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ABSTRACT 

 

We analyzed RNA splice site usage in three HIV-1 subtype B primary isolates through 

RT-PCR amplification of spliced RNAs using a fluorescently labeled primer, with 

computerized size determination and quantitation of PCR products, which were also 

identified by clone sequencing. In one isolate, P2149-3, unusual and unreported spliced 

transcripts were detected. This isolate preferentially used for rev RNA generation a 3’ 

splice site (3’ss) located 5 nucleotides upstream of A4a, previously only identified in a 

T cell-line adapted virus and in a group O isolate, and designated A4d. P2149-3 also 

used an unreported 3’ss for rev RNA generation, designated A4h, located 20 

nucleotides upstream of 3’ss A4c. Additionally, unusual nef RNAs using 3’ss A5a and 

A7a and with exon composition 1.3.7 were identified. The identification of several 

unusual and unreported spliced transcripts in a HIV-1 primary isolate suggests a greater 

diversity of splice site usage in HIV-1 than previously appreciated.   
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 HIV-1 RNAs are transcribed from a single promoter at the 5’ long terminal repeat and 

their relative expression is regulated through the alternative usage of splice sites. 

According to splicing patterns, HIV-1 transcripts can be assigned to three major 

categories
1,2

 (Fig. 1): 1) Unspliced RNA, coding for Gag-Pol and Pol polyproteins; 2) 

Doubly spliced (DS) transcripts, generated by excision of introns overlapping Gag-Pol 

and Vpu-Env open reading frames, coding for Tat, Rev, Nef, and Vpr proteins; and 3) 

Singly spliced (SS) transcripts, generated by excision of the Gag-Pol intron, coding for 

Env, Vpu, Vif, Vpr, and a truncated Tat protein. A fourth class of short spliced RNAs, 

using 3’ splice sites (3’ss) near the HIV-1 genome’s 3’ end, has been identified in two 

isolates in vitro
3,4

 and in a minority of viruses in vivo
5
; most of these transcripts are 

predicted to code for a 34 amino acid peptide in the C-terminus of Nef
5
, but their 

function still remains to be defined. The complexity of HIV-1 splicing is further 

increased by two additional factors: 1) the usage of redundant 3’ss for generation of rev 

RNAs, of which seven have been reported, A4a, A4b, and A4c in subtype B viruses
1,2

, 

A4f, A4g, and A4c in subtype C viruses
6
, A4d in the subtype B isolate SF2 and in the 

group O virus ANT70C, and A4e in ANT70C
7
; and 2) the optional incorporation of 

small noncoding exons in the leader sequence: exons 2 or 3 or both in tat, rev, nef, and 

env RNAs and exon 2 in vpr RNAs.  

Most studies on HIV-1 splicing have been done using T-cell line adapted viruses 

or cloned subgenomic fragments derived from them. Here we analyze splice site usage 

in three primary HIV-1 subtype B isolates, P2149-3, X2102, and X2210
8.9

, in an in vitro  

acute infection assay of peripheral blood mononuclear cells (PBMCs)
6
. PBMCs 

prestimulated with phytohemagglutinin and interleukin-2 were exposed to virus at a 

multiplicity of infection of 0.1 infectious particles per cell for 2 h. AZT at 10 µM was 

added at 8 h postinfection to avoid subsequent rounds of infection. Cells were collected 
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on days 1 through 4 and total RNA was extracted. HIV-1 splicing patterns were 

analyzed through RT-PCR followed by nested PCR, using primers recognizing 

sequences in the outermost exons common to either all DS or all SS HIV-1 RNAs. 

Reagents and PCR conditions were as described
6
, with the forward primer in the nested 

PCR 5’-labeled with VIC fluorophore, which allowed analysis through electrophoresis 

in an automated sequencer using GeneMapper software program (Applied Biosystems, 

Carlsbad, CA), which can accurately determine sizes of PCR products by running size 

standards labeled with a fluorophore emiting light at a different wavelength in the same 

capillary and quantify them by measuring peak areas.  

The GeneMapper analyses revealed that in two isolates peak sizes were 

consistent with common splice site usage reported for subtype B viruses (results not 

shown). However, in one isolate, P2149-3, several peaks with unexpected sizes were 

detected (Fig. 2). Four of the peaks derived from DS RNAs corresponded to PCR 

products with calculated sizes 303, 352, 377, and 426 nucleotides (nt), which are 4 or 5 

nt longer than expected for previously described rev RNAs using 3’ss A4a 1.4a.7, 

1.2.4a.7, 1.3.4a.7, and 1.2.3.4a.7, respectively, which were also detected, but with 

weaker signals than those of the unexpected products. Additional peaks, with sizes 281, 

336, 386, and 410 nt, which do not correspond to known HIV-1 transcripts, were also 

detected (Fig. 2). To identify the transcripts corresponding to the unexpected peaks, 

PCR products of DS RNAs from day 2 postinfection were cloned and sequenced. Of the 

40 sequenced clones (Table 1), 28 were predicted to code for Nef, nine for Rev, two for 

Tat, and one for Vpr. Among the nine rev RNA-derived clones, eight contained unusual 

or unreported splice junctions (Fig. 3, Table 1). Five of these used a 3’ss located 5 nt 

upstream of A4a. This 3’ss has been reported to be used in a ~0.3 kb cloned fragment of 

the T cell-line adapted subtype B isolate SF2 and in the group O virus ANT70, and was 
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designated A4d
7
. The exon composition of the P2149-3 clones using A4d was 1.4d.7 in 

four and 1.3.4d.7 in one. Three other rev clones of P2149-3 derive from a transcript 

using a previously unreported 3’ss located 20 nt upstream of A4c, which was designated 

A4h, with exon composition 1.4h.7 (Fig. 3). Among the 28 nef clones, two used unusual 

3’ss. One spliced from 5’ splice site D1 to 3’ss A5a, located 4 nt downstream of A5 (the 

usual 3’ss of nef RNAs). S5a has been reported to be used occasionally by HTLV-IIIB
10

 

and p89.6
4
 isolates in vitro and by another virus in vivo

5
. Another nef RNA used 3’ss 

A7a, located 28 nt upstream of A7, previously identified only as a minor 3’ss in HXB2 

isolate
1
. A third nef transcript had the exon composition 1.3.7, which involves splicing 

from D1 to 3’ss A7,  previously only detected in a very small minority of transcripts in 

p89.6 isolate through next generation sequencing
4
.  

The detection of A4d and A4h splice site usage in P2149-3 by sequencing 

allowed to assign seven GeneMapper peaks with unexpected sizes to rev RNAs: 1.4d.7 

(303 nt), 1.2.4d.7 (352 nt), 1.3.4d.7 (377 nt), 1.2.3.4d.7 (426 nt), 1.4h.7 (336 nt), 

1.2.4h.7 (386 nt), and 1.3.4h.7 (410 nt). The remaining peak, of 281 nt, corresponds to 

nef 1.3.7 transcript. The analysis of PCR products derived from SS RNAs of P2149-3 

also revealed peaks with sizes predicted for env RNAs using A4d and A4h (results not 

shown). 

 The relative usage of the different 3’ss by rev RNAs in P2149-3 was quantified 

by measuring the areas under the fluorescent peaks (Table 2). A4d was used 

preferentially at all time points (mean 62.3% in the four days of the assay), followed by 

A4a (18.6%), A4h (13%), and A4b (6.1%). 

 We analyzed sequence features in the genome of P2149-3 that could explaing its 

unusual usage of splice sites for rev RNA generation. The usual elements of the 

metazoan 3’ss include an AG at the 3’ end of the intron, a branch point site (BPS), 
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usually 18-40 nt upstream of the AG, with the loosely conserved mammalian consensus 

sequence YNYURAY (the underline denotes the branch point), and a polypyrimidine 

tract (PPT) downstream of the BPS. P2149-3 has the AG dinucleotide at the intron end 

adjacent to A4d and an upstream PPT with 9 pyrymidines interspersed with 2 purines 

(Fig. 4), which coincides with the PPT used by NL4-3 isolate for splicing at A4a and 

A4b. Two BPS have been identified in NL4-3 for splicing at these two sites
11

, one of 

which is also used by SF2 isolate
7
. The sequences at these two BPS in P2149-3 are 

identical to those of NL4-3, and therefore they could also potentially be used for 

splicing at A4d, which is located 22 and 16 nt, respectively, downstream of these BPS. 

The relatively infrequent usage of A4a and A4b in P2149-3 may be explained by the 

linear scanning mechanism model for 3’ss recognition
12

, by which the nt after the first 

AG downstream of the BPS (which in P2149-3 is adjacent to A4d) is preferentially 

selected as 3’ss. With regard to A4h, P2149-3 has an AG at the intron end adjacent to 

this splice site, and upstream of it there is a pyrymidine-rich segment with 7 

pyrymidines and 3 interspersed purines. Just upstream of this segment, there is a 

sequence (UACAAAU) whith 6 nt coincident with the consensus mammalian BPS 

sequence and 5 potential base-pairings with U2 snRNP (underlined), whose 

complementarity to the BPS correlates positively to splicing efficiency
13

. The relatively 

infrequent usage of A4h in P2149-3 may derive from the suboptimal PPT sequence, 

which is interrupted by three interspersed purines and contains not more than two 

consecutives pyrymidines. Although the strongest PPTs contain long stretches of 

consecutive pyrymidines, stretches of alternating purines and pyrymidines can function 

as PPT to promote usage of a downstream 3’ss if the tract is close to the splice site
14

. In 

the case of A4h, its usage may also be promoted by a downstream exon splice enhancer 

(GAR ESE)
15

. Most subtype B isolates previosuly used for studies on HIV-1 splicing 
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(HXB2-LAI-IIIB-BRU, NL4-3, SF2, Ba_L, BH10) have an AG one nt downstream of 

the AG of A4h, and the sequences potentially used as PPT for A4h are identical to 

P2149-3 (Fig. 4). The obvious question is why the AG in the mentioned viruses is not 

used as 3’ss but A4h is used in P2149-3. One possible reason may be that in P2149-3 

the AG at the A4c position is mutated to AC, which would lead to activation of A4h or 

a compensatory increase in its usage, in accordance with cryptic 3’ss activation or 

compensatory increases in 3’ss usage occurring when a nearby competing 3’ss is 

inactivated through mutation
11

. However, there must be additional factors, since SF2 

isolate lacks the intronic AG adjacent to A4c, which is mutated to CG, and does not use 

upstream AGs for rev RNA splicing
7
. One may be that the sequence at A4h of P2149-3 

is AAG/G, which is closer to the mammalian 3’ss consensus (YAG/G) than the 

sequences one nt downstream in SF2 and other viruses used in previous studies 

(AAG/U), and therefore it may represent a better candidate for selection as 3’ss by the 

splicing machinery. In addition, in SF2 the sequence at the putative branch point of A4h 

(UAACAAU) differs from that in P2149-3, having only 4 potential base-pairings with 

U2 snRNP (underlined), which would make it a weaker branch point than the sequence 

in P2149-3, which has 5 potential base-pairings with U2 snRNP.   

 In summary, we report for the first time in a HIV-1 primary isolate (P2149-3) 

the preferential usage for rev RNA generation of 3’ss A4d, previously detected only in a 

cloned fragment of a T cell-line adapted isolate and in a group O virus
7
. P2149-3 also 

used a previously unreported 3’ss, A4h, for rev RNA generation, and three unusual nef 

transcripts were also identified in this isolate. These results point to a greater diversity 

in splice site usage by HIV-1 RNAs than previously appreciated. The high multiplicity 

of 3’ss used for rev RNA generation, currently numbering eight with A4h, may derive 

from the fact that Tat, in whose coding sequence rev 3’ss are located, is one of the most 
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variable HIV-1 proteins
16

, and from the absolute dependence of HIV-1 replication on 

Rev expression, in whose absence viral replication cannot be rescued by proteins 

secreted by nearby HIV-1-infected cells, as occurs with Tat
17

.   

 

 

ACKNOWLEDGMENTS 

We thank the personnel at the Genomic Unit of Centro Nacional de Microbiología, 

Instituto de Salud Carlos III, for technical assistance in sequencing and GeneMapper 

analyses. This work was funded by Ministerio de Economía y Competitividad (Spain), 

Plan Nacional de I+D+I, through grants SAF2007-61688 and SAF2010-2096. 

Sequences of PCR clones derived from P2149-3 DS transcripts have been deposited in 

GenBank under accessions JF808039-JF808078. 



9 

 

REFERENCES 

 

1. Schwartz S, Felber BK, Benko DM, Fenyo EM, and Pavlakis GN. Cloning and 

functional analysis of multiply spliced mRNA species of human immunodeficiency 

virus type 1. J Virol 1990; 64: 2519-29. 

2. Purcell DF and Martin M. Alternative splicing of human immunodeficiency virus 

type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 

1993; 67: 6365-78. 

3. Smith J, Azad J, and Deacon N. Identification of two novel human immunodeficiency 

splice acceptor sites in infected T cell lines. J Gen Virol 1992; 73: 1825-8. 

4. Ocwieja KE, Sherrill-Mix S, Mukherjee R, et al. Dynamic regulation of HIV-1 

mRNA populations analyzed by single-molecule enrichment and long-read sequencing. 

Nucleic Acids Res 2012; 40:10345-55. 

5. Carrera C, Pinilla M, Pérez-Álvarez L, and Thomson MM. Identification of unusual 

and novel HIV type 1 spliced transcripts generated in vivo. AIDS Res Hum 

Retroviruses 2010; 26:815-820.  

6. Delgado E, Carrera C, Nebreda P, et al. Identification of new splice sites used for 

generation of rev transcripts in human immunodeficiency virus type 1 subtype C 

primary isolates. PLoS One 2012; 7:e30574. 

7. Bilodeau PS, Domsic JK, and Stoltzfus CM Splicing regulatory elements within tat 

exon 2 of human immunodeficiency virus type 1 (HIV-1) are characteristic of group M 

but not group O HIV-1 strains. J Virol 1999; 73: 9764-72.  

8. Cuevas MT, Fernández-García A, Pinilla M, et al. Biological and genetic 

characterization of HIV type 1 subtype B and nonsubtype B transmitted viruses: 



10 

 

usefulness for vaccine candidate assessment. AIDS Res Hum Retroviruses 2009; 26: 

1019-25. 

9. Fernández-García A, Cuevas MT, Muñoz-Nieto M, et al. Development of a panel of 

well-characterized human immunodeficiency virus type 1 isolates from newly 

diagnosed patients including acute and recent infections. AIDS Res Hum Retroviruses 

2010; 25: 93-102.  

10. Furtado MR, Balachandran R, Gupta P, and Wolinski SM. Analysis of alternatively 

spliced human immunodeficiency virus type-1 mRNA species, one of which encodes a 

novel Tat-Env fusion protein. Virology 1991; 185: 258-70. 

11. Swanson AK and Stoltzfus CM. Overlapping cis sites used for splicing of HIV-1 

env/nef and rev mRNAs. J Biol Chem 1998; 273: 34551-7. 

12. Smith CW, Chu TT, and Nadal-Ginard B. Scanning and competition between AGs 

are involved in 3' splice site selection in mammalian introns. Mol Cell Biol 1993; 13: 

4939-52.  

13. Wu J and Manley JL. Mammalian pre-mRNA branch site selection by U2 snRNP 

involves base pairing. Genes Dev 1989; 3: 1553-61. 

14. Coolidge CJ, Seely RJ, and Patton JG. Functional analysis of the polypyrimidine 

tract in pre-mRNA splicing. Nucleic Acids Res 1997; 25: 888-896. 

15. Caputi M, Freund M, Kammler S, Asang C, and Schaal H. A bidirectional 

SF2/ASF- and SRp40-dependent splicing enhancer regulates HIV-1 rev, env, vpu, and 

nef gene expression. J Virol 2004; 78: 6517-26. 

16. Korber B, Gaschen B, Yusim K, et al. Evolutionary and immunological implications 

of contemporary HIV-1 variation. Br Med Bull 2001; 58: 19-42. 



11 

 

17. Verhoef K, Klein A, and Berkhout B. Paracrine activation of the HIV-1 LTR 

promoter by the viral Tat protein is mechanistically similar to trans-activation within a 

cell. Virology 1996; 225: 316-27. 

 



12 

 

FIGURE LEGENDS    

 

Fig. 1. Schematic depiction of RNA splicing in HIV-1 subtype B. Open reading 

frames are shown as open boxes and exons as black bars. Only exons generated by 

splicing at commonly used splice sites are shown. Exons are named as previously
1,2

. All 

spliced transcripts incorporate exon 1. Optionally, exons 2 or 3 or both can be 

incorporated into tat, rev, nef, or env transcripts, and exon 2 into vpr transcripts. 

Proteins encoded in spliced RNAs are indicated on the right of the 3’ exon.  

 

Fig. 2. GeneMapper analysis of DS RNAs expressed by P2149-3. The analysis 

corresponds to day 2 after acute infection of PBMCs. Green peaks represent PCR 

products and orange peaks represent size standards. Size of PCR product, encoded gene, 

and exon composition (named as in previous studies
1,2,5

) predicted according to PCR 

product size are shown on top or on the side of each peak. Peaks with unexpected sizes, 

according to usual splice site usage by subtype B viruses, are marked with interrogation 

signs.  

 

Fig. 3. Sequences surrounding new and unusual splice junctions identified in 

P2149-3 DS RNAs. The arrow pointing downwards signals the splice junction. 5’ and 

3’ splice sites involved in splicing, named as in previous studies
1,2,5,7

 and in this study 

(see main text), are signaled, with nucleotide positions in the HXB2 genome in 

parentheses. Nearby splice sites are also indicated. Splice junctions shown are, from top 

to bottom, D1/A4d, D3/A4d, D1/A4h, D1/A5a, and D4/A7a. 
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Fig. 4. Intronic and exonic sequences surrounding rev RNA splice sites in P2149-3. 

Sequences are aligned with those of NL4-3 and SF2 isolates. AG dinucleotides in the 

intron ends adjacent to 3’ss are in bold type. Polypyrimidine tracts potentially used for 

splicing at A4d and A4h in P2149-3 are boxed. In NL4-3 and SF2 sequences, branch 

sites previously identified for rev RNA splicing
7,11

 are within ellipses. Nucleotides in 

P2149-3 potentially used as branch points for splicing at A4d and A4h (see main text) 

are indicated with arrows and those potentially base-pairing with U2 snRNP at these 

sites are underlined. 
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