
 

UWS Academic Portal

The role of Insulin-like Growth Factors (IGFs) and IGF-binding proteins in the nervous
system
Lewitt, Moira; Boyd, Gary

Published in:
Biochemistry Insights

E-pub ahead of print: 17/04/2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Lewitt, M., & Boyd, G. (2019). The role of Insulin-like Growth Factors (IGFs) and IGF-binding proteins in the
nervous system. Biochemistry Insights, 12.

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 17 Jan 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository and Portal - University of the West of Scotland

https://core.ac.uk/display/270145737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://uws.pure.elsevier.com/en/publications/c699f353-4ec6-42b3-bd20-516e22e0c81f


https://doi.org/10.1177/1178626419842176

Biochemistry Insights
Volume 12: 1–18
© The Author(s) 2019
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/1178626419842176

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
There is evidence that the insulin-like growth factors (IGF-I 
and IGF-II) have key roles in nervous system development and 
function. This system is phylogenetically related to insulin and 
its receptors, and the IGF/insulin system is evolutionarily con-
served.1 The IGFs cross the blood-brain barriers2 and have 
endocrine roles in brain. They bind with high affinity to a fam-
ily of IGF-binding proteins (IGFBPs) which regulate availabil-
ity of IGFs to interact with their receptors.3 It is well known 
that the action and expression of each IGFBP is cell- and tis-
sue-specific.4 Therefore, an understanding of IGFBPs in nerv-
ous tissue is essential to understanding the paracrine/autocrine 
roles as well as the actions of endocrine IGFs in normal physiol-
ogy and diseases of the nervous system. Neurodegenerative dis-
orders are increasing in prevalence, and a knowledge of the IGF 
system is likely to be important in finding therapeutic targets.

The aim of this review is to present a broad perspective of 
current knowledge about the role of IGFs and IGFBPs in the 
nervous system. Articles included were retrieved through 
PubMed using a combination of the MeSH search term 
‘Nervous System’ and the search term ‘IGF’ in all fields. Papers 
published between January 2014 and September 2018 were 
retrieved and the abstracts scanned for relevant papers. Key 
contributions to the field predate 2014 and therefore, in addi-
tion, the author’s own EndNote™ database of IGF papers 
prior to 2014 was searched using the term ‘Nervous System’. 
References within the articles obtained by these methods were 
also used to retrieve key papers. The field is dominated by 
experimental studies in rodents and this may be a limitation in 
identifying relevant therapeutic targets for human disease. 
Where possible, publications that focus on the human IGF 
system are presented in this review.

An overview of the IGF system and its expression and 
action, with a focus on the nervous system, will first be pre-
sented. This will set the scene for a discussion of the role of the 
IGF system in nervous system disorders, and the potential of 
this system in therapeutics. Signposting to future research will 
be included in the concluding section.

IGF System Overview
The IGF system has general roles in growth and metabolism, 
and ageing, that are evolutionarily conserved.1 Insulin-like 
growth factor 1 and IGF-II are evolutionarily related to proin-
sulin and share structural similarity so that all three bind to 
type 1 IGF receptors (IGF1R) and insulin receptors (IR), 
which also share structural similarity.5 There are two isoforms 
of IR, IRA and IRB, that can form heterodimers, and each 
isoform can form heterodimers with IGF1R subunits.6,7 All of 
these receptors are activated through ligand-induced autophos-
phorylation and subsequent phosphorylation of other tyrosine-
containing substrates and enzyme cascades, including the 
phosphatidyl-inositol-3 kinase (PI3K)-protein kinase B (Akt) 
pathway.8 While IGFs have a higher affinity than insulin for 
IGF1R and are therefore likely to have important physiological 
roles through that pathway, the physiological roles of the IR 
isoforms and their hybrids are not fully established, and are 
likely to be influenced by differing affinities for IGF-II.6 IRA 
homodimers and IRA/IGF1R hybrids have high affinity for 
IGF-II and have a role in cancer cell growth.7 The IGF-II/
mannose-6-phosphate receptor (IGF2R) is a structurally dis-
tinct cell-surface receptor that plays a role in internalising 
IGF-II and not IGF-I, as well as trafficking lysosomal 
enzymes.9 The IGF-II binding domain of IGF2R is also pre-
sent in the circulation and can block IGF-II-induced cell 
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growth.9 A key characteristic of the IGFs, not shared with 
insulin, is a high affinity for members of a family of IGFBPs10 
that have distinct functional roles. They can stimulate or inhibit 
IGF actions and have IGF-independent effects, depending on 
the IGFBP, post-translational modifications and cellular 
milieu.11,12

Our understanding of the IGF system is founded on the 
original work of Salmon and Daughaday13 who discovered the 
existence in the circulation of pituitary-dependent mediators 
of tissue growth. Later, this view expanded to encompass par-
acrine/autocrine roles.3 The endocrine IGF system will be dis-
cussed first. The liver plays a central role in the production of 
endocrine IGFs, secreting a ternary complex of approximately 
140 kDa that has a long circulating half-life (hours-days).14,15 
Hepatic IGF and an acid-labile subunit are produced by hepat-
ocytes and enter the circulation in association with IGFBP-3 
or IGFBP-5, produced by non-parenchymal cells. Circulating 
IGF-I and IGF-II are mainly associated in these ternary com-
plexes, which have long circulating half-lives. Since IGF-I and 
the acid-labile subunit are both growth hormone (GH)-
dependent, IGF-I is an ideal biomarker of GH, which is 
secreted in pulsatile bursts by the pituitary and has a short cir-
culating half-life (minutes).16 The insulin-like growth factor I 
is also positively regulated by total caloric and protein intake 
and by insulin,15 so that the IGF-I in the circulation is also a 
marker of nutritional status. While most IGF-I and IGF-II in 
the circulation is associated in ternary complexes, IGF (~7 
kDa) also associates in binary complexes with IGFBPs (~25-
45 kDa) in the circulation and at the tissue level, and a propor-
tion is ‘free’ to interact with cell surface receptors.12 Thus, 
circulating IGFs and IGFBPs are part of a dynamic system, 
crossing the endothelium of fenestrated and sinusoid capillar-
ies rapidly (minutes-hours), alone or associated in binary com-
plexes (Figure 1A).

IGFs and IGFBPs are ubiquitously produced and have par-
acrine and autocrine roles.3 Each member of the family of six 
high-affinity IGFBPs (IGFBP-1 to IGFBP-6) has a distinc-
tive pattern of tissue expression.4 The effect of IGFBPs on 
IGF availability to receptors depends on IGF-binding affinity,7 
interaction with other proteins, and a variety of post-transla-
tional modifications of the IGFBPs. Limited proteolysis of 
IGFBPs by tissue proteases reduces affinity and therefore 
increases IGF activity, while association with matrix proteins 
can stabilise IGF near cell surface receptors, which also 
enhances activity.4 Human neuroblastoma cells, for example, 
secrete IGFBP-2 that is able to associate with cell mem-
branes.17 These cells rely on autocrine stimulation by IGFs and, 
when exposed to fibroblast growth factor (FGF) a protease is 
induced that cleaves IGFBP-2 and results in increased IGF 
activity. In addition, the IGFBPs have IGF-independent 
actions, for example the interaction of IGFBP-2 with the α5β1 
integrin via an arginyl-glycyl-aspartyl (RGD) domain pro-
motes glioma cell migration.18 The IGFBPs are structurally 
related to a superfamily of proteins19 which do not bind IGFs 
and are beyond the scope of this review.

GH/IGF expression and regulation in the nervous 
system

Insulin-like growth factor I and IGF-II are widely expressed 
in nervous tissue from early embryonic life.20 Understanding 
of the tempo-spatial expression of IGFs in brain is primarily 
derived from studies in rodents. Insulin-like growth factor I 
is widely expressed in brain, in neurons and glial cells.21 At all 
stages of development, higher levels of IGF-I expression are 
associated with proliferating neural precursors.20 Insulin-like 
growth factor II is predominantly expressed in mesenchymal 
tissues. In rodents, IGF-II expression is highest during 

Figure 1.  IGFs and IGFBPs that are not associated in a ~140 kDa ternary complex (TC) with an acid-labile subunit readily cross the endothelium of 

fenestrated capillaries (A) unbound or in binary complexes. Passage across the blood-brain barrier into brain parenchyma (B) involves active transport of 

IGFs that are not in binary or ternary complexes.
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embryonic development, declines with age and is restricted to 
the meninges and choroid plexus in the adult.22 Circulating 
GH is produced by the anterior part of the pituitary that 
derives embryonically from the ectoderm and is linked func-
tionally to the nervous system by a system of capillary loops 
and sinusoids, known as the hypophyseal-portal circulation. 
GH-releasing hormone (GHRH) and somatostatin, which 
are secreted by hypothalamic neurons into the hypophyseal-
portal circulation, are important peptides regulating the syn-
thesis and pulsatile release of pituitary GH.16 GH crosses the 
blood-brain barrier and IGF-I expressed in brain may be 
regulated by GH in a region-specific manner. In adult male 
rats, GH administration increases IGF-I expression in hypo-
thalamus, cerebellum and hippocampus.23 Cell- and tissue-
specific effects are observed, with no change in IGF-I 
expression in cerebral cortex in response to GH in that study. 
In addition to pituitary, GH is expressed in nervous tissues. 
GH immunoreactivity has been detected in the rat amygda-
loid nucleus and hypothalamus and increases after hypophy-
sectomy.24 Growth hormone and IGF-I are both expressed in 
the hippocampus of GH-deficient mice.25 However overex-
pression of GH in mouse hippocampus is associated with 
only a modest change in local IGF-I expression.26

Insulin-like growth factor inhibits GH secretion through 
endocrine negative feedback, crossing the fenestrated sinusoid 
capillaries of the anterior pituitary, and inhibiting spontaneous 
and GHRH-stimulated GH release by somatotrophs.16 It is 
also possible that there is negative feedback by IGF-I on 
GHRH in the hypothalamus. The blood-brain barriers regu-
late passage of substances, including IGFs,2 through specific 
transport mechanisms, from the systemic circulation into brain 
parenchyma (Figure 1B) and from the choroid plexuses into 
cerebrospinal fluid (CSF). IGF uptake into CSF appears to be 
independent of IGF1R and IGFBPs27 and, although also pro-
duced locally, brain IGF-I levels are determined to some extent 
by circulating concentrations.28 Insulin-like growth factor pas-
sage into brain is triggered by local neuronal activity through a 
mechanism that includes vasodilatation and increased 
IGFBP-3 protease activity generating fragments with lower 
affinity for IGFs.29 Insulin-like growth factor is then more 
available to interact with the endothelial transporter low-den-
sity lipoprotein-related receptor (LRP)1. It has been shown 
that LRP2 (megalin), which participates in brain uptake of β-
amyloid carrier proteins, also has a role in IGF-I transport 
across the choroid plexus and mediates IGF-I-induced clear-
ance of β-amyloid.30,31 Insulin-like growth factor II is also 
expressed in adult human brain.32 Cerebrospinal fluid provides 
a proliferative niche for supraventricular neural progenitors,33 
and there is evidence that IGF-II acting via IGF1R is an 
important determinant of CSF activity on these stem cells.34 In 
songbirds (canaries and zebrafinches), IGF-II is expressed in 
neurons in areas of brain responsible for song, and correlates 
with neuronal plasticity.35

Studies of transgenic and knockout mice have indicated 
that IGF-I and IGF-II have distinct nervous system func-
tions.36 Igf1 overexpressing mice have increased postnatal brain 
growth,37 while Igf2 overexpression appears to have no effect 
on brain growth.38 Mice with igf1 deficiency have impaired 
neuronal somatic and dendritic growth39 but no evidence of 
neurological dysfunction and a degree of myelination that is 
proportionate to brain mass,40 while igf2-/- mice have no 
apparent changes in brain morphology41 and are less suscepti-
ble to hippocampal neurodegeneration42 compared to controls. 
Insulin-like growth factor I is naturally cleaved in brain32 and 
in the circulation43 to a variant that lacks the N-terminal trip-
eptide glycine-proline-glutamate (GPE) and has reduced 
affinity for IGFBPs.44 IGFBP inhibits this cleavage of IGF-
I.45 Centrally, the GPE tripeptide can also cross the blood-
brain barrier to reach the CSF, where it has a longer half-life 
than in plasma associated with reduced susceptibility to prote-
olytic degradation.43 In retinal glial cells, both the truncated 
IGF-I variant and the cleaved tripeptide have mitogenic activ-
ity.46 GPE stimulates potassium-induced acetylcholine release 
in rat cortical slices47 and has neuroprotective effects in hip-
pocampus and striatum.43,48,49 GPE inhibits gonadotrophin-
releasing hormone secretion through antagonism at 
N-methyl-d-aspartate (NMDA) receptors.45

IGF receptors and signalling in the nervous system

The effects of IGFs on cell growth/apoptosis and metabolism 
are through IGF1R and IR which are ubiquitously expressed 
in the nervous system.50,51 IGF1R null mice have generalised 
growth retardation including brain, characterised by reduced 
neuronal fibres and neuroglial cell cytoplasm but increased 
nerve cell number.52 Mice with neuron-specific deletion of IR 
have normal brain size and development, but develop obesity 
and mild insulin resistance.53 This central metabolic effect 
may be due to the action of local insulin which is also 
expressed in brain.50,54 IGF2R is widely distributed in brain55; 
however, role in regulating IGF-II availability in human brain 
has not been elucidated.

In addition to feedback inhibition of GH, IGF-I acts 
directly to increase insulin sensitivity at the post-receptor 
level.15 IGFs also act in concert with other growth factors to 
influence nervous system function. The effect of FGF-2 with-
drawal in promoting neuronal differentiation from stem cells is 
mediated by IGF-I,56 and pre-treatment with FGF-2 increases 
IGF1R expression.57 In rodent astrocytes, IGF-I secretion is 
stimulated by epidermal growth factor (EGF) and IGF1R 
blockade reduces the action of EGF on cell replication.58,59 In 
a human neuroblastoma cell line, IGF-II stimulates cell growth 
in the presence of EGF.60 Insulin-like growth factor I signal-
ling pathways interact with those of sex steroids in the neu-
roendocrine hypothalamus and also in the hippocampus in the 
control of neurogenesis and synaptic plasticity.61 The effect of 



4	 Biochemistry Insights ﻿

IGF-I on oestrogen signalling in brain is cell type-specific and 
oestrogen receptor isoform-specific.62 When the IGF-I gene is 
delivered to the medial basal hypothalamus in female rats, 
serum luteinising hormone levels are higher, probably due to 
enhanced oestrogen positive feedback on GnRH production, 
and ovarian function is prolonged.63 The IGF system interfaces 
with the brain-derived neurotrophic factor (BDNF) system. In 
rats, the exercise-induced increase in learning recall, and hip-
pocampal BDNF expression and signalling is prevented when 
IGF1R-blocking antibody is delivered to the hippocampus.64

IGFBPs in the nervous system

In studies with transgenic mice, early null mutations of 
IGFBPs appeared to have no brain phenotype, and it was 
suggested that this indicated ‘redundancy’ in the system.36 
Earlier studies of the overexpression of IGFBPs have shown 
little or inconsistent effects on the nervous system36 However, 
there are exceptions. Transgenic mice overexpressing 
IGFBP-1 in brain have impaired brain growth and reduced 
glial cell proliferation in response to injury.65,66 While 
IGFBP-1 is not normally expressed in brain, endocrine 
IGFBP-1 can have an effect on brain development, with 
reduced cortex and hippocampus development in mice with 
liver-specific overexpression of IGFBP-1 during foetal life.67 
When IGFBP-6 is overexpressed in brain, mice have reduced 
cerebellum size and weight,68 dysregulation of energy home-
ostasis and obesity.69

Despite their importance in regulating IGF action, the roles 
of IGFBPs in brain are less well studied than IGF-I. Insulin-
like growth factor binding protein 5 is one of the major IGFBPs 
expressed in brain. It is found in neurons throughout the cere-
bral cortex, colocalised with cells that secrete kallikreins that 
proteolyse IGFBP-5.70 There is also evidence that IGFBP-2 
has an important role in the nervous system. Insulin-like 
growth factor binding protein 2 is abundant in brain and is 
highly expressed by astrocytes in the cortex.71 During depolari-
sation, IGFBP-2 expression is upregulated in astrocytes.72 
NMDA receptors may be responsible for this upregulation. 
Along with IGF-II, IGFBP-2 is synthesised and secreted by 
meningeal cells.73 While IGFBP-2 has been shown to inhibit 
oligodendrocyte precursor cell survival and differentiation in 
vitro,74 there is evidence that cell membrane-associated 
IGFBP-2 can increase IGF activity.17 It has been suggested 
that IGFBP-4 is involved in the maintenance of cerebellar 
plasticity75 and in microtubule functions in astrocytes.76 In 
transgenic mice overexpressing tumour necrosis factor-alpha 
(TNF-α), changes in the IGF system are seen consistent with 
reduced IGF availability with increases in IGFBP-3 and 
IGFBP-4 protein expression, along with reduced IGFBP-5 
and IGF-I in radial glial and Purkinje cells.77

Cell lines from neuroblastomas, which are malignant child-
hood tumours derived from neural crest stem cells, are often 
used as models for exploring the role of IGFs and IGFBPs. 

Insulin like growth factor I and IGF-II act as paracrine/auto-
crine signals via IGF1R in human neuroblastoma cell lines,78 
including those comprised of epithelial Schwann cells,60 and 
may stimulate growth of primary tumours in concert with 
other growth factors. IGFBP-278 and IGFBP-579 are also 
expressed in neuroblastoma cells and can stimulate or inhibit 
cell growth depending on their concentration or the presence 
of IGFs79 or proteases that alter IGF binding affinity.17 
IGFBP-2 is recognised as an oncogene in a variety of human 
cancers80 including those of the nervous system: gliomas81–86 
and meningiomas87,88. Interaction of IGFBP-2 with the α5β1 
integrin via its RGD domain has been implicated in glioma 
progression81 and migration.18 Higher serum IGFBP-5 levels 
are associated with glioblastoma recurrence.89

Normal Development and Ageing
The IGF system has an essential role in normal growth, devel-
opment and maintenance of the nervous system.20,33,90,91 From 
week 3 of embryonic life, neural stem cells proliferate, migrate 
from the subventricular zone, and differentiate in a highly 
complex manner, producing neurotransmitter and neurotrophic 
factors and processes (axons and dendrites) that allow synaptic 
interconnections. Apoptotic cell death is an important mecha-
nism for eliminating neural progenitor cells with a transient 
role in nervous system development. In the postnatal period, 
neuronal production and migration is largely complete; how-
ever, neurogenesis continues throughout adulthood in specific 
regions of the brain: the dentate gyrus of the hippocampus 
(important for learning and memory), the supraventricular 
zone (cells migrate to the olfactory bulb), and the striatum 
(voluntary motor control).92,93 Glial cell (oligodendrocytes, 
astrocytes and microglia) proliferation, migration and matura-
tion continues throughout childhood and glial progenitors per-
sist in adult brain and can differentiate in response to injury, 
and glial cell apoptosis continues into postnatal life.94

IGFs in development and maintenance of the 
nervous system

Local paracrine/autocrine sources of IGFs are essential for 
normal nervous system development. Children with reduced 
endocrine IGF-I due to GH insensitivity generally have nor-
mal cognitive function,95 despite craniofacial abnormalities,96,97 
while those with IGF-I deletion98 or IGF-I receptor muta-
tions99 and therefore reduced paracrine/autocrine IGF-I activ-
ity, have microencephaly and cognitive impairment. 
Nevertheless endocrine sources of IGFs also have important 
roles. In pre-term infants, circulating levels of IGF-I and 
IGFBP-3 postnatally are positively associated with brain vol-
umes.100 Early treatment of children with GH insensitivity 
with IGF-I is reported to prevent cochlear hearing loss.101 Less 
is known about the role of IGF-II in nervous system develop-
ment. Maternally imprinted, IGF-II gene hypermethylation 
has been identified as a potential risk factor for neural tube 
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defects.102 Paternal folate deficiency in rats has also been shown 
to influence brain IGF-II methylation despite adequate mater-
nal folate during gestation.103

Insulin like growth factor I and IGF1R are expressed early 
in development throughout the brain.20 In rats, neonatal 
undernutrition increases expression of IGF-I and IGF1R in 
cerebellum and hypothalamus, and decreases IGFBP-2 in 
hypothalamus in the perinatal period.104 In this way, in the face 
of reduced endocrine IGF-I production, the paracrine/auto-
crine availability of IGF-I at a time of rapid brain growth and 
development is likely to be optimised. There is substantial evi-
dence from mutant mouse models36 that IGF-I promotes neu-
ron numbers, through increased proliferation and reduced 
apoptosis, as well as process outgrowth and synaptogenesis, 
throughout nervous system development. Overexpression of 
IGF-I in the striatum of adult rat brain, for example, induces 
migration of adult neuronal precursor cells.105 There is evi-
dence that the proliferating effect of IGF-1 is via RAF/MEK/
ERK signalling, while the differentiating effects involve PI3K/
Akt pathways.106 Insulin like growth factor I signalling inter-
acts with other growth factor pathways that are important in 
the nervous system. These include growth factors (eg, FGFs, 
EGF and vascular endothelial growth factor [VEGF]) and 
neurotrophic factors (eg, BDNF), which together maintain 
proliferation of neural stem cells, and neurotransmitters and 
transcriptional factors, which regulate the neurogenic pro-
cess.56,107,108 Studies in rodents suggest that prenatal exposure 
to steroids109,110 and neonatal repetitive maternal separation111 
alters IGF system expression in developing brain in ways that 
may increase susceptibility to cell damage. These studies have 
potential implication for management of pre-term infants.

Oligodendrocyte differentiation is associated with increased 
myelin expression and the production of trophic factors that 
are important for neuronal survival and axonal integrity. Insulin 
like growth factor I enhances oligodendrocyte progenitor cell 
differentiation and therefore myelination.112,113 There is sub-
stantial evidence that IGFs play a role in oligodendrocyte dif-
ferentiation and survival, and myelin synthesis36 as well as 
Schwann cell survival and motility.114,115 Microglia are the 
innate immune cells of the brain.116 Following an epileptic sei-
zure, IGF-I expression in microglia is upregulated117 and may 
play a role in minimising cell damage. Astrocytes provide phys-
ical and nutrient support, and participate in maintaining 
blood-brain barriers and modulating synaptic transmission.94 
Insulin like growth factor I is increased in activated astro-
cytes118 and regulation of mitochondrial function and redox 
status by IGF-I is essential in the maintenance of astrocyte 
function.119

Ageing and cognitive function

Insulin/IGF signalling pathways are phylogenetically con-
served120 and are central to the ageing process.121 Reduced 
function of these pathways has been shown to extend survival 

in rodents.122,123 There is increasing evidence that changes in 
activity of splicing factors are involved in the ageing phenotype. 
Exercise-induced changes in the IGF-I splice variant mechano 
growth factor (MGF) have been shown to decrease with age.124 
IGF1R variants have been described that are more prevalent in 
Ashkenazi Jewish centenarians125 and which are reduced-func-
tion mutations.126

IGF signalling is involved in adult hippocampal neurogen-
esis.127,128 Hippocampal neuroblasts decline with age, however 
this decrease is less pronounced in humans, compared to mice93 
and the cognitive decline may be largely due to changes in neu-
ral stem cell activity rather than number.129 Glial cell numbers 
do not appear to decline with age.130 With ageing there is a 
decline in endocrine IGF-I,131 which is a candidate frailty bio-
marker.131,132 Brain IGF-I and IGF signalling is also reduced 
during ageing.131,133 In addition to the GH/IGF system, other 
age-related changes in growth factors have been linked to 
changes in neurogenesis, including loss of FGF-2 and 
VEGF.134,135 Studies in rodents have demonstrated close links 
between IGF-I, hippocampal neurogenesis and cognitive func-
tion. Intracerebroventricular infusion of IGF-I ameliorates 
age-related decline of hippocampal neurogenesis in rats.136 It 
has been suggested that reduced hippocampal neurogenesis 
contributes to the pathophysiology of depression.90 Mice with 
specific knockout of hippocampal IGF-I have been shown to 
have a depressive phenotype that is not rescued by endocrine 
IGF-I.137

In mice, the effects of physical activity on hippocampal neu-
rogenesis and cognition are associated with circulating IGF-I 
levels.138 In rats, there is evidence that aerobic and resistance 
training increase learning and spatial memory through diver-
gent molecular pathways: resistance training acts via the IGF-I/
IGF1R/Akt pathway in hippocampus.139 Physical activity also 
increases brain uptake of endocrine IGF-I.140 In adolescent 
humans exercise increases both IGF-I and BDNF.141 In adults 
increased temporal lobe functional connectivity in response to 
exercise is associated with increases in circulating IGF-I, 
BDNF and VEGF.142 There is experimental evidence that hip-
pocampal increases in BDNF are more important that changes 
in peripheral levels of IGF-I and BDNF,143 and that IGF-I 
interacts with BDNF and VEGF signalling pathways in exer-
cise-related changes to hippocampal function.64,144,145

In humans, studies of the relationship between serum IGF-I 
and cognitive function or decline in cognitive function are con-
flicting. In a large prospective study, higher levels of serum 
IGF-I were associated with better cognitive performance in 
women but not men.146 Insulin like growth factor I treatment 
in postmenopausal women has no effect on memory.147 Overall, 
serum IGF-I is not considered a useful biomarker of cognitive 
decline in the ageing brain,148 and there may be a U-shaped 
relationship between IGF-I and cognitive function. In females 
with exceptional longevity, lower serum IGF-I is associated 
with better cognition.149 In adult patients with GH deficiency, 
however, cognitive impairment which contributes to reduced 
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quality of life is ameliorated by GH replacement.150 Rodent 
models with GH deficiency or resistance have a delayed age-
induced decline in memory retention.151,152 In adult rats, 
peripheral administration of GH stimulates hippocampal neu-
rogenesis both in the presence153 and absence154 of GH defi-
ciency. It seems likely that this effect of GH is mediated by 
endocrine IGF-I; peripheral administration of IGF-I also 
stimulates hippocampal neurogenesis.155

Insulin and IGF-I are nutrient-sensitive signalling path-
ways and have key roles in energy metabolism, including that 
of neural stem cells.156,157 In rodents, IGF-I regulates glucose 
metabolism in developing158 and aged159 brain. Brain is also an 
important target for insulin actions with effects on neuronal 
survival and synaptic plasticity, particularly in the hippocampus 
where IR are abundant.160 There is also evidence that IGF-II, 
given subcutaneously, is neuroprotective in ageing rats.161 
Compared to IGF-I, differences in affinity for IGF1R/IR of 
IGF-II and its production by the choroid plexus indicate that 
it might have a distinct role in the nervous system.162 The role 
this plays in the choroid plexus alongside IGF-I, expression of 
which declines with ageing163 should be further explored. 
Insulin like growth factor II is also expressed in the leptome-
ninges and parenchymal vasculature.164 Expressed by neural 
stem cells, it has been suggested that IGF-II from these cells 
and from the choroid plexus has an important role in main-
taining neurogenesis in the supraventricular zone.162 Insulin 
like growth factor II may also play a key role in maintenance of 
neurogenesis in the hippocampus. An effect of IGF-II on 
memory enhancement is supported by experimental evi-
dence.165 Interestingly, IGF2R overexpression is associated 
with increased β-amyloid generation.166 While this is likely 
due to an effect on endocytic pathways, the role of increased 
IGF-II disposal has not been explored.167

Neurodegenerative Disorders
Brain regions with the capacity for neurogenesis are prone to 
neurodegenerative disease. Loss of neurons and their functions, 
particularly cholinergic and dopaminergic neurons, results in 
impairments ranging from cognitive abilities to coordination 
and mobility.168–170 Alzheimer disease (AD), Parkinson disease 
(PD), and Huntington disease (HD) all cause a dementia that 
is distinct from the physiological decline that occurs with age-
ing. Despite different distinct pathological processes, many of 
the hallmark features are identical, eg, depression and anxiety, 
loss of cognitive function and olfactory dysfunction. There is 
compelling evidence that inflammation is key to the aetiology 
or pathogenesis of these neurodegenerative disorders.169 In 
each, protein misfolding and aggregation lead to activation of 
neuroinflammatory processes.121 Activated glial cells produce a 
microenvironment of reactive oxygen species (ROS) and pro-
inflammatory mediators contribute to neuronal damage and 
death in a vicious cycle.169 Reduced IGFBP expression in 
lipopolysaccharide-activated microglia171 might play an impor-
tant role in increasing paracrine/autocrine IGF availability. 

While neurotrophic factors, including IGF-I, are increased in 
activated astrocytes, this may be insufficient to exert the 
required neuroprotective effect.118

Obesity is associated with a chronic inflammatory state that 
is considered a contributor to the prevalence of neurodegenera-
tive disorders, with IGF/insulin resistance being the possible 
link.169 There is substantial evidence that IGF/insulin signal-
ling and cross-talk with other signalling pathways are involved 
in the processes of neurodegeneration.121,127,172,173 The regions 
of brain with neurogenic capacity are highly vascular. In rodents 
there is evidence that IGF-I is required for vascular remodel-
ling in adult brain.174 Age-related cerebrovascular changes that 
also contribute to the neurodegenerative pathology.175 These 
regions are highly vascular and multiple systemic factors 
including IGF-I and IGF-II may play a role.176

Alzheimer disease

Alzheimer disease is the most common of the neurodegenera-
tive dementias. The two hallmarks of the disease are neuritic 
plaques, formed by the extracellular accumulation of abnormal 
β-amyloid protein,177 and intracellular neurofibrillary tangles, 
composed of hyperphosphorylated tau protein.178 Plaques and 
neurofibrillary tangles both contribute to glial cell activation 
and neuroinflammation that influence AD pathogenesis and 
neuronal loss.170,179 Glutamate is the most important excitatory 
neurotransmitter and is involved in neuronal growth and synap-
tic plasticity.180 Glutamate influences β-amyloid production, 
and β-amyloid is itself an activator of glutamatergic receptors of 
the NMDA type that are essential for both long-term potentia-
tion (LTP) and long-term depression (LTD) and are therefore 
crucial in learning and memory. It is argued that interference 
with NMDA receptors by abnormal accumulation of β-amyloid 
and the ability of β-amyloid to increase tau phosphorylation 
underpin synaptic loss and cognitive decline in AD patients.181

The β-amyloid precursor protein (APP) is cleaved by mem-
brane-bound β- and γ-secretases into β-amyloid, the longer 
forms of which are more likely to be deposited. Monomeric 
forms of β-amyloid are less toxic and are able to activate insulin/
IGF pathways.182 While IGF-I has been shown to rescue rat 
hippocampal neurons from the toxicity induced oligomeric 
forms of β-amyloid in vitro,183,184 it also increases the extracel-
lular concentration of β-amyloid by promoting its secretion and 
inhibiting its degradation.185 Neuronal death in AD is strongly 
associated with mitochondrial dysfunction186 including increased 
ROS production, decreased mitochondrial enzymes and 
increased oxidative damage. It has been argued that ageing, the 
most important non-genetic risk factor for AD development, 
does so largely via mitochondrial dysfunction, though levels of 
β-amyloid degrading enzymes also decline with age.187

There is an increased prevalence of AD in type 2 diabetes 
mellitus in humans188; however, this association is likely to be 
confounded by the presence of cerebrovascular pathology 
which reduces the number of AD lesions required for the 



Lewitt and Boyd	 7

manifestation of clinical dementia.189 Insulin signalling appears 
to be involved in both β-amyloid peptide deposition and tau 
phosphorylation,190,191 and defective insulin signalling is 
thought to play a key role in disease pathogenesis.192,193 The 
finding of altered brain expression of insulin and IGFs, and 
their receptors has led to the suggestion that AD be labelled 
‘type 3 diabetes’.194 Indeed functional proteomics suggests that 
the link between AD and diabetes relates to insulin/IGF sig-
nalling. Using tissue samples from brains of patients with AD, 
compared to tissue from normal individuals, insulin resistance 
in hippocampus and cerebral cortex was found to be associated 
with IGF-I resistance and cognitive decline.195 Expressions of 
IGF1R and IR are increased in AD neurons in the temporal 
cortex while that of IR substrate (IRS)-1 and IRS-2 are 
decreased.196 Some studies have proposed a relationship 
between endocrine IGF-I and the risk of AD; however, in a 
meta-analysis of nine studies comprising 1639 individuals, no 
link between serum IGF-I and AD was demonstrated.197 
There is one report of an association between an IGF-I poly-
morphism and late-onset AD in a Chinese population.198

Most of our understanding of the role of insulin and IGFs 
in AD has come from studies in rodents. Intracerebrospinal 
streptozotocin in mice induces AD-like changes in pathology 
and behaviour and is associated with reduced brain expression 
of insulin, IGFs and reduced IGF1R binding and signal-
ling.199,200 In mice, brain-specific IGF-I knockout is associated 
with hyperphosphorylation of tau protein,201 while blockade of 
IGF1R function in the choroid plexus of rats is associated with 
AD-like neuropathology.202 Transgenic models of AD have 
been developed including mutations that target APP or the tau 
protein.203,204 When mice expressing mutant APP are crossed 
with those genetically predisposed to diabetes, development of 
cognitive dysfunction is accelerated.205 In these animals, in 
addition to reduced brain insulin signalling, marked vascular 
inflammation was observed despite no change in β-amyloid 
deposition. Presenilin, a crucial component of the γ-secretase 
complex, also controls IR expression.206 Mice overexpressing 
pancreatic β-cell IGF-II develop hyperinsulinaemia, and co-
expression of mutations of both APP and presenilin-1 genes 
exacerbates the development of peripheral insulin resistance, 
with no increase in brain insulin or β-amyloid deposition.207 
Mice expressing mutant APP have reduced CSF/serum IGF-I 
ratio and low serum IGF-I is an early biomarker of AD 
onset.208 When mutations of both APP and presenilin-1 genes 
are combined with endocrine IGF-I deficiency due to targeted 
deletion of hepatic IGF-I, amyloid plaque formation occurs 
earlier.209 On the other hand, reduction in serum IGF-I 
through protein restriction, is associated with reduced AD 
neuropathology in mice expressing mutant APP, presenilin-1 
and tau proteins.210

As has been observed in human brain tissue, brain slices 
from mice expressing mutant APP have increased IGF1R 
expression and reduced Akt response to IGF-I211 and, when 

crossed with igf1r +/-, a reduction in β-amyloid-associated 
behavioural impairment associated with the sequestration of 
β-amyloid aggregates of lower toxicity has been observed.212 
The protective effect of neuronal IGF-I resistance is supported 
by the observation that, in a neuron-targeted IGF1R knockout 
combined with the APP mutation, APP processing is decreased 
and β-amyloid accumulation is reduced213 and, when com-
bined with mutant APP and presenilin-1, there is improved 
spatial memory, fewer amyloid plaques and less neuroinflam-
mation.214 Paradoxically, in the same model, systemic delivery 
of IGF-I ameliorates the AD-like changes and increases trans-
port of β-amyloid/carrier protein complexes through the cho-
roid plexus barrier.215 Taken together, these studies suggest 
that, while reduced IGF action centrally is associated with 
improved AD pathology, increased peripheral IGF availability 
is neuroprotective through increased β-amyloid clearance. In 
ageing mice with a targeted deletion of hepatic IGF-I, and 
therefore reduced endocrine IGF-I, there is a premature 
increase in brain β-amyloid, and administration of IGF-I 
increases clearance and reduces β-amyloid levels.216 In this 
research, IGF-I was found to affect the permeability of the 
blood-brain barrier to carrier proteins such as albumin and 
transthyretin. However other studies, using multiple in vivo 
models including APP-overexpressing mice, have shown no 
impact of peripheral IGF-I on brain β-amyloid levels or the 
phosphorylation state of tau.217 Furthermore in rats intracere-
broventricular IGF-I prevents the deleterious effect of coad-
ministered β-amyloid on the somatostatinergic system in the 
temporal cortex.218 The N-terminal tripeptide also has protec-
tive effects on the somatostatin system in temporal cortex of 
β-amyloid treated rats, through modulation of calcium and 
glycogen synthase kinase 3β (GSK3β) signalling.219

In addition to considerations of endocrine versus tissue 
IGFs, an understanding of the factors regulating expression 
and action in different cell types is required in order to unravel 
the role of the system in AD. IGF-I and insulin stimulate neu-
ronal secretion of β-amyloid and reduce its degradation,185 
while also having a neuroprotective role,183 however expression 
and action of IGF-I and insulin are reduced in AD. As the AD 
pathology progresses, astrocytes also have reduced expression 
of insulin and IGF signalling pathways particularly in indi-
viduals expressing the APOEε4 allele.220 Insulin reduces APP 
levels in individuals without the APOEε4 allele.221 In a co-
culture system, impaired IGF-I signalling in human astrocytes 
is associated with reduced ability to protect neurons from oxi-
dative stress.222 Oxidative stress has been identified as an 
important link between AD and insulin resistance,223 with 
Forkhead box class O (FoxO) transcriptions factors as candi-
dates for the molecular integrative link.224 Insulin like growth 
factor I inactivates and displaces FoxO3 from calcineurin in 
activated astrocytes, with reduced inflammatory signalling 
associated with reduced AD phenotype in mice with mutations 
of both APP and presenilin-1 genes.225
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Parkinson disease

Parkinson disease is a neurodegenerative disorder characterised 
by significant motor impairments, including bradykinesia, 
muscular rigidity, tremor and postural instability. However 
non-motor signs and symptoms, such as impaired olfaction, 
cognitive impairment and depression, may precede the classical 
motor signs by many years226 and indicate early involvement of 
the olfactory bulb and hippocampus in the disease. The hall-
mark of PD is the gradual, selective loss of dopaminergic neu-
rons of the substantia nigra pars compacta region and the 
aggregation of misfolded α-synuclein protein forming insolu-
ble cytoplasmic inclusions (Lewy Bodies).227 Individuals with 
the rare familial forms have mutations of α-synuclein.228 
Misfolded α-synuclein specifically induces free radical produc-
tion in dopaminergic neurons, triggering apoptosis,229 and 
there is also a strong association between PD and mitochon-
drial dysfunction.230 Other genes associated with PD encode 
proteins involved in cellular trafficking and protein turnover.231 
Chronic exposure of human neuroblastoma cells to rotenone, 
an inhibitor of complex I of the mitochondrial electron trans-
port chain, induces many of the biochemical features of PD.232 
Interestingly, in peripheral lymphocytes, IGF-I has a protective 
effect on rotenone-induced apoptosis.233

A meta-analysis of five studies with 166 patients showed 
that IGF-I levels were higher in drug naive patients with PD 
compared to 323 healthy controls.234 However, in patients with 
PD, lower circulating IGF-I concentrations are associated with 
poor cognitive performance235,236 and have been shown to pre-
dict decline in cognitive function after a 2 year follow-up.237 
Nevertheless it is clear that confounding factors, such as age 
and obesity limit the use of IGF-I as a predictive marker.238 
Association of an IGF-I gene polymorphism with PD has 
been demonstrated in a Chinese population239 and is the same 
polymorphism as that associated with AD in the same popula-
tion.198 In postmortem brain tissue, IGF-I expression is 
increased in frontal cortex in PD compared to controls, while 
insulin, IGF-II, IR, IGF1R and IGF2R are reduced in white 
matter and amygdala.240

Dopamine-denervated striatum, using 6-hydroxydopamine 
delivered unilaterally, induces a Parkinson’s-like disease in rats. 
Using this model, IGF-I, combined with FGF, improves 
dopamine neuron survival and behavioural outcome in 
response to transplants of human foetal tissue strands.241 
Insulin like growth factor I expression using a lentiviral vector 
had neuroprotective effects in vitro; however, after intra-stri-
atal delivery to 6-hydroxydopamine treated rats, no effect on 
survival of dopaminergic cells or behaviour was observed.242 
This may have been due to insufficient concentrations of 
delivered IGF-I. Using high concentrations of dopamine to 
induce neurotoxicity in vitro, apoptosis is significantly reduced 
by IGF-I in primary rat cerebellar cells and a human neuro-
blastoma cell line.243

Later studies have demonstrated that the PI3K/Akt path-
way is critical for the in vivo action of IGF-I and also mediates 
the protective effect of oestrogen on dopaminergic neurons in 
PD rat models.244 Peripheral administration of the N-terminal 
tripeptide, that has been shown to modulate GSK3β219 in a 
model of AD, also improves functional deficits in PD rats.245 
The involvement of PI3K/Akt/GSK3β signalling pathways in 
PD has recently been reviewed.246

Huntington disease

Huntington disease is an autosomal progressive neurodegen-
erative disease characterised by chorea, abnormal voluntary 
movements, and cognitive and psychological dysfunction.247,248 
A key characteristic of the disorder is the aggregation of mutant 
huntingtin protein in intranuclear inclusions in the GABAergic 
medium spiny neurons of the striatum.249 This is due to an 
expanding CAG triplet repeat in the gene, the length of which 
contributes approximately 70% of the variance in age of onset 
of symptoms.250

In a longitudinal study of patients with HD, higher levels of 
total circulating IGF-I at baseline were associated with a higher 
degree of cognitive impairment and predicted decreases in cog-
nitive scores over a 3.5-year follow-up.251 While higher insulin 
levels were also associated with lower cognitive scores, they 
were not predictive of change in cognitive function. On the 
other hand, in humans, concentrations of the acid labile subu-
nit of the ternary complex are reduced.252

Rodent models of HD, including striatal lesioning using 
mitochondrial toxins or quinolinic acid and mice expressing a 
mutant huntingtin transgene (eg, R6/1, R6/2, N171-82Q and 
YAC128), have been used to further explore the role of the IGF 
system. In R6/1 HD mice, histone deacetylase has been identi-
fied as a switch between neuroprotection and neuronal death 
with IGF-I inhibiting the neurotoxic effect.253 When com-
bined with heterozygous Igf-1 knockout, there are some ben-
eficial effects on the HD phenotype in female N171-82Q HD 
mice, but some detrimental effects in males, and no effect on 
survival.254 In R6/1 HD mice running-induced hippocampal 
neurogenesis is associated with reduced Akt signalling despite 
increased serum IGF-I.255 On the other hand, intranasal IGF-I 
rescues the YAC128 phenotype.256 The neuroprotective effect 
of cannabigerol in R6/2 and in mice given the mitochondrial 
toxin 3-nitropropionate is associated with modest improve-
ments in striatal expression of BDNF and IGF-I.257 Ablation 
of caspase-6 in YAC128 HD mice reverses the HD phenotype 
and is associated with weight loss and reduced serum IGF-I.258 
Administration of the N-terminal IGF-I tripeptide also pre-
vents HD neuropathology in rats with lesions of the striatum 
induced by quinolinic acid.48 Atypical diabetes develops in 70% 
of R6/2 HD mice259 and is associated with dysregulated gene 
expression and intranuclear inclusions in pancreas.260,261 Blood 
glucose levels are restored by IGF-I infusion in these mice.262 
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Patients with HD are more likely to develop diabetes, and have 
impaired insulin secretion and peripheral insulin resistance.261

In studies using transfected striatal neurons in vitro, it was 
found that IGF-I blocks mutant huntingtin-induced cell death 
and decreased formation of intranuclear inclusions.263 BDNF, 
which also reduced apoptosis, did not block the formation of 
intranuclear inclusions.264 Striatal cell lines and primary corti-
cal cultures derived from huntingtin knock-in mice have mito-
chondrial dysfunction that is ameliorated by insulin and 
IGF-I.265,266 Impaired mitochondrial function appears also to 
have an important pathological role in HD in peripheral tis-
sues. In lymphoblasts derived from HD patients, reduced 
energy metabolism and mitochondrial dysfunction are associ-
ated with reduced Akt and ERK activation and can be rescued 
with IGF-I or insulin.267

Neuroprotective and Neurotrophic Roles
While there is convincing evidence that the IGF system has 
specific roles in the neurogenerative dementias through 
effects on hippocampal neurogenesis, it has been suggested 
that more general neurotrophic and neuroprotective effects of 
IGF-I might be important in a range of other disorders.268 
HIV is associated with dementia that relates to TNFα 
released by activated macrophages: IGF-I has an antiapop-
totic effect on neurons exposed to medium from infected 
macrophages.269 It is likely that the increase in IGF-I and 
BDNF after retinal stem cell transplantation in a rat model of 
glaucoma had a neuroprotective role.270 A potential role for 
IGF-I as a therapeutic approach has been considered for 
amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), 
cerebrovascular disease and following trauma, and these are 
therefore reviewed briefly here.

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis is a degenerative disease of upper 
and lower motor neurons that leads to progressive weakness in 
limb and bulbar muscle with ultimately respiratory failure. 
The pathogenesis of ALS remains unclear, but a number of 
factors have been suggested including evidence of oxidative 
damage to proteins,271, lipids272 and DNA.273 In common with 
other neurodegenerative disorders, mitochondrial dysfunc-
tion274 and protein aggregation involving superoxide dis-
mutase 1 (SOD1)275,276 and TDP-43277,278 have been associated 
with ALS. The first proven cause of ALS was identified in 
individuals with mutations in SOD1279 which involve a toxic 
gain of dysfunction280 but beyond involvement in protein 
aggregation, the mechanism remains unclear. In an animal 
model of ALS, the SOD1G93A mouse, IGF1R is increased in 
reactive astrocytes in the central nervous system.281 Retrograde 
viral delivery of IGF-I from muscle to motor neurons pro-
longs life and delays disease progress.282 Neuroinflammatory 
responses are also implicated in ALS.283 In the SOD1G93A 

mouse, intrathecal treatment with IGF-I decreases mac-
rophage invasion and activation of TNFα production in sciatic 
nerves and delivery of a vector to knockdown IGF-I increases 
sciatic nerve inflammation.284 In the same mouse model, 
intraparenchymal spinal cord delivery of adeno-associated 
IGF-I partially rescues lumbar spinal cord motor neurons.285 
VEGF and IGF-I gene transfer in to cellular components of 
the ventricular system have similar, non-additive effect to 
delay motor decline and prolong survival.286 Administration 
of IGF-I in another animal model with ALS features, the 
wobbler mouse, results in significant improvements in muscle 
strength and histopathology, although no changes in motor 
neurone numbers were observed.287

Patients with ALS have reduced circulating IGFs and insu-
lin, and increased IGFBPs288; however, the potential for use of 
IGFs and IGFBPs in therapy is still considered worth-
while.289,290 While there have been randomised controlled tri-
als involving the use of IGF-I in humans, these do not provide 
strong evidence supporting its effectiveness.6 There is a possi-
bility that upregulation of IGFBP-5 might play a role in the 
response to IGF-I in these disorders.291

Multiple sclerosis

Multiple sclerosis is a demyelinating disease that has a variable 
clinical course from a relapsing-remitting disease to one that is 
relentlessly progressive.292 While an immune-mediated inflam-
matory process is considered central to the pathogenesis, anti-
inflammatory therapies have limited effectiveness in promoting 
remyelination.293 Insulin like growth factor I has been consid-
ered as a possible therapeutic approach to MS. Insulin like 
growth factor I promotes myelin production by oligodendro-
cytes.112,294,295 Insulin like growth factor I and IGF1R are 
upregulated at the edges of demyelinated plaques296; however, 
it has been shown that oligodendrocytes within MS lesions 
have reduced IGF1R expression.297 Mice overexpressing IGF-I 
are protected from cuprizone-induced demyelination,298 while 
ablation of brain IGF1R prevents remyelination in this animal 
model.299 However, in mice with experimental autoimmue 
encephalomyelitis, a transient improvement in clinical indices 
and remyelination in response to IGF-I, delivered using 
osmotic subcutaneous pumps, is lost in the chronic phase of the 
disease.300

In patients with MS, IGF-I concentrations in the circula-
tion301 and CSF302 are no different to a control group; however, 
it is possible that the observed increases in IGFBP expres-
sion296,301,302 or reduced oligodendrocyte IGF1R expression,297 
modulate IGF bioactivity. A 6-month pilot study found no 
impact of IGF-I on magnetic resonance imaging or clinical 
measures of disease activity.303 In this study, IGF-I was deliv-
ered subcutaneously, and it remains to be seen whether alterna-
tive approaches that target oligodendrocyte IGF signalling 
pathways are effective.



10	 Biochemistry Insights ﻿

Cerebrovascular disease

Recent data from the Framingham study indicate that, during 
mean follow-up of 10.2 years, individuals in the lowest quintile 
of serum IGF-I concentrations have a 2.3-fold higher risk of 
incident ischaemic stroke304; however, it is not known whether 
this is a causal relationship and studies of the predictive role 
IGF-I in patients who have sustained strokes are equivocal.127

In a rat model of unilateral hypoxic-ischaemic brain injury, 
IGF-I accumulates in the damaged hemisphere within 5 hours 
of severe injury, and at 3 days there is increased IGF-I produc-
tion by microglia and increased IGFBP-2 expression in peri-
neuronal reactive astrocytes throughout the hemisphere.305 
This was associated with reduced expression of IGFBP-3 and 
IGFBP-5 expression in reactive microglia and neurones in the 
injured hippocampus, increased expression of IGFBP-6 in 
choroid plexus, ependyma and reactive glia and no change in 
IGF1R.

In animal studies of ischaemic brain injury, there is convinc-
ing evidence of a protective effect of IGF-I on cortical neurons. 
In foetal lambs, IGF-I delivered into a lateral cerebral ventricle 
2 hours after a hypoxic ischemic insult induced by transient 
carotid artery occlusion in utero reduces neuronal loss and inci-
dence of seizures.306 In rats, after unilateral hypoxic-ischaemic 
injury following transient middle cerebral artery occlusion, 
intramuscular IGF-I injection decreases neuronal apoptosis 
and improves motor function, effects that are eliminated by co-
administration of an inhibitor of IGF1R.307Using this model 
of cerebral ischaemia, the benefit of physical activity on func-
tion recovery and enhanced neurogenesis is associated with 
increased IGF-I expression in the peri-infarct region.308 IGF-I 
promotes receptor-mediated anchorage of endothelial cells, 
stabilising the microvascular cytoskeleton under these condi-
tions.309 In another model of transient focal cerebral ischaemia 
using endothelin-1 in conscious rats, subcutaneous IGF-I 
treatment reduced infarct volumes and increased motor-sen-
sory functions.310 Using the same model in hypertensive rats, 
infarct size was greater and IGF-I was less protective, but sig-
nificantly reduced microglial activation, not seen in normoten-
sive animals.

The N-terminal tripeptide of IGF-I is also active after uni-
lateral hypoxic-ischaemic brain injury in rats, preventing neu-
ronal apoptosis, promoting astrocyte survival and inhibiting 
microglial proliferation following intravenous infusion.311 
After cardiac arrest in rats, a modest neuroprotective effect of 
intracerebral ventricular infusion of N-terminal tripeptide was 
seen.312 After unilateral hypoxic-ischaemic brain injury, intrac-
erebral ventricular infusion of des(1-3)IGF-I is less potent 
than IGF-I in preventing neuronal loss.313 It is possible that 
this is due to the additional effect of the N-terminal tripeptide, 
however co-administration of IGF-II blocked the effect of 
IGF-I and displacement from IGFBPs that play a targeting 
role was a suggested explanation. In mice exposed to cerebral 
hypoxic-ischaemic injury, the increased IGF-I expression 

around the injury is associated with IGFBP-2 expression in 
activated astrocytes, with evidence that IGF-I is an paracrine/
autocrine mitogen for microglia/macrophages under these 
conditions.314 The role of IGFBPs as facilitators of brain IGF 
action and the role of IGF-II and IGF2R following cerebral 
ischaemia remain to be fully explored.

Traumatic nervous system injury

Traumatic brain injury during early development is an impor-
tant cause of cognitive dysfunction and is associated with epi-
genetic changes.315 After traumatic brain injury in rat pups, 
hippocampal IGF-I expression is increased and associated with 
epigenetic modifications in the promoter region.316 A decrease 
in circulating IGF is also predictive of cognitive dysfunction 
from hippocampal damage.317 Increased IGF-I expression in 
response to traumatic injury is seen in both adult and 2 week 
old mice.318 A penetrating cerebral wound in adult rats leads to 
acute and transient increases in expression of IGF-I, IGF1R 
and IGFBP-2 in injury-responsive astrocytes and neurons and 
IGFBP-3 in microvascular endothelium, with IGFBP-4 and 
-5 expressed in astrocytes and neurons later in the wounding 
response.319 There appears to be a therapeutic window of at 
least 6 hours for central infusion of IGF-I to promote neurobe-
havioural recovery following traumatic brain injury in mice.320

Insulin like growth factor I and IGFBP-2 are likely to play 
a more general and widespread neuroprotective role in the 
nervous system. Increases in IGF-I and IGFBP-2 expression 
are seen in astrocytes following cryogenic spinal cord injury in 
adult rats321 and in the hippocampus in response to cytotoxic 
damage.322 IGF-I delivered subcutaneously or intracerebroven-
tricularly partially rescues neurons and restores motor coordi-
nation in a rat model of cerebellar ataxia induced by 
3-acetylpyridine.323 There may be unwanted effects of IGF-I 
in damaged peripheral nerves. Neutralising anti-IGF-I anti-
bodies reduced collateral axonal sprouting after peripheral 
nerve lesion324 and an IGF1R antagonist reduced IGF-I-
induced hyperalgesia in a mouse model of type 2 diabetes.325

IGF System As A Therapeutic Target
There is sufficient evidence for a specific role of the IGF/insu-
lin system for it to be worth considering as a therapeutic target 
in AD and other neurodegenerative diseases.326,327 However, 
these disorders are characterised by IGF and insulin resistance, 
and directing therapy towards the endocrine IGF/insulin sys-
tem are likely to have limited effectiveness. Systemic approaches 
that increase neurovascular coupling and increase transfer at 
the blood-brain barriers are worthy of consideration. Inhibitors 
of glycogen synthase kinase 3β, by modulation of megalin 
transport, increase brain IGF-I levels.328 Approaches that tar-
get neuronal IGF/insulin signalling are also appealing. Gene 
therapy would have advantages in meeting this goal, with the 
attendant challenges in reaching target areas in the nervous 
system.329 Genomic and proteomic approaches that identify 
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the interaction of IGF-I with other growth factor pathways 
that prevent apoptosis, are likely to hold promise in identifying 
potential drug targets.252,330,331

In addition to diseases in which the IGF system is likely to have 
a specific role, the more general neuroprotective effects make it 
worthwhile considering for a range of other disorders. However, in 
a series of clinical trials of patients with ALS, the use of IGF-I 
delivered subcutaneously has not been promising, with no improve-
ment in survival.332,333 In humans, several studies have demon-
strated that GH improves neuron recovery and clinical outcome 
following traumatic brain injury.333 In the light of studies using 
IGF-I in rodents, described in preceding sections, it might be that 
approaches that combine the use GH and IGF-I are worthwhile 
trying in humans. The combination of GH and IGF-I delivered 
intravenously for two weeks improved metabolic and nutritional 
endpoints in patients after acute traumatic brain injury,334 however 
effects on neurological function were not reported.

Systemic administration of IGF-I is facilitated by approaches 
that prolong the half-life or promote IGF delivery. In trials of 
IGF-I for retinopathy of prematurity, IGF-I was delivered com-
plexed with IGFBP-3.335 Early trials with this combination, 
however, have failed to show a positive effect on the prevention 
of retinopathy of prematurity.336 In a mouse model of motor 
neuron degeneration, IGF-I coupled with polyethylene glycol 
extend its circulating half-life, prolonged survival, maintained 
motor coordination, and rescued motor neurons from cell 
death.337 Microsphere formulations that provided controlled 
release from subcutaneous depots are associated with extended 
survival and enhanced motor co-ordination in a mouse model of 
spinocerebellar neurodegeneration.338 Use of an IGF-I analogue 
with high IGFBPs and no biological activity through IGF1R, 
increased availability of endogenous IGFs and had a neuropro-
tective effect in rat model of hypoxia-ischaemia.339

Therapeutic approaches that deliver IGFs directly to their 
target, or ones increasing IGF/insulin sensitivity within the 
nervous system deserve focus. Intranasal administration of 
insulin raises central nervous system levels without raising 
plasma levels340 and early clinical trials in humans were prom-
ising.341 Intranasal delivery of insulin improves some tests of 
memory in patients with AD without the APOEε4 allele.342 
Success of these approaches raise the hypothesis that intranasal 
IGF-I might be an option for the treatment of depression,343–345 
or for improving cognitive function in normal ageing. Peripheral 
IGF-I infusion improves spatial reference memory and work-
ing memory in healthy ageing rats.346 Studies of intracere-
broventricular IGF-I gene therapy in ageing rats improves 
motor performance.347 and modulates relevant hippocampal 
genes.348 Intracerebroventricular FGF-2 also enhances neuro-
genesis in the hippocampus of aged rats.349 Therapeutic 
approaches that combine IGF-I with other growth factors 
might be effective.350 Since the ERK pathway is often coacti-
vated with the PI3 K/Akt signalling pathway,351 the use of 
EGF might be considered. Insulin like growth factor I 

mediates resistance to anti-EGF therapy in glioblastoma 
cells352 and insulin and EGF have been shown to act synergis-
tically to promote astrocyte survival and proliferation.353 There 
are connections between sphingolipid and IGF signalling354 
and an effect of Klotho on IGF-I signalling355 that might have 
implications for the management of nervous system disease.

The possibility of generating the main cell types of the 
nervous system from multipotent neural stem cells is an impor-
tant focus for regenerative medicine329,356 and the IGF system 
will play a key role, most likely in combination with other 
growth factors. Cell replacement therapy have been pursued for 
PD.168 Human neural progenitor cells produced to release 
IGF-I have improved survival and, when transplanted into the 
substantia nigra in the 6-hydroxydopamine rat model of PD, 
exert trophic effects on degenerating dopamine neurons.357 
Combinations of IGF-I with FGF241 or BDNF and glial-
derived neurotrophic factor have been used to prepare neural 
progenitor cells for transplantation.184

Conclusions and Recommendations
IGF system components are widely expressed in the nervous 
system where there is substantial evidence for neuroprotective 
and neurotrophic actions of IGF-I. Low IGF-I is associated 
with longevity and this apparent paradox is best understood 
when the complexity of the IGF system is taken into account. 
Association of IGF with IGFBP-2 and IGFBP-5 in the nerv-
ous system may promote local IGF action, while high concen-
trations or the presence of other IGFBPs may be inhibitory. 
Nutrition and insulin which are important regulators of IGF-I 
production, have other effects on the nervous system, through 
pathways that interact with the IGF1R. It is important to note 
that much of our understanding of the IGFs in the nervous 
comes from experimental studies in rodents where there are 
differences in neurogenesis compared to humans,33,93 with a 
focus on IGF-I and not IGF-II. Since the IRA isoform is 
expressed at significant concentrations in brain tissue,6 IRA/
IGF1R hybrids are also present and IGF-II may therefore have 
a distinct role. These gaps in knowledge should be addressed in 
future research. In particular (a) the role of brain IGFBPs as 
regulators of local IGF actions, and what are their IGF-
independent roles; (b) the role of IGF-II and, in particular is 
there a potential therapeutic role in human neurodegenerative 
disease? and (c) the effect of a combination approach to ther-
apy; using other growth factors with IGF-I or IGF-II across 
the spectrum of nervous system disorders.
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