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The development of single cell transcriptome sequencing has allowed researchers 
the possibility to dig inside the role of the individual cell types in a plethora of disease 
scenarios. It also expands to the whole transcriptome what before was only possible for 
a few tenths of antibodies in cell population analysis. More importantly, it allows resolving 
the permanent question of whether the changes observed in a particular bulk experiment 
are a consequence of changes in cell type proportions or an aberrant behavior of a 
particular cell type. However, single cell experiments are still complex to perform and 
expensive to sequence making bulk RNA-Seq experiments yet more common. scRNA-
Seq data is proving highly relevant information for the characterization of the immune 
cell repertoire in different diseases ranging from cancer to atherosclerosis. In particular, 
as scRNA-Seq becomes more widely used, new types of immune cell populations 
emerge and their role in the genesis and evolution of the disease opens new avenues 
for personalized immune therapies. Immunotherapy have already proven successful in 
a variety of tumors such as breast, colon and melanoma and its value in other types of 
disease is being currently explored. From a statistical perspective, single-cell data are 
particularly interesting due to its high dimensionality, overcoming the limitations of the 
“skinny matrix” that traditional bulk RNA-Seq experiments yield. With the technological 
advances that enable sequencing hundreds of thousands of cells, scRNA-Seq data 
have become especially suitable for the application of Machine Learning algorithms 
such as Deep Learning (DL). We present here a DL based method to enumerate and 
quantify the immune infiltration in colorectal and breast cancer bulk RNA-Seq samples 
starting from scRNA-Seq. Our method makes use of a Deep Neural Network (DNN) 
model that allows quantification not only of lymphocytes as a general population but also 
of specific CD8+, CD4Tmem, CD4Th and CD4Tregs subpopulations, as well as B-cells 
and Stromal content. Moreover, the signatures are built from scRNA-Seq data from the 
tumor, preserving the specific characteristics of the tumor microenvironment as opposite 
to other approaches in which cells were isolated from blood. Our method was applied 
to synthetic bulk RNA-Seq and to samples from the TCGA project yielding very accurate 
results in terms of quantification and survival prediction.
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INTRODUCTION

During the last two decades, since the discovery that immune 
cells play a key role in tumor progression (Staveley-O’Carroll 
et al., 1998), much effort has been done into the identification 
and quantification of the different immune cell types infiltrating 
the tumor (TILs) and its relationship with the prognosis of the 
patients. First findings in colorectal cancer (Galon et al., 2006) 
demonstrated that the presence of TILs correlated positively with 
the prognosis of the patient. The immunoscore proposed in this 
work has been validated in several cohorts all around the world 
and is undergoing several clinical trials for its transfer into the 
clinical practice (Ogino and Giannakis, 2018). More complex 
relationships have been also found for different types of TILs, 
with some pro-tumoral types like T-Regs, M2 Macrophages, 
pDCs or some types of B-cells and others anti-tumoral like 
CD8+ T-cells, some T-Helpers cells, NKs and Ig secreting B-cells 
(Bingle et al., 2002; Jahrsdörfer et al., 2010; Sarvaria et al., 2017). 
Moreover, the action of the tumor context into the plasticity of 
several types of lymphocytes makes these relationships more 
complex and difficult to extrapolate from one tumor to another 
(Colbeck et al., 2017).

Antibodies designed to interfere with immune response 
modulators like the immune-suppressive receptors Cytotoxic 
T-Lymphocyte Antigen 4 (CTLA-4) and Programmed 
Cell Death 1 (PD1) (Seidel et al., 2018) or costimulatory 
receptors like Tumor Necrosis Factor Receptor Superfamily 
Member 18 (TNFRSF18 or GITR) or Tumor Necrosis Factor 
Receptor Superfamily Member 4 (TNFRSF4 or OX40) are 
going through clinical trials with striking results although 
in a few proportion of patients. Many experiments suggest 
that this lack of generalization is dependent on the presence, 
in the tumor microenvironment, of activating Fc receptors 
expressed on myeloid cells that will induce CD4 T-Reg cells 
depletion through antibody-dependent cellular cytotoxicity 
(Furness et al., 2014). Several strategies are being develop 
also to interfere with the pro-tumoral functions of 
Macrophages and Monocytes mainly through combinations 
of agonist to CD40 to active anti-tumoral functions and anti-
CSF-R1 (Colony Stimulating Factor 1 Receptor) to reduce 
their immune suppressive functions (Guerriero, 2018). 
Moreover, the action of the tumor context into the plasticity 
of several types of lymphocytes makes these relationships 
more complex and difficult to extrapolate from one tumor to 
another (Colbeck et al., 2017).

Traditional approaches for the characterization of 
immune cell populations at the protein level tried to combine 
immunohistochemistry (IHC), immune fluorescence (IF), 

and flow cytometry followed by manual and/or complex 
image analysis algorithms. These approaches are to date 
the most precise ones allowing not only the definition and 
quantification of specific TIL subpopulations but also their 
localization within the tumor. These three parameter have 
proven essential to predict overall and disease-free survival 
rates (Pagès et al., 2018). As discussed before, patient response 
to treatments depends on the particular functional status 
and distribution of the different cell types in the tumor 
microenvironment. These protein based methods are not able 
to interrogate large amounts of profiles and therefore lack 
some precision to characterize the functional status of the 
cells. Besides, these procedures require a lot of manipulation, 
and the analysis is very time consuming making them not 
suitable for large-scale.

To overcome these limitations Next Generation Sequencing 
based transcriptomics (RNA-Seq) has emerged in the last 
years as a very promising methodology to explore. It is cheap, 
reproducible, robust, and scalable. The strength of the protocols 
for data generation and data analysis and the fact that it produces 
quantitative data versus other more qualitative technologies 
such as proteomics, makes it an ideal technology to be used in 
precision medicine (Collins and Varmus, 2015). The ability to 
capture the expression profile of many genes at the same time 
makes it very suitable to characterize many cell populations and 
their functional status at the same time.

Many computational or in-silico tools have been developed 
so far to get insight into the tumor cell composition by 
analyzing the transcriptional profile of a biopsy sample, such 
as CIBERSORT (Newman et al., 2015), EnrichR (Kuleshov 
et al., 2016), TIMER (Li et al., 2017a), EPIC (Racle et al., 2017), 
ESTIMATE (Yoshihara et al., 2013)or MCPCounter (Becht et al., 
2016)among others (Finotello and Trajanoski, 2018). The goal is 
to identify how much the transcriptome of each particular cell 
type contributes to the overall bulk transcriptome of the sample. 
Some algorithms try to obtain TILs proportions by analyzing 
the enrichment of sets of predefined markers specific of each 
cell type (Kuleshov et al., 2016). Others, in turn, use different 
mathematical models to deconvolute the bulk gene expression 
into the expression from each cell population present in the 
sample (Newman et al., 2015; Li et al., 2017a). Both approaches 
rely on sets of markers or on whole transcriptome profiles 
obtained from purified or enriched samples from different 
sources. Although in principle they can be used in different 
contexts, their accuracy is limited by the fact that tumor, stromal 
and immune cells change significantly their profiles depending 
on the tissue and disease context (Cohen and Blasberg, 2017; 
Berglund et al., 2018; Shin et al., 2018).

Recent single cell RNA-Seq (scRNA-Seq) studies confirm the 
impact of the microenvironment in the transcriptome (Azizi 
et  al., 2018; Bartoschek et al., 2018; Zemmour et al., 2018). 
Ideally, a deconvolution method should hence use gene signature 
profiles from cells obtained from the tissue or tumor to analyze, 
including not only the immune cells but also stromal and tumor 
cells themselves. This would allow a more precise quantification 
and definition of the physiological status of the cells (Mao et al., 
2013). Following this idea, scRNA-Seq is being currently used 

Abbreviations: DL, Deep Learning; scRNA-Seq, single-cell RNA-Seq; CD8, 
CD8+ Citotoxic T Cells; CD4, CD4+ Helper T Cells; NK, Natural Killer Cells; 
Ig, Immunoglobulins; BC, Breast Cancer; CRC, Colorectal Cancer; DNN, Deep 
Neural Network; TCGA, The Cancer Genome Atlas; TPM, Transcripts per 
Million; FPKM, Fragments per Transcript Kilobase per Million Reads; GEO, 
Gene Expression Omnibus; CD4Th, CD4+ Helper T Cells; CD4Tm, CD4+ Helper 
memory T Cells; CD4Treg, CD4+ Regulatory Helper T Cell; SC, Single Cell; KLD, 
Kullback-Leibler Divergence; TIL, Tumor Infiltrating Lymphocite; ML, Machine 
Learning; M, Monocytes; Mc, Macrophages; CNV, Copy Number Variation.
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massively to get a more precise understanding of the different 
cell populations present in different types of tumors, from 
breast (Chung et al., 2017), melanoma (Tirosh et al., 2016) and 
colorectal cancer (Li et al., 2017b). Unfortunately, this technology 
is yet relatively expensive and hence, available datasets have only 
sequenced a limited number of cells. However, the information 
they yield can be very useful to deconvolute gene expression 
from bulk samples (Baron et al., 2016), which is yet the preferred 
method from a practical point of view and for the investigation 
of hundreds of samples.

Up to date, the use of Machine Learning approaches beyond 
elastic net or random forest has not been possible for molecular data, 
due to the small number of samples available. scRNA-Seq changes 
this paradigm, increasing the sample size to hundreds of thousands 
of cells that can be understood as different samples from a statistical 
perspective. On top of that, techniques for oversampling (Chawla 
et al., 2002) are often used to amplify the signal in neural network 
approaches. For single cell data, several simulators are available 
(Risso et al., 2018) and we can use them to increase our sample size. 

This approach will work well if the original distribution of the data 
has been correctly inferred from the scRNA-Seq data available.

In this paper we present DigitalDLSorter, a DL based method to 
enumerate and quantify the cell type composition of a bulk RNA-
Seq sample. Our method makes use of a Deep Neural Network 
(DNN) model to adjust any cell type composition defined from 
a scRNA-Seq data allowing the quantification not only of general 
cell types like lymphocytes but also of specific subpopulations and 
tissue dependent status. We have applied this method to evaluate the 
immune infiltration in colorectal and breast cancer bulk RNA-Seq 
samples starting from scRNA-Seq. The DigitalDLSorter model has 
been trained from scRNA-Seq data from the tumor itself, preserving 
the specific characteristics of the tumor microenvironment as 
opposite to other approaches in which cells were isolated from 
blood. Our method was applied to simulated bulk RNA-Seq and 
to samples generated by the TCGA Research Network (https://
www.cancer.gov/tcga) yielding very accurate results in terms of 
quantification and survival prediction.

MATERIALS AND METHODS

Datasets
To exemplify the digitalDLSorter pipeline and to explore its 
potential as a tool in tumor immunology we analyzed two single 
cell RNA-Seq experiments from the literature and stored in the 
Gene Expression Omnibus database (GEO: https://www.ncbi.
nlm.nih.gov/geo/), one on breast cancer and one colorectal 
cancer experiment. The breast cancer (BC) experiment has 10 
samples from different tumor etiology and stages (Chung et al., 
2017) (Table 1, GSE75688) and the colorectal cancer (CRC) 
experiment has 11 samples (Li et al., 2017b) (Table 2, GSE81861).

scRNA-Seq Data Analysis
Both experiments were analyzed using Seurat (Butler et al., 
2018) framework developed as an R package for clustering and 
representation purposes. We used the graph-based clustering 
approach implemented in Seurat to define the clusters and 
t-SNE dimensionality reduction (Maaten and Hinton, 2008) for 
visual representation of the cells.

TABLE 1 | Samples from BC experiment. Subtype indicates the molecular 
characterization of the breast cancer based on the presence of HER2, PR and 
ER markers in the tumor cells (Dai et al., 2015).

Patient Subtype Tissue Total Cells

BC01 luminalA Breast 22
BC02 luminalA Breast 53
BC03 luminalB Breast 33
BC04 HER2 Breast 55
BC05 HER2 Breast 76
BC06 HER2 Breast 18
BC07 TNBC Breast 50
BC08 TNBC Breast 22
BC09 TNBC Breast 55
BC10 TNBC Breast 15
BC11 TNBC Breast 11
BC03 luminalB Lymphnode 53
BC07 TNBC Lymphnode 52

HER2: ER-, PR-, HER2+ tumour cells.
LuminalA: ER+ and/or PR+, HER2- tumour cells.
LuminalB: ER+ and/or PR+, HER2+ tumour cells.
TNBC: ER- PR- and HER2-.

TABLE 2 | Samples from CRC experiment. 

Patient Gender TNM Tumor_grade Stage Tumor Sample 
Cells

Normal Sample 
Cells

Total Cells

CRC01 Female T4bN0M0 2 IIC 44 0 44
CRC02 Male T3N1M0 1 IIIB 54 0 54
CRC03 Female T4aN2M0 2 IIIB 17 7 24
CRC04 Female T3N2M0 2 IIIB 18 18 36
CRC05 Female T3N2M0 1 IIA 13 31 44
CRC06 Male T3N2M0 2 IIIB 36 23 59
CRC07 Male T3N0M0 2 IIA 34 0 34
CRC08 Female T2N0M0 2 I 35 28 63
CRC09 Female T3N2M0 2 IIIB 83 0 83
CRC10 Female T3N0M0 2 IIA 29 62 91
CRC11 Male T1N0M0 2 I 12 46 58

TNM, detailed tumor extension classification (T tumor, N lymph nodes, M metastasis); TUMOR GRADE, morphology based classification of tumor; STAGE, standard tumor extension classification; 
TUMOR SAMPLE CELLS, cells obtained from tumor biopsy; NORMAL SAMPLE CELLS, cells obtained from healthy paired tissue.
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To classify cells between tumor and non-tumor cells (stroma and 
immune cells) we used the RNA-Seq based CNV method described 
in (Chung et al., 2017). In the case of the presence of paired normal 
samples as in CRC experiment, tumor sample derived cells are 
considered as non-tumor when they cluster within clusters produced 
by normal tissue cells and using the cell type annotation itself.

To map the identified cells to its canonical cell type we 
used the xCell platform, both from web interface (http://xcell.
ucsf.edu/) (Aran et al., 2017) for cluster average profiles, a 
more bulk like profile, and its R implementation specific for 
single cell classification, SingleR (Aran et al., 2017). We used 
the average profiles of the clusters together with the single 
cell profiles in both platforms and the manual inspection of 
typical cell type markers to label the different cell type groups 
identified in the experiment.

DigitalDLSorter Pipeline Methods
The following sections describe the methodology used at the 
different steps of the DigitalDLSorter pipeline. The code to 

run the pipeline can be obtained at https://github.com/cartof/
digitalDLSorter.

Summary
DigitalDLSorter is a Deep Learning (DL) based method to 
quantify cell type proportions from bulk RNA-Seq samples 
as well as a classifier of single cell profiles (Figure 1). 
DigitalDLSorter pipeline starts from a matrix of single cell 
RNA-Seq profiles. If a given cell-type is not represented with 
at least 1000 gene expression profiles in the input data set, 
the input profiles are used to simulate new profiles of those 
under-represented. Then, the single cell profiles are split 
into a training (65%) and test set (35%) and used to generate 
synthetic bulk samples with known cell-type proportions 
for training and test respectively. The synthetic bulk and 
the single-cell profiles from the training dataset are used to 
train a deep neural network (DNN). The model obtained 
from the training is then applied to the test set to evaluate 
its performance on the prediction of different cell type 

FIGURE 1 | Scheme of the DigitalDLSorter Pipeline. 1) The pipeline takes a matrix of sc-RNASeq gene expression profiles (SC profiles) and a phenotype file 
indicating the cell type of each cell. 2) In those experiments were the number of SC profiles for each cell type is low, new SC profiles are simulated based on the real 
data using ZinbWave framework (Risso et al., 2018). 3) Real and simulated SC profiles are split into training (65%) and test (35%) sets. 4) For each training and test 
set, bulk samples are created by mixing 100 single cell profiles sampled according to the bulk cell type proportions simulated for each set. 5) A DNN is trained with 
the training set of bulk profiles together with the corresponding SC profiles. 6) The model obtained is applied to the test set, bulk and SC profiles.
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proportions. The same model was applied to the TGCA data 
for real bulk performance evaluation.

Oversampling of Low Frequency 
Cell Types
DL models need high dimensional data to achieve a good 
performance. Oversampling is a widely used approach to improve 
sample size in machine learning problems (Chawla et al., 2002). 
For underrepresented cell populations or for particularly small 
scRNA-Seq experiments we simulate single cell transcriptional 
profiles using available single cell simulation methods. In 
particular, we chose Zinb-wave (Risso et al., 2018) due to its ability 
to accommodate not only the variability within a particular cell 
type but also the variability within the whole experiment. First, we 
fed Zinb-wave with all the single cell profiles in the experiment, 
in order to estimate the parameters of a model. This includes the 
cell type and, as covariates, the sample of origin and the gender in 
the case of the CRC experiment (~CellType+Sample+Gender), 
or the tissue of origin (breast or lymph node) in the case of the 
BC experiment (~CellType+Sample+Tissue). Zinb-wave is also 
able to fit a model considering the gene length. However, as we 
are using TPMs, the model is constant. Then, we simulated 1000 
transcriptional profiles for each cell type by randomly sampling 
from a negative binomial distribution with their corresponding 
zinb-wave model estimated µ and θ2 parameters and introduced 
dropouts by sampling from a binomial distribution with the 
zinb-wave model estimated p. Supplementary Figure 1 shows 
how the simulated cells cluster together with the original cells for 
all cell subtypes in our study.

Generation of Synthetic Bulk Samples
For simulation of bulk samples, single cell profiles are split 
into training (65%) and a test sets (35%) (Tables 3, 4 and 
Supplementary Table 1). Supplementary files that contain 
the profile matrix and the metadata of the training and 
test single cell profiles and the bulk samples generated are 
provided.

To avoid biases due to the composition of the bulk samples, 
proportions for the mixtures (w_1,…,w_k), where k is the number 
of cell types available in our sample and ∑kwk = 100, are randomly 
generated using three different approaches (Supplementary 
Figure 2):

1) Cell proportions are randomly sampled from a truncated 
uniform distribution with predefined limits according to the a 
priori knowledge (obtained from the single cell analysis itself) 
of the abundance of each cell type (DataSet 1). A second set 
is generated by randomly permuting cell type labels on the 
previous proportions (DataSet2).

2) Cell proportions are randomly sampled as for DataSet1 
without replacement (DataSet3). After that, a second set 
is generated by randomly permuting cell type labels on the 
previous proportions (DataSet4).

3) Cell proportions are randomly sampled from a Dirichlet 
distribution (DataSet5).

Bulk samples consist then of the expression level of gene g in 
cell type c, i.e. egc according to Equation 1:

 egc egi
i

wi
=

=∑ 1
 (1)

Train DigitalDLSorter DNN Model
We used Deep Neural Networks (Hinton and Salakhutdinov, 
2006) to predict the proportions of each cell type in a given bulk 
RNA-Seq sample.

A fully connected DNN was modelled with keras framework 
(https://keras.io/) with one input layer of as many inputs as genes 
detected in the dataset, followed by two hidden layers of 200 
neurons each and an output of 10 cell types. RELU was used as the 

TABLE 3 | Numbers of real and simulated cells from breast cancer experiment 
selected for training and test sets. 

CELL TYPES Train real/sim Test real/sim Total Cells 
real/sim

Tumor (HER2) 82/658 57/342 139/1000
Tumor (Luminal A) 51/648 24/352 75/1000
Tumor (Luminal B) 15/651 10/349 25/1000
Tumor (TNBC) 71/643 28/357 99/1000
STROMA (MIXED 
CELLS)

14/650 8/350 22/1000

CD4TH 9/653 9/347 18/1000
CD4TMEM 5/650 3/350 8/1000
CD4TREG 3/651 3/349 6/1000
CD8 6/652 6/348 12/1000
M 16/651 9/349 25/1000
PDC 6/652 6/348 12/1000
GB 27/652 18/348 45/1000
MEMB 25/647 9/353 34/1000
TOTAL CELLS 330/8458 190/4542 520/13000

Cell Types: HER2, LuminalA, LuminalB and TNBC indicates the molecular 
characterization of the tumor cells. Stroma, contains healthy fibroblasts, endothelial 
and epithelial cells; CD4Th, CD4+ T helper cells; CD4Tmem, CD4+ T memory 
cells; CD4Treg, CD4+ T regulatory cells; CD8, CD8+ T cells; M, Monocytes; pDC, 
plasmacytoid dendritic cells; gB, germinal center B cells; memB, memory B cells.

TABLE 4 | Numbers of real and simulated cells from colorectal cancer 
experiment selected for training and test sets.

CELL TYPES Train real/sim Test real/sim Total Cells real/sim

CRC 123/664 59/336 182/1000
EP 99/653 54/347 153/1000
FB 12/629 10/371 22/1000
CD4 7/679 0/321 7/1000
CD8G- 8/658 0/342 8/1000
CD8G+ 10/624 10/376 20/1000
M 13/660 4/340 17/1000
MC 3/646 2/354 5/1000
GB 3/639 3/361 6/1000
PB 15/641 5/359 20/1000
TOTAL CELLS 293/6493 147/3507 440/10000

Cell Types: CRC: colon epithelial tumor cells. Ep, healthy Epithelial cells; Fb, Fibroblast; 
CD4, CD4+ T cells; CD8G+, CD8+/Gzmb+ T cells; CD8G-, CD8+/Gzmb- T cells; 
M, Monocytes; Mc, Macrophages; gB, germinal center B cells; pB, peripheral B cells.
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activation function and softmax as output function with ADAM 
optimizer. Dropout layers were added to reduce overfitting and 
batch normalization layers to reduce biases. Supplementary 
Figure 3A depicts the scheme.

These parameters were selected after running a grid search 
(Supplementary Figure 4) using the parameter space described 
in Supplementary Table S2 over a set of 1200 models that 
were trained with samples of 2000 bulk profiles from the CRC 
experiment split into 70/30 training/validation sets.

Among the different loss functions tested, Kullback-
Leibler divergence (KLD) was selected. This function is able 
to keep the different evaluation metrics to a minimum (see 
Supplementary Figure 4A). Models with layers between 128 
and 200 neurons produced the best fits with the 200 neurons 
and 2 hidden layers being the winner (see Supplementary 
Figure 4B).

We set a dropout rate of 0.25 as lower rates have a tendency 
to over-fit (Supplementary Figure 4C). The number of epochs 
was set to 50 in order to have a good fit but preventing over 
fitting. Low number of epochs produce models with worse scores 
and models with epochs over 50 have a tendency to over-fit 
(Supplementary Figures 4D, E).

The model was trained with the simulated bulk samples 
together with the single cell profiles used for the train set. The 
order of the samples was randomized in order to avoid single 
cells to concentrate in one batch. The training was run with 50 
epochs and batches of 100 samples. Supplementary Figure 3B 
shows the progression of the accuracy and loss function using the 
KLD. The loss function was minimized with approximately 30 
epochs. Also maximum absolute error, which is highly influenced 
by the higher proportions, and maximum proportional error, 
which is more affected by the lower proportions are minimized 
accordingly (Supplementary Figure 3B).

Cell Type Proportion Estimates of TCGA 
Samples With DigitalDLSorter and 
Published Deconvolution Methods
RNA-Seq FPKMs quantification files from TCGA breast and 
colorectal cancer samples were downloaded from the TCGA Data 
portal together with their corresponding clinical data. TPMs were 
calculated from the FPKMs files normalized and filtered for the 
list of genes used in each model. TPMs matrices were fed into de 
digitalDLSorter models to obtain estimates of cell type abundances.

For EPIC, MCPCounter and ESTIMATE methods we used 
standard approaches as described in their respective R packages 
(https://github.com/GfellerLab/EPIC, https://github.com/ebecht/
MCPcounter, https://bioinformatics.mdanderson.org/estimate/
index.html). TIMER data was collected from their website 
(https://cistrome.shinyapps.io/timer/).

TCGA Survival Analysis
For TCGA survival analysis, the ratio between digitalDLSorter 
CD8/Monocytes-Macrophage proportions were computed and 
samples were stratified into those having a CD8/Monocyte-
Macrophage ratio over the 90th percentile and the rest. Analysis 
from EPIC and MCPCounter estimations were done using their 

most equivalent ratios (CD8_TCells/Macrophages from EPIC 
and CD8_T_Cells + Cytotoxic_Lymphocytes/Monocytic_lineage 
from MCPCounter). Overall Survival during the first 2000 days 
of follow-up was evaluated using log-rank test between the two 
groups (>90th CD8/Monocyte-Macrophage ratio vs the rest). 
Individuals at risk every 500 days are displayed. All statistics and 
plots were performed using the survival R package.

RESULTS

scRNA-Seq Highlights a Different 
Immune Repertoire in Colorectal and 
Breast Cancer
Analysis of the transcriptional profile of the whole set of cells 
from BC (Figures 2A, C, E) and CRC (Figures 2B, D, F) 
highlights that, for both cancer types, cells clustered based mainly 
on their origin (tumor/non-tumor, Figures 2A, B). Tumor cells 
from BC samples were very dependent on the tumor subtype 
(luminal A and B, HER2 and TNBC, Figure 2C, Table 1). On 
the contrary, the CRC tumor cells were mixed and difficult to 
distinguish according to their stage (Figure 2D), highlighting a 
much stronger transcriptional signature per tumor type in breast 
than in colorectal cancer at the single-cell level.

We then focused in the analysis of non-tumor cells 
to understand the transcriptional characteristics of the 
immune infiltration in the different tumor types. Graph-
based clustering followed by t-sne visualization of the non-
tumor cells (Figure 3) identified several clusters of immune 
cells within the BC (Figure 3C) and the CRC (Figure 3D) 
experiments. These clusters were then characterized based on 
the results from xCell software (Supplementary Figures 5 and 
6) and on the manual inspection of markers (Supplementary 
Figures 7–12).

Within the BC non-tumor cells we identified several 
clusters of T cells (clusters C1, C6, C10, C12 and C13, Figure 
3C) characterized by high levels of CD3 genes and TCRs 
(Supplementary Figure 7). Among them, cells in cluster C6 
(Figure 3C) were labelled as CD8+ due to the expression of 
high levels of CD8A gene and GZMB, indicative of its activity 
status (Supplementary Figure 7). CD4+ cells were spread 
across clusters C1, C10, C12 and C13. Based on xCell results 
and according to the expression of CD4 (Supplementary 
Figure 7) we identified three different subpopulations: 
CD4Tm, CD4Th and CD4Treg (Figure 3E and Supplementary 
Figure  6). Finally, B cells (clusters C0, C3, C4 and C5, 
Figure 3C) were identified based on the expression of CD19, 
CD20 and Immunoglobulins (IG) (Figure 3, Supplementary 
Figures 6 and 8) (Shen et al., 2004). In particular, clusters C0 
and C3 contained proliferative germinal center B cells (gB) 
with high levels of proliferative markers like CR2 and MKI67 
(Supplementary Figure 8) while clusters C4 and C5 contain 
more mature memory B cells (memB), with higher levels of 
IGHM and CD27 (Supplementary Figure 8).Clusters C2 and 
C11 were considered monocyte derived based on CD14, PTPRC 
and ITGAX expression (Collin and Bigley, 2018) (Figure 3, 
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Supplementary Figures 6 and 9). However, it was not possible 
to clearly identify the macrophages within this cluster based 
on our tools. Finally, xCell classified cells in the cluster C7 as 
plasmacytoid DCs (pDC). The remaining cells (clusters C8 and 

C9) were classified by xCell as fibroblasts and endothelial cells 
and we considered them Stroma.

In the set of CRC non-tumor cells, clusters C0 and C10 
contained cells classified as T-cells based on the expression 

FIGURE 2 | Unbiased t-SNE representation of all single-cells from Breast Cancer and Colorectal Cancer samples. Each dot represent the transcriptome of a single 
cell. Coloring was done based on: (A) Origin (tumor/non-tumor) of BC cells (B) Origin (tumor/non-tumor) of CRC cells (C) Breast Cancer subtype (ie. HER2, luminal 
A/B or Triple Negative Breast Cancer, TNBC) (D) CRC stage (E) BC patient and (F) CRC patient.
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of CD3 genes (Figures 3B, D, F, Supplementary Figures 5 
and 10). The separation of CD8 and CD4 cells was however 
not clear due to the low levels of expression of CD8 and CD4 
markers and its large dispersion in these cells. Hence, the T 

cell population on cluster C0 was finally divided into GZMB+ 
and GZMB- cells (Supplementary Figure 10). Among GZMB- 
cells some were identified as CD4+ according to xCell (see 
Figure 3, Supplementary Figures 5 and 11). Although CD19 

FIGURE 3 | Unbiased t-SNE representation of non-tumor single-cells from Breast and Colorectal samples. Each dot represents a single-cell colored by: (A) Non-
tumor cells extracted from the BC tumor sample or from matched lymph nodes (B) Non-tumor cells from the CRC tumor sample or from matched healthy tissue (C) 
Graph-based clusters identified by Seurat in the BC experiment and in the (D) CRC. (E) and (F) colored by the cell type classification.
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was not captured properly in this experiment, other markers 
like IGs, CD27 and the xCell classification defined cells in 
clusters C1 and C8 as B cells. C1 contains mature B cells (pB) 
while cluster C8 contains more proliferative B cells which 
probably belong to tumor associated germinal centers (gB) 
(Figure 3, Supplementary Figures 5 and 11). Monocytes were 
identified in cluster C2. Unlike in the BC set, xCell identified a 
few macrophages in cluster C2 (see Figure 3, Supplementary 
Figures 5 and 12). As in BC, clusters C3 and C13 had a mix 
of fibroblasts, smooth muscle cells and endothelial cells that 
were all considered as Stroma (see Figure 3, Supplementary 
Figure 4). Tshe rest of the clusters had a mixed transcriptome 
difficult to interpret and were hence not considered for 
posterior analysis (NAs in Figure 3F).

Overall, the differences in the types of cells identified in both 
experiments highlights the importance of the context in the nature 
of the cell profiles and the necessity to define tumor specific cell 
profiles for the correct enumeration of cell proportions form bulk 
RNA-Seq samples.

DigitalDLSorter Predicts the Proportion of 
Each Cell Type in Bulk RNA-Seq Samples
DigitalDLSorter estimates the proportion of each cell type present 
in a given bulk sample. Hence, its performance was assessed based 
on the correlation and the agreement of the predicted proportions 
versus the actual ones for the test set, based on the model obtained 
from the training data (Figure 4). For CRC there was a linear 
relationship between the predicted and the real data with a 
correlation of 0.99 (p < 0.001), except for CD4 cells (Figure 4A), 
for which actual proportions between 25% and 75% were slightly 
underestimated, with yet a good overall correlation of 0.94 (p < 
0.001). Agreement was also very good for all cell types except for 
CD4 using a Bland-Altman plot (Figure 4C). Interestingly, BC 
predictions were also in good agreement with the actual proportions 
although the relation between them was not lineal but quadratic 
(Figure 4B). Square root transformation and scaling of the predicted 
proportions (Supplementary Figure 13) showed a good agreement 
with the original proportions (Figure 4D). The same effect was also 
observed when looking at the maximum proportional error, which 
is in general larger for the lower proportion bin in the BC model 
(Figure 4F) than in the CRC model (Figure 4E).

DigitalDLSorter Predictions Are 
Biologically Well Sustain and Correlate 
With Those From Other Deconvolution 
Tools
The model obtained from digitalDLSorter was then applied 
to quantify the proportion of the different immune and non-
immune cell subtypes in bulk RNA-Seq samples from breast (n = 
1208) (Koboldt et al., 2012; Ciriello et al., 2015) and colorectal 
cancer patients (n = 521) (Atlas et al., 2012) from TCGA.

Figure 5 shows the correlation between the proportions of the 
different cell types predicted by digitalDLSorter across samples for 
BC (Figure 5A) and CRC (Figure 5B) models. The anticorrelation 
(r~-0.8) of tumor and stroma (Epithelial and Stroma cells for 
CRC) proportions in both models is a good indication of the good 

performance of digitalDLSorter. Additionally, tumor and stroma 
anticorrelate with most of the immune cell types. In BC cells, we 
found a strong positive correlation (>0.7) between B and T cells 
(CD4Th, CD4Tm and CD8+). In contrast, as expected, CD4Treg 
had a poor correlation with CD8 or CD4Th, confirming the 
validity of digitalDLSorter estimates.

We further compared digitalDLSorter estimations with those from 
TIMER, ESTIMATE, EPIC and MCPCounter (Figure 6). Given the 
different cell type models produced by each tool, we combined the 
cell type proportions into 5 categories: Tumor, Stroma (combination 
of Fibroblasts and Endothelial cells), T Cells (combination of all CD3 
cell types), B cells (combination of all B cell types) and Monocytes 
(combination of Monocytes and Macrophages).

DigitalDLSorter tumor content (first column on Figures 6A, B) 
shows very good correlations with tumor content estimations form 
EPIC, ESTIMATE and TIMER. digitalDLSorter tumor content 
shows the lowest correlations with TIMER purity probably due 
to the presence of a bimodal distribution in the TIMER purity 
estimations and the different nature of the purity value in TIMER 
(DNA based and on a different portion of the biopsy) (Li and 
Li, 2014). Most importantly, digitalDLSorter shows very similar 
predictions with the other models especially in Stroma, B cells and 
Monocyte lineages and in the CRC model (Figure 6).

Finally, we studied the digitalDLsorter-estimated proportion of 
tumor cells in the TCGA samples grouped by the type of biopsy, i.e. 
primary tumor, paired normal tissue, recurrent tumor or metastatic 
sample (Figure 7A). According to what it would be expected, 
DigitalDLSorter predicts low levels of tumor cells in normal tissues, 
especially for the CRC samples, and higher levels for recurrent and 
metastatic samples, reinforcing the validity of our model.

The Amount and Type of Immune 
Infiltration Estimated With DigitalDLSorter 
Predicts Survival of TCGA Breast and 
Colorectal Cancer Patients
Tumor infiltrated lymphocytes (TILs) and especially T cells have been 
extensively reported as predictors of good prognosis for overall and 
disease-free survival on different types of cancers (Galon et al., 2006). 
On the contrary, macrophages have been reported to have protumoral 
activity (Bingle et al., 2002). Based on the digitalDLSorter estimations 
of CD8 and Monocytes-Macrophages (MM) proportions from bulk 
RNA-Seq data, we assessed the survival of TCGA individuals based 
on their CD8+/MM ratio. Patients with a high CD8+/MM ratio 
had a better survival in both cancer types (Figure 7B), versus those 
individuals with a lower CD8+/MM ratio. In spite of this interesting 
result, significance was not achieved probably due to the small 
number of individuals in the group with high ratios (p = 0.06 for BC 
and p = 0.22 for CRC). None of the other models did produce better 
stratification of the patients survival based on the CD8/MM ratio 
(Supplementary Figure 14). These results support the validity of the 
estimations produced by digitalDLSorter.

DISCUSSION

The explosion in the use of scRNA-Seq that we are currently 
experiencing evidences the long suspected idea that the heterogeneity 
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FIGURE 4 | DigitalDLSorter performance in the test set. Correlation between real (Expected) and Predicted proportions for each cell type from the CRC model 
(A) and BC model (B). Correlation coefficient and p-value of a linear (CRC) and quadratic fit (BC) are shown. The solid line represent the fit of the corresponding 
model. The dashed line represents the identity. Bland-Altman agreement plot for the CRC (C) and the BC (D) models. The red dashed lines represent +/- 1.96 x std 
deviance from the mean (dashed black line) (E) and (F) Absolute Proportional Error binned by frequency and arranged by cell type for CRC (E) and BC (F) models.
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FIGURE 5 | Evaluation of digitalDLSorter predictions in TCGA samples. Correlation matrix of the different cell types evaluated by the digitalDLSorter model for BC 
(A) and CRC (B). Correlation coefficients are shown for all pairwise comparisons.
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FIGURE 6 | Correlation of digitalDLSorter predictions with TIMER, ESTIMATE, EPIC and MCPCounter tools. Correlation of the cell type content estimated from 
digitalDLSorter (x-axis) and estimates from TIMER, ESTIMATE, EPIC and MCPCounter (y-axis) for BC (A) and CRC (B) TCGA samples. EPIC Other Cells (which 
represents the content of all cells, malignant or not, not present in its set of cell type signatures) is correlated with digitalDLSorter tumor (A) or tumor+Ep cells (B). 
ImmuneScore from ESTIMATE (calculated from a gene signature that contains signals for T cells, B cells and APC cells) is correlated with the combination of all 
immune cells from digitalDLSorter model and is placed under the T Cells column for convenience (All Immune Cells = CD4Th+CD4Tmem+CD4Treg+CD8+gB+m
emB+M+pDC for BC model or CD4+CD8Gn+CD8Gp+pB+gB+M+Mc for CRC model). digitalDLSorter Stroma (Stroma column) is compared with a combination 
of Fibroblasts and Endothelial cells for EPIC and MCPCounter estimations and with the StromalScore for ESTIMATE. digitalDLSorter combinations of all CD4 and 
CD8 T cell types (T Cells column) is compared with the corresponding combinations of the other tools (CD4 + CD8 for TIMER, CD4+CD8 for EPIC and T Cells for 
MCPCounter). digitalDLSorter combination of all B Cell types (B Cells column) and Macrophages plus Monocytes (Monocyte column) are compared with those from 
TIMER, EPIC and MCPCounter.
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of cells at the transcriptional level expands beyond a handful of 
markers, as previously believed. It also completely changes the 
paradigm about the information extracted from differential gene 
expression studies using bulk RNA samples. In particular, the field of 
immunology is being revolution by this technique, allowing detailed 
study of the heterogeneity of the immune response in different 
diseases ranging from cancer to atherosclerosis.

In spite of its constantly decreasing cost, scRNA-Seq is still 
expensive. For that reason and in light of the findings produced 

in the last years thanks to this technology deconvolution methods 
are becoming the preferred tool for the analysis of bulk RNA-Seq 
in tissues with a large cellular heterogeneity.

In spite of its cost, a single experiment of scRNA-Seq holds 
such a vast amount of information that published data are 
often re-analyzed and integrated with other data to answer 
questions different from that for which they were generated. 
Analysis of scRNA-Seq is challenging, requiring a reasonable 
amount of knowledge about the biological question of 

FIGURE 7 | DigitalDLSorter estimations of the tumor immune infiltration is predictive of the overall survival of Breast and Colorectal Cancer patients. (A) Tumor and 
Stroma or Ep cells abundance from BC (left) and CRC (right) TCGA samples grouped by sample type (metastatic, primary tumor, recurrent tumor, normal tissue). 
(B, C) Kaplan-Meier overall survival curves from breast (B) and colorectal (C) cancer patients. In blue, samples within the highest 90th quantile of the ratio between 
T cells (CD8+CD4Th+CD4Tmem for BC, CD8Gp for CRC) over Monocytes/Macrophages (Mono). In red, individuals with low Tcells/Mono ratio.
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interest. However, its strength lies in the large number of cells 
(individuals) available, making it a perfect type of data for the 
application of machine learning methods (Lopez et al., 2018; 
Way and Greene, 2018) that were up to date of limited help in 
molecular research.

In this paper we present a new method for the deconvolution 
of bulk RNA-Seq data using scRNA-Seq profiles. Taking 
advantage of the large dimensionality of this type of data we 
used a deep neural network to train a model based on synthetic 
mixtures of single cell populations. To exemplify our method, 
we used two previously published datasets about breast and 
colorectal cancer. These single cell datasets, although small, 
they have provided enough information to dissect at least 10 cell 
types and to train DNN models, which did reflect the cellular 
interplay between the different cell types in the different tumor 
context. DigitalDLSorter models also highlights the importance 
of producing deconvolution models tailored for each tumor and 
represents a straight forward methodology to produce those 
models from specific single cell experiments.

The digitalDLSorter deconvolution models may benefit 
from deeper single cell experiments as low frequent cell types 
will become more evident and dissectible. We chose these two 
experiments because they used similar technology and were 
easier to compare, but more importantly because they did not 
go through a sorting process that could modify the cell types 
obtained. Many single cell experiments carried to date on tumor 
samples have been subject to a process of filtering that may 
exclude unexpected immune cell types important for the tumor 
etiology, besides of excluding non-immune cells. To generate 
good models is imperative to start from unbiased single cell 
experiments. An ideal experiment would have 40000 cells from 
10 to 20 patients which would provide a detailed source of 
information to build an accurate digitalDLSorter model.

We are currently expanding our repository of cell types to be 
able to use our deconvolution method in different scenarios for 
which immune cells are important. We believe that our method 
can be of great used to the community to extract information 
about the immune cells.
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