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ABSTRACT19

We studied the transcriptomic response of Streptococcus pneumoniae to levofloxacin,20

under conditions inhibiting topoisomerase IV, but not gyrase. Although a complex21

transcriptomic response was observed, the most outstanding result was the up-22

regulation of the genes of fatDCEB operon, involved in iron (Fe2+ and Fe3+) uptake,23

which were the only genes varying at every condition tested. Although the inhibition24

of topoisomerase IV by levofloxacin did not have a detectable effect in the level of25

global supercoiling, increases in general supercoiling and fatD transcription were26

observed after topoisomerase I inhibition, while the opposite was observed after27

gyrase inhibition with novobiocin. Since fatDCEB is located in a topological28

chromosomal domain down-regulated by DNA relaxation, we studied the29

transcription of a copy of the 422-bp (including the Pfat promoter) region located30

upstream of fatDCEB fused to the cat reporter inserted into the chromosome 106-kb31

away from its native position: PfatfatD was up-regulated in the presence of LVX in its32

native location, whereas no change was observed in the Pfatcat construction. Results33

suggest that topological changes are indeed involved in PfatfatDCE transcription. Up-34

regulation of fatDCEB would lead to an increase of intracellular iron, and in turn, to35

the activation of the Fenton reaction and the increase of reactive oxygen species. In36

accordance, we observed an attenuation of levofloxacin lethality in iron-deficient37

media and in a strain lacking the gene coding for SpxB, the main source of hydrogen38

peroxide. In addition, we observed an increase of reactive oxygen species that39

contributed to levofloxacin lethality.40

41
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Streptococcus pneumoniae (the pneumococcus) acts as an opportunistic pathogen. It forms42

part of the commensal microbiota of the human nasopharynx. Under specific43

circumstances, it migrates to other niches (ear, lung, bloodstream, cerebrospinal fluid)44

causing diverse pathologies. One million children aged <5 years die annually of45

pneumococcal infections worldwide (1). After the usage of the pneumococcal 7-valent46

conjugate vaccine, which includes the serotypes more often associated with resistance to47

antibiotics, the incidence of invasive pneumococcal disease declined (2, 3) coincidentally48

with a decrease of penicillin resistance rates in many countries (3-5). However, emergence49

of serotypes not included in the vaccine has been observed (6, 7). Therefore, knowledge of50

the molecular bases of antimicrobial action, including the mechanisms of killing, is51

essential for developing improved therapeutics.52

Resistance in S. pneumoniae to antibiotics acting either in cell wall (beta-lactams) or53

protein synthesis (macrolides) has spread worldwide in the last three decades (8). The54

fluoroquinolones (FQs) levofloxacin (LVX) and moxifloxacin are used nowadays for55

treatment of adult patients with pneumonia. FQ-resistance in S. pneumoniae is maintained56

at low prevalence (< 3%) in Europe (9, 10), although higher rates have been detected in57

Asia (11) and in Canada (12). However, an increase in resistance in this bacterium may58

occur if FQ use is increased (13). FQs target the type II DNA topoisomerases. Despite the59

functional similarities between topoisomerase (topo) IV and gyrase, their susceptibility to60

FQs varies across bacterial species (14). In S. pneumoniae, the primary target for LVX is61

topo IV (15-18), while gyrase is the primary target for moxifloxacin (19). Type II62

topoisomerases maintain DNA topology and solve the topological problems associated with63

DNA replication, transcription, and recombination (20). Gyrase introduces negative64

supercoils into DNA (21) whereas topo IV relaxes DNA and participates in chromosome65
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partitioning (22). Chromosomal topology in Escherichia coli is maintained homeostatically66

by the opposing activities of topoisomerases which relax DNA (topo I and topo IV), and by67

gyrase. In these bacterium, transcription of the topA gene encoding topo I increases when68

negative supercoiling increases (23), while that of gyrA and gyrB increases after DNA69

relaxation (24-26). Changes in DNA supercoiling also have a global effect on genome70

transcription in E. coli (27, 28) and Haemophilus influenzae (29). We have also shown that71

relaxation of the S. pneumoniae chromosome with novobiocin (NOV, a GyrB inhibitor)72

causes up-regulation of gyrase genes and down-regulation of topo I and IV genes, and73

triggers a global transcriptional response affecting ca. 14% of the genome (30). Most74

(>68%) responsive genes are closely positioned forming 15 gene clusters (up- and down-75

regulated topological domains), which showed a coordinated response (30).76

The killing effect of FQs has been related to the resolution of reaction intermediates of77

DNA-FQ-topoisomerase complexes, which generates irreparable double-stranded DNA78

breaks (31). This could occur in E. coli by two pathways, one dependent on protein79

synthesis and the other independent. It has been shown that hydroxyl radical action80

contributes to FQ-mediated cell death occurring via a protein-dependent pathway (32). This81

result agrees with a recently proposal suggesting that, following gyrase poisoning, hydroxyl82

radical formation utilizing internal iron and the Fenton reaction (33) are generated and83

contributes to cell killing by FQs (34) as well as by other bactericidal antibiotics (35, 36).84

In this mechanism, proposed for Enterobacteriaceae (35, 37), the primary drug-interactions85

stimulate oxidation of NADH via the electron transport chain that is dependent of the86

tricarboxylic acid cycle. Hyperactivation of the electron transport chain stimulates87

superoxide formation. Superoxide destabilizes the iron-sulfur clusters of enzymes, making88

Fe2+ available for oxidation by the Fenton reaction. The Fenton reaction leads to the89
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formation of hydroxyl radicals that would damage DNA, proteins and lipids (38), which90

results in cell death. Instead a generalized oxidative damage, a recent study supports that91

the main action of hydroxyl radicals is the oxidation of guanine (to 8-oxo-guanine) of92

nucleotide pool. The incomplete repair of closely spaced 8-oxo-deoxyguanosine lesions93

caused lethal double-strand DNA breaks, which would underlie much of the cell death94

caused by beta-lactams and FQs (39). However, recent investigations have questioned the95

role of hydroxyl radicals and intracellular iron levels in antibiotic-mediated lethality using96

either similar antibiotic concentrations (40) or higher concentrations (41) than used97

previously. The disparate results obtained using diverse antibiotic concentrations and times98

of treatment emphasize the complexity of the lethal stress response (42).99

Given that different antibiotic families have different intracellular targets, it is essential100

to know the pathway between the initial antibiotic-target interaction and the promotion of101

hydroxyl radical formation. These pathways are mostly unknown. A model has been102

proposed for aminoglycosides in E. coli in which, the interference of these drugs with103

ribosome progression would release incomplete polypeptides, which are translocated to the104

cell membranes where they may trigger envelope stress. The Arc regulatory system is105

perturbed, accelerating respiration and thereby increasing the flux of superoxide and106

hydrogen peroxide into the cell (43). However, for FQs, the specific pathway has not been107

established, although a general scheme for stress-response regulation in E. coli, which108

involves the hydroxyl radical cascade, has been proposed (42). The present study was109

aimed to understand the transcriptional response to levofloxacin in S. pneumoniae at110

concentrations that inhibited its primary target, topo IV, without inhibiting gyrase, to avoid111

the opposite effects of these two enzymes on DNA topology. Changes in DNA topology112

were tested by analyzing the distribution of topoisomers of a replicating plasmid. Global113
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transcription response was analyzed using microarrays technology after cells’ exposure to114

two LVX concentrations. Microarray data were validated by quantitative real-time PCR115

(qRT-PCR). In addition, transcriptional regulation of the fatDCEB operon, coding for an116

iron transporter was analyzed. The relation between iron transport and lethality was also117

tested. Results provide a pathway between topo IV inhibition and hydroxyl radical118

production and suggest that S. pneumoniae uses iron accumulation as part of the death119

process associated with LVX treatment.120

MATERIALS AND METHODS121

Bacterial strains, growth and transformation of bacteria. S. pneumoniae was grown in122

AGCH medium with 0.3% sucrose and transformed as described previously (44). MICs of123

LVX (Sigma) and chloramphenicol (CHL) for R6 strain were 0.25 g/ml and 1.25 g/ml,124

respectively. To construct the spxB strain, two fragments of 1481 bp and 1374 bp flanking125

spxB were amplified with oligonucleotide pairs SpxBUPF1/SpxBUPR1 and126

SpxBDOWNF1/SpxBDOWNR1 (Table S1), digested with SphI and XbaI and ligated to the127

CHL-acetyl transferase gene (cat) of plasmid pJS3 digested with the same enzymes. R6128

was transformed; recombinant colonies were selected in medium containing 2.5 g/ml129

CHL and checked by PCR amplification with external oligonucleotides130

SpxBUPF2/SpxBDOWNR2 (Table S1). Those with the appropriate size (4574 bp versus131

5352 bp of R6) were sequenced using oligonucleotide CATMED. To construct the R6-132

Pfatcat strain, five PCR products were obtained. Two from genes spr1793 (1061 bp) and133

spr1794 (1036 bp), flanking the site of insertion, by amplifications with primers134

1793F1(XbaI)/spr1793R1 and spr1794F1/spr1794R1(SphI). The third fragment (144 bp),135

was amplified with UptrcatXba/UptrcatEco, and contains the transcriptional terminator that136
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precedes the cat cassette in plasmid pJS3. The fourth fragment (422 bp) containing the 5´-137

upstream region of the iron transport operon fatDCEB was amplified with138

UpfatDF1(EcoRI) and phosphorylated UpFatDR1. The fifth fragment (758 bp) contains cat139

and was amplified with Cat1 phosphorylated and CatDownSph(SphI). Each fragment was140

digested with the appropriate enzyme, and all fragments ligated together. The ligation mix141

was used to transform strain R6, and transformants selected in medium containing 2.5142

g/ml CHL. This rendered strain R6-Pfatcat (Fig. 3A), whose genetic structure was checked143

by PCR with primers Spr1793R2 and Spr1794F2, and by sequencing with CATMED,144

CAT191, and spr1793R3.145

Analysis of the topology of covalently closed circles. Plasmid DNA isolation from S.146

pneumoniae cultures grown on AGCH medium with 1 /g/ml tetracycline (for147

pLS1selection) was performed as described before (30). Circular DNA molecules were148

analyzed in neutral/neutral two-dimensional agarose gels, which were subjected to149

Southern hybridization with a 240-bp specific pLS1 probe as described previously (30).150

DNA linking number (Lk) was calculated by quantifying the amount of every topoisomer.151

DNA supercoiling density () was calculated from the equation  = Lk/ Lk0. Linking152

number differences (Lk) were determined using the equation Lk = Lk  Lk0, in which Lk0153

= N/10.5, where N is the size of the molecule (in bp) and 10.5 the number of bp per one154

complete turn in B-DNA.155

RNA extraction and real time RT-PCR experiments. Synthesis of cDNAs from 5 g156

of total RNA was performed as previously described (52). These cDNAs were subjected to157

quantitative qRT-PCR (Chromo 4, BioRad) in 20 l reactions containing 2 l of cDNA, 0.3158

M of each specific primer, and 10 l of LightCycler FastStart Universal A SYBR Green159



8

Master (Roche). Amplification was achieved with 42 cycles of a tree-segment program:160

denaturation (30 s at 94°C), annealing (30 s at 45–56°C), and elongation (30 s at 68°C). To161

normalize the three independent cDNA replicate samples, values were divided by those162

obtained of the amplification of internal fragments of rpoB (52) and 16S rDNA. The163

oligonucleotides used are shown in Table S1.164

Microarray data normalization and analysis. High density arrays A6701-00-01 from165

Roche NimbleGen were used. Double-stranded cDNAs were obtained from total RNA with166

the SuperScriptTM Double-Stranded cDNA Synthesis Kit (Invitrogen). Labeling of cDNAs167

with Cy3 and hybridization were performed at the Institut de Recerca Biomèdica,168

Barcelona (Spain). A GenePix 4000B scanner at 5 µm resolution was used and raw data169

were extracted and RMA normalized using NimbleScan v2.4. After this normalization,170

Partek Genomics Suite 6.4 was used to do a principal component analysis and test for171

significance for differential gene expression using ANOVA. Each microarray experiment172

was carried out in duplicate with cDNA prepared from two independent cultures. All173

microarray data are available at the Array Express (EBI, UK) database via accession174

number E-MEXP-3809.175

Detection of reactive oxygen species. The intracellular oxidation levels were measured176

using dihydrorhodamine 123 dye (Sigma-Aldrich), a non-fluorescent compound which177

diffuses passively across membranes. Oxidation converts it to the fluorescent product178

rhodamine 123, and this fluorescence is proportional to the level of oxidation (37). In a179

typical experiment, cells were grown exponentially to an optical density at 620 nm (OD620)180

= 0.4 before LVX was added. One ml samples were collected, cells were washed once in181

500 l of 1 PBS (pH 7.2) and suspended in 250 l of 1 PBS containing 2.5 g/ml of182
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dihydrorhodamine 123 and incubated at 37°C in the dark for 30 min. Cells were washed183

once in 500 l of 1 PBS and suspended in 250 l of 1 PBS. A volume of 200 l was184

used to measure fluorescence. The fluorescence signal was analyzed using a Tecan Infinite185

2000 with excitation /emission  of 485 nm/535 nm. Results were expressed as relative186

fluorescence units (RFU) and were normalized according to the number of live cells at each187

time point (45).188

RESULTS189

DNA topoisomer distribution did not vary under treatment with LVX. The effect of190

LVX was tested in the reference strain R6 carrying plasmid pLS1 at subinhibitory (0.5191

MIC) and fully inhibitory (10 MIC) concentrations. The change in OD260 along the 60 min192

of the experiment was from 0.4 to 0.8. Cell division was inhibited only when the culture193

was treated with LVX at 10 MIC, with decreases in cell viability to about 70% and 97% at194

30 and 60 min, respectively (Fig. 1A). To measure supercoiling alterations, topoisomer195

distributions of the replicating pLS1 plasmid were analyzed. Under the chloroquine196

concentration used, the induced Lk is 14 (40). Topoisomers appeared distributed in the197

autoradiograms in a bubble-shaped arc, where negative and positive supercoiled molecules198

are located to the right- or to the left-side, respectively (Fig. 1B). Although we have not199

measured the supercoiling level of the bacterial chromosome, the values obtained on small200

plasmids provide a good estimation of chromosomal supercoiling (46). No significant201

differences in supercoiling densities () were detected in any condition, showing that the202

inhibition of topo IV by LVX did not have a detectable effect in the level of global203

supercoiling and that gyrase was not inhibited at the LVX concentrations used.204
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Two kinds of transcriptional responses in LVX-treated cultures: growth-related,205

LVX-related. The transcriptional response was measured in cultures of strain R6 at three206

time points (5, 15, and 30 min) after treatment with LVX concentrations of 0.5 MIC and207

10 MIC. In addition, samples taken at 15 and 30 min of an untreated culture (No-LVX)208

were also analyzed and used to distinguish those genes varying along the growth curve.209

Only gene expression variations 2 (P values <0.01) with respect to time 0 min were210

considered. The whole transcriptomic response is shown in Table 1. Based on the results211

obtained, responsive genes were classified into two categories: growth-related and LVX-212

related (Fig. 2, Table 1). Growth-related genes included 108 genes showing transcription213

variations in the No-LVX culture. Additionally, 10 genes forming part of operons with214

these genes were also considered to be growth-related. In total, 118 genes (5.8% of the215

genome), showed variations associated with growth (Fig. 2A).216

Genes controlled by two-component systems (TCS)-12 and -13 represented the greatest217

proportion (50.8%) of responsive genes (Table 1, Fig. 2C). TCS-12 regulates competence218

for genetic transformation (47). The regulatory cascade begins with the secretion and219

processing of ComC by the dedicated ABC transporter ComAB. Processed ComC activates220

TCS-12 ComDE: ComD is the histidine kinase (that senses the stimulus), ComE is the221

response regulator (the transcriptional modulator of the responsive genes). Phosphorylated222

ComE activates the transcription of early genes, including the alternative sigma factor223

ComX (48), which activates transcription of late competence genes (49, 50). Among224

competence genes, 53 (11 early and 42 late genes) showed down-regulation. These225

included most (10 out of 18) genes of the early competence response (49), which are226

transcribed from 7 out of the 10 promoters (Table 1) containing the binding site of the227
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transcriptional activator ComE (51). Early down-regulated genes included those coding for228

the two transcriptional regulators of competence, comE and two genes coding for the229

alternative sigma factor ComX (52), required for induction of many late genes. In230

accordance, 42 out of the 81 late-competence genes (49) were down-regulated. These 42231

genes were transcribed from 13 out of 19 promoters containing a ComX box. Concerning232

TCS-13 (SpiRH), 13 genes containing regulatory sequences for its response regulator SipR233

(53, 54) were up-regulated, including spiP encoding the bacteriocin with a Gly-Gly motif234

and the dedicated ABC transporter (spiABCD).235

The LVX-related response involved 108 out of 174 genes that did not show236

variations in the No-LVX culture (Fig. 2B). Of them, 4 vary only at 5 min after 10 MIC237

treatment. Among LVX-responsive genes, 24.1% code for hypothetical proteins, and the238

same proportion for transport proteins (Fig. 2C). Interestingly, the only genes up-regulated239

at 5 min in 0.5 MIC were the four genes of the fatDCEB operon (55). These genes were240

up-regulated at every time and LVX concentration used. We have previously shown that241

the fatDCEB operon is located in a topological domain (D14, Fig. 3A) showing down-242

regulation under NOV treatment, as tested by microarray experiments (30). We validated243

these results by qRT-PCR, showing that treatment with NOV caused a decrease in fatD244

transcription at any time tested at 10 MIC, and at 5 min at 0.5 MIC. At 0.5 MIC, a245

recovery in fatDCE transcription was observed (Fig. 3B), as expected from the general246

supercoiling recovery (30). On the contrary, qRT-PCR confirmed the up-regulation of247

fatDCEB at all times regardless of LVX concentration (Fig. 3C), with similar fold-variation248

values that in microarrays. To test the role of topo IV inhibition in the up-regulation of249

fatD, qRT-PCR determinations in a LVX-resistant R6 mutant containing a ParCS79F250
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change in topo IV (56), treated with the same LVX concentrations that R6, were performed.251

No increase of fatD transcription in this strain was observed.252

fatDCEB transcription is affected by supercoiling levels. Even when no changes in the253

general supercoiling levels were detected in the presence of LVX (Fig. 1C), we assumed254

that local changes in supercoiling could be involved in the regulation of the fatDCEB255

operon. To check this possibility, a strain (R6-Pfatcat in Fig. 3A), which contains a 422-bp256

region located upstream of fatDCEB that includes the promoter of the operon (Pfat), fused to257

the cat reporter gene, was inserted into the chromosome 106 kb away from fatDCEB (Fig258

3A). The levels of transcription of fatD and cat were tested by qRT-PCR in cultures treated259

with two LVX concentrations (Fig. 3C). While fatD showed up-regulation in the presence260

of LVX, almost no change was observed in cat transcription. Thus, supercoiling alteration261

induced by LVX is acting as a regulator of Pfat, given that its transcriptional up-regulation is262

dependent on its location in a topological chromosomal domain.263

In addition, the level of transcription of fatDCEB was tested by qRT-PCR in264

cultures treated either with NOV, an inhibitor of GyrB (21, 57) (Fig. 3B) or with N-methly-265

seconeolitsine (a topo I inhibitor) (58). Treatment with N-methly-seconeolitsine caused, as266

expected (58), a general increase in supercoiling (Fig. 4A). This increase was accompanied267

by a rise in the transcription of fatD and fatC at every concentration tested (Fig. 4B).268

Transcriptional activation of iron transport induced by LVX is involved in cell269

death. The increase in transcription of the fatDCEB operon would lead to the accumulation270

of toxic concentrations of iron within the cell. This toxicity would be related to the271

activation of the Fenton reaction, which utilizes unincorporated intracellular iron and272

transfers an electron to hydrogen peroxide (Fig. 5A). To test if intracellular iron is an273

important component of the LVX-mediated killing, R6 was grown in the presence of LVX274
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in three different media: AGCH (containing 1.58 M of SO4Fe); AGCH plus the iron275

chelator o-phenantroline, or AGCH deficient in SO4Fe (AGCH*). Attenuation of the276

bactericidal effect of LVX, both in AGCH + o-phenantroline and in AGCH*, was277

observed, suggesting a role for intracellular iron in LVX lethality (Fig. 5B).278

The main source of endogenous hydrogen peroxide in S. pneumoniae is SpxB (59), the279

pyruvate oxidase enzyme (EC 1.2.3.3) which decarboxylates pyruvate to acetyl phosphate280

plus H2O2 and CO2 (Fig. 5A). To assess that LVX lethality was related to the production of281

hydroxyl radicals via the Fenton reaction, a SpxB-deletion mutant was constructed as282

detailed in Material and Methods. The spxB strain was less susceptible to the killing by283

LVX, the attenuation being similar to that exhibited by R6 grown either in the presence of284

o-phenantroline or in AGCH* (Fig. 5B). These results provided a relation between LVX285

lethality and the Fenton reaction via the increase of intracellular iron. In addition,286

accumulation of reactive oxygen species was measured by the oxidation of287

dihydrorhodamine 123. Accumulation was observed in R6 cultures treated with LVX (Fig.288

5C), with increases with respect to time 0 min higher than 35-fold at 3, 4, and 5 h of289

treatment. Similar increases in reactive oxygen species had been observed in ciprofloxacin-290

treated S. pneumoniae with a different dye probe (45), and also in norfloxacin-treated E.291

coli (35). This accumulation was reverted about 10-fold by o-phenantroline. A similar292

reversion was observed in the spxB strain.293

DISCUSSION294

The complex transcriptional response observed in our microarray experiments lead295

us to differentiate among those genes whose transcription was altered as a consequence of296

growth and those that were LVX-dependent. We detected that 5.8% of the genome varied297
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as a consequence of growth, involving mainly genes of two of the 13 pneumococcal two-298

component-systems, TCS-12 and -13. The major response corresponded to genes dependent299

of TCS-12 (ComDE), involved in the regulation of competence for genetic transformation.300

However, in the presence of LVX, competence genes showed decreases in transcription301

lower ( ± 0.8, average ± SD) than those observed at 30 min in the untreated culture.302

These results suggest that two opposed regulation mechanisms are acting over competence303

development in the LVX-treated cultures: the growth-phase caused down-regulation of304

competence genes, while LVX counteracted this down-regulation. These results are in305

agreement with the described transcriptional activation of ssbB, a late competence gene,306

after 2.5 hours of FQ treatment, with the subsequent induction of transformability (60).307

Thus, in response to FQs, S. pneumoniae, a bacterium lacking an SOS-like system,308

activates the competence regulon, supporting the hypothesis that competence is a general309

stress response of S. pneumoniae (60). Conversely, the up-regulation of the genes310

controlled by TCS-13 (SpiRH) was not affected by LVX treatment.311

The LVX-related response included 108 genes (5.2% of the genome). The most striking312

result in the LVX response was the up-regulation of the fatDCEB operon at the earliest time313

analyzed (5 min) and at the subinhibitory (0.5 MIC) concentration, being the only genes314

varying in this condition. We tested fatD transcription in a LVX-resistant R6 mutant and no315

up-regulation was observed in the presence of the antibiotic (Fig. 3). These results indicate316

that the LVX transcriptional effects were indeed due to the inhibition of topo IV. However,317

changes in the general supercoiling levels in the presence of LVX were not found (Fig. 1C).318

Likewise, no changes in general chromosomal supercoiling were observed in E. coli cells319

treated with oxolinic acid, an inhibitor of gyrase (61).We assumed that local changes in320
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supercoiling could be involved in the regulation of fatDCEB. To test the role of321

supercoiling in fatDC transcription, we altered global supercoiling in both directions. On322

one side, we increased global supercoiling by using the DNA topo I inhinitor N-methly-323

seconeolitsine (58). On the other, we decreased supercoiling by using the gyrase B inhibitor324

NOV (57). We observed both an increase in supercoiling (Fig. 4A) and of fatDC325

transcription with the topo I inhibitor (Fig. 4B). On the contrary, treatment with NOV326

caused a decrease in fatDC transcription, as detected by qRT-PCR (Fig. 4C), in accordance327

with a general supercoiling decrease and down-regulation of fatDCE transcription in328

microarrays (30). Microarrays results have shown that fatDCEB is located in topological329

cluster D14, which contains genes down-regulated when DNA supercoiling decreases (30).330

We constructed a strain with a copy of the 422-bp fatDCEB-upstream region fused to cat331

inserted 106-kb away from its native position. Transcription from Pfat in the presence of332

LVX varied depending on its chromosomal location. It was up-regulated in its appropriate333

chromosomal location in down-regulated cluster D14, but was almost not regulated when334

located 106 kb away (Fig. 3), in a non-regulated domain.335

Besides this supercoiling regulation, the fatDCE operon has been shown to be regulated336

in several ways, as expected for an operon essential for iron homeostasis. Among them,337

environmental factors, such as high levels of extracellular Mn2+ (62) and low pH (63)338

caused its transcriptional up-regulation, whereas aerobiosis caused its down-regulation339

(64). Other regulators of the operon are the RitR repressor and (55) the CodY repressor,340

whose DNA binding capacity is modulated by branched chain amino acids (65, 66). In341

accordance, we observed codY down-regulation in the LVX response (Table 1), probably342

contributing to the up-regulation of fatDCEB.343
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The genome of S. pneumoniae R6 encodes three operons for iron transport systems344

(spr0224–spr0220, spr0934–spr0936, and fatDCEB). Out of them, only fatDCEB is345

involved in iron (Fe2+ and Fe3+) uptake (67). In this way, the up-regulation of the operon346

would cause an increased uptake of iron and its intracellular accumulation, which in turn347

would activate the Fenton reaction (Fig. 5A). We have observed attenuation of the LVX348

bactericidal effect in media defective in iron (Fig. 5B), confirming that intracellular iron is349

a component of LVX-mediated killing. In addition, the accumulation of reactive oxygen350

species (Fig. 5C) was in accordance with this interpretation. These results agree with the351

proposed mechanism of killing by bactericidal antibiotics, including FQs (35). The352

stimulation of the Fenton reaction is the final common step. However, there are several353

differences between this model and the one we propose in this study (Fig. 6). S.354

pneumoniae is a lactic acid bacterium that obtains its metabolic energy exclusively from the355

fermentation of carbohydrates via glycolysis. Its genome does not contain genes for the356

tricarboxylic acid cycle, and lacks the cytochromes and heme-containing proteins involved357

in aerobic respiration. In addition, although genes coding the F0F1-ATPase, are present, this358

proton pump does not synthesize ATP; conversely, it works at the expense of ATP, and359

serves as the major regulator of intracellular pH (68). Consequently, the only enzymes360

annotated as iron-sulfur-dependent in the S. pneumoniae R6 genome are the two subunits of361

the L-Ser dehydratase (Spr0094 and Spr0095). The main reason for the increase of362

intracellular Fe2+ in the presence of LVX should be transcriptional activation of the363

fatDCEB transporter. The importance of iron in the susceptibility to antibiotics has been364

recently reinforced by the demonstration that overexpression of an iron efflux system in365

Salmonella typhimurium protects cells against ampicillin and ciprofloxacin (69). With366

respect to the other component of the Fenton reaction —hydrogen peroxide— it is mainly367
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produced in S. pneumoniae by the SpxB enzyme (59, 70). We deleted the gene encoding368

this enzyme (spxB) and observed that this strain was more resistant to the killing by LVX369

than its spxB+ parental strain, the attenuation being similar to that exhibited by R6 grown in370

iron-deficient media (Fig. 5B). The difference in lethality between the wild-type R6 strain371

and the R6-spxB mutant in the presence of 2.5  MIC LVX was in the same range to that372

observed between E. coli wild-type and mutant strains lacking either superoxide dismutase373

activities (36) or both catalase and peroxidase activities (36, 40), which accumulate H2O2,374

in the presence of norfloxacin at 4- to 10  MIC. We have observed protection to FQ375

lethality using low LVX concentrations (2.5  MIC), in agreement with results of E. coli376

treatment with norfloxacin at 2  to 4  MIC (41). In conclusion, we have shown for the377

first time that fatDCEB transcription is regulated by supercoiling level. The primary effect378

of the interaction of LVX-topo IV is the up-regulation of the operon by local increase in379

DNA supercoiling. This up-regulation would increase the intracellular level of iron, which380

activates the Fenton reaction, increasing the concentration of hydroxyl radicals. These381

effects were observed before the inhibition of protein synthesis mediated by LVX. All these382

effects, together with the DNA damage caused by the inhibition of topo IV, would account383

for LVX lethality. The possibility to increase FQs efficacy by elevating the levels of384

intracellular ferrous iron remains open.385

ACKNOWLEDGMENTS386

We thank Cristina Arnanz for invaluable technical assistance.387

This study was supported by grants BIO2011-25343 from Plan Nacional de I+D+i of388

Ministerio de Ciencia e Innovación. CIBER de Enfermedades Respiratorias (CIBERES) is389



18

an initiative from Instituto de Salud Carlos III. We thank Ernesto García and Jesús390

Blázquez for critical comments on the manuscript.391

REFERENCES392

1. World Health Organization. 2007. Pneumococcal conjugate vaccine for childhood393
immunization-WHO position paper. Wkly. Epidemiol. Rec. 82:93-104.394

2. Whitney CG, Farley MM, Hadler J, Harrison LH, Bennett NM, Lynfield R,395
Reingold A, Cieslak PR, Pilishvili T, Jackson D, Facklam RR, Jorgensen JH,396
Schuchat A, the Active Bacterial Core Surveillance of the Emerging Infections397
Program Network. 2003. Decline in invasive pneumococcal disease after the398
introduction of protein-polysaccharide conjugate vaccine. N. Engl. J. Med.399
348:1737-1746.400

3. Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J, Reingold A, Thomas401
AR, Harrison LH, Bennett NM, Farley MM, Facklam RR, Jorgensen JH,402
Besser J, Zell ER, Schuchat A, Whitney CG for Active Bacterial Core403
Surveillance of the Emerging Infection Program Network. 2006. Effect of404
introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus405
pneumoniae. N. Engl. J. Med. 354:1455-1463.406

4. Pilishvili T, Lexau C, Farley MM, Hadler J, Harrison LH, Bennett NM,407
Reingold A, Thomas A, Schaffner W, Craig AS, Smith PJ, Beall BW, Whitney408
CG, Moore MR for the Active Bacterial Core Surveillance/Emerging Infection409
Program Network. 2010. Sustained reductions in invasive pneumococcal disease410
in the era of conjugate vaccine. J. Infect. Dis. 201:32-41.411

5. Fenoll A, Granizo JJ, Aguilar L, Gimenez MJ, Aragoneses-Fenoll L, Hanquet412
G, Casal J, Tarragó D. 2009. Temporal trends of invasive Streptococcus413
pneumoniae serotypes and antimicrobial resistance patterns in Spain from 1979 to414
2007. J. Clin. Microbiol. 47:1012-1020.415

6. Fenoll A, Gimenez MJ, Vicioso MD, Granizo JJ, Robledo O, Aguilar L. 2009.416
Susceptibility of pneumococci causing meningitis in Spain and prevalence among417
such isolates of serotypes contained in the 7-valent pneumococcal conjugate418
vaccine. J. Antimicrob. Chemother. 64:1338-1340.419

7. Moore MR, Gertz JRE, Woodbury RL, Barkocy-Gallagher GA, Schaffner W,420
Lexau C, Gershman K, Reingold A, Farley M, Harrison LH, Hadler JL,421
Bennett NM, Thomas AR, McGee L, Pilishvili T, Brueggemann AB, Whitney422
CG, Jorgensen JH, Beall B. 2008. Population snapshot of emergent Streptococcus423
pneumoniae serotype 19A in the United States, 2005. J. Infect. Dis. 197:1016-1027.424

8. Jacobs MR, Felmingham D, Appelbaum PC, Grüneberg RN, the Alexander425
project group. 2003. The Alexander Project 1998–2000: susceptibility of426
pathogens isolated from community-acquired respiratory tract infection to427
commomnly used antimicrobial agents. J. Antimicrob. Chemother. 52:229-246.428

9. Riedel S, Beekmann SE, Heilmann KP, Richter SS, Garcia-de-Lomas J, Ferech429
M, Goosens H, Doern GV. 2007. Antimicrobial use in Europe and antimicrobial430



19

resistance in Streptococcus pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis.431
26:485-490.432

10. de la Campa AG, Ardanuy C, Balsalobre L, Pérez-Trallero E, Marimón JM,433
Fenoll A, Liñares J. 2009. Changes in fluoroquinolone-resistant Streptococcus434
pneumoniae after 7-valent conjugate vaccination, Spain. Emerg. Infect. Dis. 15:905-435
911.436

11. Fuller JD, McGeer A, Low DE. 2005. Drug-resistant pneumococcal pneumonia:437
clinical relevance and approach to management. Eur. J. Clin. Microbiol. Infect. Dis.438
24:780-788.439

12. Adam HJ, Hoban DJ, Gin AS, Zhanel GG. 2009. Association between440
fluoroquinolone usage and a dramatic rise in ciprofloxacin-resistant Streptococcus441
pneumoniae in Canada, 1997-2006. Int. J. Antimicrob. Agents 34:82-85.442

13. Chen DK, McGeer A, de Azavedo JC, Low DE. 1999. Decreased susceptibility of443
Streptococcus pneumoniae to fluoroquinolones in Canada. N. Engl. J. Med.444
341:233-239.445

14. Drlica K, Zhao X. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones.446
Microbiol. Mol. Biol. Rev. 61:377 -392.447

15. Muñoz R, de La Campa AG. 1996. ParC subunit of DNA topoisomerase IV of448
Streptococcus pneumoniae is a primary target of fluoroquinolones and cooperates449
with DNA gyrase A subunit in forming resistance phenotype. Antimicrob. Agents450
Chemother. 40:2252-2257.451

16. Janoir C, Zeller V, Kitzis M-D, Moreau NJ, Gutmann L. 1996. High-level452
fluoroquinolone resistance in Streptococcus pneumoniae requires mutations in parC453
and gyrA. Antimicrob. Agents Chemother. 40:2760-2764.454

17. Fernández-Moreira E, Balas D, González I, de la Campa AG. 2000.455
Fluoroquinolones inhibit preferentially Streptococcus pneumoniae DNA456
topoisomerase IV than DNA gyrase native proteins. Microb. Drug Resist. 6:259-457
267.458

18. Tankovic J, Perichon B, Duval J, Courvalin P. 1996. Contribution of mutations459
in gyrA and parC genes to fluoroquinolone resistance of mutants of Streptococcus460
pneumoniae obtained in vivo and in vitro. Antimicrob. Agents Chemother. 40:2505-461
2510.462

19. Houssaye S, Gutmann L, Varon E. 2002. Topoisomerase mutations associated463
with in vitro selection of resistance to moxifloxacin in Streptococcus pneumoniae.464
Antimicrob. Agents Chemother. 46:2712-2715.465

20. Champoux JJ. 2001. DNA topoisomerases: structure, function, and mechanism.466
Ann. Rev. Biochem. 70:369-413.467

21. Gellert M, Mizuuchi K, ODea H, Nash HA. 1976. DNA gyrase: an enzyme that468
introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA 73:3872-3876.469

22. Kato J, Nishimura Y, Imamura R, Niki H, Hiraga S, Suzuki H. 1990. New470
topoisomerase essential for chromosome segregation in E. coli. Cell 63:393-404.471

23. Tse-Dinh Y-C. 1985. Regulation of the Escherichia coli DNA topoisomerase I472
gene by DNA supercoiling. Nucl. Acids Res. 13:4751-4763.473

24. Menzel R, Gellert M. 1983. Regulation of the genes for E. coli DNA gyrase:474
homeostatic control of DNA supercoiling. Cell 34:105-113.475



20

25. Menzel R, Gellert M. 1987. Modulation of transcription by DNA supercoiling: a476
deletion analysis of the Escherichia coli gyrA and gyrB promoters. Proc. Natl. Acad.477
Sci. USA 84:4185-4189.478

26. Menzel R, Gellert M. 1987. Fusions of the Escherichia coli gyrA and gyrB control479
regions to the galactokinase gene are inducible by coumermycin treatment. J.480
Bacteriol. 169:1272-1278.481

27. Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, Cozzarelli NR.482
2004. Genomic transcriptional response to loss of chromosomal supercoiling in483
Escherichia coli. Genome Biol. 5:R87.484

28. Jeong KS, Xie Y, Hiasa H, Khodursky AB. 2006. Analysis of pleiotropic485
transcriptional profiles: a case study of DNA gyrase inhibition. PLoS Genet.486
2:e152.487

29. Gmüender H, K., Kuratli K, Di Padova CP, Gray W, Keck W, Evers S. 2001.488
Gene expression changes triggered by exposure of Haemophilus influenza to489
novobiocin or ciprofloxacin: combined transcription and translation analysis.490
Genome Res. 11:28-42.491

30. Ferrándiz MJ, Martín-Galiano AJ, Schvartzman JB, de la Campa AG. 2010.492
The genome of Streptococcus pneumoniae is organized in topology-reacting gene493
clusters. Nucl. Acids Res. 38:3570-3581.494

31. Drlica K, Malik M, Kerns RJ, Zhao X. 2008. Quinolone-mediated bacterial death.495
Antimicrob. Agents Chemother. 52:385-392.496

32. Wang X, Zhao X, Malik M, Drlica K. 2010. Contribution of reactive oxygen497
species to pathways of quinolone-mediated bacterial cell death. J. Antimicrob.498
Chemother. 65:520-524.499

33. Imlay JA, Chin SM, Linn S. 1988. Toxic DNA damage by hydrogen peroxide500
through the Fenton reaction in vivo and in vitro. Science 240:640-642.501

34. Dwyer DJ, Kohanski MA, Hayete B, Collins JJ. 2007. Gyrase inhibitors induce502
an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol.503
3:91.504

35. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A505
common mechanism of cellular death induced by bactericidal antibiotics. Cell506
130:797-810.507

36. Wang X, Zhao X. 2009. Contribution of oxidative damage to antimicrobial508
lethality. Antimicro. Agents Chemother. 53:1395-1402.509

37. Yeom J, Imlay JA, Park W. 2010. Iron homeostasis affects antibiotic-mediated510
cell death in Pseudomonas species. J. Biol. Chem. 285:22689-22695.511

38. Imlay JA. 2013. The molecular mechanisms and physiological consequences of512
oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11:443-454.513

39. Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. 2012. Oxidation of the514
guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science515
336:315-319.516

40. Liu Y, Imlay JA. 2013. Cell death from antibiotics without the involvement of517
reactive oxygen species. Science 339:1210-1213.518

41. Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K. 2013. Killing by bactericidal519
antibiotics does not depend on reactive oxygen species. Science 339:1213-1216.520



21

42. Dorsey-Oresto A, Lu T, Mosel M, Wang X, Salz T, Drlica K, Zhao X. 2013.521
YihE kinase is a central regulator of programmed cell death in bacteria. Cell Rep.522
3:528-537.523

43. Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ. 2008.524
Mistranslation of membrane proteins and two-component system activation trigger525
antibiotic-mediated cell death. Cell 135:679-690.526

44. Lacks SA, López P, Greenberg B, Espinosa M. 1986. Identification and analysis527
of genes for tetracycline resistance and replication functions in the broad-host-range528
plasmid pLS1. J. Mol. Biol. 192:753-765.529

45. Fani F, Leprohon P, Legare D, Ouellette M. 2011. Whole genome sequencing of530
penicillin-resistant Streptococcus pneumoniae reveals mutations in penicillin-531
binding proteins and in a putative iron permease. Genome Biol. 12:R115.532

46. Pruss GJ, Manes SH, Drlica K. 1982. Escherichia coli DNA topoisomerase I533
mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell534
31:35-42.535

47. Claverys JP, Prudhomme M, Martin B. 2006. Induction of competence regulons536
as a general response to stress in gram-positive bacteria. Ann. Rev. Microbiol.537
60:451-475.538

48. Luo P, Morrison DA. 2003. Transient association of an alternative sigma factor,539
ComX, with RNA polymerase during the period of competence for genetic540
transformation in Streptococcus pneumoniae. J. Bacteriol. 185:349-358.541

49. Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, Luo P, Walling J, Li542
H, Mintz M, Tsegaye G, Burr PC, Do Y, Ahn S, Gilbert J, Fleischmann RD,543
Morrison DA. 2004. Identification of competence pheromone responsive genes in544
Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol. 51:1051-545
1070.546

50. Dagkessamanskaia A, Moscoso M, Henard V, Guiral S, Overweg K, Reuter M,547
Martin B, Wells J, Claverys JP. 2004. Interconnection of competence, stress and548
CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase549
autolysis of ciaR mutant cells. Mol. Microbiol. 51:1071-1086.550

51. Ween O, Gaustad P, Havarstein LS. 1999. Identification of DNA binding sites for551
ComE, a key regulator of natural competence in Streptococcus pneumoniae. Mol.552
Microbiol. 33:817-827.553

52. Lee MS, Morrison DA. 1999. Identification of a new regulator in Streptococcus554
pneumoniae linking quorum sensing to competence for genetic transformation. J.555
Bacteriol. 181:5004-5016.556

53. de Saizieu A, Gardes C, Flint N, Wagner C, Kamber M, Mitchell TJ, Keck W,557
Amrein KE, Lange R. 2000. Microarray-based identification of a novel558
Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J.559
Bacteriol. 182:4696-4703.560

54. Reichmann P, Hakenbeck R. 2000. Allelic variation in a peptide-inducible two-561
component system of Streptococcus pneumoniae. FEMS Microbiol. Lett. 190:231-562
236.563

55. Ulijasz AT, Andes DR, Glasner JD, Weisblum B. 2004. Regulation of iron564
transport in Streptococcus pneumoniae by RitR, an orphan response regulator. J.565
Bacteriol. 186:8123-8136.566



22

56. Balsalobre L, de la Campa AG. 2008. Fitness of Streptococcus pneumoniae567
fluoroquinolone-resistant strains with topoisomerase IV recombinant genes.568
Antimicrob. Agents Chemother. 52:822-830.569

57. Muñoz R, Bustamante M, de la Campa AG. 1995. Ser-127-to-Leu substitution in570
the DNA gyrase B subunit of Streptococcus pneumoniae is implicated in571
novobiocin resistance. J. Bacteriol. 177:4166-4170.572

58. García MT, Blázquez MA, Ferrándiz MJ, Sanz MJ, Silva-Martín N, Hermoso573
JA, de la Campa AG. 2011. New alkaloid antibiotics that target the DNA574
topoisomerase I of Streptococcus pneumoniae. J. Biol. Chem. 286:6402-6413.575

59. Spellerberg B, Cundell DR, Sandros J, Pearce BJ, Idanpaan-Heikkila I,576
Rosenow C, Masure HR. 1996. Pyruvate oxidase, as a determinant of virulence in577
Streptococcus pneumoniae. Mol. Microbiol. 19:803-813.578

60. Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys JP. 2006. Antibiotic579
stress induces genetic transformability in the human pathogen Streptococcus580
pneumoniae. Science 313:89-92.581

61. Snyder M, Drlica K. 1979. DNA gyrase on the bacterial chromosome: DNA582
cleavage induced by oxolonic acid. J. Mol. Biol. 131:287-302.583

62. Rosch JW, Gao G, Ridout G, Wang YD, Tuomanen EI. 2009. Role of the584
manganese efflux system mntE for signalling and pathogenesis in Streptococcus585
pneumoniae. Mol. Microbiol. 72:12-25.586

63. Martín-Galiano AJ, Overweg K, Ferrándiz MJ, Reuter M, Wells JM, de la587
Campa AG. 2005. Transcriptional analysis of the acid tolerance response in588
Streptococcus pneumoniae. Microbiol. 151:3935-3946.589

64. Bortoni ME, Terra VS, Hinds J, Andrew PW, Yesilkaya H. 2009. The590
pneumococcal response to oxidative stress includes a role for Rgg. Microbiol.591
155:4123-4134.592

65. Hendriksen WT, Bootsma HJ, Estevao S, Hoogenboezem T, de Jong A, de593
Groot R, Kuipers OP, Hermans PW. 2008. CodY of Streptococcus pneumoniae:594
link between nutritional gene regulation and colonization. J. Bacteriol. 190:590-595
601.596

66. Caymaris S, Bootsma HJ, Martin B, Hermans PW, Prudhomme M, Claverys597
JP. 2010. The global nutritional regulator CodY is an essential protein in the human598
pathogen Streptococcus pneumoniae. Mol. Microbiol. 78:344-360.599

67. Manzor I SS, Klosterman TG and Kuipers OP. 2013. Transcriptional response of600
Streptococcus pneumoniae to varyng sources of iron and the regulatoty mechanism601
of iron uptake system PiuBCDA. Abst. OGE02. XI European Meeting on the602
Molecular Biology of the Pneumococcus (EuroPneumo 2013), Madrid, Spain.603

68. Martín-Galiano AJ, Ferrándiz MJ, de la Campa AG. 2001. The promoter of the604
operon encoding the F0F1 ATPase of Streptococcus pneumoniae is inducible by pH.605
Mol. Microbiol. 41:1327-1338.606

69. Frawley ER, Crouch ML, Bingham-Ramos LK, Robbins HF, Wang W, Wright607
GD, Fang FC. 2013. Iron and citrate export by a major facilitator superfamily608
pump regulates metabolism and stress resistance in Salmonella typhimurium. Proc.609
Natl. Acad. Sci. USA 110:12054-12059.610

70. Pericone CD, Overweg K, Hermans PWM, Weiser JN. 2000. Inhibitory and611
bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae612
on other inhabitants of the upper respiratory tract. Infect. Immun. 68:3990-3997.613



23

FIGURE LEGENDS614

FIG 1. Global supercoiling did not vary under treatment of S. pneumoniae R6 (pLS1) with615

levofloxacin. (A) Viability. (B) Topoisomer distribution of pLS1. Exponentially growing616

cultures in AGCH at OD620 = 0.4 were treated with the indicated LVX concentrations.617

Values of a typical experiment are indicated. Samples were taken before the addition of the618

drug (time 0 min), and, at the indicated times, plasmid DNA was isolated and subjected to619

two-dimensional agarose gel electrophoresis run in the presence of 1 and 2 g/ml620

chloroquine in the first and second dimensions, respectively. Supercoiling density ()621

values are indicated. A blackened arrowhead indicates the topoisomer that migrated with622

Lk = 0 in the second dimension that has a Wr = 14. An open arrowhead points to the623

more abundant topoisomer.624

FIG 2. Gene expression analysis in the three conditions assayed. (A and B) Responsive625

genes represented in Venn diagrams with 3 circles, each one corresponding to one time626

interval in each condition, showing the differentially expressed genes in microarrays. (B)627

All genes (left diagram), or only those genes that differed from those present in the No-628

LVX sample (right diagram), are indicated. A complete list of these genes can be found in629

Table 1. (C) Classification of responsive genes by functional classes: CiM, central630

intermediary metabolism; EnM, energy metabolism; Hy, hypothetical proteins; PPy,631

purines, pyrimidines, nucleosides, and nucleotides; Pat, pathogenesis; PrS, protein632

synthesis; R-M, restriction-modification; TBP, transport and binding proteins; TCS, two-633

component systems; Tns, transposon functions; Tr, transcription; U, unclassified; Oth,634

other (classes with a representation < 2%).635
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FIG 3. Transcription of fatD depended on the inhibition of topoisomerase IV by LVX. (A)636

Genetic structure of strain R6-Pfatcat showing the chromosomal location of PfatfatDCEB637

and Pfatcat. Topology-reacting gene clusters detected after DNA relaxation with NOV are638

indicated: U1–15, up-regulated domains; D1–14, down-regulated domains. (B)639

Transcriptional response after NOV treatment measured by qRTPCR on exponentially640

growing cultures of strain R6. (C) Transcriptional response of R6, of a LVX-resistant641

derivative (R6-ParCS79F), and of the R6-Pfatcat strain. Cultures were growth in AGCH to642

OD620 = 0.4, treated with LVX at 0.125 g/ml LVX (0.5 MIC of R6 and R6-Pfatcat; 0.05643

MIC of R6-ParCS79F) and at 2.5 g/ml LVX (10 MIC of R6 and R6-Pfatcat; 0.5 MIC of644

R6-ParCS79F). Total RNA was isolated; cDNA was synthesized and subjected to645

qRTPCR. Data were normalized to time 0 min. Transcription represented the mean of646

qRT-PCR values of three independent replicates  SEM.647

FIG 4. Transcription of fatD depended on the general supercoiling level. Cultures were648

grown as in Fig. 3 and treated with N-methyl-seconeolitsine at the indicated concentrations.649

(A) Plasmid DNA was isolated at the indicated times and subjected to two-dimensional650

agarose gel electrophoresis in the presence of 5 and 15 g/ml chloroquine in the first and651

second dimensions, respectively. Supercoiling density () values are indicated. A black652

arrowhead indicates the topoisomer that migrated with Lk = 0 in the second dimension653

that has a Wr = 30 (53). An open arrowhead indicates the more abundant topoisomer.654

(B) Total RNA was isolated; cDNA was synthesized and subjected to qRTPCR, fatD655

(black bars) and fatC (white bars) values were normalized to time 0 min. Transcription656

represented the mean of qRT-PCR values of three independent replicates  SEM.657
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FIG 5. LVX lethality is related to the level of intracellular iron. (A) Enzymatic reaction of658

SpxB that renders H2O2, a substrate of the Fenton reaction. P, phosphate. (B) Viability of S.659

pneumoniae R6 (black symbols) or R6spxB (red symbols) either in AGCH, in AGCH plus660

the iron chelator o-phenantroline (AGCH+Ph), in AGCH deficient in SO4Fe (AGCH*).661

Cultures grown as indicated in Fig. 3 in the diverse media were treated, when indicated,662

with LVX at concentrations equivalent to 2.5 MIC. (C) Accumulation of reactive oxygen663

species. Results are the mean  SEM of three independent replicates. RFU, relative664

fluorescence units, values were made relative to 0 min and divided by the number of viable665

cells.666

FIG 6. Oxidative damage cell death pathway. The inhibition of topo IV by levofloxacin667

(LVX) or of topoisomerase I by N-methyl-seconeolitsine (SCN) would cause a local668

increase in supercoiling resulting in the up-regulation of the fatDCEB operon. The669

consequent increase in this iron transporter causes an increase of intracellular ferrous iron670

(Fe2+). This compound and hydrogen peroxide (produced by the activity of the SpxB671

pyruvate oxidase) are the substrates of the Fenton reaction. The Fenton reaction renders672

hydroxyl radicals, which oxidatively damage DNA, proteins and lipids.673

674
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TABLE 1. Genes involved in the transcriptomic response of S. pneumoniae R6 to675
levofloxacin (LVX)676

677

Role or subrole R6 locus (gene)a Mean relative fold changeb

NO LVX LVX 0.5  MIC LVX 10  MIC

15’ 30’ 5’ 15’ 30’ 5’ 15’ 30’

Amino acid biosynthesis spr0515 (metF)  2.3   2.1   

Biosynthesis of cofactors spr0636      2.0  

spr1438 (entB)        2.2

Cell envelope spr0867 (lytB) 2.9 2.5  3.6 2.7  3.5 3.2

spr1324 (apbE)        2.1

TCS12/ComCDE (°ComE
box)

spr0013° (comX1)  7.8      

spr0020° (comW)  2.5      

spr0043*°0044 (comAB)  3.5      
spr1017° (mreA)  3.0      

spr1819° (comX2)  7.8      

spr1762°  6.0   2.0   

spr2043*°2041 (comC)  8.8   2.4   

(°°ComX box) spr0027°°  2.8      

spr0031*°°0030  4.8   3.0   

spr0128*°°0127 (cibA)  2.7   2.2   

spr0181°° (orf47)  3.6      

spr0856*°°0860 (comEA/EC)  6.9   2.2   
spr0881°° (coiA)  8.3   2.7   

spr0996°° (radC)  6.6   2.3   

spr0997  3.9      

spr1144 (dprA)  5.3   2.1   

spr1628*°°1631 (cclA)  4.5   2.6   

spr1758*°°1756
(cinA/recA/dinF)

 3.1      

spr1831*°°1826  9.2   3.0   2.1

spr1864*°°1855
(cglABCDFG)

 2.5      

spr2006°° (cbpD)  -6.2   2.4   

spr2013*°°2012 (comF/FC)  -11.9   3.0   

TCS13/ SpiRH (SpiR box) spr0040 (pncE)  2.7   2.2   2.0

spr0461  2.1   2.9   2.7

spr0469*0465 (spiABCDP)  2.4  2.2 3.3   2.5

spr0470*0475 (pncW)  3.1  2.2 4.1   3.2

Pathogenesis spr0121 (pspA)        2.6

spr0328 (eng)        2.1

spr0565 (bgaA)        2.6

spr1652*1649 (pfbA)        2.4

Central metabolism spr1867 (nagA)        2.5

spr1833 (bgl2)        2.2

spr1285*1287        2.3
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spr1666 (dpnD)    2.0   2.1 

Energy metabolism spr1029 (glgB)     2.1   2.2

spr0226 (pflE)        2.2

spr1837 (adhE)      2.2  
spr0064 (agaS)        2.5

spr1028 (gapN)      2.5  
spr0065 (galM)        2.2

spr0276     3.8   3.7

spr1647*1648 (galET)       2.0 3.2

spr1668*1667 (galK)  2.7      

spr1974 (fcsR)       2.0 4.1

Protein fate spr1204 (ptrB)     2.0   

Ribosomal proteins
synthesis

spr0078 (rpsD)        2.1

spr1211 (rplL)        2.4

spr0682 (rpsP)        2.4

spr1271 (rpsU)        2.1

spr1943*1944 (rpmFG)        2.0

Purines, pyrimidines,
nucleosides & nucleotides

spr0045*0055 (pur,van, pyr) 8.0 8.1  16.9 15.1  16.2 11.2

spr0613*-0614 2.6   3.8 2.4  3.6 2.8

spr0865*0866 (pyrDIID)    2.5 2.0  2.6 2.4

spr1153 (carB)    2.1 2.1  2.0 

spr1662*1663 (xpt, pbuX)    2.8 3.8  3.1 2.8

spr1709 (gtfA)  2.9      

Transcription spr0634      2.0  
spr0227 (deoR)        2.4

spr0279 (bglG)    3.2 4.1   3.8

spr1067 (lacR)        2.1

spr1439 (codY)        2.0

spr1889        2.8

spr1899 (phoU) 2.3 2.3      
spr1933 (rgg)  3.2      

Transport and binding spr0551 (brnQ)      2.3  2.1

spr0624*0622 (glnQ)       2.1 2.1

spr1895*1898 2.4 2.2      

spr1641 (ctpA)       2.4 2.9

spr1684*1687 (fatDCEB)   3.7 4.7 3.3 3.8 6.2 5.6

spr0264*0265    3.0 2.9  3.0 2.0

spr0278     5.2   4.7

spr0280    2.4 2.6   2.6

spr1710  2.0      

spr1834*1836 (ptcAB)        2.2

spr1836     2.7   3.0

spr0081    2.0    

spr0619 2.5 2.9  2.2 2.2  2.3 2.0

spr0621*0620    2.0 2.0  2.3 2.2

spr1097 (nirC) 2.2 2.1      
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spr1202  2.1      

spr1203  2.1   2.4   

spr1381*1378 2.1   2.2    

spr1441 (oxlT)    3.0 4.3 2.2 3.5 4.0

spr1546  3.7      

spr1646*1643        -2.1

spr1801    3.0 2.8  3.4 2.4

spr1817    -2.0    

Unclassified spr0907*0908 (phtDE)        2.8

spr1060 (phpA)        2.2

Transposon functions spr0018    2.2 2.1   
spr0019     3.1   2.7

spr0041       2.5 
spr0612       2.5 

spr0273  2.6      
spr0523       2.5 

spr1046    2.2    

spr1349*1347 2.4 2.0  2.0    

spr1367 2.4 2.3      

spr1563     2.0   

678
a The responsive genes included showed significant fold variations (2 and P 0.01). All genes showing679

variations, with the exception of 47 encoding hypothetical proteins are included. Genes considered to be680

involved in the LVX-mediated transcriptomic response (i.e., that did not showed variations in the no-LVX681

culture) are shadowed in grey. No shadowed genes are considered to be involved in the growth-related682

response. * indicates the first gene of the putative operon: °gene with a ComE box; °°gene with a ComX box;683

 gene with a SpiR box.684

b In operons, values indicated correspond to those of the first gene of the operon, except in spr00450055,685

spr06130614, spr18591898, spr1864–1855, in which variations corresponded to the second gene. Values686

above 2 are shown in boldface; , no change.687


