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ABSTRACT: Automated scanning electron microscopy image collection from geological polished thin sections, in conjunction with autonomous

stitching, can be used to construct high-resolution (micron- to submicron-resolution) image montages over areas up to several square centimeters. The

technique is here applied to an oolitic limestone and a carbonate laminite to illustrate its application as a tool to study carbonate porosity and

diagenesis. Montages constructed from backscattered images are ideally suited to the extraction of data on microporosity, with possibilities including

the construction of contoured maps to illustrate the spatial variation in porosity; the construction of porosity logs to illustrate trends in porosity across

thin sections; and stochastic construction of digital rock models, for subsequent permeability calculation. Montages taken with a gaseous secondary

electron detector in low-vacuum mode can utilize charge contrast imaging (CCI) at a variety of scales and were used here in examining the evolution of

carbonate cementation. One example is oolitic limestone, illustrating the formation of grain-lining and pore-occluding cements, as well as

recrystallization of the depositional fabric. CCI montages commonly suffer from a variety of contrast and brightness artifacts due to variation in charge

distribution across the individual scanned image tiles. Several remedies are discussed that can reduce these artifacts, making it easier to apply image

analysis techniques across such montages.
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INTRODUCTION

The term porosity is typically used to encompass not just the scalar
percentage of void space per unit volume, but also the size, shape, and
distribution, and sometimes connectivity, of these voids. Porosity, or
more correctly, the character of the spaces, within carbonates is
typically regarded as highly complex and heterogeneous (Hollis et al.
2010, Ott et al. 2015, Pak et al. 2016). It can be divided into a range of
sizes (micro-, through meso- to macro- and megascale), although no
general consensus exists as to the exact dimensions of the various size
classes. The pore size and pore throat size, as well as grain or crystal
size, have at some point all been used in pore size classification
schemes (Archie 1952; Choquette and Pray 1970; Lucia 1995;
Marzouk et al. 1995, 1998; Ramamoorthy et al. 2010; Anovitz and
Cole 2015). Nevertheless, various common forms of carbonate pore
systems can generally be recognized based on their relationships to the
fabric and mode of origin (Choquette and Pray 1970): These have
variable shapes, distributions, and degrees of connectivity, and they
are either original depositional features, or they are secondary,
resulting from diagenetic processes such as dissolution (Fig. 1). In
addition, the formation of cements can heavily modify porosity and
greatly reduce permeability. Porosity is often much more complex
within carbonates, as compared with that found with siliciclastic rocks
such as sandstones and mudrocks. The ability to recognize and
characterize porosity and its associated pore characteristics, at a range
of scales, and to understand changes brought about through diagenesis
within carbonate rock systems, is of great significance for
understanding these materials’ performances as fluid migration
pathways, and their role in unconventional hydrocarbon reservoirs
and potential for CO2 storage.

Techniques that can be used to gather geometric/distributional
information on such parameters from the micron to the centimeter
scale are therefore highly desirable. Optical microscopy has been

successfully used in diagenetic studies of carbonates, allowing
detailed examination of depositional and authigenic history over the
centimeter to sub-millimeter scale, and it is routinely used in porosity
studies sensu largo (see Esrafili-Dizaji and Rahimpour-Bonab 2009,
Mazurkiewicz and Mlynarczuk 2013, Berrezueta et al. 2015).
However, under most normal circumstances, optical microscopy is
limited in the size of the pores to which it can be applied, both at the
large and the small ends of the scale. Scanning electron microscopy
(SEM), however, can image a wider range of pore types, from nano- to
macropores, with various architectures.

Other techniques, such as mercury injection capillary pressure and
nuclear magnetic resonance, can provide higher-resolution informa-
tion on porosity (Prammer et al. 1996, Anovitz and Cole 2015, Rios et
al. 2015) but do not provide additional information such as pore
shape, spatial distribution of pores, or diagenetic alteration of pore
networks. X-ray tomography (XRT) provides access to three-
dimensional visual data on porosity and pore connectivity (Lebedev
et al. 2017), but compared to SEM, it is limited in resolution, and in
carbonates, it offers little information on the proportion or type of
cement due to the lack of density contrast between cement and matrix.
Although SEM is limited to two-dimensional analysis, its ability to
image and to differentiate between matrix and cement, or cements, as
well as imaging porosity sensu largo over a wide range of scales,
makes it one of the most flexible ways to access information on pore
space and pore character changes brought about through diagenesis.

Recent developments in electron microscopy allow for the
automated imaging and stitching of images to form montages that
cover large areas (many centimeters), providing details of the rock
fabric at the micron to submicron level (Lemmens and Richards 2013;
Buckman 2014; Buckman et al. 2016, 2017). Such montages, together
with the individual images (tiles) that comprise them, are ideal for
investigating pore space character and distribution using backscattered
(BSE) images. In addition, gaseous secondary electron (GSE) images
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FIG. 1.—Examples of the more common types of porosity associated with carbonates, after Choquette and Pray (1970). A) Interparticle, B)

intraparticle, C) intercrystalline, D) intracrystalline, E) moldic, F) fracture, and G) vuggy. Porosity is shown in black. Note that porosity

illustrated within ooids in (B) was generated by micrite recrystallization, while that in ooids and shelly material in (E) is due to dissolution.
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using the charge contrast imaging (CCI) technique can provide

information on cementation and dissolution.

CCI has previously been utilized for imaging geological materials,

including carbonates (Watt et al. 2000, Doehne and Carson 2001,

Cuthbert and Buckman 2005, Buckman et al. 2016). This technique

provides similar results to that of cathodoluminescence scanning

electron microscopy (CL-SEM), but it benefits from improved

resolution and faster acquisition times (Buckman et al. 2016). The

origins of variation in grayscale (through CCI) have been discussed by

a number of authors (Griffin 1997, 2000; Buckman et al. 2016) and

may reflect subtle variations in elemental composition or, in some

cases, physical barriers to electrical conductivity such as different

orientations in crystal lattice at hiatuses in crystal growth, or in some

cases actual physical breaks (fractures). The construction of large-

scale, high-resolution montages using CCI can suffer from acquisition

artifacts, but careful selection of instrument parameters can greatly

mitigate these problems.

The work reported here acquired high-resolution, large area BSE

and GSE CCI images from two carbonates of disparate character to

illustrate the kinds of information that can be extracted using this

methodology.

MATERIALS AND METHODS

The materials examined were an early Bathonian, Middle Jurassic
oolite from Bicqueley Quarry, France, on the east edge of the Paris
Basin (48838002.4 00N, 5855043.6 00E), and a Cretaceous carbonate
laminite from the Araripe Basin of Brazil (7806 058.7 00S,
39841048.8 00W). Samples were prepared as polished thin sections.

A Quanta 650 field emission gun (FEG) SEM was used, operated in
low-vacuum mode at 20 kV, with a water vapor atmosphere at 0.83
Torr, a working distance of 10 mm, and a spot size of 4.5. BSE images
were taken with a concentric BSE detector, and GSE images used an
off-axis large field gaseous secondary electron detector (LF-GSED).

Both BSE and GSE montages were constructed simultaneously as a
series of tiles that were automatically collected and stitched together
using ‘‘Maps’’ software from FEI. The procedure followed was similar
to that described in Buckman et al. (2017), where an overview image
was taken, followed by higher-resolution images acquired from
selected areas (Fig. 2). Montages were constructed with a pixel
resolution of 1536 by 1024 or 768 by 512, a dwell rate of 10 ls, a
range of tile sizes (23, 46, 86, 259 lm for the oolite, 50 and 518 lm
for the laminite), and a tile overlap of 10%. In addition, some
individual GSE montages were constructed with a tile overlap of 25%
or 50%.

FIG. 2.—Image acquisition using Maps software. A) Screenshot showing digital optical overview image acquired through SEM navigation

camera. B) Low-resolution BSE image of entire polished thin section. Note the discord between BSE image and navigation camera image,

illustrating the need for the overview BSE image for accurate location of detailed scans. C) Partially collected high-resolution BSE scan from

selected area. D) Example of single BSE image tile with horizontal field of view of 23 lm.
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Individual BSE tiles were used to analyze porosity and, where
relevant, the size, shape, and distributional characteristics of pores in
three ways:

1. Two-dimensional (2D) contoured porosity maps were constructed
using image analysis of thresholded BSE tiles, following the
method of Buckman et al. (2017).

2. Columns of tiles (from method 1) were used to plot 2D vertical
porosity values in the manner of borehole porosity logs, producing
micron- to millimeter-scale porosity logs.

3. Three-dimensional (3D) stochastic pore networks were construct-
ed, from which permeability was calculated using pore architecture
modeling methods (see Wu et al. 2006, Van Dijke et al. 2011, Jiang
et al. 2012), using the method of Huang et al. (2018).

Pore network architecture was extracted using in-house software
(Huang et al. 2018), utilizing stitched BSE image tiles saved during
montage acquisition. The new code allows for improved reconstruc-
tion of 3D pore structure through (1) the implementation of an
expectation-maximization global optimization algorithm; (2) an
adapted k-coherence search algorithm used as an alternative to more
commonly used principal component analysis, to reduce loss of pore
connectivity; and (3) provision of multithreading to increase
computational speed (Huang et al. 2018). In total, 15 porosity
network models were constructed for the oolitic limestone; three were
constructed from montages stitched together from larger representa-
tive areas (~8 mm2), and 12 were from smaller areas, each
representing approximately one quarter of the area of each of the
larger images. Four additional network models were also constructed
from cropped individual tiles (~18 lm2), each occurring wholly
within ooids: Two were from high-porosity areas, and two were from
lower-porosity laminae. For the laminite, a representative montage
with an area of 3 mm2 was acquired that illustrated the variability in
laminae type, with four additional images cropped from individual
tiles within high- and low-porosity regions, with areas of 32.5 lm2.
BSE images were binarized using ImageJ and then cropped to a square
format (vertical height equal to horizontal field of view) and rescaled
to produce 400 by 400 pixel training images (Figs. 3, 4), with a
corresponding reduction in pixel resolution (Table 1). Most porosity
networks were constructed using a single training image for the X, Y,
and Z planes. However, for ‘‘Laminite1,’’ the representative training
image (X) was modified by rotating the image through 458 and 908, to
produce individual images for the X, Y, and Z planes, which was
necessary to construct a realistic layered model for this strongly
heterogeneous laminated material. All models were stochastically
constructed to produce pore architecture models that matched porosity
as well as pore shape and the training image pattern. The models
produced were all 400 by 400 by 400 voxels in dimension, to help
facilitate faster processing during pore network reconstruction.

Reconstructed 3D pore structure models were then further
processed using in-house pore analysis tool (PAT) software (Wu et
al. 2006), which fits a pore network model that was used to calculate
permeability. In pore network models, pore bodies are represented as
spherical nodes, and pore throats are represented as connecting bonds
(Wu et al. 2006, Jiang et al. 2007, Ryazanov et al. 2009). Compared to
the often used lattice-Boltzmann method (cf. Chen et al. 2015, Hosa et
al. 2016), this saves on computational effort, which can be of
particular importance for large, highly complex rock pore systems.
Additionally, in the case of the laminite model, Heriot-Watt 2phase
Pore Network Modelling software was used to determine the
distribution of connected versus disconnected pores.

Although BSE images and montages can be readily used to extract
details on porosity, they provide limited information on the nature of
cement. Therefore, GSE images and montages utilizing the CCI
technique were also collected, which provided plentiful information on

cement development and therefore on changes in porosity during
geological time. CCI utilizing the LF-GSED was used to demonstrate
how the diagenetic history of the samples could be investigated
through the examination of cements in order to illustrate changes in
porosity over time (see method in Buckman et al. 2016).

RESULTS

BSE Montages

BSE images and montages of polished thin sections clearly indicate
the occurrence of pores within both the oolitic limestone and laminite,
which are represented at the darker end of the grayscale (Figs. 2D,
5A). These images can be used to quantitatively extract data on
porosity, as well as for 3D modelling of porosity and permeability.

Contoured Porosity Percentage Maps: High-resolution contoured
porosity percentage maps for the oolitic limestone, based on montaged
BSE images (Fig. 5A), display a clear picture of the distribution of
porosity within the limestone (Fig. 5B–D). The contoured maps
graphically confirm observations from the BSE montage showing that
porosity is typically low and confined to the particulate component
(intraparticle porosity within ooids), which is the opposite to what
would originally have been found upon deposition of the limestone.
Porosity within ooids is observed to occur as a series of concentric
bands, although not all ooids display high porosity (Fig. 5). The
distribution of pore density is highly sporadic (Fig. 5B–E).

Porosity maps for the laminite (Fig. 6B–E) clearly illustrate that
porosity occurs in bedding-parallel laminae (confirming the findings
of Buckman et al. 2017). Most of the laminite is composed of areas of
relatively low porosity (less than 5%), with higher-porosity laminae
(up to 12%) restricted to the upper part of the sample (Fig. 6B).
Porosity between laminae is highly variable, and this is particularly
evident from the exploded section (Fig. 6E), showing multiple thin
higher-porosity laminae with maximum porosity of 70%. It is
noteworthy that the latter are not necessarily spatially persistent, and
they are highly heterogeneous.

Microlog Linear Porosity Trend: Measured porosity values were
plotted as linear changes in porosity through the samples and
illustrated in the manner of a borehole geophysical ‘‘log’’ (Figs. 6C,
6F, 7B). Comparison of the three vertical micrologs illustrated for the
oolite shows that porosity does not occur in a predictable microstrati-
graphic fashion (Fig. 7), but it confirms that high-porosity regions are
more randomly distributed, occurring within individual ooids (intra-
particle microporosity). Average porosity values display a more
consistent 10 to 20%. In contrast, porosity micrologs for the laminite
display major changes across laminae, with individual logs showing
good agreement with each other (Fig. 6F); therefore, average porosity
values (Fig. 6C) through the whole thin section are adequate for
recording vertical porosity trends.

Stochastic Modeling: Models constructed from the larger area
oolite training images (Oolite1–3) record porosities of 13 to 20% and
permeabilities (horizontal and vertical) of 164 to 472 mD, whereas the
smaller (medium-sized) subsets (Oolite1a, 1b, 1c. . .3d) recorded
porosities of 14 to 24% and permeabilities of 34 to 191 mD, with the
majority below 150 mD (Table 2). A representative selection of
models constructed for the oolitic limestone is illustrated in Figure 8.
Models reconstructed from within individual ooids (OoidA, B, C, D)
correspond to intraparticle microporosity and record porosities of
approximately 50 to 70%, with corresponding average permeability of
2 to 6 mD, and 16% porosity with approximately 0.06 mD
permeability, respectively (Table 2). For the larger representative area
modeled for the laminite (Laminite1), porosity of 7% and permeability
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values of less than 0.01 mD perpendicular to bedding, and 26.10 mD

parallel to bedding, respectively, were modeled. Individual high-

porosity lamellae (LaminiteA, B) gave porosity of 19 to 26% and

permeability of 1.37 to 3.00 mD, and lower-porosity regions gave

approximately 3 to 4% porosity with negligible permeability (Fig. 9;

Table 3). In addition, flow modeling of the large laminite model

visually demonstrates the lack of connectivity across laminae (Fig.

9B) and a high degree of pore connection parallel to the more porous

laminae, although even in this case, not all pores are necessarily
connected (Fig. 9C).

GSE-CCI Montages

CCI montages of the oolite display a range of diagenetic features,
notably several generations of isopachous rimming cements around

individual ooids (Fig. 10), a coarser pore-filling equant cement phase
(Fig. 10B–E), and recrystallized matrix within ooids (Fig. 11).

FIG. 3.—Illustrations of examples of training images used in stochastic reconstruction models. A) Whole-rock training image for Oolite1. B)–E)

OoidA to OoidD, representing higher resolution of individual ooids. All training images were 400 by 400 pixels. For pixel resolution, see

Table 1.
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Isopachous cement typically occurs in two distinct phases. An initial
rimming cement of fine crystals (~10-lm-thick zone) that are radially
developed, and typically appear brighter in CCI images (Fig. 10A, B,
D–F), is followed by a coarser (up to 50 lm thick), often more equant
isopachous cement. The latter can either form rims that are
continuously developed about the ooids, or it occurs as more isolated
‘‘tooth-like’’ developments (Fig. 10E). The appearance of the coarser
isopachous cement crystals is more variable in nature, with CCI
delineating a series of growth phases (observed as differing gray
levels), which are often accompanied by a change in crystal shape
(Fig. 10C). Additionally, CCI can also highlight micron- to
submicron-scale growth increments (Fig. 10G, H). Well-developed
crystal faces indicate growth into unobstructed fluid-filled pore space
(Fig. 10E).

Pore-filling cements occur in a variety of sizes, but they are
typically much coarser (up to 100 lm) than is the isopachous cement

(Fig. 10B). Pore-filling cements are typically equant, but they
generally lack any internal structure in CCI, although they
occasionally display broad growth increments (Fig. 10B).

Close examination of the matrix of ooids indicates a series of
floating equant (rhombic) micron-sized crystals (Fig. 11C–F) that
replace the original ooid fabric. In rare cases, the ‘‘ghosts’’ of original
micritic fabric were observed (Fig. 11A, B).

Compared to the oolite sample, GSE images of the laminite were
less informative. However, the CCI technique did illuminate details of
rhombic crystals, for which no information was available through the
analysis of BSE images (Fig. 12A, B). The occurrence of such
rhombic crystals is suggested (BSE images) by the observation of
diamond-shaped pits (Fig. 12A), although the majority of crystals
were only observed in the CCI image (Fig. 12C, D). The matrix
surrounding the rhombic calcite crystals appears to be coarse sparry
calcite, indicating recrystallization of much of the original matrix
material.

DISCUSSION

The combination of BSE and GSE-CCI image montages can be
utilized to clearly demonstrate porosity (BSE images), as well as
gather information about the ways in which pores have changed
through time with cementation (CCI images).

BSE Montages and Tiles

Contoured Porosity Maps and Linear Porosity Logs: The use of
BSE tiled images collected and processed to form contoured porosity
maps has previously been outlined as a technique for visualizing
porosity variation within carbonates (Buckman et al. 2017). The
current work confirms the usefulness of this technique in relationship
to other carbonates. In the case of the oolite, the use of the technique

FIG. 4.—Illustrations of examples of training images used in stochastic reconstruction models. A)–C) Whole-rock training images for

Laminite1. D)–G) LaminiteA to LaminiteD, representing higher resolution of individual laminae. All training images were 400 by 400

pixels. For pixel resolution, see Table 1.

TABLE 1.—Original SEM image horizontal field of view (HFOV) pixel
width and pixel resolution versus training image pixel width and pixel

resolution (res).

Sample

HFOV

(lm)

Original

SEM image Training image

Pixel

width

Pixel

res

Pixel

width

Pixel

res

Oolite1, 2, 3 ~7600 24,000 271 nm 400 18.5 lm

Oolite1a, 1b, etc. ~3800 14,000 271 nm 400 9.5 lm

OoidA, B, etc. ~17.6 800 22 nm 400 44 nm

Laminite1 ~2850 8640 337 nm 400 7.12 lm

LaminiteA, B, etc. ~32.5 500 65 nm 400 81 nm
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can accurately portray variation in porosity, illustrating the restriction

of high porosity to particular ooids, or certain laminae within ooids

(Fig. 5). As with previous work, although general trends in porosity

change are clearly observed with larger-sized tiles, it is apparent that

higher-resolution tiles are required to extract the finer details of

porosity variation therein (Fig. 5D). In this case, the spatial variation

in porosity clearly indicates that the highest values of porosity are

typically restricted to ooids (intraparticle microporosity), with pores

previously present between ooids (interparticle porosity) becoming

heavily cemented with minimal porosity preserved. In this example,

the additional time required to acquire the higher-resolution data may

be of limited practical use, as these intraparticle pores are unlikely to

be interconnected, and thus permeability will be low. The exception to

this would occur in relationship to fracking, where the development of

new fracture systems would considerably open up permeability, as

would acidification, through connection of otherwise isolated intra-

particle microporosity. This may prove significant in CO2 storage

applications. Where a high level of detail is not required, larger tile

sizes can be used over more extensive areas (Fig. 5E) to extrapolate

general trends in porosity across areas that could be several square

centimeters in size, and these larger tile sizes would require much less

time to collect. The laminite larger area porosity contour map (Fig.

6B) confirms the high degree of variability in pores between laminae,

as previously illustrated in Buckman et al. (2017), but it also indicates

that much of the laminite is composed of areas of very low to

negligible porosity. Contoured porosity plots for both carbonates are

particularly useful in their graphical illustration of pore distribution in

two dimensions.

FIG. 5.—Illustration of BSE tiled montage and associated color-contoured maps for percentage porosity for the same area at various tile sizes/

resolutions for the oolitic limestone sample. A) BSE montage of a selected area of the oolite, approximately 1.5 mm in width, individual tile

size as in (C). B) Color-contoured map of percentage porosity based on area in (A) with 22 by 24 tiles, each with a horizontal width of 86

lm. C) As in (B) but 46 lm tiles (42 by 45). D) As in (B) and (C) but 23 lm tiles (85 by 90). Illustrating increased resolution in porosity

maps from (B) to (C). Note increasing resolution requires longer image acquisition from 1 hour to 3 and 12 hours, respectively. E) Contoured

porosity montage (approximately 30 by 5 mm in area) of a different area at lower resolution (259 lm tiles), illustrating variability in porosity

across a larger area.
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In the case of laminated carbonates, or other carbonates where there
are changes in porosity in the vertical direction, simpler linear porosity

trends can be more easily and quickly plotted (Fig. 6C, F). Such plots
are similar in construction to borehole porosity logs. Logs are,

however, less helpful where porosity is more heterogeneous in

distribution, such as in the oolite (Fig. 7B).

Stochastic Modeling: The examples of 3D stochastic models for

porosity and permeability produced for both limestones illustrate the
potential for utilizing BSE SEM images, collected as automated high-

resolution large area montages, to model pore networks in three
dimensions and to reconstruct indicative information on permeability.

In this case, this was undertaken at the ‘‘whole rock’’ and the ‘‘lamina’’
scales. Potential also exists to further extract data on pore geometry,

size, pore throat size, tortuosity, connectivity, and responses to
imbibition and drainage representative of standard core flooding tests

(Wu et al. 2006, Ryazanov et al. 2009, Van Dijke et al. 2011, Jiang et
al. 2012).

Representativeness of Porosity Permeability Network Models:

There exist major differences in permeability predicted for the oolite

for the two sizes of training images (Table 2), with values derived
from the larger training images approximately twice those of the

equivalent medium-sized subsets. It may be that the larger-scale
training images result in an apparent increased pore connectivity when

FIG. 6.—Illustration of BSE tiled montage and associated color-

contoured maps for percentage porosity for the laminate sample.

A) BSE tiled montage of whole slide. Red box illustrates area

shown in (D) and (E). B) Colored contour plot showing relative

abundance of porosity from area illustrated in (A). Dark blue ¼
lowest porosity; turquoise to green ¼ higher porosity. C)

Microporosity log through section. Average porosity trend is

 
illustrated. D), E) BSE montage and color-contoured porosity map

of area within red box of (A), respectively. Dark blue ¼ lowest

porosity; orange and yellow ¼ areas of higher porosity. F) Linear

porosity plots (porosity increasing to the right) through random

vertical positions in (D). Note close correspondence of the three

porosity trends and average values. (A), (D), and (E) are based on

Buckman et al. (2017).

TABLE 2.—Modeled porosity and permeability data for oolite.

Model No. Porosity (%) Average permeability (mD)

Oolite1 20.08 472.37

Oolite1a 23.18 145.50

Oolite1b 24.03 191.40

Oolite1c 20.82 127.84

Oolite1d 24.03 162.09

Oolite2 13.01 164.02

Oolite2a 14.44 76.88

Oolite2b 14.37 34.89

Oolite2c 16.85 87.52

Oolite2d 13.44 48.89

Oolite3 17.52 345.02

Oolite3a 24.01 136.97

Oolite3b 20.55 160.02

Oolite3c 21.90 172.74

Oolite3d 16.99 87.52

OoidA 52.69 2.07

OoidB 72.96 6.36

OoidC 16.72 0.06

OoidD 16.53 0.05
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scaled to fit the 400 by 400 by 400 voxel models, resulting in overly

high permeabilities.

Zinszner and Pellerin (2007) recorded a broad range in permeability

that encompasses the range of predicted values from the current model

reconstructions, from 1.50 mD to 2 D for those oolitic limestones with

25% porosity. Their high variability is due to the relative abundance of

connected interparticle porosity versus intraparticle microporosity

associated with recrystallization of micritic ooid laminae (or macro-
moldic porosity, from dissolution of ooids), with the latter playing
little part in permeability. The current material has a high degree of
isolated intraparticle microporosity (and little or no macromoldic
porosity) with a general lack of well-developed or connected
interparticle porosity, which should lead to a permeability in the
millidarcy range rather than in the darcy range.

Permeability values derived from the larger training image
reconstructions fall within the range of values calculated by Moh’d
(2009) from vuggy French Jurassic oolitic limestone (Savonnieres
limestone) of similar texture and porosity to the current material
(Table 4). However, values recorded by Moh’d (2009) were calculated
using the ‘‘Jorgensen equation’’ rather than being measured directly.
Lebedev et al. (2017), also studying the Savonnieres limestone, used
direct gas permeametry to record a permeability in the region of 30
mD, and used X-ray tomography to record a permeability of 6.75 mD
using brine injection (Table 4). The former is closer to several of the
values predicted by some of the current medium-sized subsets of
training images (although less than in the majority), whereas the latter
value measured through brine injection is comparable with the
permeability value predicted using training image ‘‘OoidB’’ of 6.36
mD (Table 2) for intraparticle microporosity within ooids. Values of

FIG. 7.—Illustration of color-contoured porosity map and corresponding vertical porosity trends for oolitic limestone. A) Color-contoured

porosity map as in Fig. 5D. B) Three random representative vertical porosity trends, through (A), with approximate positions marked by

dashed red lines. Note no clear agreement between porosity trend lines, due to variable distribution of ooids, and high variability of

intraparticle porosity within individual ooids. Average value shows low variability.

TABLE 3.—Modeled porosity and permeability data for laminite.

Model No. Porosity (%)

Permeability (mD)

X Y Z Average*

Laminite1 6.96 0.0030 26.0815 0.0005 —

LaminiteA 26.04 2.6122 3.0012 2.4842 2.6992

LaminiteB 19.01 1.4410 1.3671 1.4793 1.4291

LaminiteC 4.15 0.0015 0.0026 0.0022 0.0021

LaminiteD 3.29 0.0001 0.0000 0.0000 0.0000

* No average given for Laminite1, due to strong heterogeneity in
permeability.
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FIG. 8.—Representative three-dimensional porosity network models, generated for oolitic limestone sample. A) Oolite1, B) Oolite1a, C)

Oolite1d, D)–G) OoidA to OoidD. (A)–(C) Whole-rock reconstructions; (B) and (C) higher-resolution models derived from approximately ¼

of the SEM image used to construct (A); (D)–(G) models constructed from training images representing porosity within individual ooids. All

models are 400 by 400 by 400 voxels. Voxel resolution as per pixel resolution of corresponding training image pixel resolution (see Table 1).

See Table 2 for corresponding porosity and permeability values.
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FIG. 9.—Representative three-dimensional porosity network models and flow models generated for laminite sample. A) Pore network model for

Laminite1, with X, Y, and Z axes marked, and B) and C) flow models for model in (A), illustrating pore connectivity, with models

approximately in the same orientation; (B) flow across laminae (along X or Z axis); (C) flow parallel to laminae (along Y axis), pink ¼
isolated, blue¼ connected. D) and E) Models of more porous laminae, and F) and G) less porous laminae. All models are 400 by 400 by 400

voxels. Voxel resolution as per pixel resolution of corresponding training image pixel resolution (see Table 1). See Table 3 for corresponding

porosity and permeability values.
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FIG. 10.—CCI of oolitic limestone, using GSE detector, from montaged areas and single tiles. A) Montaged image showing whole ooids (O),

rimming cement (Rc), and sparry pore-filling cement (Pc). B) Coarse sparry calcite infilling porosity between ooids. C) to F) Details of ooid-

rimming cements, exhibiting multiple growth phases and two size ranges (Rc1 and Rc2). Note that in (D)–(F), the initial finer rimming

cement is paler and less complex in appearance than the following coarser rimming cement. G) and H) Details of coarser rimming cement,

displaying incremental growth phases, and micron- to submicron-scale growth laminae in (G).
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permeability measured for other oolitic limestones from the Permo–

Triassic of the Persian Gulf, with similar porosity values to that of the

current material (Esrafili-Dizaji and Rahimpour-Bonab 2009; Table

4), also compare closely with many of the values reconstructed using

the medium-sized subset training images. On balance, this suggests

that the training images that retain a higher resolution (medium-sized

subsets) are most likely to more accurately reflect pore network

architecture and subsequently permeability within this oolite.

Permeability values modeled for the Cretaceous laminite agree with

data recorded by more traditional methods from other Brazilian

laminites, with Miranda et al. (2016) measuring permeability of 0.00

to 0.09 mD (average 0.04 mD) and associated porosities of 4 to 22%

FIG. 11.—CCI of oolitic limestone, using GSE detector. A) and B) Ghost-like micritic particles at the center of ooids, replaced by later cement.

C) Patch of sparry cement at the center of an ooid, in (?) dissolution cavity. D) Irregularly intergrown crystals replacing original ooid fabric.

E) and F) Details of crystals in (D), showing complex intergrowth of cement, with many centered around darker ‘‘spheroidal’’ cores (arrows).
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(average 12%). These permeability values are all recorded across

laminae, and they agree with equivalent measurements predicted from

the larger laminite model (Table 3). High modeled values for

permeability and flow parallel to micron- to millimeter-scale laminae

(26.10 mD; Table 3) are harder to corroborate. Horizontal permeabil-

ity values of 0.00 mD for low-porosity laminae (LaminiteC and

LaminiteD models) are consistent with overall whole-rock values (see

Miranda et al. 2016). However, the average permeability values for the

more porous laminae (LaminiteA and LaminiteB) show a considerable

difference when compared to permeability predicted for flow parallel

to laminae from the larger-scale laminite model (Table 3). Of these,

the lower values (average 1.43 and 2.70 mD) calculated for individual

porous laminae are likely to be more representative. Higher values

predicted for permeability parallel to porous laminae from the larger

training image are likely to have been overestimated due to resolution

issues connecting otherwise partially to poorly connected micropores.

This is similar to the situation when modeling the oolite, and it

indicates the importance of selecting representative areas for training

images and the importance of image resolution.

The complexity and heterogenous nature of porosity within many

carbonates make stochastic modeling, as illustrated here, particularly

difficult. The relationships observed are often radically different to

FIG. 12.—SEM montages of laminite. A) BSE montage, illustrating the occurrence of porosity (black), with details illustrated in inset B) from

area marked by white box. C) Same area as in (A), with GSE detector montage, using the CCI technique. Note porosity is not as clearly

displayed, but rhombic crystals are clearly displayed in inset image D) that are not seen in the BSE image (B).
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those observed in sandstones, upon which digital rock modeling
(DRM) software is traditionally developed. In particular, with
carbonates such as oolites, porosity can often be reversed from that
at original deposition (Byrnes et al. 2003). Although not necessarily
perfect, workable representations of pore networks for carbonates with
unusual morphologies (oolite), or strong heterogeneities at the micron
to millimeter scale (laminite) can be constructed that approach the
structural complexity of the real world, and that provide better
understanding of porosity and permeability variability. Permeability
values generated from models for intraparticle microporosity within
ooids are likely to be more realistic, but they do not reflect true
permeability due to the lack of connectivity between ooids (cf. Byrnes
et al. 2003, Zinszner and Pellerin 2007). Such pore spaces may have
relevance where individual particles are connected (through compac-
tion) or become connected through natural or artificial fracturing or
acidification. As such, the permeability of apparently unconnected
intraparticle microporosity or macromoldic porosity is still worth
modeling, because it is difficult to measure directly. Such materials do,
however, require careful consideration of scanned resolution used and
the effective representative area selected. Nevertheless, results confirm
the utility of the technique for producing reusable digital rock proxies
for rock physics modeling.

Potential for Generating Multiple Porosity and Permeability

Stochastic Models: Individual BSE tiles, or montaged sets of tiles,
can be binarized for porosity and using stochastic 3D modeling to
extract a range of porosity-permeability parameters. This can permit
the calculation of permeability changes at the millimeter scale, which
is over smaller areas than for traditional readings recorded from core.
Currently, no automated options exist to transfer binarized images
from SEM or image analysis into the stochastic pore network
modeling workflow; this requires manual data input and output for
each model constructed. Further developments in facilitating an
interface to automate this procedure would more quickly characterize
variability in permeability across geological carbonate materials (and
others) at the micron to centimeter scale. Such data could then be
transferred to packages such as Matlab for further analysis. In this
fashion, it may become possible to model many thousands of
permeability results (at the sub-millimeter to centimeter scale), and to
plot these in a fashion similar to that used herein for contoured
porosity data. Without automation for analysis of all collected images,
selected areas of differing fabrics could be modeled separately and
combined through stacking or model amalgamation to more fully
define and reconstruct complex pore networks within carbonates,

improving permeability predictions for heterogeneous carbonate
systems at the micron to millimeter or even the centimeter scale.

GSE Montages and Tiles

In the case of the oolite, it is possible to document changes in
cementation and final porosity, as well as details on the recrystalli-
zation and development of micritic fabrics. The latter is of great
significance, because micrite has traditionally been viewed as simple
mud, whereas the CCI technique offers a potential means by which to
elucidate the paragenesis of micrites in general (e.g., within chalks). In
the case of the laminite, CCI highlights the occurrence of
rhombohedral calcite crystals, 5 to 20 lm in size, within a massive
sparry calcite matrix, confirming the fine muddy micritic nature of
these laminated lake carbonate sediments (cf. Catto et al. 2016,
Miranda et al. 2016). There are, however, a number of areas that can
require additional consideration when using the CCI technique to
construct montages from large areas:

Improving CCI Contrast: CCI quality in terms of contrast, is
generally highest at faster scan rates (3–5 ls), with slower scan rates
(10–20 ls) resulting in decreasing contrast. This is somewhat
problematic, because the best quality for BSE imaging typically
requires a minimum scan rate of 10 ls. Since BSE and CCI images are
obtained simultaneously (using the same scan rate), this means that
automatically collected CCI images can lack good contrast. Contrast
can be enhanced by increasing bias, although this typically introduces
vertical bar artifacts (see below). However, image quality can be
greatly improved (in terms of sharpness and contrast) through the
integration of images obtained at fast scan rates. Although this is
suitable for the collection of single images, the added acquisition load
for large montages may not be practical. Some improvement in
sharpness and contrast can be made in montages by selecting only two
to three image scans per individual tile. The latter increases energy
input, sharpness, and contrast without the drawbacks of slower scan
speeds or higher bias values, and it is not too time-consuming. Where
deemed necessary, montaged CCI images can be collected as per
normal methods, and areas identified to be of significant interest can
be scanned later as single images or as montages using frame
integration at faster scan speeds.

CCI Montage Artifacts: CCI montages constructed across large
areas of polished thin sections often exhibit strong changes in
brightness (Fig. 13). These may be reduced by securing the margins of
the thin section with conductive copper tape. Where the effect is

Table 4.—Porosity and permeability data for oolites.

Porosity (%) Permeability (mD) Method Source Reference

36.1 494.61 Jorgensen equation Savonnieres limestone Moh’d (2009)

34.7 473.01

30.6 177.42

25 6 0.3 29 6 5 Gas perm Savonnieres limestone Lebedev et al. (2017)

18.6 — XRT (dry)

20.3 6.75 XRT (live brine)

30–40 — — Savonnieres limestone Fronteau et al. (2010)

25 1.5 to 2000 — General Zinszner and Pellerin (2007)

15.88 81.61 — Permo–Triassic Esrafili-Dizaji and Rahimpour-Bonab (2009)

21.98 50.12 — Persian Gulf

17.73 — Nitrogen gas Bicqueley Quarry This paper

12.92 —

11.87 —
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particularly strong, however, it may be necessary to quickly scan the
whole slide at lower resolution to determine stable areas of consistent
contrast and brightness, which can then be scanned at higher
resolution.

In addition, attempts to create a montage using the CCI technique
commonly result in a patchwork appearance or the presence of

unsightly broad vertical bands (Fig. 14A). These are the result of
subtle changes in contrast due to consistent variation in surface
charge (from left to right) across each individual tile, independent of
tile position on the thin section. These variations are not particularly
obvious within single images, but they are all too evident when tiles
are stitched together. Such banding visually detracts from montages

FIG. 14.—CCI of oolitic limestone, using GSE detector. A) Montaged image of a selected area, as in Fig. 10A. Individual tiles with 10% overlap,

showing vertical banding. B) Same area as in (A) but with 50% overlap, exhibiting normal contrast across the montage. C) Single tile, from

montage with 25% overlap of tiles, showing area to be cropped (red box). D) Montage of same area as in (A) and (B), with tiles acquired with

25% overlap, cropped as in (C), and stitched using Fiji software. Also see supplementary data for larger areas showing the difference between

using 25% and 50% overlap.

FIG. 13.—Example of GSE montage (comprising multiple tiles) exhibiting artifact typical of CCI montages, with large-scale progressive change

in brightness across the montage caused by variability in electrical dissipation relative to position on the polished slide. Note: Small-scale

vertical bar artifacts (see Fig. 14A) do not occur, as montage consists of tiles with 50% overlap.
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and impedes their use in any form of image analysis. For individual
images, contrast within CCI is maximized by increasing bias.
However, higher bias values have the effect of increasing contrast
artifacts along the left-hand margin of individual images, and
therefore enhancing unwanted vertical banding within stitched
montages. These can be reduced by limiting bias to between 40
and 50%, and two further methods can be employed to reduce such
artifacts. The simplest method involves increasing tile overlap to
50% (Fig. 14B; supplementary Fig. S1), although this has a high cost
in terms of additional time required to collect a montage. The second
method involves collecting tiles with a 25% overlap (see supple-
mentary Fig. S2), batch processing the tiles (e.g., using Fiji-ImageJ)
to crop away the most affected marginal areas of the image (Fig.
14C), and stitching tiles together (Fig. 14D). The latter method is
less costly in terms of acquisition times, but it may be neither
efficient nor practical where montages consist of hundreds or
thousands of tiles.

CONCLUSION

The automated collection of large-area, high-resolution montages
from polished thin sections using SEM offers excellent opportunities
for the study of depositional and diagenetic components within
carbonates. BSE images can be employed directly in the study of
pores, whereas GSE images utilizing the CCI technique can provide
additional information on changes to porosity through time due to
diagenesis as manifested by cementation and dissolution. CCI can be
applied across a range of scales, providing information on the
paragenesis of both sparry cements and micrite. Automated large-
area high-resolution imaging by SEM offers a flexible visual
approach that can be used to construct contoured plots on the
variability of porosity in two dimensions, to display quantitative
changes in porosity at the micron to millimeter scale, to plot linear
changes in porosity in a manner similar to borehole logs, and
through stochastic modeling to construct three-dimensional porosity
networks, which can be later used to predict permeability. It is
therefore possible to generate large-scale quantitative data on both
porosity and permeability; at the same time, information on changes
to original porosity and depositional fabrics brought about through
paragenesis (cementation, recrystallization, and dissolution) can be
qualitatively extracted. This combination of data has important
applications for oil and gas reservoir development and production
activities (e.g., Enhanced Oil Recovery), carbon sequestration, and
reservoir stimulation (e.g., hydraulic fracturing).

SUPPLEMENTARY MATERIAL

The following supplementary material is available at the SEPM
(Society for Sedimentary Geology) Book Supplemental Data site
(www.sepm.org/Downloads.aspx).

Supplementary Figure S1. GSE montage of a selected area of
oolitic limestone, with 50% overlap, displaying no artifacts.

Supplementary Figure S2. GSE montage of a selected area of
oolitic limestone (as in Fig. S1), with 25% overlap, displaying vertical
bar artifacts.
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