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Abstract1

2

Chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) were studied in 24 populations3

of Prunus spinosa sampled across Europe. The cpDNA and mtDNA fragments were amplified4

using universal primers and subsequently digested with restriction enzymes to obtain the5

polymorphisms. Combination of all the polymorphisms resulted in 33 cpDNA haplotypes and6

two mtDNA haplotypes. Strict association between the cpDNA haplotypes and mtDNA7

haplotypes was detected in most cases, indicating conjoint inheritance of the two genomes. The8

most frequent and abundant cpDNA haplotype (C20, frequency = 51%) is always associated9

with the more frequent and abundant mtDNA haplotype (M1, frequency = 84%). The cpDNA10

haplotypes (except two) associated with the less frequent mtDNA haplotype (M2) are private11

haplotypes. These private haplotypes are phylogenetically related but geographically unrelated.12

They form a separate cluster on the minimum-length spanning tree.13

14
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INTRODUCTION1

In most angiosperms, chloroplast and mitochondrial genomes are both inherited maternally2

(Reboud and Zeyl, 1994), and therefore are expected to remain completely linked (Schnabel and3

Asmussen, 1989). There are studies where chloroplast and mitochondrial genomes have been4

investigated simultaneously (Berthou et al., 1983; Laurent et al., 1993; Shu et al., 1993;5

Tsunewaki, 1993; Lee et al., 1994; Caha et al., 1998). However, there are only few studies6

describing the association between the two organelle genomes in angiosperms (e.g., Dumolin-7

Lapègue et al., 1998; Desplanque et al., 2000; Olson and McCauley, 2000; Belahbib et al.,8

2001).9

The chloroplast genome is well characterized and structurally very stable (Clegg et al.,10

1994). The variations detected in chloroplast DNA (cpDNA) using the PCR-RFLP (polymerase11

chain reaction - restriction fragment length polymorphism) technique are useful for population12

genetic studies both at interspecific and intraspecific level (McCauley, 1995; Newton et al.,13

1999; Demesure et al., 1996; El Mousadik and Petit, 1996; Dumolin-Lapègue et al., 1997a;14

King and Ferris, 1998; Fineschi et al., 2000; Dutech et al., 2000). In some studies,15

mitochondrial DNA (mtDNA) variations have been very informative too; mtDNA16

polymorphisms are geographically structured at local scale in Thymus vulgaris (Manicacci et17

al., 1996), and at regional scale in Hevea brasiliensis (Luo et al., 1995), Fagus crenata (Tomaru18

et al., 1998) and Beta vulgaris ssp. maritima (Desplanque et al., 2000). In Theobroma cacao19

and Glycine soja, mitochondrial haplotypes have widespread geographical distribution, and do20

not present any geographic structuring (Laurent et al., 1993; Tozuka et al., 1998).21

The present investigation is carried out in Prunus spinosa L., a wild shrub of European22

deciduous forests, that is grown as a hedge plant. A preliminary study of seven populations of P.23

spinosa has revealed high cpDNA diversity (Mohanty et al., 2000). In another study, three24

regions of cpDNA (approx. 8250 bp) were analysed for a population genetic analysis of 2525

populations from European deciduous forests. The study revealed low genetic differentiation26

among populations and an absence of phylogeographic structure (Mohanty et al., 2002). In the27
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present study, 24 populations were analyzed with an additional region of cpDNA of approx.1

3800 bp and three regions of mtDNA. The main objectives were to study the extent of mtDNA2

variations and phylogenetic and geographic relationship between cpDNA and mtDNA3

haplotypes in populations of P. spinosa.4

5

MATERIALS AND METHODS6

Plant material7

Twenty-four wild populations, which included 157 individuals of P. spinosa, were sampled8

from deciduous forests across Europe (Table 1). Only 157 of the 203 samples from a previous9

study (Mohanty et al., 2002) have been analysed by studying an additional region of cpDNA10

and three regions of mtDNA. All 203 individuals could not be included in the present study as11

CD fragment could be amplified only in 157 samples.12

13

DNA extraction, amplification and digestion14

DNA was extracted from frozen leaves following the protocol of Torres et al. (1993), and15

then standardized (4 ng l-1). The final results have been interpreted by combining the data16

obtained by using four cpDNA primer pairs, HK, K1K2, VL (previous study; Mohanty et al.,17

2002) and CD (present study), and three mtDNA primer pairs, nad1/B-C, nad4/2-3, and rps14-18

cob (present study). The four cpDNA primer pairs and three mtDNA primer pairs are described19

in Demesure et al. (1995) and Dumolin-Lapègue et al. (1997b). The details of amplification20

with the cpDNA primers are described in Mohanty et al. (2000). The amplifications using21

mtDNA primers were performed in 30 µl of reaction mixture, consisting of 0.2 µM of each22

primer, 200 µM of each of the four dNTP, 2 mM MgCl2, 0·5-1·0 U EcoTaq DNA polymerase in23

the buffer provided by the manufacturers of the enzyme (ECOGEN, S.R.L., Barcelona, Spain),24

and 12 ng of genomic DNA. The PCR amplifications were carried out in a PTC-100 thermal25

cycler (MJ Research Inc., Watertown, Massachusetts, USA) with heated lid, using an initial26
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cycle of 4 min at 94 ºC, followed by 30 cycles of 45 s at 94 ºC, 45 s at 55 ºC and 3 min (for1

nad1/B-C and rps14-cob) or 4 min 30 s (for nad4/2-3) at 72 ºC, and finally a 10 min extension2

at 72 ºC.3

Amplified products, obtained using cpDNA and mtDNA primers, were digested with the4

restriction enzymes HinfI and TaqI (Amersham Corporation, Buckinghanmshire, UK). In5

addition, AluI was used with the primer pairs VL, nad1/B-C, and rps14-cob. The digestion6

conditions are detailed in Mohanty et al. (2000). Restriction fragments were separated on 2·6 %7

agarose gels in Tris-borate-EDTA buffer (1X), run at 3 V/cm for 4 h, stained with ethidium8

bromide and visualized under UV light. Size of the polymorphic bands were analysed using9

Kodak Digital Science 1D Image Analysis software, and a 50 bp ladder (Pharmacia Biotech.,10

Brussels, Belgium) was used as a molecular size marker.11

12

DNA sequencing13

The two detected mtDNA haplotypes were sequenced in order to determine the exact nature14

of mutation. The amplified fragments obtained using the mtDNA primer pair rps14-cob, for two15

individuals of each mtDNA haplotype, were cloned into plasmid of pGEM-T (Promega16

Corporation, Madison, Wisconsin, USA). Automated sequencing of the recombinant plasmids17

was performed using fluorescence-base labeling with ABI PRISM system (Perkin-Elmer18

Corporation, Norwalk, Connecticut, USA). The sequencing strategy involved the use of the19

plasmid-specific SP6 and T7 primers (synthesized by Pharmacia Biotech., Brussels, Belgium),20

which are located on the vector from both ends of the inserts. The sequencing was performed in21

both directions until sequences from the two ends overlapped. Analysis of DNA sequences was22

carried out with the SeqMan and Mapdraw Lasergene programs (DNASTAR Inc., Madison23

Wisconsin, USA).24

Nucleotide sequence data reported in this paper has been submitted to the GenBank, EMBL25

and DDBJ databases under the accession number AF464899 for mtDNA haplotype 1 (M1), and26

AF464900 for mtDNA haplotype 2 (M2).27
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1

Analysis of data2

The program HAPLONST (Pons and Petit, 1996) was used to calculate the parameters of3

cpDNA diversity (HT = total diversity, HS = average intrapopulation diversity, and GST = level4

of population subdivision using unordered alleles, and NST = level of population subdivision5

using ordered alleles).6

The number of mutational differences between haplotypes of wild populations was7

calculated to produce a minimum-length spanning tree of haplotypes, using the program8

NTSYS-pc (Rohlf, 1992). The procedure is used to connect points (haplotypes) by direct links9

having the smallest possible total length (Prim, 1957). Minimum spanning networks are10

alternatives to Wagner parsimony trees, and better convey the connections between haplotypes11

(Excoffier and Smouse, 1994).12

13

RESULTS14

cpDNA haplotypes15

PCR-RFLP of cpDNA fragment obtained using the primer pair CD, resulted in eight16

polymorphic fragments (Table 2). The mutations detected using the primer pairs HK, K1K2 and17

VL (Mohanty et al., 2002) and CD (present study) were combined to define the cpDNA18

haplotypes C1 to C33 (Table 3). Of the 33 cpDNA haplotypes distinguished, nine were shared19

by two or more populations and the rest (24) were private (as denominated by Slatkin, 1985) or20

unique haplotypes (Table 3). C20 was the most frequent haplotype (frequency = 51 %). It was21

represented in 80 of 157 individuals studied (Table 3).22

Analysis of diversity using the HAPLONST program revealed high total diversity (HT =23

0·76), of which a major portion was located within populations (HS = 0·50). The level of24

population subdivision using unordered and ordered alleles were GST = 0·34 and NST = 0·46,25

respectively. The difference between NST and GST was non-significant (U test = 0·74, P = 0·05;26

Pons and Petit, 1996).27
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1

mtDNA haplotypes2

Of the three mtDNA primer pairs used, nad1/B-C and rps14/cob showed good amplification,3

and the sizes of the amplified fragments were approximately 1300 bp and 1280 bp, respectively.4

There was no amplification with nad4/2-3. The restriction digestions of the amplified fragments5

with AluI, HinfI, and TaqI revealed no polymorphisms in the amplified fragment of nad1/B-C.6

The combination rps14/cob-TaqI resulting in two mtDNA haplotypes (M1 and M2). The7

haplotype-M1 showed a restricted fragment of approx. 210 bp, and the other haplotype (M2)8

showed a 170 bp fragment. The mutation appeared to be an indel of approximately 40 bp, on the9

agarose gel; however, it was actually a restriction site mutation (revealed on sequencing), which10

appeared as an indel mutation because of the 40 bp fragment migrating out of the gel.11

Sequencing of mtDNA amplified fragment of the two haplotypes showed a length of 1286 bp.12

Sequencing also revealed only a 1 bp substitution at position 72, with a thymine (T) in13

haplotype-M1 and guanine (G) in haplotype-M2, resulting in gain/loss of a restriction site for14

the restriction enzyme TaqI. M1 was the more abundant haplotype, represented in 13215

individuals (frequency = 84 %), and M2 in 25 individuals (frequency = 16 %). Of the twenty-16

four populations surveyed, eight (8, 9, 13, 14, 16, 20, 21, 24) were polymorphic, with both17

mtDNA haplotypes M1 and M2; fourteen populations (1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 15, 17, 18,18

22) are monomorphic for M1, and two populations (19, 23) are monomorphic for M2 (Table 3).19

20

Association between cpDNA and mtDNA haplotypes21

The cpDNA haplotypes C1 to C33 with their corresponding mtDNA haplotypes (M1 and/or22

M2) are given in Table 3, and shown in Fig. 1. Twenty cpDNA haplotypes are associated with23

mtDNA haplotype-M1, and 11 cpDNA haplotypes with M2. Two cpDNA haplotypes (C9 and24

C10) are associated with both mtDNA haplotypes, M1 as well as M2. Of the two individuals25

representing C9, one has mtDNA haplotype-M1 and the other has M2 (Table 3). Similarly, of26

the nine individuals with C10, five have M1 and four have M2 (Table 3). All individuals with27
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haplotypes C9-M2 and C10-M2 are from population 23 (Greece). All cpDNA haplotypes1

(except C9 and C10) which are associated with mtDNA haplotype-M2 are private haplotypes2

(Table 3).3

The minimum-length spanning tree showing the phylogenetic relationships of cpDNA4

haplotypes is shown in Fig. 1. The distribution of mtDNA haplotypes (M1 or/and M2)5

associated with each cpDNA haplotype are also plotted on the tree. C10 and C20 form two main6

nodes of the tree. The node represented by C20 harbours a group of cpDNA haplotypes, all of7

which are associated with mtDNA haplotype-M1 (Cluster I). The other node represented by8

C10 has two groups of cpDNA haplotypes: Cluster II, associated with mtDNA haplotype-M1,9

and Cluster III, associated with mtDNA haplotype-M2, except C9, which is associated with M110

also (Fig. 1). In each cluster, the phylogenetically related cpDNA haplotypes are mostly11

geographically unrelated.12

13

DISCUSSION14

P. spinosa is a wild allotetraploid shrub (Reynders-Aloisi and Grellet, 1994) which represents15

one of the possible ancestors of P. domestica (Watkins, 1976, 1981). The shrub has wide range16

of environmental adaptability including resistance to calcareous soils and drought. Its fruits are17

important for preparation of an alcoholic drink (Pacharan) in Spain. All these attributes of P.18

spinosa are important for improvement of rootstocks or varieties through interspecific19

hybridization. For such improvement programs, assessment of genetic variability in populations20

is very useful. A population genetic analysis of this shrub using cpDNA markers has already21

provided some information about genetically diverse populations (Mohanty et al., 2002). In the22

present investigation, cpDNA and mtDNA diversity and phylogenetic and geographic23

relationship between them has been discussed which can be useful for identifying populations24

for conservation and to formulate their management strategies.25

In our previous study (Mohanty et al., 2002), three regions of cpDNA (approx. 8250 bp in26

total) were analysed for a population genetic study. In the present study, another region of the27
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chloroplast genome (approx. 3800 bp) was analysed and found to be very polymorphic, with1

eight polymorphic fragments when restricted with two restriction enzymes. The combination of2

all the mutations detected in the regions HK, K1K2, VL (previous study), and CD (present3

study) resulted in 33 haplotypes in 157 individuals from 24 populations, implying a mean of4

1·38 haplotypes per population. Of the 33 cpDNA haplotypes, only nine are shared between two5

or more populations and 24 are private haplotypes. There is only one haplotype (C20; frequency6

= 51 %) which is abundant and geographically widespread. This cpDNA haplotype may7

correspond to the ancestral type. Analysis of diversity showed that differentiation among the8

populations was low (GST = 0·34), which is very close to that obtained when only three regions9

of cpDNA was analysed (GST = 0·33; Mohanty et al., 2002). The NST value was not significantly10

higher than GST, which indicated an absence of phylogeographic structure. Thus, the additional11

analysis of another fragment CD of cpDNA showed several more polymorphisms but it did not12

change the overall result (i.e., low genetic differentiation among populations and absence of13

phylogeographic structure) from that obtained in the previous study (Mohanty et al., 2002).14

Absence of phylogeographic structure could be due to efficient seed dispersal by mammals and15

birds who ingest the fruits of P. spinosa. The intensive seed movements can decrease genetic16

heterogeneity among populations and erase the phylogeographic structure (Mohanty et al.17

2002).18

In contrast to high cpDNA diversity (33 haplotypes), the mtDNA showed lower levels of19

variation (only 2 haplotypes). The low variation of mtDNA maybe explained by the fact that20

rate of nucleotide substitution is at least three times slower in mtDNA than cpDNA (Wolfe et21

al., 1987; Palmer, 1992). However, there are studies where lower cpDNA variations and higher22

mtDNA variations have been observed (Laurent et al., 1993; Caha et al., 1998).23

Of the 33 cpDNA haplotypes, 15 haplotypes are shared between two or more individuals and24

18 are represented in one individual each. Of these 15 shared cpDNA haplotypes, 13 show strict25

association with their mtDNA haplotype. Most prominent is the example of C20 (represented in26

more than 50 % of the individuals studied, and also geographically the most widespread), which27
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is always coupled with mtDNA haplotype M1. The strong association between the two genomes1

suggests the same inheritance pattern for both organelles, which is assumed to be maternal. In2

P. spinosa there is no previous study demonstrating maternal inheritance of the two cytoplasmic3

genomes, but maternal inheritance of cpDNA has been demonstrated in Prunus cerasus (Brettin4

et al., 2000). So, if C20 represents an ancient haplotype, then M1 (which is strictly associated5

with C20) may also be considered to be of older origin compared to M2.6

There are only two cases of uncoupling of cpDNA with its corresponding mtDNA. The7

dissociations are in the cpDNA haplotypes C9 and C10. The cpDNA haplotype C10 is8

associated with M1 in five individuals and with M2 in four individuals. The second case of9

dissociation is seen in cpDNA haplotype C9; it is associated with M1 in one individual10

(population 3) and with M2 in one individual of population 23 (Greece). There maybe three11

possible explanations. The first hypothesis is homoplasy in mtDNA, however, this seems12

unlikely because of very low polymorphism observed in mtDNA (implying a low mutation13

rate). In the second hypothesis, it maybe considered that mtDNA mutation (a substitution) must14

have occurred only once, thereafter C9 was derived twice independently from C10. This is more15

likely because only two indel mutations distinguish C9 from C10. It appears that a recurrent16

mutation event has occurred in cpDNA (since the two mtDNA haplotypes are both found in two17

cpDNA types). These cpDNA haplotypes are probably similar by state but not by descent A18

third hypothesis of paternal leakage of either cpDNA or mtDNA as a causal factor for19

dissociation of cpDNA and mtDNA also cannot be ignored.20

The minimum-length spanning tree of cpDNA haplotypes, with the mtDNA haplotypes21

plotted on it shows three clusters: cpDNA haplotypes coupled to M1 are distributed in Cluster I22

and Cluster II, whereas Cluster III consists of all cpDNA haplotypes coupled to M2, except C9,23

which is associated with both M1 and M2. C20 represents a node for Cluster I, while Cluster II24

and III arise from the node represented by C10. Besides, C9 and C10, all the cpDNA haplotypes25

associated with M2 are private haplotypes. Although, these private cpDNA haplotypes are26

geographically unrelated (phylogeographic structure is absent), phylogenetically they are related27
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and have the same mtDNA haplotype M2. Cluster II does not separate from Cluster III in the1

absence of mtDNA marker (a non homoplasious marker in the present study). All the three2

clusters have phylogenetically related but mostly geographically unrelated cpDNA haplotypes.3

4
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Figure legend1

2

FIG. 1. Minimum-length spanning tree of 33 cpDNA haplotypes of Prunus spinosa with the3

mtDNA haplotypes plotted on it. The length of segments joining the circles is proportional to4

the number of mutations between haplotypes. The empty circles, black circles, and half filled5

circles represent the cpDNA haplotypes associated with the mtDNA haplotype M1, M2, and6

both M1 and M2, respectively.7



TABLE 1. Populations, origin and number of individuals studied in Prunus spinosa1

Population
code

Collection
site

Origin Longitude, Latitude No. of
individuals

01 Glen Afric Great Britain 04º83W, 57º32N 6

02 Lake District Great Britain 03º00W, 54º27N 6

03 Forest of Dean Great Britain 02º65W, 51º83N 7

04 Stenshuvud Sweden 14º25E, 55º65N 6

05 Halltorps Hage Sweden 16º53E, 56º75N 8

06 Shönberg Germany 07º83E, 47º96N 6

07 Bovenden Germany 10º05E, 51º57N 7

08 Kelheim Germany 11º83E, 48º93N 8

09 Fointainebleau France 02º67E, 48º42N 6

10 Chizé France 00º40W, 46º14N 8

11 Seillon France 05º00E, 46º00N 7

12 Valbonne France 04º55E, 44º24N 8

13 State Forest of Aitone France 08º88E, 42º28N 7

14 Devesa da Rogueira Spain 07º08W, 42º25N 7

15 Valle de Salazar Spain 00º92W, 42º83N 8

16 Montejo de la Sierra Spain 03º50W, 41º13N 8

17 Parco Naz. Foreste Casentinesi Italy 11º80E, 43º78N 6

18 Alto Garda Bresciano Italy 10º88E, 45º80N 5

19 Park of Calabria Italy 16º58E, 39º00N 8

20 Mt. Medvenica Croatia 15º95E, 45º87N 6

21 Savarsin Romania 22º23E, 46º02N 5

22 Boki Slovakia 19º12E, 48º57N 4

23 Paleochori Greece 23º69E, 40º51N 5

24 Voronez Reserve Russia 39º50E, 51º83N 5



TABLE 2. Major patterns and variants (in bp) in the polymorphic fragments1

obtained with the primer pair CD and two restriction enzymes (HinfI and TaqI) in2

Prunus spinosa. A, B, C, D, E, and F are the polymorphisms in each polymorphic3

fragment4

Polymorphic fragments Major pattern Variant

CD-(HinfI)1 760(C)  850(A), 830(B), 730(D), 510(E), 440 + 320(F)

CD-(HinfI)2 380(B)  420(A), 370(C), 350(D)

CD-(HinfI)3 325(B)  335(A), 240(C), 220(D), 0(E)

CD-(HinfI)4 290(A)  0(B)

CD-(TaqI)1 1400(A)  1100(B)

CD-(TaqI)2 850(C)  940(A), 880(B)

CD-(TaqI)3 520(C)  580(A), 550(B)

CD-(TaqI)4 330(B)  345(A), 320(C)



TABLE 3. Distribution of cpDNA and associated mtDNA haplotypes in the 24 populations of Prunus spinosa studied (see population code in Table 1)1

cpDNA (mtDNA)

haplotype

Population code (No. of individuals with a particular haplotype) Total no. of
individuals

with
haplotype

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C1 (M1) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C2 (M1) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C3 (M1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 3
C4 (M2) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C5 (M1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
C6 (M2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
C7 (M2) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C8 (M2) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C9 (M1) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C9 (M2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
C10 (M1) 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 1 0 0 5
C10 (M2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4
C11 (M1) 0 1 1 0 0 0 0 0 1 1 0 0 0 2 3 0 0 0 0 0 0 0 0 0 9
C12 (M1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
C13 (M2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
C14 (M2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
C15 (M1) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C16 (M1) 0 0 0 0 1 0 0 1 0 0 0 0 0 4 1 1 0 0 0 0 0 0 0 0 8
C17 (M1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2
C18 (M2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3
C19 (M1) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
C20 (M1) 6 4 4 6 7 0 7 2 4 5 7 8 2 0 1 5 4 5 0 2 1 0 0 0 80
C21 (M1) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2
C22 (M1) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C23 (M1) 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2
C24 (M1) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 3
C25 (M1) 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
C26 (M1) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
C27 (M2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
C28 (M1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2
C29 (M1) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 3
C30 (M2) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
C31 (M2) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
C32 (M1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
C33 (M2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 8

Totals 6 6 7 6 8 6 7 8 6 8 7 8 7 7 8 8 6 5 8 6 5 4 5 5 157
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