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Abstract

Myocardial infarction (MI), caused by the occlusion of the left ventricular coronary artery,

may lead to massive loss of cardiomyocytes and eventually heart failure. To repair MI, one key

issue is to compensate for the loss of cardiomyocytes in the MI site. Notably, cardiomyocytes are

mature cells with limited proliferation capability. Another issue in MI repair is to improve the local

ischemic condition at the MI site so as to provide the cells with nutrition and oxygen, where the

revascularization or the renewal of the small vessels (or angiogenesis) is critical. To address the

issues, the proposed study aims to develop injectable alginate hydrogels with growth factor/living

cells for MI repair. To be more specific, two specific strategies were developed, which were 1)

to co-deliver 6-Bromoindirubin-3-oxime (BIO) and insulin-like growth factor (IGF-1) by means

of nanoparticles and 2) to encapsulate living stem cells. BIO is a small molecular drug that can

promote the regeneration of cardiomyocytes and IGF-1 is able to stimulate the angiogenesis.

In the development of strategy 1), both BIO and IGF-1 were encapsulated in gelatin nanopar-

ticles, which were later cross-linked with the oxidized alginate to form a novel hybrid hydrogel

system. The fabricated nanoparticles were then subjected both in vitro and in vivo characterization.

The results have shown that the growth factors can continue to release over 110 hours in vitro and

last for 45 days in vivo. The in vivo results have also shown that the hybrid system could enhance

the proliferation of cardiomyocytes in situ and could promote revascularization around the MI sites,

allowing improved cardiac function. Taken together, the strategy of co-delivering of BIO and IGF-1

is promising for MI repair.

In the development of strategy 2), two types of alginate hydrogels, based on self-crosslinking

(SCL) and calcium ion crosslinking (Ca2+ ), were synthesized in varying formulations; hydrogels

encapsulated living muscle-derived stem cells (MDSCs) and their performance was evaluated in

terms of optimizing cell viability during the injection process as well as the live/dead ratio af-

ter long-term cultivation. The morphology of the hydrogel-encapsulated cells was characterized

by scanning electronic microscopy (SEM) and live/dead cells were examined using an 3-(4,5-

dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide staining (MTT) assay. The mechanical

properties of the hydrogels were also determined via a rheometer, to identify their influence on cell

viability during the injection process and with respect to long-term cultivation. The results show
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that living cells are able to survive in both types of hydrogels and SCL hydrogel in particular is

better for the living cells in long term.

To sum up, this study illustrates that both strategies are promising in MI repair by presenting

a non-invasive method of injecting biocompatible and biodegradable hydrogel with growth factors

and living cells for supplementing cells and angiogenesis for further enhancing heart function in

MI rats. These strategies could be adopted and used in clinical applications to human patients.
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1 Introduction and Objectives

1.1 Background of Myocardial Infarction

Myocardial infarction (MI), commonly known as heart attack, results from interruption of the blood

supply to a part of the heart. This is most commonly due to occlusion of the coronary artery. If left

untreated, the ischemia or resulting restriction in blood supply may cause damage or death of the

myocardium or cardiac muscle tissue, thus leading to heart failure. According to the latest report

from the World Heath Organization [1], MI and other cardiovascular diseases are the leading causes

of death worldwide.

Hearts are primarily composed of the myocardium and coronary arteries. The myocardium

has extremely limited regeneration potential [2, 3]. Supplied with oxygen- and nutrient-rich blood

through the coronary arteries, the myocardium continuously contracts and relaxes so as to pump

blood throughout the body. After MI, the ischemic myocardium ceases to function properly due to

the loss or death of cardiomyocytes, i.e., the cells of which the myocardium is comprised. This is

further accompanied by a ventricular remodelling process [4, 5] due to the degradation of the ex-

tracellular matrix (ECM) by matrix metalloproteinases (MMP) [6, 7] and scar tissue formation [8],

eventually leading to congestive heart failure [9].

Various therapies, including pharmaceutical interventions, have been exploited to slow down

the progression to heart failure. Unfortunately, these therapies do not restore function to the affected

myocardium [9, 10]. Heart transplantation is the gold standard to treat congestive heart failure but

is severely limited as an option due to the limited availability of donor organs. Moreover, the

immunological injection response in the hosts after the heart transplantation surgery is a potential

risk [11, 12] and a crucial factor lowering life quality of patients, which makes this therapy less

practical clinically.

With advances in tissue engineering, injection or implantation of tissue engineering cardiac
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constructs or scaffolds made from biomaterials and/or living cells into the affected myocardium

shows promise for improving MI repair.

1.2 Literature Review on Injection Strategies

1.2.1 Cardiomyoplasty and Cell Sources

A therapy is demonstrated through recent investigations into cellular cardiomyoplasty, wherein

cardiomyoblasts or other types of stem cells are directly injected into the injured heart, serving as

renewable cellular sources aiding in the repair of the damaged myocardium [3]. Studies working

on improvement in myocardial function by means of cardiomyoplasty have been demonstrated [3,

13, 14, 15].

Cardiomyocytes are mature mammal cells that are limited in regeneration [16, 17]. By trans-

planting exogenous cells into the damaged heart after MI, it is an important way to supplement the

cells for repairing MI [18]. Various stem cells show the ability to differentiate into cardiomyocytes

and proliferate as candidates of cells sources [19, 20].

Embryonic stem cells transplantation

Research has illustrated that embryonic stem cells can form new myocardium after transplanting

into normal or infarcted heart [21], and that stem cell derived cardiomyocytes can improve the

myocardial performance in MI rat models [22]. Also, due to the facts that embryonic stem cells

can from an efficient alternative substrate in MI rats hearts, the advantages for using these cells in

MI rats are as of preventing myocardial wall from thinning and improving the contractility [23].

As such, embryonic stem cells are considered as an appropriate cell type for supplementing cell

loss in MI heart. However, it is also noted by experiments that human stem cells cannot directly

form new myocardium after transplantation into MI rat hearts and may create teratoma. However,

they can attenuate post-MI scar thinning and left ventricular dysfunction [24]. Another previous

study indicated another disadvantage of embryonic stem cells in MI treatment is causing tumour

genesis [25]. Moreover, the source of embryonic stem cells is limited because these cells are still

not considered ethical for use in clinical trials.
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Bone marrow stem cells

Bone marrow stem cells retain the regenerative ability of forming new cardiomyocytes and coro-

nary vessels in MI rat models [26]. Moreover, they have more sources compared with embryonic

stem cells, which solves the deficiency of limited access of embryonic stem cells. Zhang et al. advo-

cate these aforementioned conclusions by illustrating the experimental results that nine days after

transplantation of bone marrow stem cells in MI mice, the new generated myocardium occupies

68% in the infarcted area [27]. Tanaka et al. state that heart function was improved, angiogenesis

was enhanced [28] and the regenerative ability for deriving into cardiomyocytes was improved af-

ter transplanting bone marrow mesenchyme stem cell into MI rats [29]. However, disadvantages of

bone marrow stem cells, such as difficult accessibility and disease-related malfunction, discussed

in these studies [30] [31] [32] have been noted.

Adipose derived stem cells

Adipose derived stem cells are promising candidates for repairing MI due to their high potential

ability for deriving into cardiomyocyte-like cells and improving heart function after being trans-

planted into MI rat’ hearts [33]. Adipose derived stem cells can be obtained from adipose tissue,

which guarantees the abundant resource [34]. This is proved by Choi et al.’s experimental results

that have shown modified heart function and enhanced vascularization as well as improved long-

term survival rate after transplanting adipose derived stem cells into acute MI rats [35, 36, 37]. On

the other hand, some research point out that mesenchymal stem cells from adipose tissue cannot dif-

ferentiate into real cardiomyocytes although the heart function is improved after being transplanted

[38].

Induced pluripotent stem cells

Induced pluripotent stem cells, another type of cells of high differentiation and proliferation ability

with a plentiful of access [39], may also be an appropriate cell type in MI repair. Experimental

results show that induced pluripotent stem cells maintain cell viability by inhibiting apoptosis via

Akt/Pten pathway in doxorubicin-induced cardiotoxicity [40]. Facts showing induced pluripotent

stem cells are beneficial for heart function repair after MI, such as in MI mice models the cardiac
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remodeling can be attenuated by the absence of induced pluripotent stem cells derived cardiomy-

ocyte sheets [41]. Jia et al. illustrate that heart function is improved by intramyocardial injection

of induced pluripotent stem cells in acute MI porcine models [42]. Similarly, heart repair and left

ventricular dysfunction can be ameliorated in acute and subacute MI rats respectively by intra-

myocardial delivery of induced pluripotent stem cells [43, 44]. However, shortages of induced

pluripotent stem cells are emerging and make it difficult when applying in MI repair. For example,

the reprogramming of induced pluripotent stem cells is still slow and inefficient [45], which costs

more time and energy to take usage of these cells than other cells. Another disadvantage is that the

immunological rejection responses are serious after transplanting induced pluripotent stem cells

[46].

Muscle derived stem cells

Muscle derived stem cells, owing to their characteristics of regeneration and great differentiation

potential into cardiomyocytes, are a kind of somatic stem cells which have plentiful of sources [47,

48]. Moreover, myosphere-derived progenitor cells have an extended period of proliferation time.

They can spontaneously differentiate into myotubes in differentiation media and into other meso-

dermal cell lineages in induction media [49]. Several previous studies reported that muscle derived

stem cells have good proliferative and adhesion properties. Muscle derived stem cells can improve

cell regeneration capacity and pumping ability of heart in chronic MI model without causing any

significant arrhythmias. Currently no obvious shortages have been reported of the application of

muscle-derived stem cells in MI repair. They are considered appropriate cell source type, though

the retention rate is still too low after transplanting into MI hearts.

1.2.2 Injectable Hydrogels

The cellular therapy faces a major problem. Typically, the cell injection process transplants cells

in an aqueous solution and, as such, does not provide cells with any environment or matrix for

attachment and protection. In such harsh conditions, the transplanted cells may be damaged [50,

51]. Furthermore, upon injection into the ischemic myocardium, cells experience a harsh hypoxic

environment that further negatively impacts cell viability [52, 53, 54, 55, 56]. As a result, most (90-

95%) injected cells die shortly after transplantation and only a small subpopulation plays a role in
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muscle regeneration [55, 56]. More recently, research has shown cell viability during injection can

be significantly improved if cells are encapsulated in hydrogels rather than suspended in aqueous

solutions [57, 56, 58, 59].

Hydrogels are cross-linked networks of polymers, such as fibrin and alginate, with high water

content between polymer chains [60, 61, 62, 63]. When used for cell encapsulation, hydrogels

provide a hydrated tissue-like scaffold or environment for cell attachment and protection, thereby

improving cell viability. Among various injectable hydrogels, alginate cross-linked in the presence

of calcium ions has been drawing considerable attention for use in MI repair, leading to enhanced

cell viability and proliferation as well as improved contractile function [64, 65, 66]. However, the

calcium-ion-cross-linked (CICL) alginate hydrogel has uncontrollable degradation kinetics [67, 68]

and poor cell adhesion and infiltration [61]. Recently, successful application of a new class of

hydrogels from oxidized alginate and gelatin, through a self-cross-linked (SCL) process, has been

reported for drug delivery and wound healing [64, 65]. Our group have begun to synthesize and

characterize SCL alginate hydrogels, and demonstrated them to be more suitable for MI repair than

CICL alginate hydrogels. One key objective of this MSc project is to expand our ongoing studies

to synthesize SCL alginate hydrogels for cell encapsulation in MI repair.

1.2.3 Controlled Release Strategies in MI Repair

Drugs or growth factors may be used in MI repair to stimulate cardiomyocytes to proliferate. For

this, drugs should be small molecule and should permeate into cells, meanwhile not cause toxic

effect. The challenge here is to control drug release rate or speed such that the drug concentration

can be maintained constant for the MI repair.

One feasible way to control the release speed is entrapping drugs by nanoparticles for gradually

releasing from particles [66, 69]. Another way for controlling the release speed is to cross-link

nanoparticles with scaffolds via chemical, combining or disconnecting chemical bonds [70, 71].

Hua et al. released diclofenac sodium through the drug delivery system of cross-linking Ca2+

with sodium alginate/poly (vinyl alcohol) by adjusting the pH value for heart function recovery

examination [72].

Controlled release can be applied in a broad manner, such as cell release with particular drugs.

Kasko et al. discussed repairing heart function via releasing living cells and drugs together, par-
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ticularly patterned hydrogel has been fabricated based on two-photon lithography technique for

releasing cells in local MI area [73]. Due to plentiful applications of controlled release of nanopar-

ticles crosslinking with hydrogel, it is critical to manipulate the loading efficiency of nanoparticles.

Hamidi et al. proposed a new drug delivery model of valproate-loaded nanogels encapsulated

erythrocytes showed reasonable entrapment efficiency of 42.07 ± 3.6% of drug loading [74]. La-

pointe et al. indicate that thermoresponsive materials such as poly (N-isopropylacrylamide) based

nanoparticles could be embedded in hydrogel and have a better application of drug delivery than

traditional method [75]. Chen et al studied in vitro skin permeation experiments for the measure-

ment of efficiency of drug-loaded nanoparticles delivery, particularly these nanoparticles having

average diameters of about 30 nm and 100 nm and their structure is composed of inner spHerical

solid spheres and an outer hydrogel matrix [76].

A breakthrough method for local drug release is fabricating in situ cross-link hybrid hydro-

gel composed of polysaccharides (hyaluronic acid, dextran and/or carboxymethyl cellulose) and

gelatin, showing the ability for releasing proteins with minimal cytotoxicity [77]. Another case

is in situ thermoreversible gel comprising liposome-containing paclitaxel is studied as controlled

release method and can improve the antitumor drug efficiency [78].

1.3 Research Objectives

From the above literature review, it is known that the challenge for MI repair with tissue engineering

strategies is to supplement functional cells to the MI site, meanwhile keeping the cells alive and

functioning. To overcome this challenge, this thesis aims to develop injectable alginate hydrogels

for the controlled release of growth factors and the encapsulation of living cells. Two main specific

research objectives are set and outlined as below:

1.3.1 Co-delivery of BIO and IGF-1 in Nanoparticles by Hydrogel

Differentiation and proliferation of endogenous cardiomyocytes in situ can effectively improve car-

diac repair following myocardial infarction (MI). This objective is to perform a study on the sus-

tained co-delivery of BIO and IGF-1 in a hybrid hydrogel system to simulate endogenous cardiac

repair in an MI rat model. For this, both BIO and IGF-1 are to be encapsulated in gelatin nanoparti-
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cles, which are later cross-linked with the oxidized alginate to form a novel hybrid hydrogel system.

Then, in vitro and in vivo tests are to be performed so as to illustrate the effectiveness of the hybrid

hydrogel system for co-delivery BIO and IGF-1 to the MI area, in terms of the proliferation of

cardiomyocytes and revascularization.

1.3.2 Synthesize Alginate Hydrogels and Optimize Cell Viability

High cell retention rate, cell viability and the long term cell live/dead ratio after transplanting

living cells are important in MI repair. This is needed to supplement the functional cell in MI area

as an effective way for enhancing heart function. This objective is to fabricate injectable hydrogels

encapsulating living cells, which is easier to inject cells into the MI area with fewer trauma during

the surgery, then test and optimize the cells viability after injection by selecting the components of

the hydrogels. For this, the injectable alginate hydrogel of different compositions with two methods

briefly described as self-crosslinking hydrogel and cross-linker (Ca2+) adjusted hydrogel are to be

synthesized. The living stem cells are to be encapsulated into both types of hydrogels and the cells

viability and long-term live/dead ratio are to be examined.

1.4 Thesis Organization

This thesis is composed of four chapters. Chapter 1 gives the introduction and research objectives

of this thesis; Chapters 2 and 3 present the work related to the two research objectives; Chapter 4

discusses the conclusions drawn from this thesis as well as the future work.

Chapter 1 briefly introduces the background of myocardial infarction and presents the literature

review on tissue engineering treatments for MI repair; and on this basis, this chapter defines two

research objectives to be achieved.

In chapter 2, the first research objective and methods as well as results of the controlled release

of BIO and IGF-1 for MI repair in animal models have been described and discussed.

Briefly, a pH sensitive hybrid hydrogel system combining with nanoparticles for co-delivery of

BIO and IGF-1 for simulating endogenous cardiac repair in MI rat models was fabricated. Growth

factors BIO and IGF-1 were aimed to be efficiently encapsulated into gelatin nanoparticles, and

then these nanoparticles were cross-linked with the oxidized alginate hydrogel for forming a novel
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hybrid hydrogel system. With the change of pH value in the micro-envrionment after MI in re-

sponse of time growing, both growth factors were released for the specific concentration via dis-

connecting from the hydrogel. The release profile of the nanoparticles from the hydrogel and the

release of the small molecular growth factors from nanoparticles were described. Taken together

all in vivo results, it indicates that this hybrid hydrogel system have enhanced the proliferation of

cardiomyocytes and promoted the angiogenesis in the MI area, which further improved the cardiac

function.

In chapter 3, the research objectives and methods as well as experimental results of encapsulat-

ing living stem cells in alginate hydrogel for MI repair have been described and discussed.

Generally, two types of injectable alginate hydrogels based on self-crosslinking (SCL) and

calcium ion crosslinking (Ca2+) with various components were synthesized. Then living muscle

derived stem cells were encapsulated into both types of hydrogels, for their performance evaluation

in terms of optimizing cells viability during the injection process, and long term cells live/dead

ratio after two months cultivation. The characters of both types of hydrogels and the behaviour

of living cells were studied. By comparing the cells viability and long term cells live/dead ratio

in both types of hydrogels in varying formulations, the appropriate composition of hydrogel was

selected. Overall, the SCL hydrogel with a 0.8% alginate and 20% gelatin has the highest cells

viability during the injection process and the Ca2+ hydrogel with a 1.1% alginate and 20% gelatin

has the highest cells live/dead ratio after two months of cultivation.

In chapter 4, the conclusions based on the research objectives and obtained results were sum-

marized and future work has been described.
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2 Sustained Co-delivery of BIO and IGF-1 by a Novel

Hybrid Hydrogel System to Stimulate Endogenous

Cardiac Repair in Myocardial Infarcted Rat Hearts

Notes: Sections 2.1 – 2.6 of this chapter are adopted from the publication of “Fang, R.; Qiao,

S.; Liu, Y.; Meng, Q.; Chen, X.; Song, B.; Hou, X.; Tian, W. Sustained Co-Delivery of BIO and

IGF-1 by a Novel Hybrid Hydrogel System to Stimulate Endogenous Cardiac Repair in Myocar-

dial Infarcted Rat Hearts. Int. J. Nanomed. 2015, 10, 4691–4703. According to the Copyright

Agreement, "the authors retain the right to include the journal article, in full or in part, in a thesis

or dissertation".
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the paper. Yi Liu, Qingyuan Meng, Bing Song and Xiaolu Hou helped with in vivo tests and

measurements. Weiming Tian and Xiongbiao Chen supervised the research and revised the paper.

2.1 Abstract

Dedifferentiation and proliferation of endogenous cardiomyocytes in situ can effectively improve

cardiac repair following myocardial infarction (MI). 6-Bromoindirubin-3-oxim (BIO) and insulin-

like growth factor (IGF)-1 are two potent factors that promote cardiomyocyte survival and pro-

liferation. However, their deliveries for sustained release in MI-affected areas was proven to be

challenging. In the current paper, we present a study on the sustained co-delivery of BIO and

IGF-1 in a hybrid hydrogel system to simulate endogenous cardiac repair in a MI rat model. Both

BIO and IGF-1 were efficiently encapsulated in gelatin nanoparticles, which were later cross-linked
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with the oxidized alginate to form a novel hybrid hydrogel system. The in vivo results indicated

that the hybrid system could enhance the proliferation of cardiomyocytes in situ and could promote

revascularization around the MI sites, allowing improved cardiac function. Taken together, we con-

cluded that the hybrid hydrogel system can co-deliver BIO and IGF-1 to areas of MI and improve

cardiac function by promoting the proliferation of cardiomyocytes and revascularization.

2.2 Introduction

Many heart diseases primarily result in the loss of cardiomyocytes. It has been a significant chal-

lenge to develop effective treatments for cardiac repair because adult mammalian cardiomyocytes

are highly differentiated cells and have long been thought to undergo terminal differentiation [79].

Contrary to this long-held view, an emerging strategy posits that in response to heart injury, resi-

dent cardiomyocytes and cardiac stem cells surrounding the injured area can migrate and rapidly

re-enter the cell cycle, thus promoting heart function recovery [80, 81]. However, the endogenous

regenerative capacity of hearts is limited due to the massive loss of cardiomyocytes after myocar-

dial infarction (MI) and heart failure. MI is considered a major cardiovascular disease, and it was

found to be a major factor that contributed to non-natural mortality worldwide in 2013 [82, 83].

Current stem cell-based therapies have the potential to fundamentally improve the treatments of

ischemic cardiac injury and heart failure. These therapeutic approaches mainly involve the use

of bone marrow-derived mononuclear cells and their subsets, such as mesenchymal stem/stromal

cells, endothelial progenitor cells, as well as adipose tissue-derived muscle stem cells, cardiac

tissue-derived stem cells, and cell combinations [84, 85, 86, 87]. However, these stem cell therapies

have low efficacy due to poor cell engraftment and differentiation under the harsh (low nutrient and

low oxygen) ischemic environment of infarcted hearts [84, 85]. Previous studies have shown that

fewer than 2% of cells survive a few weeks after the stem cells’ delivery [86, 87, 88]. Despite the

availability of many treatment options, heart disease remains the leading cause of death worldwide,

raising the great need for novel or innovative therapeutic strategies. A recent study on stimulat-

ing cardiomyocyte dedifferentiation and proliferation by activating the mitotic signaling pathways

involved in embryonic heart growth represents a complementary approach for heart regeneration

and repair [89, 90, 91, 92]. An inhibitor of glycogen synthase kinase-3,6-Bromoindirubin-3-oxim
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(BIO), which is isolated from mollusk Tyrian purple indirubins, has been shown able to induce

the dedifferentiation of cardiomyocytes or endothelial cells, thus promoting mature cardiomyocyte

proliferation [93, 94]. On the other hand, substantial data also illustrate that insulin-like growth fac-

tor 1 (IGF-1) is a potent cardiomyocyte growth and survival factor. It has been illustrated that IGF-1

deletion has harmful effects on cardiac growth and its deficiency is associated with an increased

risk of cardiovascular disease [95, 96]. Cardiac-specific overexpression of IGF-1 can protect against

myocyte apoptosis and ventricular dilation following MI [97, 98]. Recently, drug delivery systems

using biomaterials as vehicles have drawn considerable attention. Studies have shown that by com-

bining growth factors with an injectable biomaterial, the biomaterial could serve as a controlled

drug-release platform to improve functional outcomes [99, 100]. However, co-delivery of BIO and

IGF-1 to the injured heart area remains a challenge. Daily injections of both BIO and IGF-1 is a

straightforward method that can maintain these agents at appropriate levels; however, this method

causes issues, such as toxicity, due to their high doses [101]. In the current research, we report

a novel hybrid hydrogel system of chemically encapsulated gelatin nanoparticles (NPs) for the

sustained co-delivery of BIO and IGF-1 in MI treatment.

2.3 Materials and Methods

2.3.1 Materials

Alginate (low viscosity), gelatin, sodium periodate, and hydrochloric acid were purchased from

Sigma Aldrich Co. (St. Louis, MO, USA); BIO was purchased from EMD Millipore, a division

of Merck KGaA (Darmstadt, Germany); IGF-1 was supplied by ProSpec-Tany TechnoGene Ltd

(Rehovot, Israel); and Cy7 (molecular formula: C35H41KN2O8S2) was purchased from Fanbo Bio-

chemicals Co (Beijing, People’s Republic of China).

Sprague-Dawley (SD) male rats, specific pathogen free (SPF) (weighting 200-250g each), pro-

vided by the Laboratory Animal Center of Harbin Medical University (Harbin, People’s Republic

of China), were used to isolate cardiomyocytes, and served as MI animal models. All animals were

fed ad libitum and kept under the normal 12-hour dark/12-hour light cycle. All procedures were

approved by the University Ethics Committee of the Harbin Institute of Technology.
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2.3.2 Methods

Preparation NPs

Blank gelatin NPs (BgNPs) were prepared using a two-step desolvation method with slight modifi-

cations [102, 103]. Briefly, gelatin was dissolved at 5 wt% in distilled water by stirring at 55 ◦C for

2 hours. Then, the pH of the gelatin solution was adjusted to proceed with the second desolvation

step. To prepare the BIO-loaded gelatin NPs (OgNPs), IGF-1-loaded gelatin NPs (FgNPs), and

BIO-IGF1 co-loaded gelatin NPs (CgNPs), 10 µL of 5 µM BIO (dissolved in 500 µL of dimethyl

sulfoxide [DMSO]) and 10 µL of 10 µM IGF-1 were added individually or together into 10 mL of

5% gelatin solution in a dark environment respectively, followed by the dropwise addition of ace-

tone (30 µL) to form NPs. At the end of the process, a glutaraldehyde solution (25% v/v aqueous

solution) was added as a cross-linking agent and the solution was stirred for 12 hours at a speed of

600 rpm. DMSO was removed by means of distilled water. Eventually, the solution was centrifuged

at 12,000 rpm for 1.5 hours, yielding the NPs. Dynamic light scattering was conducted using a Ze-

tasizer Nano ZS system (Malvern Instruments, Malvern, UK) to characterize the distribution and

size of the NPs.

Encapsulation Efficiencies of NPs

The encapsulation efficiency of the BIO and IGF-1 within the NPs was evaluated using an ultravi-

olet (UV) method. A drug-encapsulating gelatin NP solution was filtered through a Millipore filter

(UFP2THK24 [100 kD cutoff]), where the free drug present in the aqueous buffer passed through

the filter, leaving the drug entrapped in the NPs. Following the separation of the NPs from the

aqueous buffer, the drug left in the aqueous buffer was measured using a 752 UV/visible recording

spectrophotometer with a wavelength of 500 nm and 280 nm respectively. The total amount of drug

left in the aqueous solution was subtracted from the amount of drug originally added in the reaction

medium, and the entrapment efficiency (E %) was calculated from the ratio of the amount of drug

entrapped over the total amount of drug added.
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Synthesis of Self-cross-linked Hydrogel and Its Physicochemical Characterization

Hydrogel was synthesized as previously described [104]. Briefly, oxidized alginate was obtained

by mixing sodium peroxide and sodium alginate (in distilled water) with mass ratios of 1:2. The

reaction was conducted at 4 ◦C overnight and the degree of oxidation was evaluated by measuring

the concentration of sodium peroxide. Sodium peroxide was left unconsumed after 24 hours and the

concentration was measured by titration of hydrochloric acid (0.5 wt%). The oxidized alginate and

gelatin hydrogel were then obtained by mixing the alginate dialdehyde and gelatin NP solutions.

The gelation process and the mechanical properties of oxidized alginate and gelatin hydrogel were

evaluated by examining the time of gelation onset and the evolution of elasticity at 37 ◦C in the

constant strain mode by means of a Bohlin Gemini II rheometer (Malvern Instruments) featuring a

parallel plate geometry (40 mm in diameter), as in our previous study [104].

Drug-releasing Profile in vitro and in vivo

To monitor the in vitro release profile, gelatin NPs and each of the encapsulating drugs were made

to conform by means of a semi-permeable membrane (40 KD) and were then immersed in 10mL

of phosphate buffered saline at 4 ◦C for release within a time period of 7 days; every 24 hours, the

optical density was examined by a UV spectrophotometer at 500 nm. A sample of 1 cm3 of the

encapsulating drug (10 uL) was examined under the same conditions as the control group, so as to

study the drug’s release profile. To monitor the in vivo release profile, an in vivo imaging method

was used. First, the gelatin NPs were labeled with the fluorescent agent Cy7, and then the labeled

gelatin NPs were conjugated to the hydrogel, as described in section 2.3.2. Both the labeled gelatin

NPs alone, as well as the labeled gelatin NPs that conjugated to the hydrogels, were injected into

the area affected by MI in 20 rats (10 rats in each group), as described in a previous study [104].

The fluorescence of both groups was examined and recorded by an in vivo imaging system (DXS

4000 PRO; Eastman Kodak Co, Rochester, NY, USA) every 5 days.

Cardiomyocyte Culture

Neonatal cardiomyocytes were isolated from 2- to 3-day-old SD rats, as adapted from a previ-

ous protocol [105]. Hearts were removed from the neonatal rats; then, atrial and connective tissues
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were excised. Hearts were minced into 1mm3 pieces and then subjected to five rounds of enzymatic

digestion for 8–10 minutes with collagenase II (0.5mgmL−1; Worthington Biochemical Corpora-

tion, Lakewood, NJ, USA). Digestion was stopped with an equal volume of Dulbecco’s Modified

Eagle’s Medium (DMEM) containing 10% fetal bovine serum (FBS) (Thermo Fisher Scientific,

Waltham, MA, USA). The cell suspension was centrifuged for 5 minutes at 2,000 xg and the result-

ing pellet was resuspended in DMEM containing 10% FBS. Cells were pre-plated in cell culture

flasks to reduce non-myocyte contamination (Corning Incorporated, Corning, NY, USA) for 90

minutes. Isolated cardiomyocytes were made into a suspension using oxidized alginate conjugated

with gelatin NPs at a density of 105 cells/mL. The obtained cells suspension are a mixture of car-

diomyocytes and fibroblasts. Since cardiomyocytes could be stained by anti-sarcomeric antibody

via immunofluorescence, the purity of the cardiomyocyte suspension can be evaluated by counting

the numbers of anti-sarcomeric antibody positive cells or by visual inspection.

Cell Proliferation in Hydrogels Assay

After 7 days of culture, the hydrogel/cardiomyocyte constructs were fixed. Immunofluorescence

was performed with the proliferating cell nuclear antigen (PCNA) antibody (1:200; Abcam plc,

Cambridge, UK) to identify the proliferation of cardiomyocytes. Laser confocal images were ob-

served and the PCNA-positive cells were counted.

MI Animal Model Preparation and Hydrogel Implantation

Ninety-five male SD rats (weighting 250 g each) were operated on to create the MI animal mod-

els. The rats were anaesthetized with an intravenous injection of 3% pentobarbital sodium (

30mg kg−1) [106], and an MI was subsequently induced ligating the left anterior descending coro-

nary artery 2mm from the top of the normally-positioned left auricle. Rats could be died because

of surgery and severe induced MI. We waited for 7 days to make sure there are no rats died be-

cause of the above reasons. Otherwise, we have to occlude there rats from the final experimental

analysis. One week later, each rat was injected with 80 µL of a given hydrogel (Table 2.1) into the

anterior and lateral regions bordering the infarct, as well as at the center of the infarct (16 uL per re-

gion). Anaesthetic operation with the same dosage was performed on the rats before the ultrasound

evaluation and hydrogel injection.
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Table 2.1: Groups and number of animals used for in vivo MI repair. Abbreviations: MI,
myocardial infarction; BIO, 6-bromoindirubin-3-oxime; IgF-1, insulin-like growth factor 1.
Sham animals accidentally died because of the surgery.

Groups # of animals per group # of animals survived at 6

weeks post-surgery

Survival rate

Sham 15 12 0.80

Control 20 11 0.55

IGF-1 20 14 0.70

BIO 20 17 0.85

BIO and IGF-1 20 16 0.80

Histology and immunohistochemistry

At 6 weeks post-implantation, the rats were anesthetized by 3% pentobarbital sodium (30 mg kg−1)

and then arrested with 10% KCl, rapidly excised, and frozen in tissue medium, which was followed

by sectioning each heart into three or four transverse slices parallel to the atrioventricular ring. Sam-

ples were then fixed with 10% buffered formalin, embedded in paraffin, sectioned into 5 µm slices,

and stained with hematoxylin and eosin (H&E). Scar thickness was measured under a microscope,

and on this basis, the relative scar thickness (defined by the average scar thickness divided by the

average wall thickness) and the heart expansion index (defined by the LV cavity area/whole LV

area/relative scar thickness) were evaluated, as in our previous study [104]. The detection of vari-

ous tissue antigens was conducted using the primary antibody, CD31, for endothelial cells (Abcam

plc). Double staining with anti-cardiac troponin-T (green, cardiomyocyte marker; Abcam plc) and

anti-PCNA (red, proliferation marker; Abcam plc) was performed. The doubled-stained cells were

evaluated by counting the average number of positively stained cells within six areas of 0.1mm2.

The CD31-positive capillary densities at the infarcted areas were analyzed by employing the same

method.
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Statistical analysis

All of the results were reported as the mean ± standard deviation. Two-way analysis of variance

(ANOVA) was used in the analysis of heart function between groups. One factor is the revascu-

larization and the other is cardiomyocytes regeneration. Post hoc Student’s t-test was used for the

remainder of the analysis to identify which particular differences between pairs of means are signif-

icant. A P-value <0.05 (*) was considered significant; a P-value <0.01 (**) was very significant.

2.4 Results

2.4.1 Preparation and Characterization of Hydrogels and the Drug-release

Profile in vitro and in vivo

Figure 2.1: Release assay profile in vitro. Notes: (A) SEM morphology of the prepared
gelatin NPs. (B) Dynamic light scattering (DLS) analysis of the gelatin NPs. (C) SEM image
and a zoomed image showing the gelatin NPs covalently conjugated to the hydrogel. (D) The
UV results of BIO absorption showing the release profiles in the free NP group and in the
gelatin NP encapsulated in hydrogel group. (E) Mechanical properties of the hydrogel before
and after release. Abbreviations: SEM, scanning electron microscope; DLS, dynamic light
scattering; BIO, 6-bromoindirubin-3-oxime; NP, nanoparticle; UV, ultraviolet.

The morphology of BgNPs was observed using a scanning electron microscope (SEM) (Fig-

ure 2.1 A); the results of dynamic light scattering showed that the NPs formed a cluster featur-
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ing different diameters ranging from 180 nm to 255 nm with a polydispersity index (PDI) of

0.158 ± 0.029 (Figure 2.1B). Then, the NPs were covalently attached to the hydrogel, as we had

previously reported [102]. The hydrogel formed with the porous network structure (Figure 2.1C).

The loading efficiency of OgNPs and FgNPs, which contained BIO and IGF-1, respectively, were

about 55% or 60%, which is similar to the findings of a previous study [107]. To detect the re-

lease profile of the NPs and the hydrogel composite system, we designed a method to examine the

BIO release profile in the NPs conjugated to the hydrogel and in the free NPs, as described in the

encapsulation efficiencies of NPs section. We compared the release behaviour of BIO in NPs and

in NPs covalently conjugated to the hydrogel. The release profile assay lasted for 110 hours for

both groups. The release rate of BIO in NPs was much higher than that the release rate of BIO

in NPs encapsulated in hydrogel (Figure 2.1D). From 0 to 60 hours, a rapid increase in the drug

release was observed in the NPs; however, a similar release peak was detected from 60–90 hours in

the NPs conjugated to the hydrogel (Figure 2.1D). For NPs, the BIO release mechanisms included

the biodegradation of NPs; in addition, BIO diffuses to the solution outside the semi-permeable

membrane.

In contrast with NPs, two steps were involved in the BIO’s release profile in NPs covalently

conjugated to the hydrogel. The first step involves the breakage of amines found between the NPs

and the hydrogel, and the second step includes BIO’s release from the NPs. As a result, the peak

release was postponed 60 hours in the in vitro delivery system. To further confirm the release

mechanism of NPs, the mechanical properties of the hydrogel were measured and compared to its

original properties prior to being released. The results showed that the elastic and viscous moduli

of the hydrogel were around 105 and 104 Pa prior to release, respectively, and they had decreased

to 103 and 10 Pa, respectively, after release (Figure 2.1E).

However, there was a tendency where the elastic and viscous moduli to stay the same before and

after the release, which indicated that the hydrogel still maintained a gel network structure. There-

fore, we postulated that the main releasing mechanism occurs through the breakage of chemical

bonds between gelatin NPs and oxide alginate–gelatin hydrogel. The release profile was also con-

trolled by the cross-linking density and degradability of the gel, modulated by the initial gelation

condition. The in vivo release profile was evaluated using the in vivo imaging method, as shown in

Figure 2.2 A. The results illustrated that the fluorescence of the scaffold encapsulating Cy7-labeled
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Figure 2.2: In vivo release profile assay. Notes: (A) The scheme showing the strategy used
to monitor the release profile using an in vivo imaging method. (B) Typical images of rats
implanted with free Cy7-labeled NPs and Cy7-labeled gelatin NPs encapsulated in hydrogel.
(C) The statistical analysis of immunofluorescence intensity remained constant over time
(n6). Abbreviation: NP, nanoparticle.
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NPs could last for 45 days, while the fluorescence of the control group (free Cy7-labeled NPs,

which were not conjugated to the hydrogel) lasted for less than 10 days (Figures 2.2 B and 2.2

C). Moreover, the intensities of the fluorescence were much higher than those in the control group

(Figure 2.2 C).

2.4.2 Cardiomyocyte Proliferation Detected in Hydrogels

To mimic the in vivo effect of the drug delivery system among cardiac cells, a three-dimensional

(3D) system was used to encapsulate the cardiomyocytes in hydrogel in the present study. The

results showed that the percentage of proliferated cardiomyocytes in the BIO release system (15%±

4%) was significantly higher than that in the control groups (7% ± 3%; P < 0.05); however, no

significant difference was observed in the IGF-1 release group (11%± 2%), as shown by the laser

confocal images (Figures 2.3 A, 2.3 B, and 2.3 C) and the statistical analyses (Figure 2.3 D).

Therefore, IGF-1 could not induce the proliferation of cardiomyocytes.

2.4.3 BIO/IGF-1 Administration Improves Cardiac Function after MI and

Leads to the Formation of New Cardiomyocytes

MI animal models were prepared according to the method described above, and different hydro-

gels that covalently conjugated with various NPs (blank gelatin NPs, OgNPs, FgNPs, and CgNPs)

were implanted to detect their effects on cardiac function repair. Even though IGF-1 by itself was

ineffective in promoting cardiomyocyte proliferation in a culture system, there might be integrated

impact between BIO and IGF-1 for MI repair.

In order to study the mechanism underlying the advancement of cardiac function for the ad-

ministration of BIO + IGF-1 in the MI rats, H&E staining was used perform a histology evaluation

following injection with our hydrogel system. Cardiac remodeling was found in our experimental

groups; however, through visual inspection, when compared to the control group, more cardiomy-

ocytes can be found visually in the BIO + IGF group as shown in Figure 2.4. Note that even though

fibrosis can be observed in the slides, it is commonly not used as an evaluation factor in this type

of research. The results were further confirmed by double staining with the anti-cardiac troponin-T

(green; cardiomyocyte marker) and anti-PCNA (red; proliferation marker) assay. The number of
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Figure 2.3: Effect of the hydrogel delivery system on the proliferation of 3D culture car-
diomyocytes. Notes: Scheme showing the strategy used to detect the enhanced proliferation
of 3D-cultured cardiomyocytes. Laser confocal images showing the PCNA-positive stained
cells in the (A) BgNP group, (B) FgNP group, and (C) OgNP group. (D) Statistical analysis
(t-test) of the number of PCNA-positive cells (n=6). **P = 0.01 OgNPs versus the BgNP
group. Abbreviations: BIO, 6-bromoindirubin-3-oxime; 3D, three dimensional; PCNA, pro-
liferating cell nuclear antigen; NP, nanoparticle; BgNP, blank gelatin nanoparticle; OgNP,
BIO-loaded gelatin nanoparticle; IGF-1, insulin-like growth factor 1; FgNP, IGF-1-loaded
gelatin nanoparticle.
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Figure 2.4: Histology evaluation of an ischemic heart. More cardiomyocytes can be found
visually in (E) as compared to the others. Notes: (A–E) H&E staining of the tissue sections
obtained from the MI region among the (A) sham group, (B) control group, (C) IGF-1 release
group, (D) BIO release group, and (E) BIO and IGF-1 co-delivery group. Scale bar, 100um.
Abbreviations: BIO, 6-bromoindirubin-3-oxime; IGF-1, insulin-like growth factor 1; H&E,
hematoxylin and eosin; MI, myocardial infarction.

proliferating cardiomyocytes in the BIO + IGF-1 group (35 ± 5) was the most significant among

all groups, and the number of proliferating cardiomyocytes in the BIO group (27 ± 5) was also

significantly higher than that of both the sham (5± 2) and the control groups (15± 5) as shown in

Figure 2.5. In the BIO delivery group, the enhanced proliferation of cardiomyocytes was observed.

In the co-delivery of BIO + IGF-1 group, both enhanced proliferation of the cardiomyocytes and

function recovery were seen. Moreover, angiogenesis plays a crucial role in tissue repair and heart

function after MI; therefore, the CD31 antibody-positive angiogenesis assay was detected among

the different groups as shown in Figure 2.6. In the BIO+ IGF -1 group, the most capillaries (70±8/

mm2) was observed. In addition, significant increase of blood vessels (60 ± 7/mm2) in the IGF-1

group was also detected. However, no significant increase in blood vessel density was observed in

the BIO group (43±8/mm2), which suggested that BIO could not promote angiogenesis. Enhanced
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angiogenesis was accompanied by functional recovery in the BIO and IGF-1 group; this indicates

that angiogenesis may be an important factor in the recovery of function.

Figure 2.5: Double staining with anticardiac troponin-T (green; cardiomyocyte marker)
and anti-PCNA (red; proliferation marker) shows the enhanced proliferation of resident car-
diomyocytes in an MI model (P< 0.01; n=6). Notes: (A) Sham group, (B) control group,
(C) IGF-1 release group, (D) BIO release group, and (E) BIO and IGF-1 co-delivery group.
(F) Statistical analysis of the number of double-stained cells. **P < 0.01 versus the control
group. The arrows show the cardiomyocytes which are double staining. Abbreviations: BIO,
6-bromoindirubin-3-oxime; IGF-1, insulin-like growth factor 1; MI, myocardial infarction;
PCNA, proliferating cell nuclear antigen.

2.5 Discussion

In the present study, we investigated the functional and histological/cellular effects of the intramy-

ocardial administration of BIO and IGF-1 in MI rats. We showed that the improved sustained

co-delivery of BIO and IGF-1 by a newly developed hybrid hydrogel system holds potential as a

novel treatment for MI. Six weeks after delivery, BIO and IGF-1 treatment led to the proliferation

of resident cardiac cells and promoted revascularization. Importantly, the repair and regeneration of

the damaged myocardial tissues was associated with significant improvements in cardiac function
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Figure 2.6: Immunostaining for the evaluation of angiogenesis. Notes: (A–D) CD31 im-
munostaining of the tissue sections from the MI among the (A) sham group, (B) control
group, (C) BIO release group, (D) IGF-1 release group, and (E) BIO and IGF-1 co-delivery
group. (F) Statistical analysis of the CD31-positive blood vessels (n = 6). *P < 0.05
versus the control group; **P < 0.01 versus the control group. Abbreviations: BIO, 6-
bromoindirubin-3-oxime; IGF-1, insulin-like growth factor 1; MI, myocardial infarction.

as shown in Figure 2.7.

2.5.1 Development of a New Hybrid Hydrogel System

Recently, studies have reported on the ways in which cardiac diseases can be treated through the

sustained delivery of IGF-1 by means of hydrogels [108, 109]. Though it makes a difference in

the treatment of MI, IGF-1 also causes such issues as toxicity due to their high doses and the short

release profile. Gelatin NPs, due to their good biocompatibility and biodegradability, have been

widely utilized in drug delivery applications [110]. However; the relatively fast degradation of

gelatin limits its applications to long-term protein delivery. Our previous study showed that the

covalent cross-linking of gelatin with alginate forms a hydrogel with both enhanced mechanical

properties and bioactive motifs for cell attachment, biodegradability, and functional recovery [104].
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Figure 2.7: Scheme showing the mechanism of BIO release within the hydrogel after injec-
tion into the MI area. Abbreviations: BIO, 6-bromoindirubin-3-oxime; IGF-1, insulin-like
growth factor 1; MI, myocardial infarction.

In the current study, we developed a novel hybrid hydrogel system with chemically encapsulated

gelatin NPs, which are pH sensitive, for the sustained co-delivery of BIO + IGF-1 in MI treatment.

The oxidation of sodium alginate produced aldehyde groups, which can form unstable amines

found within the free amino group in the gelatin NPs; thus, they covalently linked the NPs to the

alginate polymer chain. An acidic, low pH environment was generated with the occurrence of an

MI [83]. The amines that were found, which form between alginate and the gelatin NPs, are most

active in acidic environments. Following MI, the bond broke down quickly and the BIO and IGF-1

were released to the damaged area of the heart, ultimately promoting the heart’s overall function.

In summary, in our study, we developed a novel, pH-sensitive, hybrid hydrogel system of chem-

ically encapsulated gelatin NPs that can more efficiently sustain the co-delivery of BIO and IGF-1

to the injured area of the heart. Further, we also illustrated that the system could be more advanta-

geous when delivering BIO and IGF-1 in the treatment of MI.

2.5.2 Sustained Release of BIO or IGF-1 using Hybrid Hydrogel Systems

Drug release profiles were detected both in vitro and in vivo. It is generally recognized that 2D cell

cultures are not adequate representatives of the cellular environment found in organisms; rather,

3D cell culture models have the potential to improve the physiological relevance of cell-based
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assays [111]. In our previous study, we constructed an engineered heart tissue model using car-

diomyocytes [104]. In order to mimic the in vivo effect of a drug delivery system when promoting

the proliferation of cardiac cells, a 3D system to encapsulate the cardiomyocytes in the hydrogels

was used in the present study. The drug-release rate was detected in vivo by an imaging system that

has been widely used in cancer studies. More recently, a study showed that it can also be used to

evaluate biomaterial biodegradation in vivo [112]. Cy7 was conjugated to the NPs, and the rapidly

decreasing fluorescence intensities in the NP group indicated that without the support of the sub-

strate, the NPs diffused quickly following injection into the infarcted area. Also, it was found that

the fluorescence intensities decreased quickly at first, and then they slowly continued to decrease

with the treatment of MI via the injection of hydrogels; this result may be due to the fact that our

system is pH sensitive. Our results on the elastic and viscous moduli of the hydrogel illustrate

that there is not much difference prior to and after release, which indicates that the hydrogel still

maintains a gel network structure. As such, the controlled release profile was mainly caused by the

breakdown of the chemical bond between NPs and hydrogel, rather than by the drug itself.

2.5.3 Heart Regeneration with Our Novel Hybrid Hydrogel System of Chem-

ically Encapsulated Gelatin NPs

With the development of intramyocardial biomaterial, more and more biomaterials are being used

for injection therapy [108]. To date, it has already been demonstrated that many small molecules

contribute to heart regeneration; however, the mechanisms by which these benefits are obtained

remain unclear [113]. Here, we show that following BIO administration, the number of resident

cardiac cells in an MI model increased. Our findings further indicate that the function of BIO can

promote dedifferentiation and proliferation in terminally differentiated cardiomyocytes in vivo. The

BIO could reprogram the cardiomyocytes with changed morphology evidenced through rearrange-

ment of the cytoskeleton [93], which can be clearly observed in the anticardiac troponin-T staining

in Figure 2.5. In a recent study by Kohler, it was demonstrated that low doses of BIO also have the

ability to induce partial dedifferentiation among endothelial cells by regulating the canonical Wnt

pathway [114]. A previous study has shown that there is a dual role for BIO, which involves the

maintenance of stem cell properties and the induction of proliferation in differentiated cardiomy-
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ocytes; this indicates that these functions may share common molecular pathways that control the

canonical Wnt pathway [93, 115]. Secondly, our present findings document that IGF-1 can induce

angiogenesis following MI. Consistent with our study, a previous study showed that the local deliv-

ery of the IGF-1 gene by recombinant adeno-associated virus in the setting of acute MI resulted in

sustained IGF-1 expression, increased angiogenesis, and improved cardiac function [116]. Another

study also showed that IGF-1 enhanced wound healing and induced angiogenesis via a vascular

endothelial growth factor (VEGF)-independent pathway [117]. A previous study showed that im-

mobilizing IGF-1 with hydrogel could serve as a controlled drug-release platform, and that it could

also enhance cardiac progenitor cell survival and differentiation. In a study on chronically infarcted

pig hearts, IGF-1 and hepatocyte growth factor therapy also resulted in improved cardiac function

when using hydrogels [109]. In our current research, we developed a novel hybrid hydrogel sys-

tem with chemically encapsulated gelatin NPs for the sustained co-delivery of BIO and IGF-1 in

MI treatment. To our knowledge, this is the first report that remedies MI via the co-delivery BIO

and IGF-1, which have been identified as potential candidates to guide postnatal stem progenitor

cells toward a cardiomyogenic fate. In the present study, we demonstrated that the co-delivery of

BIO and IGF-1 can promote resident cardiomyocyte proliferation and revascularization. Therefore,

both BIO and IGF-1 can be involved potentially in contributing to the heart’s functional recovery.

As such, the entire study protocol employed in this present work is clinically feasible and may be

performed in a conventional catheterization laboratory.

2.5.4 Limitations

The concentrations of BIO and IGF-1 that were used in this work were adopted and used as per

previous studies [93, 100]. In the present study, the co-delivery of these two agents promoted the

function and regeneration of the heart following MI. However, it is not clear if the optimal concen-

tration of the co-delivery of BIO and IGF-1 can play an even more significant role in improving

heart function after MI, which would be interesting to pursue in the future. In addition, although

experimental work on the in vivo drug release of NPs encapsulated in hydrogel showed a 45-day

release for Cy7, we can not detect the release efficiency of BIO and IGF-1 directly. It would be

interesting to observe the delivery of these drugs over a longer period of time. This line of inquiry

also suggests that more non-invasive methods should be developed for drug tracing in the future.
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In section 2.4.3, the weight of the heart relative to body weight at the time of euthanasia was

not measured and this should be incorporated in the future experiments.

2.6 Conclusions

A novel hydrogel delivery system was developed to deliver drugs specifically to the site of an MI to

selectively enhance the proliferation of resident cardiac cells, resulting in enhanced heart function

recovery. Our results showed that NPs covalently entrapped in hydrogel hold great promise for

treating MIs and other related diseases given their ability to deliver a wide range of therapeutics.
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3 Synthesis of Injectable Alginate Hydrogels with

Muscle-Derived Stem Cells for Potential Myocardial

Infarction Repair

This chapter has been published as “Fang, Rui, Weiming Tian, and Xiongbiao Chen. “Synthesis

of injectable alginate hydrogels with muscle-derived stem cells for potential myocardial infarction

repair." Applied Sciences 7.3 (2017): 252." According to the Copyright Agreement, “the authors

retain the right to include the journal article, in full or in part, in a thesis or dissertation."

3.1 Abstract

Myocardial infarction (MI), caused by the occlusion of the left ventricular coronary artery, leads

to the loss of cardiomyocytes and, potentially, heart failure. Cardiomyocytes in adult mammals

proliferate at an extremely low rate and thus, a major challenge in MI treatment is supplement-

ing exogenous cells and keeping them viable in MI areas. To address this challenge, injecting

hydrogels encapsulating cells into MI areas, to compensate for the loss of cardiomyocytes, shows

promise. This study synthesized two types of alginate hydrogels, based on self-crosslinking (SCL)

and calcium ion crosslinking (Ca2+) in varying formulations. The hydrogels encapsulated living

muscle-derived stem cells (MDSCs) and their performance was evaluated in terms of optimizing

cell viability during the injection process, as well as the live/dead cell rate after long-term cultiva-

tion. The morphology of the hydrogel-encapsulated cells was characterized by scanning electronic

microscopy (SEM) and live/dead cells were examined using an MTT (3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide staining) assay. The mechanical properties of the hydrogels were

also determined via a rheometer, to identify their influence on cell viability during the injection

process and with respect to long-term cultivation. The SCL hydrogel with a 0.8% alginate and 20%
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gelatin formulation resulted in the highest cell viability during the injection process, and the Ca2+

hydrogel composed of 1.1% alginate and 20% gelatin maintained the highest cell survival rate after

two months in culture.

3.2 Introduction

Myocardial infarction (MI), commonly known as a heart attack, is caused by an interruption of the

blood supply to a part of the heart with cardiovascular disorder [118]. If left untreated, the ischemia

or resulting restriction in the blood supply may cause damage to the myocardium or cardiomyocyte

apoptosis, thus leading to heart failure. According to the latest statistics from the American Heart

Association [119], MI and other cardiovascular diseases are the leading causes of death worldwide.

The heart is primarily composed of the myocardium and coronary arteries. Supplied with oxygen-

and nutrient-rich blood through the coronary arteries, the myocardium continuously contracts and

relaxes, to pump blood throughout the body. The myocardium has an extremely limited regenera-

tion potential [120, 121], and so, after MI, the ischemic myocardium ceases to function properly,

due to the loss or death of cardiomyocytes, i.e., the cells of which it is comprised. Cardiomyoplasty

is a therapy used in MI repair, in which cardiomyoblasts or other types of stem cells are directly

injected into the injured heart, serving as renewable cellular sources which aid in the repair of

the damaged myocardium [122, 123]. To compensate for damaged or dead cardiomyocytes in the

MI area, the transplantation of various types of stem cells or exogenous cardiomyocytes has been

studied. Among them, cardiomyocytes [124, 125], embryonic stem cells [126, 127], and bone

marrow-derived mesenchymal stem cells [128] have been investigated, but the ideal cell type for

MI repair is far from certain [129]. Muscle-derived stem cells (MDSCs) are a promising type of

cell for MI repair because they have the ability to trans-differentiate into cardiomyocytes when co-

cultured with cardiomyocytes [130], resist oxidative stress-induced apoptosis [131] , reduce scar

formation [131, 132], and improve cardiac function [133, 134] after transplantation. Although car-

diomyoplasty is promising for MI repair, low cell viability after transplantation, and then gradually

decreasing cell survival after long-term cultivation, are issues that remain to be addressed. Encap-

sulating the cells to be transplanted into MI hearts in synthesized hydrogels may be an effective

way to improve the cell survival rate. Scaffolds or engineered constructs are important for tissue
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engineering [135], especially those with bioactive growth factors as a delivery system, which are

of great importance for cardiovascular tissue engineering [136]. The co-release of growth factors

of VEGF (vascular endothelial growth factor), bFGF (basic fibroblast growth factor), and PDGF

(platelet derived growth factor) from engineered constructs for cardiac repair after MI is promising

[137], but many conditions, such as the release rate, need to be regulated.

Hydrogels are cross-linked networks of polymers, such as fibrin and alginate, with a high water

content between polymer chains [138, 139]. When used for cell encapsulation, hydrogels provide

a hydrated tissue-like environment for cell attachment and protection, thereby improving cell vi-

ability. Hydrogels can provide biochemical cues and structural support, along with the possible

recruitment of endogenous stem cells [140]. Cellular growth and functions are critically affected

by both the cell compatibility of materials [141], and the pore sizes in the hydrogel structure

[142], which lead to varying cell viabilities. Combining injectable microspheres with a hydrogel is

an alternative approach [143]; however, research into cell therapies integrating microspheres and

hydrogels has been limited [144]. Among various injectable hydrogels, alginate cross-linked in the

presence of calcium ions has been drawing considerable attention for use in MI repair and can lead

to enhanced cell viability and proliferation, as well as an improved contractile function [145, 146].

Alginate, a biodegradable and biocompatible polysaccharide commonly found in algae, was em-

ployed in this study, due to its successful use as a hydrogel for tissue engineering [147, 148].

However, one inherent disadvantage of alginate is the lack of cell-surface receptors for cell attach-

ment, resulting from the negatively charged polymer. Considering this, we also used gelatin to

encourage cell adhesion, as it is the main component of the extracellular matrix (ECM) and can

promote cell attachment and migration [149, 150]. This research mainly focuses on optimizing (i)

cell viability during the injection process and (ii) the live/dead cell ratio after a period of cultivation

by optimizing the composition of alginate hydrogels encapsulating living MDSCs for potential MI

repair.

3.3 Materials and Methods

The preparation of materials for the experiments presented in this paper was carried out according

to protocols approved by the University of Saskatchewan Ethics and Integrity in Animal Research

30



Committee (Saskatoon, Canada) and the Harbin Institute of Technology’s Animal Care (Harbin,

China) and Use Committee.

3.3.1 Materials

Sprague Dawley (SD) rats (m=400g, Laboratory Animal Center, Harbin Medical University, China),

Muscle derived stem cells (MDSCs, Bio-X center, Harbin Institute of Technology), Dulbecco’s

Modified Eagle Medium (Boster, Wuhan, China), 10% horse serum (Boster, Wuhan, China), sodium

alginate (low viscosity, Sigma, St. Louis, USA), semipermeable membrane (40 KDa, Sigma, St.

Louis, USA), MTT cell proliferation kit I (Sigma, St. Louis, USA).

3.3.2 Methods

Gelatin Extraction from Rat Tails

The gelatin used as a component of both hydrogels was obtained from the tails of Sprague Dawley

(SD) rats, following the same procedure as was presented in our previous work [151]. Briefly, three

male SD rats (400 g) were anaesthetized and collagen from their tails was extracted stick-by-stick,

via forceps. The collagen was dissolved in 0.5% glacial acetic acid (50 mL) at 4 ◦C for 72 h. Then,

the mixture (solution) of collagen and glacial acetic acid was sterilized by membrane filtration

(0.28 um) and finally freeze-dried to form a powder. The concentration of gelatin in this study was

determined by measuring the mass/volume ratio of the mass of collagen that dissolved completely

in the glacial acetic acid, to the volume of the solution. The gelatin powder was dissolved in sterile

phosphate buffer solution (PBS) to a concentration of 40%, for synthesizing the hydrogels in this

study.

Cell Cultivation

Using the same technique employed for 3D cell cultivation as in our previous work [146], MDSCs

were cultured in the two types of hydrogels described in sections 2.3 and 2.4. Briefly, MDSCs

were mixed evenly with alginate and then cross-linked with gelatin to form hydrogels. After the

crosslinking process, the cells were encapsulated in the hydrogels and then were cultured in Dul-

becco’s Modified Eagle Medium (DMEM, 10% horse serum added), which was refreshed daily.
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SCL Hydrogel Synthesis

SCL hydrogels were synthesized with partially oxidized sodium alginate cross-linking with gelatin,

following our previously published procedures [152]. Four hydrogel formulations, namely SCL

0.8%, SCL 1.1%, SCL 1.5%, and SCL 2%, based on their respective sodium alginate concentra-

tions, comprised four experimental groups. For each experimental group, sodium alginate (low

viscosity, Sigma, St. Louis, USA) was oxidized by sodium periodate at a concentration ratio of

2:1 for 8 h at 4 ◦C in the dark. The oxidation degree was measured via the mass of the remaining

sodium peroxide. Briefly the oxidization process was described as following: Sodium chloride

(0.5 g) and 100% ethanol (10 mL) were added to the oxidized alginate solutions, until sediments

formed. The sediments were then dissolved in deionized water (10 mL) and dialyzed for 72 h with

a semipermeable membrane (40 KDa, Sigma) at 4◦C ; thereafter, they were freeze dried into pow-

der and dissolved in sterile PBS to a concentration of 60%, and were then mixed with MDSCs to

a density of 0.5 x 105/mL. Sodium alginate solutions containing MDSCs were mixed with gelatin

at a 1:1 volume ratio and then printed through a 0.26 mm needle into hydrogels (beads). These

hydrogel-encapsulated cells were cultured in DMEM (refreshed daily) in a cell culture incubator

for two months.

Ca2+ Hydrogel Synthesis

Ca2+ hydrogels were synthesized via the physical crosslinking between calcium ions and alginate,

that is based on the attraction between positive and negative charges. Four hydrogel formulations,

namely Ca2+ 0.8%, Ca2+ 1.1%, Ca2+ 1.5%, and Ca2+ 2%, based on their respective concentrations

of alginate, were prepared and represented four experimental groups. For each experimental group,

MDSCs (0.5 x 105/mL) were mixed with sodium alginate solution and then with gelatin, at a 1:1

volume ratio. The mixture was dispensed through a 0.26 mm needle into 100 mM calcium chloride

solution (1% tween-20 added), in a tissue culture dish. Hydrogels (beads) encapsulating cells were

formed at the moment the mixture entered the calcium chloride solution. The calcium chloride

was then removed and the hydrogels were quickly rinsed with PBS. Cells were then cultured in the

same environment as outlined in section 2.3, for two months.
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SEM Examination of Hydrogel Morphology

The structure of the hydrogel-encapsulated MDSCs for each experimental group was examined via

scanning electron microscopy (SEM, Quanta 200, FEI, Hillsboro, USA). First, the hydrogels were

fixed in a solution containing 2% glutaraldehyde and 3% formaldehyde in cacodylate buffer (0.1 M

cacodylate, 0.09 M sucrose, 0.01 M MgCl2, and 0.01 M MgCl2, pH 6.9), for 1 h. They were then

dehydrated with a graded series of acetone (10%, 30%, 50%, 70%, 90%, and 100%) on ice, with

each lasting 15 min, followed by critical point drying with liquid CO2. Last, the hydrogels were

each cut into two hemispheres and attached to a conductive adhesive, then sputter coated with a

gold film to a thickness of 10 nm for observation via SEM (Quanta 200, FEI, Hillsboro, USA).

Mechanical Strength Measurement

The mechanical strength of both types of hydrogels was analyzed via rheometry, conducted at a

sweeping frequency ranging from 0.1 to 10 Hz. Hydrogels of a larger size were synthesized with

the same technique described in sections 2.3 and 2.4, via a pipette (1000 uL) in a six-well culture

dish. The hydrogels can form a lamella that fills up one whole well of the dish. Lamellas formed

from Kingdom), with a CP40 cone.

Hydrogel Degradation

Hydrogels were synthesized with an original weight of 0.8 g (SCL hydrogels) and 0.5 g (Ca2+

hydrogels) in each group (n = 6), and were then exposed to 0.5% collagenase type II (5 mL) at

body temperature, for 48 h. The hydrogels were then freeze-dried into powder for the weight

measurement. This process was repeated until all of the hydrogels had degraded (i.e., disappeared

completely).

MTT Assay for Cell Proliferation

The MDSCs encapsulated in all groups of both types of hydrogels were released by dissolution in

3% sodium citrate, after 2 h, 24 h, and two months of cell cultivation. Then, the survival rate of

these cells was measured by a MTT assay with the cell proliferation kit I (Sigma), immediately

after the cells were released from the hydrogels. Briefly, cells from each group were coated with
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MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining) for 4 h in 96-well

culture dish plates, until sediments formed; the control group was DMEM coated with MTT. The

three same wells for used for each group and each test was repeated six times. Then, with MTT

dissolvent was kept for another 4 h in the cell culture incubator. The optical density (OD) of the

resulting solution was determining using an ultraviolet spectrophotometer.

Fluorescent staining for Live/Dead Cells

MDSCs were released from the hydrogels of each experimental group via the method described in

section 2.8, after 2 h, 24 h, and two months of cultivation. They were then stained with calcein

(green) for 20 min and PI (red) for 5 min, to label live and dead cells, respectively. MDSCs were

also stained with DAPI, to mark the cell nuclei. The fluorescent staining in each layer of the

hydrogels was examined using confocal microscopy (FV3000, Olympus, Tokyo, Japan).

3.4 Results and Discussion

3.4.1 Morphology

The morphology via SEM is shown in Figure 3.1 , illustrating the texture and inner structure of the

SCL and Ca2+ hydrogels of all groups. Specifically, it shows the morphology of hydrogels without

cells: 1A for the SCL hydrogel and 1a for the Ca2+ hydrogel; and the morphology of hydrogels

with cells: 1B, 1C, 1D, and 1E SCL hydrogels, and 1b, 1c, 1d, and 1e for Ca2+ hydrogels, where

the alginate concentrations are 0.8%, 1.1%, 1.5%, and 2%, respectively. The SEM images show no

major differences in the inner structure of both SCL hydrogels and Ca2+ hydrogels, but reveal minor

differences between the two types of hydrogels in terms of pore size and degree of compactness.

Specifically, when studying the software image J, for the SCL and Ca2+ hydrogels, the average areas

of pore size were found to be 124 µm2 and 7.1 µm2, respectively, which indicates that the pore size

of the SCL hydrogels is significantly larger than that of the Ca2+ hydrogels; and the average number

of pores in each type of hydrogel per 125 µm2 area was six and 89, respectively, indicating the large

number of pores in Ca2+ hydrogels. When considering the pore density, calculated as the overall

area of pores (pore size multiplied by pores amount per 125 µm2) of each type of hydrogel, it was
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found to be slightly higher for the SCL hydrogels (744 µm2) than for the Ca2+ hydrogels (632 µm2).

The overall structure of the SCL hydrogels is a connective network, which contains fewer pores, but

of a larger size, than the Ca2+ hydrogels; while the Ca2+ hydrogels reveal a more compact network

structure.

With respect to the ability of the two types of hydrogels to entrap cells, the SEM images show

that the Ca2+ hydrogels, with their larger number of pores, appear better able to encapsulate cells

than the SCL hydrogels. Indeed, it was noted during the experimental process that large piles of

cells were easier to find in the Ca2+ hydrogels than in the SCL hydrogels. We attribute this to cells

in the Ca2+ hydrogels being able to survive and regenerate, due to proper growth signals secreted

from adjacent groups of cells; cells in Ca2+ hydrogels can build connections with each other more

easily, due to the shorter distance between them.

Figure 3.1: SEM images illustrating the morphology of SCL and Ca2+ hydrogels: Without
cells (A for SCL hydrogel and a for Ca2+ hydrogels) and with cells (B–E for SCL hydrogel
and b–e for Ca2+ hydrogels, both with varying concentrations of 0.8%, 1.1%, 1.5%, and 2%,
respectively).

3.4.2 Mechanical Strength

Four trendlines indicating the mechanical strength of the SCL hydrogels and Ca2+ hydrogels are

shown in Figure 3.2 A,B, respectively. Figure 3.2 A illustrates that the 2% SCL hydrogel had the

highest mechanical strength (0.57×104 Pa), followed by slightly lower strength in the 1.5% SCL

hydrogel (0.53×104 Pa), the considerably lower strength in the 1.1% SCL hydrogel (0.28×104
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Pa), and the lowest strength in the 0.8% SCL hydrogel (0.76×103 Pa). Figure 3.2 B shows that

Ca2+ hydrogels follow a similar trend in mechanical strength; the 2% Ca2+ hydrogel had the high-

est strength (0.23×105 Pa), followed by the 1.5%, 1.1%, and 0.8% Ca2+ hydrogels (at 0.216×105,

0.14×105, and 0.68×104 Pa, respectively). The mechanical strength results indicate that Ca2+ hy-

drogels are stronger than SCL hydrogels; the weakest Ca2+ hydrogel (0.8%) had a similar strength

to the strongest SCL hydrogel (2%).

Figure 3.2: Rheometry data with respect to the mechanical strength of the hydrogels. 0.8%,
1.1%, 1.5%, and 2% are the concentrations of alginate in both types of hydrogels, and the
varying concentrations of alginate present for the different groups of hydrogels. (A) The me-
chanical strength of SCL hydrogels with changing frequencies; (B) The mechanical strength
of Ca2+ hydrogels with changing frequencies.

3.4.3 Degradation

The rate at which the hydrogels degraded (in terms of weight change) in the mimic in vivo environ-

ment, is shown in Figure 3.3 A, B. The degradation of the SCL hydrogel groups varied (Figure 3.3

A). Specifically, in the first 96 h, the 0.8% SCL hydrogel degraded the fastest, the 2% SCL hy-

drogel degraded the slowest, and the 1.1% and 1.5% SCL hydrogels had similar degradation rates,

that were slightly slower than the 2% SCL hydrogel. Thereafter, the hydrogels in all four groups

disappeared, indicating complete degradation. In contrast, all four Ca2+ hydrogels demonstrated

similar trends and degradation rates in the presence of the enzyme (collagenase type II), until they

disappeared completely. This indicates that their degradation is solely a function of time and is not

affected by the concentration of alginate.
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The varying degradation rates across the SCL hydrogel groups is likely due to their different

mechanical strengths. The hydrogels with the lowest mechanical strength degraded the fastest,

whereas the hydrogels with a higher mechanical strength degraded more slowly. In contrast, all

Ca2+ hydrogels degraded more slowly than the SCL hydrogels, due to their collectively higher

mechanical strengths. This suggests that all of the Ca2+ hydrogels were strong enough to resist

the action of the enzyme, as reflected in the rather slow rate of degradation; thus, the only factor

affecting the degradation rate was time. The 2% SCL hydrogels, the strongest of the SCL hydrogels,

demonstrated the slowest degradation rate, and only a slight weight loss in the first 48 h after

exposure to the enzyme.

Figure 3.3: Degradation profiles of SCL and Ca2+ hydrogels. 0.8%, 1.1%, 1.5%, and 2% are
the concentrations of alginate in both types of hydrogels, and the varying concentrations of
alginate present for the different groups of hydrogels. (A) The mass change of SCL hydrogels
with hours. (B) The mass change of Ca2+ hydrogels with hours.

3.4.4 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Stain-

ing

The percentage of living cells at 0 h, 2 h, 24 h, and two months after encapsulation in the hydrogels

are presented in Figure 3.4. Specifically, the cell viability right after the injection process was

measured and set as the baseline for the comparison with those measured at different time periods,

which is shown as a percentage thereof.

For the SCL hydrogels, data from 2 h after encapsulation show that cell viability decreases

with an increasing alginate concentration. Specifically, the 2% SCL hydrogels had the lowest cell
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viability and the 0.8% SCL hydrogels had the highest. This suggests that cell viability during the

injection process varies with hydrogel viscosity, with more cells surviving in the lower viscosity

hydrogels. After 24 h, the percentage of living cells in all of the groups increased, compared to

those at 0 h, particularly the 1.5% and 2% SCL hydrogels (t-test, p<0.01), which had a higher

cell viability than the other two groups. The increased number of living cells indicates that cells

proliferated after being encapsulated in the hydrogels, and the low cell viability in lower viscos-

ity hydrogels indicates that the cells survived better in the higher viscosity hydrogels. After two

months, cell numbers decreased compared to those at 2 h and 24 h, and 0.8% SCL hydrogels had

the lowest living cells rate out of all of the groups (t-test, p<0.05). This indicates that living cell

rates decreased with the degradation of hydrogels, due to a lack of protection.

For the Ca2+ hydrogels, cell viability, assessed by MTT assay, was not significantly different

across the four groups after 2 h (t-test), and all viability rates were less than those for the SCL

hydrogels (t-test, p<0.05). This indicates a lower retention rate of living cells in Ca2+ hydrogels,

which have a higher viscosity than the SCL hydrogels, during the cell encapsulation process. After

24 h, the cell viability sharply increased compared to the baseline, especially for the 1.1% Ca2+

hydrogel, which had the highest cell viability (t-test, p<0.01). As such, cells seem to prefer hydro-

gels with a higher mechanical strength, in order to survive and proliferate. After two months, cell

viability rates in the Ca2+ hydrogels still demonstrated an increasing trend, when compared to both

the baseline and 24 h values. In particular, the 1.1% Ca2+ hydrogel had the highest living cell rate

among the four groups. This suggests that cells were effectively regenerated during extended culti-

vation in hydrogels and proliferated the most in the high mechanical strength 1.1% Ca2+ hydrogels.

After two months, the living cell rates for all Ca2+ hydrogels were much higher than those for SCL

hydrogels. This reflects the fact that Ca2+ hydrogels have a slower degradation process than SCL

hydrogels and that cells are still protected in the hydrogels after two months. We speculate that,

during these two months, the cells proliferated and interconnected to each other, forming a network

structure similar to the ECM that provides protection for cells in in vivo conditions.

The mechanical properties of hydrogels are important factors affecting the cell viability, as

discussed above. It should be noted that, in addition to the mechanical properties, many other

factors, such as the presence of residual reagents, pore density, and apoptotic potential of gelatin

fragments, may also contribute to the cell viability.
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Figure 3.4: The percentage of living cells in SCL and Ca2+ hydrogels at different time in-
tervals measured by absorbance of optical density at 595 nm using MTT assay. 0.8%, 1.1%,
1.5%, and 2% are the concentrations of alginate in both types of hydrogels. t-test was used
to test the statistical significance.

3.4.5 Fluorescent Staining

The cells were stained with PI (red)/calcein (green)/DAPI (blue) to indicate dead cells/live cells/cell

nuclei. The images were captured via confocal microscopy and are shown in Figure 3.5, for only

one layer of cells in the hydrogels. There are staining in other adjacent layers got mixed to the

current layer despite lower concentrations of stains being applied to minimize misleading color

from adjacent layers during measurement. The proportion of the number of green cells to the

number of red cell in the SCL hydrogels was, in general, less than in the Ca2+ hydrogels, which

indicates that the cell survival rate in the Ca2+ hydrogels is higher than in the SCL hydrogels.

3.5 Limitations and Future Work

Cell differentiation from MDSCs into cardiomyocytes is important for MI repair. In this work,

cell differentiation from MDSCs into cardiomyocytes was not experimentally tested, as we only
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Figure 3.5: Fluorescent staining of live/dead cells in SCL and Ca2+ hydrogels. 0.8%, 1.1%,
1.5%, and 2% are the concentrations of alginate in both types of hydrogels, and the varying
concentrations of alginate present for the different groups of hydrogels.
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focused on optimizing the cell survival rate by adjusting the hydrogel formulation. In future work,

we will study how MDSCs differentiate into cardiomyocytes and compensate for diminished viable

cell numbers in MI hearts. Different stimulations inducing cell differentiation will be analyzed and

the beating ability of differentiated cells will also be evaluated.

3.6 Conclusions

Injecting hydrogel-encapsulated cells shows promise for compensating for the loss of cardiomy-

ocytes in MI repair. In this paper, we present a study on two types of alginate hydrogels, self-

crosslinked and calcium-ion cross-linked hydrogels (or SCL and Ca2+ hydrogels), to encapsulate

muscle-derived stem cells for potential MI repair. Our results illustrate that the cells can survive

and proliferate in both hydrogels over the examined time period, from their injection to two-month

cultivation. Our results also illustrate that cells have a better viability in SCL hydrogels than Ca2+

hydrogels right after injection and for the first 24 h after encapsulation. However, the cell sur-

vival rate is much higher in Ca2+ hydrogels than in SCL hydrogels after long-term (two month)

cultivation. Our efforts to select the best formation of hydrogel for optimizing cell survival, show

that SCL hydrogels with 0.8% alginate and 20% gelatin achieve the best cell viability during the

injection process. However, Ca2+ hydrogels with 1.1% alginate and 20% gelatin have the highest

cell survival rate during long-term cultivation, which is promising for the high-level regeneration

of cells for potential MI repair.
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4 Conclusions and Future Work

4.1 Summaries and Conclusions

In this study, two tissue-engineering strategies, as controlled release of BIO + IGF-1 via pH sen-

sitive hydrogel system and encapsulating living cells with alginate hydrogel for repairing MI were

developed and studied in Chapter 2 and Chapter 3, respectively. Experiments were designed and

performed in accordance to these strategies. Based on experimental results obtained, main conclu-

sions can be drawn as below.

4.2 Conclusions from Chapter 2

Chapter 2 presents the study on the sustained release of BIO and IGF-1 in a pH sensitive hydrogel

simulating endogenous cardiac repair in MI rats. Gelatin nanoparticles encapsulating BIO and/or

IGF-1 were fabricated successfully. In this novel hybrid hydrogel system, the gelatin nanoparticles

were efficiently cross-linked with the oxidized alginate, which was developed to deliver the grow

factors specifically to the MI site. Then the characteristics of nanoparticles and hydrogel system

were investigated and described. The controlled release profile of the growth factors was described.

From the in vivo results, the hybrid hydrogel system can enhance the proliferation of resident car-

diac cells as well as promoting revascularization around the MI sites, allowing improved cardiac

function and resulting in enhanced heart function recovery. These findings indicate that the hybrid

hydrogel system can co-deliver BIO and IGF-1 to MI areas and thus repair cardiac function by

promoting the regeneration of cardiomyocytes and revascularization. And this novel hybrid hydro-

gel delivery system is holding promise for treating MI and other related diseases requiring specific

concentrations of drugs given the ability of delivery a wide range of therapeutics.
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4.3 Conclusions from Chapter 3

Chapter 3 presents the study of encapsulating living cells in injectable alginate hydrogel for po-

tential MI animal repair. Two types of alginate hydrogels as self-crosslinking (SCL) and calcium

ion crosslinking (Ca2+ ) with varying formulations were fabricated successfully. Living muscle-

derived stem cells (MDSCs) were encapsulated in both types of hydrogels, and the experimental

results illustrate that these living cells were able to survive and proliferate from the moment of en-

capsulating and until two months after encapsulation in both hydrogels. The compositions of both

hydrogels were selected by evaluating the encapsulated living cells performance for further opti-

mizing cell viability during the injection process and the live/dead cell rate in long-term cultivation.

The characterization of both types of hydrogels was described, the morphology was characterized

by scanning electronic microscopy (SEM) and the mechanical properties were examined via a

rheometer. The experimental results of examined cell survival rate demonstrate that cells have a

better viability in SCL hydrogels than Ca2+ hydrogels right after injection and for the first 24 h

after encapsulation, especially the SCL hydrogel with a 0.8% alginate and 20% gelatin formulation

which had the highest cell viability during the injection process. However, the cell survival rate is

much higher in Ca2+ hydrogels than in SCL hydrogels after long-term cultivation, particularly, the

Ca2+ hydrogel composed of 1.1% alginate and 20% gelatin maintained the highest cell survival rate

after two months in culture. The cell survival rate after long-term cultivation shows promise for the

high-level regeneration of cells for potential MI repair.

4.4 Future Work

In this thesis, two strategies were developed based on injectable hydrogel, i.e., 1) combining with

nanoparticles for controlled release of growth factors and 2) encapsulating living cells for MI repair

had been studied. The experimental results obtained from both strategies which shows in chapter 2

and 3 are promising in MI repair.

It is noted that the research of strategy 1) was performed both in vitro and in vivo and that the

development of strategy 2) was pursued only in vitro though results showed promise for potential

MI repair. While the research in MI animal models is yet to be studied for strategy 2). Thus, for
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future work, the in vivo experiments of injectable hydrogel encapsulating living muscle derived

stem cells shall be performed. The research objectives should be to study the living cells’ behavior

and how this strategy works in animal’s hearts.

Specifically, the first step is to investigate whether the transplanted muscle derived stem cells

can undergo differentiation into other types of cells and what would be the conditions for potential

differentiation in vivo. From literature review, muscle derived stem cells are able to differentiate

into cardiomyoycytes with proper stimulations in vitro. But there is rare reference showing these

stem cells can differentiate into cardiomyocytes in animals’ MI repair. Hence, to investigate the

stimulations as specific conditions for MDSCs for potential differentiation is highly recommended.

There are two main proposed clues as physically stimulation and chemical drugs/growth factors

for stimulating MDSCs differentiating into cardiomyocytes. In details, to investigate whether sim-

ply physical stimulation of adding pressures on these cells can stimulate them differentiation. If

these cells were able to differentiate under physical stimulation, then the load range that can cause

the differentiation could be studied. The other possible clue to study the differentiation is proper

chemical molecules. For example, the specific family of growth factors should be chosen from huge

numbers of growth factors and the proper concentration of these chosen growth factors should be

determined.

From my preliminary experiments results on the differentiation of 3D cultivated muscle-derived

stem cells with growth factor TGF-b of the concentration at 2.5ng/ml and 5 ng/ml, it showed there

were cells stimulated into cardiomyocytes since the cardiac specific protein TnT after 14 days

cultivation with TGF-b at 5 ng/ml was examined. For future work, researchers may continue in-

vestigate the specific concentration of TGF-b for muscle-derived stem cells differentiation and the

appropriate cultivation time of the growth factor with cells.

The second step is to study the in vivo tests. Although 3D cultured cells with proper stimulation

for cells to differentiate into cardiomyocytes is the mimic of the in vivo, the real environment in

body can make huge differences due to the existence of various enzymes and their kinetic profile.

Thus to investigate whether muscle-derived stem cells can be differentiate into cardiomyoyctes is

important. Briefly, the study can be performed in MI animal hearts by transplanting MDSCs with

growth factors for some weeks and then examine whether there is the expression of cardiac tissue

specific antibody. In general, this study can start with the cultivation of GFP-labeled (green fluo-
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rescent protein) muscle-derived stem cells with growth factors for a few days until the expression

of specific protein can be examined. Then the growth factors could be released in a controlled man-

ner via nanoparticles to maintain their specific functioning concentration. And these differentiated

cells with the nanoparticles encapsulated growth factors to be transplanted into MI animals’ hearts

for few days then examine the heart of these transplanted GFP cells to see whether there is the

expression of cardiac specific protein.

The last step is to investigate the integrated effects of hydrogel with living cells in MI animals.

The enhanced function of MI hearts can be achieved through either proliferated cardiomyocytes and

differentiated cardiomyocytes, or the angiogenesis of the small arteries which can provid blood-

efficient environment for cells to survive. Thus, to examine whether the combination of living

cells combining hydrogels with growth factors works in regeneration ability of cardiomyocytes and

the revascularization ability after transplanting into MI animal hearts is important. The combining

system of hydrogel with living cells and growth factors should be fabricated and examined before

transplanting into MI animals’ hearts.
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