL: https://ieeexplore.ieee.
org/abstract/document/8548338.

Vaiio, F., Marco, H., 2018b. Slicedup: A Tenant-Aware Memory
Deduplication for Cloud Computing, in: The Twelfth International
Conference on Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM 2018), pp. 15-20. URL: https://wuw.
thinkmind.org/download.php?articleid=ubicomm_2018_1_30_10065.
Vmware Docs, 2018. Vmware vsan: Using deduplica-
tion and compression. URL: https://docs.vmware.com/
en/VMware-vSphere/6.5/com.vmware.vsphere.virtualsan.doc/
GUID-3D2D80CC-444E-454E-9B8B-25C3F620EFED. html. [Retrieved:
Sep, 2018].

Waldspurger, C.A., 2002. Memory resource management in vmware
esx server. ACM SIGOPS Operating Systems Review 36, 181-194.
Wang, Z., Sun, D., Xue, G., Qian, S., Li, G., Li, M., 2018.
Ada-things: An adaptive virtual machine monitoring and migra-
tion strategy for internet of things applications. Journal of Par-
allel and Distributed Computing URL: http://www.sciencedirect.
com/science/article/pii/S@743731518304404, doi:https://doi.org/10.

1016/j.jpdc.2018.06.009.

Wienand, I., 2006. A survey of large-page support. University of New
South Sales , 1-52.

Xu, Z., Liu, G., Wang, T., Xu, H., 2017. Exploitations of uninitialized
uses on macos sierra, in: 11th {USENIX} Workshop on Offensive
Technologies ({WOOT} 17).

Zhou, H., Li, Q., Choo, K.K.R., Zhu, H., 2018. Dadta: A novel
adaptive strategy for energy and performance efficient virtual machine
consolidation. Journal of Parallel and Distributed Computing 121,
15 —26. URL: http://www.sciencedirect.com/science/article/pii/
$0743731518304520, doi:https://doi.org/10.1016/j.jpdc.2018.06.011.

[49]

[50]

[51]

Fernando Vano-Garcia is a PhD re-
searcher at the University of the West of Scot-
land, United Kingdom. His main research in-
terests include cybersecurity, memory manage-
ment in cloud computing critical infrastruc-
tures and virtualization technologies, among
others. He is also technical program committee
member of international scientific conferences.
He completed his BSc Computer Engineering
degree at Universitat Politecnica de Valencia, and his MSc in Cybersecu-
rity at Universidad Carlos III de Madrid, Spain.

Hector Marco is an associate professor
and cybersecurity researcher at the University
of the West of Scotland, UK. He holds a PhD
in Computer Science, Cybersecurity, from Uni-
versitat Politecnica de Valencia, Spain. Hec-
tor is senior member of the Institute of Electri-
cal and Electronics (IEEE), and member of the
Engineering and Physical Sciences Research
Council (EPSRC) in UK. Previously, he was re-
search associate at the Universitat Politecnica
de Valencia where he co-founded the "cybersecurity research group”. Hec-
tor was part of the team developing the multi-processor version of the Xtra-
tuM hypervisor to be used by the European Space Agency in its space crafts.
He participated in multiple research projects as Principal Investigator and
Co-Investigator. Hector is author of many papers of computer security and
cloud computing. He has been invited multiple times to reputed cyberse-
curity conferences such as Black Hat and DeepSec. Hector has published
more than 10 Common Vulnerabilities and Exposures (CVE) affecting im-
portant software such as the Linux kernel. He has received honors and
awards from Google, Packet Storm Security and IBM for his security con-
tributions to the design and implementation of the Linux ASLR. Hector’s
professional interests include low level cybersecurity, kernel and userland
security, virtualization security and applied cryptography.

Vano et al.: Preprint submitted to Elsevier

Page 16 of 16

http://doi.acm.org/10.1145/3132747.3132781
http://dx.doi.org/10.1145/3132747.3132781
https://pax.grsecurity.net/docs/aslr.txt
http://www.sciencedirect.com/science/article/pii/S074373151730285X
http://www.sciencedirect.com/science/article/pii/S074373151730285X
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2017.10.009
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2017.10.009
https://blogs.msdn.microsoft.com/b8/2011/10/07/reducing-runtime-memory-in-windows-8/
https://blogs.msdn.microsoft.com/b8/2011/10/07/reducing-runtime-memory-in-windows-8/
http://doi.acm.org/10.1145/1972551.1972552
http://dx.doi.org/10.1145/1972551.1972552
http://dx.doi.org/10.1145/1972551.1972552
http://www.sciencedirect.com/science/article/pii/S0743731513001585
http://www.sciencedirect.com/science/article/pii/S0743731513001585
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2013.07.020
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2013.07.020
https://ieeexplore.ieee.org/abstract/document/8548338
https://ieeexplore.ieee.org/abstract/document/8548338
https://www.thinkmind.org/download.php?articleid=ubicomm_2018_1_30_10065
https://www.thinkmind.org/download.php?articleid=ubicomm_2018_1_30_10065
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.virtualsan.doc/GUID-3D2D80CC-444E-454E-9B8B-25C3F620EFED.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.virtualsan.doc/GUID-3D2D80CC-444E-454E-9B8B-25C3F620EFED.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.virtualsan.doc/GUID-3D2D80CC-444E-454E-9B8B-25C3F620EFED.html
http://www.sciencedirect.com/science/article/pii/S0743731518304404
http://www.sciencedirect.com/science/article/pii/S0743731518304404
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2018.06.009
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2018.06.009
http://www.sciencedirect.com/science/article/pii/S0743731518304520
http://www.sciencedirect.com/science/article/pii/S0743731518304520
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2018.06.011

