
 

UWS Academic Portal

Technical debt and waste in non-functional requirements documentation

Robiolo, Gabriela; Scott, Ezequiel; Matalonga, Santiago; Felderer, Michael

Published in:
Product-Focused Software Process Improvement

DOI:
10.1007/978-3-030-35333-9_16

Published: 18/11/2019

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Robiolo, G., Scott, E., Matalonga, S., & Felderer, M. (2019). Technical debt and waste in non-functional
requirements documentation: an exploratory study. In Product-Focused Software Process Improvement: 20th
International Conference, PROFES 2019, Barcelona, Spain, November 27–29, 2019, Proceedings (pp. 220-
235). (Lecture Notes in Computer Science; Vol. 11915). Springer-Verlag. https://doi.org/10.1007/978-3-030-
35333-9_16

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 17 Jan 2020

https://doi.org/10.1007/978-3-030-35333-9_16
https://uws.pure.elsevier.com/en/publications/694d6474-4696-43e0-b5b3-39dffebc93a2
https://doi.org/10.1007/978-3-030-35333-9_16
https://doi.org/10.1007/978-3-030-35333-9_16


“The final authenticated version is available online at https://doi.org/10.1007/978-3-030-35333-9_16.” 



Technical Debt and Waste in Non-Functional
Requirements Documentation: An Exploratory

Study

Gabriela Robiolo1, Ezequiel Scott2, Santiago Matalonga3, and Michael
Felderer4

1 LIDTUA (CIC), Facultad de Ingeniera, Universidad Austral, Argentina
grobiolo@austral.edu.ar

2 Institute of Computer Science, Tartu Unviersity, Estonia
ezequiel.scott@ut.ee

3 School of Computing, Engineering and Physical Sciences, University of the West of
Scotland, United Kingdom

santiago.matalonga@uws.ac.uk
4 Department of Computer Science, University of Innsbruck, Austria

michael.felderer@uibk.ac.at

Abstract Background: It is important to pay attention to non-func-
tional requirements (NFRs). To adequately attend to NFRs, they must
be documented - otherwise, developers would not know about their ex-
istence. We assume that there exists a positive correlation between the
level of importance of an NFR and its documentation. Aims: The goal
is to explore the relationship between the level of importance and de-
gree of documentation for NFRs. Method: Based on a subset of data
acquired from the most recent NaPiRE (Naming the Pain in Require-
ments Engineering) survey, we calculate for a standard set of NFR types
comprising Compatibility, Maintainability, Performance, Portability, Re-
liability, Safety, Security, and Usability how often respondents state they
document a specific type of NFR when they also state that this type of
NFR is important. In addition, we calculate the occurrence of potential
Technical Debt and Waste. Results: Our analyses based on 398 survey
responses indicate that for four NFR types (Maintainability, Reliability,
Usability, and Performance), more than 22% of the 398 survey respond-
ents who labelled those NFR types as important stated that they did not
document them. We interpret this as an indication that these NFR types
have a higher risk of Technical Debt than other NFR types. Regarding
Waste, the problem is less frequent, with the exception of Security with
15% of respondents stating that they document requirements which they
do not consider important. Conclusions: There is a clear indication that
for a fixed set of NFRs lack of documentation of important NFRs occurs
often, suggesting a risk of Technical Debt. The potential risk of incurring
Waste is also present but to a lesser extent.

Keywords: Non Functional Requirements · Technical Debt · Waste



2 Robiolo et al.

1 Introduction

Non-functional requirements (NFRs) are of high importance for the success of a
software project [8]. Nevertheless, there exists evidence that NFRs tend to come
second class to functional requirements [8] [7]. We see this as a pervasive prob-
lem, regardless of the methodology that the development process follows. Quality
management models and standards like ISO 9001:2015 [14] and CMMI [6] re-
quire that functional and non-functional requirements are documented as way of
conveying their importance. These software development models and standards
take a“do as you say, say as you do” approach where documentation and up-
front planning is used to mitigate the risk of not delivering the software product
within the constraints of the project. In fact, the ISO/IEC/IEEE 29148:2018
standard for software and systems requirements engineering [16], prescribes that
both functional and non-functional requirements have to be documented.

Agile software engineering highlights the need of “continuous attention to
technical excellence” [2]. Agile software engineering methods mainly rely on im-
mediate feedback and postulate the sufficient availability of knowledgeable soft-
ware developers to mitigate potential quality risks. Unfortunately, agile values
and principles often seem to be adopted näıvely [11], i.e., equating agile with
avoiding documentation [25].

The starting point of the research presented in this paper is the assumption
that in order to be able to adequately handle NFRs, they must be documented
–otherwise developers would not know about their precise nature or even their
existence. Based on a subset of data acquired from the most recent NaPiRE
(Naming the Pain in Requirements Engineering) survey conducted in 2018 [19],
we calculate for the NFR types Compatibility, Maintainability, Performance,
Portability, Reliability, Safety, Security, and Usability how often respondents
state they document a specific type of NFR when they also state that this
type of NFR is important. In addition, we calculate the occurrence of potential
Technical Debt (i.e., NFR not documented although labeled as important) and
the occurrence of potential Waste (i.e., NFR documented although labeled as
not important).

Our results show a clear indication of Technical Debt in several NFRs, with
Maintainability, Reliability, Usability, and Performance being the NFRs with
the highest frequency of occurrence of potential Technical Debt. Furthermore,
when breaking down the analysis by the type of development process, the de-
velopment processes at the extremes of the spectrum (i.e., purely plan-driven or
purely agile) alter the indication of the Technical Debt pattern. Furthermore,
our results show that there is less risk of incurring in Waste. Less than 15% of
the respondents stated that they document NFR which they do not consider im-
portant. With Security being the NFR with the highest frequency of respondents
at about 15%.

The rest of this paper is structured as follows. Section 2 provides the relevant
background. Section 3 presents the applied research method and Section 4 shows
the results. Section 5 discusses the results and threats to validity. Finally, Section
6 concludes the paper.



Technical Debt and Waste in Non-Functional Requirements Documentation 3

2 Background

In this section, we introduce the Naming the Pain in Requirenments Engineering
(NaPiRE) initiative5 and present an overview on research about NFRs.

2.1 The NaPiRE Project

The objective of the NaPiRE project is to establish a comprehensive theory of
requirements engineering (RE) practice and to provide empirical evidence to
practitioners that helps them address the challenges of requirements engineer-
ing in their projects. These objectives shall be achieved by collecting empirical
data in surveys conducted world-wide and in repeating cycles. At the time of
writing this paper, three rounds of the NaPiRE survey have been carried out.
The first survey round was conducted in Germany and the Netherlands in 2012
[21]. The second round, conducted in the years 2014 and 2015, was extended
to ten countries [20]. The third round of the survey was conducted in 2018 and
collected data from 42 countries. The research presented in this paper is based
on the data collected in the third round. Since the NaPiRE survey instrument
has evolved since 2014/2015, a direct comparison between past analysis results
and currently ongoing analyses is not always possible. This holds especially for
the topic of non-functional requirements covered in this paper, which is the first
one published on data from the third run.

The previous installments of the NaPiRe survey have been successful in
sparking complementing research into several viewpoint of requirements engin-
eering. For instance, to compare requirements engineering practices across geo-
graphical regions [22][17] or by development method [28][29]. We argue that,
although NaPiRE data has been extensively analyzed, it has so far not been
analyzed with regards to practitioners’ perceptions about handling NFRs.

2.2 Published Research on Non-Functional Requirements

This section presents an overview of past directions in non-functional require-
ments (NFR) research with a focus on survey research in the context of software
industry.

Borg et al. [5] presented a case study on how NFRs are dealt with in two soft-
ware development organisations. The authors interviewed 14 software developers
in two organisations. Their results show that, in both contexts, functional re-
quirements take precedence over non-functional requirements.

Berntsson Svensson et al. [4] investigated the challenges for managing NFRs
in embedded systems. They interviewed ten practitioners from five software com-
panies. Their results show a widespread variation in how the respondents dealt
with NFR, they also suggest a relationship between a lack of documentation
of NFR and a dismissal of NFR during the project lifecycle. Behutiye et al.
[3] investigated how software development teams using agile projects deal with

5 NaPiRE web site – http://napire.org



4 Robiolo et al.

non-functional requirements. The authors interviewed practitioners in four com-
panies developing software with agile methodologies. Each company followed a
different practices when documenting NFR (including not documenting them
and relying on tacit knowledge).

Ameller et al. [1] looked at how software architects deal with non-functional
requirements. Their results highlight a lack of common vocabulary among soft-
ware architects to convey NFR, the two most important NFR types were per-
formance and usability, and that NFRs are often not documented, and when
documented, the documentation was usually imprecise and was rarely main-
tained. Also, Proot et al. [23] presented a survey about the perceived importance
of non-functional requirements among software architects. Their results suggest
that architects consider NFRs important to the success of their software projects.

De la Vara et al. [26] present a questionnaire-based survey capturing the
more important NFRs from the point of view of practitioners. 31 practitioners
from 25 organizations were selected within the industrial collaboration network
of the authors. The top five NFRs identified are Usability, Maintainability, Per-
formance, Reliability, and Flexibility. Haigh et al. [10] empirically examined the
requirements for software quality held by different groups involved in the de-
velopment process. She conducted a survey of more than 300 current and re-
cently graduated students of one of the leading Executive MBA programs in the
United States, asking them to rate the importance of each of 13 widely-cited at-
tributes related to software quality. The results showed the following ranking of
NFRs: Accuracy, Correctness, Robustness, Usability, Integrity, Maintainability,
Interoperability, Augmentability, Efficiency, Testability, Flexibility, Portability,
Reusability.

In summary, we conclude that the topic of NFRs has been extensively re-
searched but there is few evidence of how the NFRs are documented. Further-
more, the specific relationship between importance level and degree of docu-
mentation has not yet been investigated.

3 Research Method

Before describing the research method we first present our understanding of
relevant concepts and assumptions about our research. Secondly, we introduce
the terminology used in this paper. Then, we present our research questions.
Finally, we describe the data extraction and analysis procedure that we followed
in order to answer those research questions.

3.1 Concepts and Assumptions

According to the software product quality standard ISO 25010:2011 [15], a non-
functional requirement is a “requirement that specifies criteria that can be used
to judge the operation of a software system” [15]. The same standard defines a
quality model for the evaluation of product quality of a software system. Within



Technical Debt and Waste in Non-Functional Requirements Documentation 5

this quality model, the quality attributes (also known as quality characterist-
ics) are defined. A quality attribute is a specification of the stakeholders’ needs
(Functional Suitability, Performance Efficiency, Compatibility, Usability, Reliab-
ility, Security, Maintainability, Portability). We argue that both terms, NFR and
quality attribute, are related and often used interchangeably in industry, even
though this is not correct according to the precise definitions of these terms.
Upon careful consideration, in particular looking at how the NaPiRE survey
instrument framed the questions related to NFRs, in this work we interpret
NFRs to be all requirements that do not specify a functional behaviour. Fur-
thermore, we do not differentiate between NFR and quality attribute. We claim
that (1) the NaPiRE questionnaire has not made this distinction evident, (2)
most practitioners would not care for the subtleties of this differentiation, and
(3) interchangeable use of terms is pervasive among practitioners and researchers
[3], [23], [7]. In order to be consistent with the survey instrument used in the
NaPiRE survey, in this paper, we use the term “quality attribute” instead of
“NFR” when we present our research questions and the results of our analyses.

This research is driven by our assumption that, in agreement with [16], both
functional and non-functional requirements have to be documented. In the con-
text of software quality assurance, which is defined in ANSI/IEEE Standard 729-
1983 [12], the confidence of the established technical requirements is achieved by
checking the software and the documentation and verifying their consistency.

Therefore, the ideal situation is that when a quality attribute is considered as
important for the development project, then it must be documented. To better
convey this understanding we refer to the Technical Debt metaphor. Technical
Debt, as defined by [24], is “a metaphor for immature, incomplete, or inadequate
artefacts in the software development lifecycle that cause higher costs and lower
quality in the long run. These artefacts remaining in a system affect subsequent
development and maintenance activities, and so can be seen as a type of debt
that the system developers owe the system.” Also, Zengyang et al. [18] pointed
out that documentation of Technical Debt refers to insufficient, incomplete, or
outdated documentation in any aspect of software development. That is, when
practitioners perceive a quality attribute as important but fail to document
requirements associated to the quality attribute, we will interpret this as an
indication of the incurred Technical Debt. We differentiate from [9], which defines
Technical Debt in requirements as the distance between the implementation and
the actual state of the world.

We follow similar reasoning on the other end of the spectrum but we rely
on the concept of Waste in Lean development. In Lean development, Waste is
defined as anything that does not add value [13]. In the domain of software
development, the types of Waste can be interpreted as: extra features, waiting,
task switching, extra processes, partially done work, movement, defects, or un-
used employee creativity [30]. Therefore, when practitioners are investing effort
in documenting requirements for artifacts (quality attributes) that they do not
consider important, we are interpreting that such an effort could be better placed
elsewhere in the development process, and understand it as a source of Waste.



6 Robiolo et al.

In the most recent round of the NaPiRE survey, practitioners were asked
about their perception of importance regarding a set of pre-defined quality at-
tributes in the context of the project they were currently working on. In addition,
they were asked whether they document quality attributes. The specific ques-
tions related to these aspects and their possible responses are shown in Table 1.
Question Q1 asks for the level of importance of each NFR type and Q2 for its
degree of documentation. Questions Q3, Q4, and Q5 request the context factors
project size, system type, and development process type, respectively. By com-
bining the answers to Q1 and Q2, we can investigate if practitioners are following
the requirements documentation recommendation for quality attributes in a spe-
cific context determined by Q3, Q4, and Q5.

Table 1. NaPiRE Questionnaire items used for the analysis

ID Questionnaire item Possible responses Variables

Q1 Are there quality attributes which
are of particularly high importance
for your development project? If yes,
which one(s)?

Compatibility, Maintainabil-
ity, Performance, Portabil-
ity, Reliability, Safety, Secur-
ity, Usability

v 6-v 13

Q2 Which classes of non-functional re-
quirements do you explicitly consider
in your requirements documentation?

Compatibility, Maintainabil-
ity, Performance, Portabil-
ity, Reliability, Safety, Secur-
ity, Usability

v 97-v 102,
v 303, v 103

Q3 How many people are involved in your
project?

Free text v 3

Q4 Please select the class of systems or ser-
vices you work on in the context of your
project.

Software-intensive em-
bedded systems, Business
information systems, Hybrid
of both software-intensive
embedded systems and busi-
ness information systems

v 4

Q5 How would you personally characterize
your way of working in your project?

Agile, Rather agile, Hybrid,
Rather plan-driven, Plan-
driven

v 24

Table 2 conveys our perception of the possible scenarios. In the ideal world,
practitioners do not incur in Technical Debt (Important and Not Documented),
nor do they Waste effort in documenting requirements which they do not con-
sider important (Not Important and Not Documented (NI ND)). However, our
experience leads us to expect that, practitioners are restricted by the context of
their development projects and they are bound to incur in Technical Debt and
Waste. In this research, we will look for evidence of this understanding in the
responses to the NaPiRE 2018 survey.



Technical Debt and Waste in Non-Functional Requirements Documentation 7

Table 2. Perception of importance and availability of documentation quadrant for
analysis

Documentation Available

Perception of
importance

Important and Documented (I D)
Expected situation

Important and Not Documented
(I ND)
An Indication of Technical Debt

Not Important and Documented
(NI D)
An Indication of Waste

Not Important and Not Docu-
mented (NI ND)
Expected Situation

3.2 Research Questions

As mentioned in section 3.1, we argue that if a quality attribute is perceived im-
portant, then it should be documented. We have, therefore, divided our analysis
into the following research questions:

RQ1: Can we identify Technical Debt and Waste in requirements document-
ation (as interpreted in section 3.1) from the responses in the NaPiRE ques-
tionnaire? This question expresses our overarching objective of understanding
the juxtaposition between the perception of the importance of a quality attrib-
ute and if it has been documented. The question is framed in the Technical
Debt metaphor, as it conveys our understanding that: “If a quality attribute
is considered important, then it should be documented”. Any deviation in this
direction should be interpreted as a project decision that, for whatever reason,
lead the practitioners into not documenting a quality attribute they consider im-
portant (i.e., an expression of Technical Debt). Likewise, “if a quality attribute
is not considered important, then it need not be documented”. Any deviation
in this direction we consider as an indication of Waste, as the effort invested in
documenting the quality attribute, could have been better spent elsewhere in
the development lifecycle. RQ1 is divided into:

RQ1.1: For which quality attributes do the practitioners’ responses indicate
Technical Debt? Through this sub-question, we will explore practitioners’ re-
sponses to the NaPiRE 2018 dataset an identify the quality attributes in which
a deviation is present of a quality attribute is perceived important and yet, it is
not documented (referred in the analysis as I ND).

RQ1.2: For which quality attributes do the practitioners’ responses indicate
Waste? Through this sub-question, we will explore the practitioners responses to
the NaPiRE 2018 dataset and identify the quality attributes in which a deviation
is present of a quality attribute that is not perceived as important and yet, it
has been documented (referred in the analysis as NI D).

RQ2: How does the practitioners’ context influence the occurrence of Tech-
nical Debt and Waste in requirements documentation? This second research
question conveys our pre-conception that practitioners fail to document some
quality attributes that they consider important. RQ2 is divided into:

RQ2.1: How does the system type influence the occurrence of Technical Debt
and Waste? This question conveys our pre-conception that the type of system



8 Robiolo et al.

can have an influence on the perceived importance of a quality attribute, and
therefore on the occurrence of Technical Debt or Waste.

RQ2.2: How does the project size influence the occurrence of Technical Debt
and Waste? This question conveys our pre-conception that the size of the soft-
ware project can have an influence on the perception of importance or the doc-
umentation needs of a quality attribute.

RQ2.3: How does the type of development process influence the occurrence
of Technical Debt and Waste?. This question conveys our pre-conception that
the development process type might have an influence on the perception of im-
portance or the documentation needs of a quality attribute.

3.3 Data Extraction and Analysis Procedure

We base our analysis on the NaPiRE 2018 dataset and, thus, have access to the
corresponding raw data as well as the pre-processed codification of the question-
naire and answers. Table 1 presents the variables included in this research.

A total of 488 responses are recorded for the NaPiRE 2018 instance of the
survey. All recorded responses are complete for variables v 6 to v 13 (perceived
importance of quality attributes, see Table 1) whereas only 455 responses are
complete for variables v 97 to v 102, v 303, v 103 (documentation of require-
ments for quality attributes, see Table 1). We decided to remove other 57 re-
sponses for incompleteness in other variables of interest. Therefore, the total
number of responses considered for this research is 398. Table 3 presents the
distribution of responses in the aforementioned categories by the type of quality
attribute.

Table 3. Distribution of responses by quality attribute

Quality
attribute

Technical
Debt (I ND)

Waste (NI D) I D NI ND

Compatibility 70 (17.59%) 46 (11.56%) 99 (24.87%) 183 (45.98%)
Maintainability 123 (30.9%) 27 (6.78%) 105 (26.38%) 143 (35.93%)
Performance 90 (22.61%) 47 (11.81%) 143 (35.93%) 118 (29.65%)
Portability 46 (11.56%) 39 (9.8%) 31 (7.79%) 282 (70.85%)
Reliability 122 (30.65%) 31 (7.79%) 117 (29.4%) 128 (32.16%)
Safety 68 (17.09%) 31 (7.79%) 39 (9.8%) 260 (65.33%)
Security 80 (20.1%) 59 (14.82%) 125 (31.41%) 134 (33.67%)
Usability 97 (24.37%) 35 (8.79%) 158 (39.7%) 108 (27.14%)

Mean 87.0 (21.86%) 39.375 (9.89%) 102.125 (25.66%) 169.5 (42.59%)

The distribution for the contextual project information that will be analyzed
for RQ2 is shown in Table 4. It is worth mentioning that we applied a pre-
processing step to variable v 3 since it represents a free-text response. We used
the results from the variable coding made by the collaborators of the NaPiRE



Technical Debt and Waste in Non-Functional Requirements Documentation 9

initiative during their data analysis phase. For the purpose of analysing this vari-
able, we decided to group the responses into equal-sized buckets that represent
small-sized (v 3 < 7), medium-sized (7 ≤ v 3 < 15) and large-sized projects (v 3
≥ 15).

Table 4. Distribution of responses with regard to the variables under study. Mean and
standard deviation are reported for the percentages of responses indicating Technical
Debt and Waste.

Variable Value
Technical

Debt (I ND)
Waste
(NI D)

Responses

Process type Agile 26.59 ± 0.09 7.54 ± 0.03 63
Rather agile 23.16 ± 0.10 10.26 ± 0.05 95
Hybrid 20.28 ± 0.06 9.81 ± 0.03 135
Rather plan-driven 18.57 ± 0.06 12.32 ± 0.04 68
Plan-driven 22.30 ± 0.10 8.78 ± 0.05 37

Project size S 24.01 ± 0.08 8.27 ± 0.02 139
M 20.50 ± 0.07 11.49 ± 0.04 136
L 20.93 ± 0.06 9.96 ± 0.03 123

System class BIS 22.40 ± 0.09 9.65 ± 0.04 202
HYB 23.14 ± 0.05 8.91 ± 0.03 101
SIES 19.34 ± 0.05 11.45 ± 0.02 95

4 Results

This section presents the results of our analysis organized by the research ques-
tions.

RQ1: Can we identify Technical Debt and Waste (as interpreted in Sec-
tion 3.1) from the responses in the NaPiRE questionnaire? To answer RQ1 we
cross-reference the responses to the perceived importance of quality attributes
(v 6 to v 13, see Table 1) with the availability of documentation (v 97 to v 102,
v 303, and v 103, see Table 1). Important and not documented (I ND) require-
ments indicate Technical Debt, whereas not important and documented (NI D)
requirements indicate Waste (see Table 2).

RQ1.1: For which quality attributes do the practitioners’ responses indicate
Technical Debt? Table 3 shows the occurrence of Technical Debt for each quality
attribute. The percentage of responses showing Technical Debt (I ND) ranges
from 12% to 31%. The average percentage of responses related to Technical Debt
over all quality attribute types is 22%. The quality attributes which are most
likely to incur in Technical Debt are Reliability (31%), Maintainability (31%),
Usability (24%), and Performance (23%).

RQ1.2: For which quality attributes do the practitioners’ responses indicate
Waste? Table 3 shows that waste also occurs in all quality attributes (albeit



10 Robiolo et al.

at a smaller response rate). The percentage of responses showing Waste (NI D)
ranges from 7% to 15%. The quality attributes which exhibit higher Waste are
Security (15%), Performance (12%), and Compatibility (12%).

RQ2: How does the practitioners context influence the occurrence of Tech-
nical Debt and Waste? To answer RQ2, we blocked the response data by the
variables type of system, project size, and development process type to invest-
igate their influence on the occurrence of Technical Debt and Waste. Figure 1
shows the percentage of responses by quality attribute that indicate Technical
Debt for each of the variables under study. Similarly, Figure 2 shows the per-
centage of responses related to Waste.

RQ2.1: How does the system type influence the occurrence of Technical Debt
and Waste?. When broken down by the system type (see Figure 1 (a)) we can ob-
serve that Reliability is the most prone to Technical Debt in all types of systems.
On the other end, Portability, is not prone to Technical Debt in the system types
under analysis. The HYB type of system seems to be the type of system where
the average percentage of responses indicating Technical Debt is the highest
(23%) (see Table 4). Four quality attributes surpass this value, namely Usability
(25%), Reliability (31%), Performance (27%), and Maintainability (29%). Secur-
ity (23%) can be considered a borderline case. The percentage of BIS showing
Technical Debt ranges from 9% to 37% with highest values for Maintainabil-
ity (37%), Reliability (32%), and Usability (26%). From Figure 1 (a) we can
see that three BIS systems surpass the average percentage of responses for all
the quality attributes (22%), namely Usability (26%), Reliability (32%), and
Maintainability (37%). This system type also shows the highest percentages for
Maintainability (37%) and Reliability (32%). Finally, SIES systems show per-
centages of Technical Debt ranging from 12% to 28%, and four quality attributes
surpass the average percentage of responses (19%), namely, Reliability (28%),
Performance (22%), Security (21%), and Usability (21%). Maintainability (20%)
can be considered as a borderline case.

Regarding Waste, the average percentage of responses for all the quality
attributes is 10%, 9%, and 11% for BIS, HYB, and SIES type of systems (see
Table 4). When broken down by the system type (see left-side of Figure 2 (a)),
the highest percentages of responses are related to the Security of BISs (18%)
and the Compatibility of SIES (16%). At the other end, the lowest percentage
is related to the Maintainability of HYB systems (4%).

RQ2.2: How does project size influence the occurrence of Technical Debt and
Waste? Figure 1 (b) shows the Technical Debt for each quality attribute blocked
by project size (S, M, L). Similarly, Figure 2 (b) shows the Waste. The average
percentages of responses indicating Technical Debt is 24%, 20%, and 21% for
projects of size S, M, and L, respectively (see Table 4).

Maintainability, and Reliability are the quality attributes which show the
highest percentages of Technical Debt (regardless of project size). On the other
end, Portability is the quality attribute with the lowest Technical Debt regardless
of project size. Small projects incur in Technical Debt having percentages ranging
from 13% to 35%. This kind of projects particularly shows high percentages



Technical Debt and Waste in Non-Functional Requirements Documentation 11

Figure 1. Percentage of responses indicating Technical Debt by System type, Project
size, and Process type.

related to Reliability (35%) and Maintainability (35%). As for medium-sized
projects, the percentages range from 10% to 30%. In large-sized projects, the
percentages of Technical Debt range from 12% to 28%.

Regarding Waste, the average percentages of responses indicating Waste is
8%, 11%, and 10% for projects of size S, M, and L, respectively (see Table 4).
The percentages range from 5% to 12% for small-sized projects, from 7% to
17% for medium-sized projects, and from 7% to 16% for large-sized projects.
In particular, the data points for Security and Safety seem to indicate that the
number of responses showing Waste becomes larger as the project size increases.

Figure 2. Percentage of responses indicating Waste by System type, Project size, and
Process type.



12 Robiolo et al.

RQ2.3: How does type of development process influence the occurrence of
Technical Debt and Waste? Figure 1 (c) shows the percentages of Technical Debt
for every quality attribute organized by development process types. Similarly,
Figure 2 (c) shows the percentages related to Waste. Three quality attributes
exhibit the highest percentages of Technical Debt regardless of the type of devel-
opment process, namely Maintainability, Reliability, and Usability. On the other
hand, Portability is the only quality attribute without Technical Debt for any
type of development process.

Regarding Waste, the percentage responses indicating Waste related to Se-
curity is the highest. In addition, the percentage seems to increase as the pro-
jects become more plan-driven. The development process characterised as Rather
plan-driven shows the highest overall exposure to Waste.

5 Discussion

In this section we first discuss the results achieved regarding the relation between
NFRs with Technical Debt and Waste, respectively. In addition, we discuss pos-
sible threats to validity of our study.

Observations Related to NFR and Technical Debt Our results show
that the majority of the participants of the survey stated that they document
NFRs when they are important and they don’t document NFRs when they are
not important. This is what we had hypothesized. However, we observed that
there is a substantial subset of respondents who stated that they don’t docu-
ment (some of the) important NFRs. This is what we interpret as being at risk
of Technical Debt. Certain types of NFRs were particularly prone to this phe-
nomenon, i.e., Reliability, Maintainability, Usability, and Performance. We can
only speculate what would drive practitioners into this behaviour. For example,
either these NFR types are difficult to document, knowledge on how to properly
document NFRs is missing, or no appropriate tool is available. Furthermore,
reasons might vary by NFR type. For example with Maintainability, it can be
argued that is left to good coding practices (i.e., avoiding code smells and focus-
ing on refactoring). This phenomenon might also be true for other NFR types,
i.e., there exist standard procedures or standard requirements that always hold
and do not have to be explicitly stated in each individual project. When re-
spondents answered the NaPiRE questionnaire, they might only have thought
about project-specific documentation of NFRs.

Observations Related to NFRs and Waste We also observed the oc-
currence of Waste, i.e., cases where respondents stated they document NFRs
although they are not considered important. However, the observed Waste was
consistently smaller than the Technical Debt (for the same quality attribute).
Furthermore, when looking at the percentages observed for Waste, the propor-
tion of Waste increases as project size increases: 5-11% for small-sized projects,
7-17% for medium-sized projects, and 7-16% for large-sized projects. This might
be a signal that - consistent with common expectation - for larger projects the



Technical Debt and Waste in Non-Functional Requirements Documentation 13

risk of Waste is higher than for small projects with respect to NFRs. Surpris-
ingly, and probably against common expectation, our analyses do not give any
indication that projects using rather agile or purely agile processes produce less
Waste than projects using plan-driven development approaches.

Threats to Validity We consider threats to construct, internal, external
and conclusion validity according to Wohlin et al. [31] as well as measures to
mitigate them.

This research is grounded on the NaPiRE 2018 survey, therefore we inherit
some of the decisions taken during the development of the survey instrument.
Of particular importance to the research presented in this paper is the fact that
the NaPiRE 2018 survey does not differentiate between quality attribute and
NFR. Both concepts are confounded in the questions on which we based our
analysis. As a research team we have discussed this issue in depth and decided
to accept this threat as it is in line with our shared understanding that (1) we
cannot revert this decision; (2) we share the understanding that practitioners
would probably not differentiate between both (and even for those who do, we
can probably not guarantee a shared understanding). The latter argument is
in line with the results of Eckardt et al. [8] (already mentioned in Section 3.1)
that there is a large variety in the understanding of what is quality and what
are NFRs. Continuing with inherited threats, external validity of our results
highly depends on the profile of participants in the NaPiRE survey. The survey
received overall 488 responses from all over the world and we have shown in a
previous paper [27] that there are no significant differences in the NaPiRE data
with respect to different cultural regions. Furthermore, we analyzed the data also
with respect to the system type, the project size and the type of development
process. We therefore think that threats to external validity are low.

An important construct validity injected by the approach described in this
work relates to how the metaphor of Technical Debt and the concept of Waste
were introduced into the analysis of the data set. First of all, the NaPiRE survey
makes no reference to these concepts. Secondly, there is a subtle but present gap
between the formulation of the questions and our interpretation. It can be argued
that ”which quality attribute is of particular high importance?” (as asked in the
survey) is not the same as asking ”List all quality attributes that are important”.

Regarding internal validity, a limitation that we always have with survey
research is that surveys can only reveal perceptions of the respondents that
might not fully represent reality. However, the analysis stems from the well-
validated NaPiRE questionnaire (see Section 2.1), which has continuously been
improved based on piloting and the first two runs. Furthermore, we tried to be
explicit in our decision about our data cleaning criteria (see Section 3.3) to be
able to perform a thorough analysis.

6 Conclusion

This paper explored the relationship between the level of importance and the
degree of documentation for the NFR types Compatibility, Maintainability, Per-



14 Robiolo et al.

formance, Portability, Reliability, Safety, Security, and Usability. The analysis is
based on the data collected during the most recent run of the NAPiRE survey.
To analyze this relationship we refer to the Technical Debt and Waste meta-
phors. To the best of our knowledge, this is the first publication in which these
two concepts were explored in the context of NFRs. The starting point of our
analysis was the assumption that important NFRs must be documented. If a pro-
ject breaks this rule, then we interpret it as a possible source of Technical Debt.
Likewise, we postulated that not important NFRs should not be documented.
If a project breaks this rule, then we interpret it as a possible source of Waste.
Our analyses indicate that for four types of NFR (Maintainability, Reliability,
Usability, and Performance) more than 22% of the survey respondents who la-
belled the respective NFR type as important said that they did not document
it. We interpret this as an indication that these NFR types have a higher risk
of Technical Debt than other NFR types. Our analysis also indicates that the
risk of Waste is less evident than the Risk of Technical Debt. Regarding Waste,
NFR relating to Security exhibit the highest (about 15%) number of respondents
that say that they do not consider Security important, but do document related
requirements. For the remaining NFR under analysis, the respondents indicate
that the problem of Waste is much less evident (when compared to Technical
Debt). Additional analyses indicate that our results are neither sensitive to the
type of system class nor to project size. However, the type of development pro-
cess seems to influence the results: extreme process types (i.e., purely plan-driven
or purely agile) slightly alter the result patterns.

Overall, we conclude that, for specific NFR types (i.e., Maintainability, Reli-
ability, Usability, and Performance), there is a clear indication that lack of docu-
mentation of important NFRs occurs regularly, pointing to the risk of Technical
Debt. Regarding Waste, with the exception of Security, we conclude that the
manifestation of Waste is not as clear as the manifestation of Technical Debt.
We discussed several potential reasons for the occurrence of this phenomenon.
However, investigating the true causes of Technical Debt for certain types of
NFRs requires more empirical research, which we consider as future work.

Acknowledgments

The authors would like to thank all practitioners who took the time to respond to
the NaPiRE survey as well as all colleagues involved in the NaPiRE project. The
authors further acknowledge Dietmar Pfahl’s contribution to research process
described in this paper. Ezequiel Scott is supported by the Estonian Center
of Excellence in ICT research (EXCITE), ERF project TK148 IT Tippkeskus
EXCITE. Gabriela Robiolo is supported by Universidad Austral.

References

1. Ameller, D., Ayala, C., Cabot, J., Franch, X.: In: 2012 20th IEEE International
Requirements Engineering Conference, RE 2012 - Proceedings. Chicago, USA



Technical Debt and Waste in Non-Functional Requirements Documentation 15

2. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: Manifesto for agile
software development (2001)

3. Behutiye, W., Karhapää, P., Costal, D., Oivo, M., Franch, X.: In: Product-Focused
Software Process Improvement. PROFES 2017. Lecture Notes in Computer Sci-
ence. Innsbruck

4. Berntsson Svensson, R., Gorschek, T., Regnell, B.: In: REFSQ 2009: Requirements
Engineering: Foundation for Software Quality

5. Borg, A., Yong, A., Carlshamre, P., Sandahl, K.: The Bad Conscience of Require-
ments Engineering : An Investigation in Real-World Treatment of Non-Functional
Requirements. Third Conference on Software Engineering Research and Practice
in Sweden (SERPS’03), Lund (2003)

6. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI : Guidelines for Process Integration
and Product Improvement. Addison-Wesley, Upper Saddle River, NJ, second edn.
(2007)

7. Chung, L., do Prado Leite, J.C.S.: On Non-Functional Requirements in Software
Engineering, pp. 363–379. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

8. Eckhardt, J., Vogelsang, A., Fernández, D.M.: Are ”non-functional” requirements
really non-functional? In: Proceedings of the 38th International Conference on
Software Engineering - ICSE ’16. pp. 832–842. ACM Press, New York, New York,
USA

9. Ernst, N.A.: On the role of requirements in understanding and managing technical
debt. In: Proceedings of the Third International Workshop on Managing Technical
Debt. pp. 61–64. Piscataway, NJ, USA (2012)

10. Haigh, M.: Software quality, non-functional software requirements and it-business
alignment. Software Quality Journal 18, 361–385 (2010)

11. Hoda, R., Noble, J.: In: Proceedings - 2017 IEEE/ACM 39th International Con-
ference on Software Engineering, ICSE 2017

12. IEEE: IEEE standard glossary of software engineering terminology. IEEE Std
610.12-1990 pp. 1–84 (Dec 1990)

13. Ikonen, M., Kettunen, P., Oza, N., Abrahamsson, P.: Exploring the sources of waste
in kanban software development projects. In: 2010 36th EUROMICRO Conference
on Software Engineering and Advanced Applications. pp. 376–381 (2010)

14. ISO: ISO 9001:2015. Quality Management Systems - Requirements (2015)
15. ISO/IEC Standard: ISO/IEC 25010:2011 Systems and software engineering – Sys-

tems and software Quality Requirements and Evaluation (SQuaRE) – System and
software quality models (2011)

16. ISO/IEC/IEEE: ISO/IEC/IEEE 29148:2018 Systems and software engineering –
Life cycle processes – Requirements engineering. Tech. rep., International Stand-
ards Organization (2018)

17. Kalinowski, M., Felderer, M., Conte, T., Sṕınola, R., Prikladnicki, R., Winkler,
D., Fernández, D.M., Wagner, S.: Preventing incomplete/hidden requirements: re-
flections on survey data from Austria and Brazil. In: International Conference on
Software Quality. pp. 63–78. Springer (2016)

18. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. Journal of Systems and Software 101, 193–220 (2015)

19. Méndez Fernández, D.: Supporting Requirements-Engineering Research That In-
dustry Needs: The NaPiRE Initiative. IEEE Software 35(1), 112–116 (jan 2018)

20. Méndez Fernández, D., Wagner, S., Kalinowski, M., Felderer, M., Mafra, P., Vetrò,
A., Conte, T., Christiansson, M.T., Greer, D., Lassenius, C., Männistö, T., Nayabi,



16 Robiolo et al.

M., Oivo, M., Penzenstadler, B., Pfahl, D., Prikladnicki, R., Ruhe, G., Schekel-
mann, A., Sen, S., Spinola, R., Tuzcu, A., de la Vara, J.L., Wieringa, R.: Naming
the pain in requirements engineering. Empirical Software Engineering 22(5), 2298–
2338 (oct 2017)

21. Mendéz Fernández, D., Wagner, S.: Naming the pain in requirements engineering:
design of a global family of surveys and first results from Germany. In: EASE -
International Conference on Evaluation and Assessment in Software Engineering
(17th, 2013, Porto de Galinhas) (2013)

22. Méndez Fernández, D., Wagner, S., Kalinowski, M., Schekelmann, A., Tuzcu, A.,
Conte, T., Spinola, R., Prikladnicki, R.: Naming the Pain in Requirements Engin-
eering: Comparing Practices in Brazil and Germany. IEEE Software 32(5), 16–23
(sep 2015)

23. Poort, E.R., Martens, N., van de Weerd, I., van Vliet, H.: How Architects See
Non-Functional Requirements: Beware of Modifiability. In: Regnell, B., Damian,
D. (eds.) Requirements Engineering: Foundation for Software Quality. pp. 37–51.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

24. Seaman, C., Guo, Y.: Chapter 2 - measuring and monitoring technical debt. Ad-
vances in Computers 82, 25–46 (2011)

25. Stettina, C.J., Heijstek, W.: Necessary and neglected? An empirical study of in-
ternal documentation in agile software development teams. In: Proceedings of the
29th ACM International Conference on Design of Communication (SIGDOC 2011),
Pisa, Italy 3-5 October, 2011 (2011)

26. de la Vara, J.L., Wnuk, K., Berntsson Svensson, R., Sanchez, J., Regnell, B.: An
empirical study on the importance of quality requirements in industry. In: Pro-
ceedings of 23rd International Conference on Software Engineering and Knowledge
Engineering. pp. 311–317. New York, NY, USA (2010)

27. Wagner, S., Fernández, D.M., Felderer, M., Vetrò, A., Kalinowski, M., Wieringa,
R., Pfahl, D., Conte, T., Christiansson, M.T., Greer, D., et al.: Status quo in re-
quirements engineering: A theory and a global family of surveys. ACM Transactions
on Software Engineering and Methodology (TOSEM) 28(2), 9:1–9:48 (2019)

28. Wagner, S., Méndez Fernández, D., Felderer, M., Kalinowski, M.: Requirements
Engineering Practice and Problems in Agile Projects; Results from an international
survey. In: 2017 Iberoamerican Conference on Software Engineering (CiBSE 2017)
(2017)

29. Wagner, S., Méndez-Fernández, D., Kalinowski, M., Felderer, M.: Agile require-
ments engineering in practice: Status quo and critical problems. CLEI Electronic
Journal 21(1) (2018)

30. Wang, X., Conboy, K., Cawley, O.: leagile software development: An experience
report analysis of the application of lean approaches in agile software development.
Journal of Systems and Software 85, 1287–1299 (2012)

31. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in software engineering. Springer Science & Business Media (2012)


	Technical Debt and Waste in Non-Functional Requirements Documentation: An Exploratory Study
	Blank Page



