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ABSTRACT 

The main objectives of this study were to: (1) study the association between the molecular 

structural features related to the amide region and protein utilization of blend-pelleted products 

based on canola meal or carinata meal, and (2) evaluate the effects of feeding newly developed 

blend-pelleted products based on carinata meal or canola meal on production efficiency, ruminal 

fermentation characteristics, ruminal degradability, and intestinal digestion in high-producing 

dairy cows. Result from the first study showed that the moleclar structural related to amide region 

were detected using fourier transform infrared (FTIR) vibration spectroscopy in which, increasing 

the level of canola or carinata meal in the blend-pelleted products (BPPs) significantly increased 

(P < 0.05) the amide area and amide height. All BPPs were similar in the secondary structure 

profile (α helix to β sheet ratio). A second study was conducted to investigate the effect of feeding 

BPPs based on canola and carinata meal relative to control diet (control, is a barley-based diet in 

western Canada) on production efficiency, nutrients digestibility, and nitrogen balance in dairy 

cows. The results showed that there was no significant effect (P > 0.10) of dietary treatments on 

milk yield, milk composition, and milk components yield. All dietary treatments exhibited the 

same income over feed cost (P > 0.10). The total-tract digestibility of nutrients and nitrogen 

balance were not (P > 0.10) affected by treatments. Third study was carried out to assess the effect 

of the dietary treatments on ruminal fermentation and ruminal digestion in dairy cows. The control 

diet exhibited a higher rumen total volatile fatty acid concentration (P < 0.05) relative to BPP 

based on canola meal. There was no effect (P > 0.10) of treatments on ruminal ammonia 

concentration. Furthermore, all diets exhibited the same (P > 0.10) ruminal degradation kinetics, 

intestinal digestion of nutrients, and metabolizable protein supply in dairy cows. In conclusion, the 

blend-pelleted products based on new co-product (carinata meal) from bio-fuel processing industry 
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is similar to the other pelleted products based on canola meal without affecting the production 

efficiency or the ruminal fermentation features in dairy cows. Molecular spectroscopy can be used 

to determine the inherent structural characteristics in relation to protein profile, energy values, 

protein digestion (rumen and intestine), and the metabolizable protein supply in the blend-pelleted 

products based on different bio-energy co-products. 
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1. GENERAL INTRODUCTION 

  Bio-energy processing such as bio-fuel, bio-oil, and bio-ethanol industries resulted in huge 

amounts of co-products such as canola meal, carinata meal, and distiller's dried grains with 

solubles (Ban and Yu, 2016; Canola Council of Canada, 2015; Xin and Yu, 2013a). Canola meal 

from bio-oil processing is the most common feed protein in western Canada and is characterized 

by moderate protein content (about 36-39% crude protein (CP); Canola Council of Canada, 2015). 

The new co-product from bio-fuel processing, i.e., carinata meal has been found to contain a higher 

protein content relative to canola meal (about 48% CP; Xin and Yu, 2013a) and good amino acids 

profile (Guevara et al., 2018). Pea is a good source of protein (approximately 24% CP) and 

contains a high level of starch (about 46% DM; Hickling et al., 2003). However, to maximize the 

utilization of these products and co-products in dairy cows, the rate and extent of protein digestion 

should be decreased to improve their N metabolism in cows.  

  The most common methods for maximizing the utilization of N are heat and chemical 

treatments. Heat treatments such as pelleting have been reported to improve the nutritional and 

chemical characteristics of protein feed (Lević et al., 2010). Chemical treatments, such as 

formaldehyde (Crooker et al., 1983), tannins (Chung et al., 2013), lignosulfonate, and xylose 

(McAllister et al., 1993)  can decrease rumen degradable protein for different protein sources in 

dairy cows.  

Traditional methods of analysis i.e. “Wet” chemistry analysis for protein and carbohydrates 

fractions can give us the information about the nutrient composition of a feed, but it can damage 

the main structure of samples (Yu et al., 2014). Fourier-transform infrared spectroscopy (FTIR) is 

commonly used to determine the molecular structure features of feeds. FTIR spectroscopy is a 

direct, rapid, non–destructive, and non–invasive bioanalytical technique used to detect the infrared 
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spectrum of absorptions or emissions of liquid, gas, or solids (Smith, 2009). However, there is no 

systematic study that has been conducted to determine how the internal protein molecular 

structures change when carinata meal is blended and pelleted with other co-products as a blend-

pelleted product (BPP) and how these changes influence the protein utilization and availability in 

dairy cows. The main objectives of this thesis were to assess the effects of feeding blend-pelleted 

products based on new carinata meal or canola meal, pea screening, and lignosulfonate chemical 

compound on milk production efficiency, ruminal fermentation characteristics, ruminal 

degradability, and intestinal digestion in high producing dairy cows. Also, to detect the interactive 

association between the molecular spectral features related to amide region and production 

performance and ruminal fermentation characteristics of BPPs in high producing dairy cows. 

2. LITERATURE REVIEW 

2.1. Development of Canola Co-Product 

2.1.1. Features of Canola Meal from Bio-Oil Processing 

Canola is Canada’s main crop, currently ranked amongst the top three oilseeds worldwide 

(Thiyam-Hollaender et al., 2013). Canada has the highest production of canola oil worldwide; 

Canada produces about 15 million tonnes of canola seeds per year (Canola Council of Canada, 

2015). Saskatchewan was the first Canadian province to produce canola oil (Thiyam-Hollaender 

et al., 2013).  

Canola or double-zero rapeseed is an offspring of rapeseed, bred through traditional plant 

breeding between Brassica napus, Brassica rape or Brassica juncea (Bell 1993; Newkirk, 2009) 

such that the oil contain low concentration of erucic acid (<2% erucic acid in its fatty acid profile) 

and low conntration of glucosinolates (< 30 µmol) in the solid component (Bell 1993). The most 
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common species of canola in western Canada are Brassica juncea and rapa (yellow-seeded) and 

Brassica napus (brown-seeded; Newkirk, 2009). 

2.1.2. Utilization of Canola Meal in Ruminant Livestock  

Canola meal is divided into the yellow-seeded and the brown-seeded species. The protein 

content in the yellow-seeded species is higher than in the brown-seeded species (Theodoridou 

and Yu, 2013b). Canola meal is an excellent palatable protein source for ruminant animals. 

Canola meal contains about 36-39% CP (N×6.25, %; Canola Council of Canada, 2015).   

The nutrient composition of canola meal includes: dry matter (DM) 88 %; CP 36.7 %DM; 

neutral dteregent fiber (NDF) 25.4 %DM; acid detergent fiber (ADF) 16.2 %DM; lignin (ADL) 

5.8 %DM; ether extract (EE) 3.3 %DM; starch 5.1 %DM; ash 6.7 %DM. Canola meal is a great 

source of the amino acids (AAs) such as lysine (5.92 %CP), histidine (3.39 %CP), methionine(1.95 

%CP), cystine (2.31 %CP), and threonine (4.27 %CP; Canola Council of Canada, 2015).  

It is essential to provide the dairy cows with an adequate level of rumen degradable protein 

(RDP) and rumen bypass protein (RUP) in the diet (NRC, 2001). The RDP level is vital to 

maximize the microbial protein synthesis (NRC, 2001). It has been reported that any decrease in 

the RDP content of the ration below the recommended 10% of DM (NRC, 2001) could reduce 

microbial protein synthesis due to a lower ruminal NH3-N and total free amino acids (Brito et al., 

2007; Broderick et al., 2007). The RDP of canola meal had been reported to range from 55% to 

60%CP (Mustafa et al., 1996; Piepenbrink and Schingoethe, 1998).  

There is no limit regarding the inclusion level for canola meal in dairy cow ration (Canola 

Council of Canada, 2015). For instance, it has been found that milk production of dairy cows was 

maintained for over 44 kg/cow/d, with diets containing 20% canola meal (Swanepoel et al., 2014). 

Brito et al. (2007) reported that replacing 12% soybean meal and 4.5% corn meal with 16.5% 
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canola meal in diets for high-producing cows increased the dry matter intake. Brito and Broderick 

(2007) also showed adding 16.5% of canola meal inplace of soybean (12%) and corn meal (4.5%) 

into diets led to increasing the milk yield of dairy cows.  

2.1.3. Conventional Canola Meal Processing 

The co-product from the bio-oil processing of canola seed is canola meal. Processing of 

canola seeds is called pre-press solvent extraction (Canola Council of Canada, 2015; Newkirk, 

2009), which includes the following steps: (1) cleaning the seeds from the dockage materials and 

crush those seeds; (2) drying the seeds at approximately 35 to 45ºC for 35 to 45 min before flaking; 

(3) flaking the seeds by roller mills to rupture the seed coat without damaging the quality of the 

oil; (4) cooking the flakes at 80-105ºC for 15-20 min; (5) pressing the cooked seeds flakes to 

remove as much oil as possible from the cooked canola (removing about 50-60% of the seed oil 

content) to produce the presscake. Because the pressing process cannot remove all oil from the 

seed (the remaining oil 18-20%), solvent extraction is performed to remove oil from the remaining 

canola presscake; (6) solvent extraction includes the following steps: first, the cake is placed in the 

extractor, then the cake is flooded with solvent or miscella, then a sequence of pumps sprays the 

miscella over the presscake with each stage using a successively “leaner” miscella to increase the 

ratio of solvent to oil. Afterward, the solvent infiltrates by gravity through the cake bed, diffusing 

into and soaking the cake fragments. Finally, the marc (hexane-saturated meal) that leaves the 

solvent extractor, after a fresh solvent wash, contains low content of fat (2-4%; Newkirk, 2009). 

2.2. Development of Carinata Co-Product 

2.2.1. Features of Carinata Meal from Bio-Fuel Processing 

Brassica carinata is a species of Brassica family, created from hybridization between 

Brassica nigra and Brassica oleracea (Warwick et al., 2006). It is commonly called Ethiopian 
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mustard (Rakow, 2004). Agriculture and Agri-Food Canada (AAFC) have successfully grown 

Brassica carinata since the mid-1989s in the dry prairie of western Canada: Alberta, 

Saskatchewan, and Manitoba (Rakow and Getinet, 1998; Taylor et al., 2010; Ban and Yu, 2016). 

This crop has been found to produce a high yield with high oil content in these areas, regardless 

of heat and drought; also, this crop shows good salinity tolerance and blackleg resistance (Rakow 

and Getinet, 1998; Taylor et al., 2010; Ban and Yu, 2016). Canada has two developed species of 

carinata bred by AAFC. The AAC A100 seed was released in 2012, and small quantities of AAC 

A110 seeds were available in 2015 (Resonance Carinata, 2015). 

The AAFC carinata seed comprises approximately 44% oil and 28% CP (Resonance 

Carinata, 2012), and it has a high level of erucic acid (>30% of total fatty acids; Warwick et al., 

2006). The high level of erucic acid in carinata seeds is utilized in bio-fuel processing industry 

(Cardone et al., 2003). The yellow seeds of carinata have a higher protein content than the brown 

seeds of carinata (Simbaya et al., 1995). Carinata meal is a source of crude protein, which could 

reach about 48 %CP (Xin and Yu, 2013b). 

Carinata seed has higher anti-nutritional compounds such as glucosinolates (119.8 umol/g) 

and erucic acid (42.1%). Both of these compounds can negatively affect cattle health (Getinet et 

al. 1996; Warwick et al. 2006). However, the type of seed processing which uses high temperature 

as in pre-press solvent extraction has resulted in a meal with erucic acid (Newkirk et al. 2003b). 

2.2.2. Conventional Carinate Meal Processing 

The co-product from bio-fuel processing of Brassica carinata seed is carinata meal 

(Edwards et al., 2011). During the bio-fuel processing of carinata seeds, the oil in the seeds is 

extracted by conventional crush infrastructure with minimal refining once crushed and filtered the 

seeds (Edwards et al., 2011). 
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2.2.3. Utilization of Carinata Meal in Ruminant Livestock  

The nutrient composition of carinata meal includes: DM 88.5 %; CP 44.3 %DM; NDF 23.7 

%DM; ADF 16.3 %DM; ADL 5.9 %DM; EE 2.1 %DM; starch 2.3 %DM; non-fibrous 

carbohydrate 24.5 %DM; ash 7.6 %DM; glucosinolates 11.5 µmol/g (Ban, 2016). Although there 

is a high level of glucosinolates in carinata seeds, increasing heat or time under heating during the 

bio-fuel processing of carinata seeds could decrease the glucosinolates content (Guevara-Oquendo, 

2017). It has been found that the canola meal pellet has relatively higher levels of total 

glucosinolates than the carinata meal pellet (4.76 vs. 4.28 µmol/g;  Guevara-Oquendo, 2017). 

Carinata meal is a rich source of amino acids, containing arginine (10.8 %CP), glutamic acid (20.7 

%CP), and proline (6.5 %CP), but is lower in isoleucine (4.1 %CP), leucine (6.8 %CP), valine (4.9 

%CP), tyrosine (2.5% CP), lysine (4%CP), and methionine (1.8 % CP) compared with canola meal 

(Ban, 2016). 

 The carinata meal has been reported to have a higher RDP level compared with canola 

meal (75 vs. 60 %CP; Ban, 2016). The rumen degradation rate of a potentially degradable fraction 

of CP is much higher in carinata meal (ranged from 33 to 22 h/%) than canola meal (ranged from 

11 to 17 h/%; Ban, 2016; Xin and Yu, 2014).  

2.3. Development and Production of Pulse Processing Co-Product  

Pea (Pisum sativum L.) is a member of the Leguminosae family (Khorasani et al., 2001). 

Canada is  the second country for producting peas (Hickling et al., 2003). Alberta has the highest 

production of peas in Canada. Canada uses peas for human consumption and animal feeding 

(Hickling et al., 2003). Saskatchewan has the greatest yield of the dry pea crop and chickpea crop 

in Canada (Saskatchewan Pulse Growers, 2015). 

2.3.1. Pulse Peas Processing and Their Co-Products 
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Co-products from the pulse processing industry include pea screenings that after cleaning 

of foreign materials (Yu et al., 2002). The material obtained  is dockage (the material removed after 

cleaning includes chaff, other grain, weed, or inseparable seeds, and pieces of a stem). After 

cleaning dockage , the pulse peas processing will produce three products, including No. 1, No. 2, 

and No. 3. Refuse screenings of peas are No. 3 product. No. 1 and No. 2 products are relatively 

high in value (McKinnon, 2015). Peas are a source of protein and energy (a high starch level).  

2.3.2. Utilization of Pulse Peas and Co-Products in Ruminant Livestock  

 The CP in field peas is approximately 24% (Fonnesbeck et al., 1984). The nutrient 

composition of peas includes DM 90 %; CP 23 %DM; CF 5.5 %DM; starch 46 %DM; ash 3.3 

%DM (Hickling et al., 2003). It contains a high level of starch about 47.8 % (Valentine and Bartsh, 

1987). Peas have high levels of essential amino acids, such as histidine (2.52 %CP), methionine 

(1.03 %CP), cystine (1.55 %CP), and threonine (3.59 %CP); also, by comparing the pea protein 

with the cereal grains and most oilseed meals, pea protein is the highest in lysine (6.84 %CP). 

Also, peas have an appropriate amino acid balance (Hickling et al., 2003).  

The RDP of peas is high, roughly estimated to be about 78% RDP as a % of CP. Thus it 

could meet the microbial N requirements of lactating dairy cows (Kudlinskiene et al., 2016). The 

remaining moderate amount of RUP with a good AA (Lysine and Methionine) balance is good for 

milk production in high-producing dairy cows (Kudlinskiene et al., 2016). Previous study showed 

that replace soybeans with peas in dairy cows diets resulted in an increasing of milk fat and protein 

content, but it had a negative effect on milk yield (Kudlinskiene et al., 2016). 

2.4. Strategies to Improve the Utilization of Co-Products  

It important to slow down the degradation (extent and rate) of ruminal degradation of feed 

proteins for many reasons (Schwab, 1995). For example, there are many feeding situations where 
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the ration does not provide acceptable absorbed AA supply compared to the absorbed energy 

supply (Schwab, 1995). This could take place due to the following reason; first, several feed 

components in the ration contain an inadequate amount of RUP compared to RDP; second, dietary 

shortage in fermentable carbohydrates or RDP that are required for microbial protein synthesis; 

third, providing dairy cows with fat supplement rich in metabolizable energy but not for microbial 

cell growth (Schwab, 1995). Also, if feeding high-quality forages that contains a high level of 

RDP, it is crucial to provide the diet with an adequate amount of RUP to balance RDP and RUP 

(Schwab, 1995). The utilization of rich undegradable protein sources would enhance the efficiency 

of non protein nitrogen (NPN) supplements and would have less dependence on more degradable 

protein sources of true protein for microbial protein synthesis in the rumen (Schwab, 1995).  

There are many approaches for raising the proportion of RUP in the diet. One method is to 

provide dairy cows with high-protein co-product feeds, such as corn gluten, meat, hydrolyzed 

feather, fish, and blood meals (Chalupa, 1975; Waldo, 1977; Kaufmann and Liipping, 1982; 

Broderick et al., 1991). The issues in using these co-products are their higher cost and lower 

commercial availability, uniformity, AA balance, and intestinal digestibility and palatability of 

product dictate their use. Another approach is artificially decreasing the rate of ruminal 

degradation of high quality protein sources with a good AA profile and better intestinal 

availability, which are rapidly degraded (Chalupa, 1975; Waldo, 1977; Beever and Thomson, 

1981; Kaufmann and Liipping, 1982; Broderick et al., 1991). This approach would have the 

advantage protecting the AA from ruminal degradation and maximize their utilization in dairy 

cows (Chalupa, 1975; Waldo, 1977; Beever and Thomson, 1981; Kaufmann and Liipping, 1982; 

Broderick et al., 1991). The following section highlights the most common methods successfully 

used to maximize protein utilization and protect the AA.   
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2.4.1. Heat-Related Treatments to Improve Nutrient Utilization 

It is essential to use heat treatments to improve the nutritional, hygienic, chemical, physical, 

and other animal feed characteristics (Lević et al., 2010). Heat treatment can modify the amino 

acid residues of proteins by reacting with other compounds or through cross-linking, and this 

reaction decreases ruminal protein degradation, protecting the proteins from hydrolytic activities 

of rumen microbiota (Petit et al., 1999). Therefore, heating tends to provide a more gradual release 

of protein within the rumen, enhancing the digestibility of nutrients and the milk production of 

dairy cows (Petit et al., 1999). 

There are different types of heat treatment, and each type is unique in terms of heat source, 

the structure of the system, and its efficiency. The temperature and the heating time are the two 

main mutual factors among all heat treatments (Yu et al., 1998). Most procedures that are used are 

hydrothermal treatments. The main types of heat treatments in animal feed processing include dry 

roasting, steam flaking, pelleting, extrusion, etc. (Jansen, 1991; Riaz, 2007).  

2.4.1.1. Dry Roasting  

Roasting is dense, dry heating of raw material under temperature 110 - 170°C (Kumar et 

al., 2015). The temperatures used depend on the device used and the desired product quality. If the 

temperature of roasting is too high, it could lead to reducing the availability of nutrients in the 

surface layers of grain (Kumar et al., 2015). One of the main objectives of dry roasting is to 

improve energy availability. It deactivates enzymes and inhibiting factors, enhancing the feeding 

value of the feedstuff (Kumar et al., 2015).  

The effect of roasting on feed utilization is more pronounced in ruminant studies compared 

to non-ruminants, where it has been reported that the roasting had decreased the RDP of barley, 

corn, oats, and wheat in ruminant’s diets (McNiven et al., 1994). The roasting  of the soybean meal 
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increased the RUP and decreased protein degradation (rate and extent) in the rumen (McNiven et 

al., 1994). The reduction of protein degradation in the rumen is attributed to the Maillard reaction 

between free amino groups and sugar aldehydes (Dhiman et al., 1997). The roasting process has 

also been found to increase starch gelatinization (in corn) and decrease nitrogen solubilization in 

ruminants, resulting in improved microbial synthesis, increasing body weight gain and feed 

efficiency of utilization in calves (Sinclair et al., 1993; Abdelgadir et al., 1996). Dry roasting of 

faba beans was effective in shifting the CP degradation from the rumen to the intestine, hence, 

decreasing nitrogen losses in the rumen (Yu et al., 1998).  

Numerous protein sources subjected to roasting processing have been found to reduce or 

to deactivate anti-nutritional factors. Roasting processing can modify the structure of the protein 

(denaturation), causing the deactivation of protein sources’ anti-nutritional factors (i.e., trypsin 

inhibitors, lectins, etc.), because these proteins require their structural integrity to employ the 

effects (Van der Poel et al., 1990). 

Although roasting is a typically an inexpensive method of heating, uneven heating has 

often resulted in inconsistent results. Some studies (Scott et al., 1991) have detected no effect on 

increased milk production when cows were fed roasted soybeans (meal or raw soybeans). But other 

researchers (Faldet et al., 1991) observed increases in milk production with roasted soybeans (meal 

or raw soybeans). 

2.4.1.2. Pelleting 

Pelleting is a feed processing technology, where the smaller particles of feedstuff are 

agglomerated into larger particles by using moisture, heat, and pressure (Falk, 1985). The pelleting 

process includes the following steps, first, crashing the larger feed portion into smaller feed portion 

and passing the mixed ground mash through the conditioner. The mash is exposed to some pre-
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treatments before granulation, such as mixing with molasses or fats, conditioning with steam to 

enhance the binding ability, softening the feed, denaturing protein, and gelatinizing starch. Then, 

the feed is passed to the pelleting chamber and pressed through a die to make pellets. The 

temperature of pellets after leaving the die is generally higher (60 to 95ºC). Finally, pellets are 

cooled with ambient air (Thomas and van der Poel, 1996).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. An example of blend pelleted products based on canola meal and carinta meal that 

has been developed to improve the protein utilization in dairy cows (Guevara-Oquendo, 2017). 

 

The excellent physical quality of a pellet is characterized by the ability of the pellet to 

tolerate the fragmentation and abrasion during the mechanical and the pneumatic handling without 

breaking up the feed or without generating a high proportion of fines (Cramer et al., 2003). The 

pellet durability index (PDI) and pellet hardness are the two most parameters in use to estimate the 

physical quality of pellets (Thomas and van der Poel, 1996). The PDI can be measured by the 
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“Pfost” procedure (Thomas and van der Poel, 1996) or by using the Holmen pellet durability tester. 

In the Holmen pellet durability tester, the air is used to create abrasion of the pellets opposite the 

tumbling action (ANAC, 2013). Pellet hardness is another measurement of pellet quality and can 

be defined as the necessary force to crush a pellet. The “Kahl” device is used to measure pellet 

hardness (Abdollahi et al., 2013). 

Using pellets in the feed industry and animal nutrition has many benefits, by increasing the 

bulk density and transfer efficiency of feed more than mash feeds (Thomas and van der Poel, 

1996). The pelleting process could reduce microbial bioactivity, improve the health status of 

animal feed (Abdollahi et al., 2013), increase feed palatability (Abdollahi et al., 2013), inhabit the 

adverse effect of anti-nutritional factors (i.e. glucosinolates) by making them inactive (Abdollahi 

et al., 2013), improve rumen crude protein degradation in dairy cows (Goelema et al., 1999), and 

increase resistance of starch degradation in the rumen (Tamminga and Goelema, 1995; Huang, 

2015). 

2.4.1.3. Extrusion  

The processing of extrusion includes pushing the feedstuff through the barrel by using 

means of screws of several formations and then pressing them through the die at the end of the 

barrel (Lević et al., 2010). The requisite of extrusion processing exposes the feedstuff to high 

temperature in a short time, where extrusion processing includes heating the feed in 155°C for 43 

seconds by using a Multi-purpose twin-screw extrusion system (Lević et al., 2010). Due to the 

different pressure between the inside of the extruder and the external environment, it will lead to 

a partial evaporation of water at the exit point and the development of the product (Lević et al., 

2010). However, extrusion processing is a complex technology, but it is very flexible in the same 
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time, where it provides the processing of a variety of several raw materials such as soybean, 

sunflower, rapeseed, wheat, corn, barley, oats, beans, peas, etc. (Smoje et al., 1996). 

 Extrusion could protect the dietary protein from microbial degradation in the rumen. For 

example, extrusion of oilseeds, such as canola seed, leads to increases in the production of milk in 

dairy cows (Ingalls and Grumpelt, 1987). In addition, extrusion of lupin seeds could reduce the 

degradability of crude protein in the rumen, enhancing the nutritive value of seed, such as the 

source of undegraded protein (Cros et al., 1992). Studies on extrusion process reported ineffective 

in improving the post-ruminal supply of amino acids from flaxseed-based diets (Mustafa et al., 

2003) because of increasing the ruminal CP digestibility and reducing the quantity of CP supply 

for post-ruminal digestion for cows fed diets of extruded flaxseeds (Mustafa et al., 2003). 

Nevertheless, the impact of extrusion processing on CP digestion in the rumen could vary if the 

processing procedure is modified, particularly the temperature used for the processing procedure 

and resident time during the processing, which may alter the effect of extrusion on CP digestion 

for different flaxseed (Mustafa et al., 2003). 

2.4.2. Chemical Treatments to Improve Nutrient Utilization 

Many chemical factors can lead to decreasing the RDP content of protein in different feeds. 

Many studies have been attempted to increase the proportion of RUP reaching the small intestine 

of ruminants by treatments with formaldehyde (Crooker et al., 1983), tannins (Chung et al., 2013), 

lignosulfonate (LSO3), and xylose (McAllister et al., 1993).  

2.4.2.1. Lignosulfonate  

Lignosulfonate is a feed additive that can be used as a pellet binder in animal feed to 

improve pellet quality (Corey et al., 2014). Lignosulfonate (Calcium lignosulfonate) has been used 

industrially in several applications. Windschitl and Stern (1988) reported that adding 
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lignosulfonate (LSO3) to soybean meal, followed by heating at 90-95 ºC for 45 min, decreased CP 

digestion in the rumen. Canola meal treated with 7% LSO3 heated to 100°C increased rumen 

escape protein  content (McAllister et al., 1993; Stanford et al., 1995). In addition, the treatment of 

canola meal with 5% LSO3 heated to 100°C for 60 min and 25% moisture (moist heat) resulted in 

a higher reduction in effective rumen degradability of CP than heat treatment without LSO3 

(McAllister et al., 1993). Other studies (Mansfield and Stern, 1994; Stanford et al., 1995) reported 

that the organic matter digestibility of soybean meal or canola meal was not affected by LSO3 

supplementation. Güçlü (1999) reported that LSO3 supplementation decreased DM digestibility of 

cottonseed meal. Supplementation of LSO3 would have a beneficial effect in inhibiting the adverse 

impact of anti-nutritional factors in the feed.  Guevara-Oquendo (2017) has found that adding 

lignosulfonate to blend-pelleted products of canola meal, or carinata meal could reduce the total 

level of glucosinolates in blend-pelleted products. 

2.4.2.2. Tannins 

Tannins are primarily considered anti-nutritional biochemicals due to their adverse effects 

on feed intake and nutrient utilization (Kumar, 1990). In recent years, tannins have been 

recognized as beneficial phytochemicals for modulating rumen microbial fermentation (Kumar, 

1990). Many researches have reviewed the effects of tannins on ruminants, focusing mostly on 

adverse effects of tannins on animal systems with some discussion of the beneficial effects of 

tannins addition on prevention of bloat and protein degradation (Mueller-Harvey, 2006; Waghorn, 

2008). In review by Mueller-Harvey (2006) and Waghorn (2008), little mention of methane 

inhibition by tannin-containing forages. More recently, a high number of studies have been 

published on the effects of tannins on inhibiting the methanogenesis and decreasing the protein 

file:///C:/Users/basim/Desktop/LIGNO+BRASIL.pdf
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degradability in the rumen, justifying fresh appraisal of the present scenario on the influences of 

tannins on rumen metabolism and animal performance.  

The tannins are divided into condensed tannins and hydrolyzed tannins (Khanbabaee and 

Ree, 2001). Though, as a rule, hydrolyzable tannins have ability to bond with feed protein, may be 

degraded in the rumen enzymatic hydrolysis into several structural units (mainly phenolic acids), 

and have a lower capacity of attachment to feed protein (Khanbabaee and Ree, 2001). Instead, 

condensed tannins have higher stability in the rumen compared to hydrolyzed tannins, where they 

have a higher resistance to ruminal enzymes. The stability of condensed tannins are attributed to 

their high molecular weight;  meanwhile, this could decrease their capacity to bond with feed 

proteins when compared to hydrolyzable tannins (Frutos et al., 2004). Frutos et al. (2004) found 

the condensed tannins decreased the degradability of soybean meal significantly when compared 

to commercial tannic acid.  Hervas et al. (2000) treated soybean meal with different doses of tannic 

acid condensed tannins extract and found both treatment doses reduced the extent of crude protein 

degradation in the rumen. 

2.5. Molecular Analysis of Feed Using Vibrational Fourier Transform Infrared (FTIR) 

Spectroscopy 

2.5.1. The Basic Principle of Fourier Transform Infrared (FTIR) Vibration 

Spectroscopy 

FTIR spectroscopy is based on the mathematical Fourier-transformation method and 

interferometry (Stuart, 2004). Every FTIR machine is based on an interferometer (Smith, 2011). 

The most common interferometer is the Michelson interferometers, which consists of four arms. 

The top arm is composed of a collimating mirror and an infrared source. The bottom arm includes 

a fixed mirror. The left arm contains a moving mirror. The right arm is where the samples and the 
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detector are located, while a beam splitter is placed in the middle of the interferometer (Smith, 

2011). The IR beam from the infrared source emits to the collimating mirror and then produces 

parallel rays across the beam splitter (Smith, 2011). After that, the beam is split by the beam splitter 

to two beams (one beam (50%) moves to the fixed mirror, and the other one (50%) moves towards 

the moving mirror; Smith, 2011). The reflected beams by the steady and moving mirrors will 

encounter at the beam splitter and recombine to form a final beam. The combined beam will pass 

through samples after leaving the interferometer and receiving a combined beam by the detector 

to produce an interferogram (Smith, 2011). 

 The Fourier transformation method processes the interferogram and analyzes the signal 

frequencies (Stuart, 2005; Smith, 2011). By comparing the FTIR with the other types of infrared 

instruments, the FTIR can provide fast, easy, and exact gauges with good signal-to-noise ratios 

(SNRs). The FTIR needs little sample preparation, saving labor. The FTIR lets high throughout 

and multiplex scans (Stuart, 2005; Smith, 2011). 

Recently, in feed science, it has become important to utilize the FTIR to reveal structural 

changes of molecules and confirmation of biopolymers among several types of feed stuff in 

relation to the nutrient values and nutrient utilization (Theodoridou and Yu, 2013; Xin and Yu, 

2013c). For instance, the FTIR could reveal the variances between the components of feed, feed-

based crop varieties, the impact of gene modification and processing of feed on spectral 

characteristics, and impact of protein and CHO degradation in rumen related structure 

(Theodoridou and Yu, 2013; Xin and Yu, 2013c). 

2.5.2. Application of FTIR Spectroscopy in The Feed Analysis 

The feeding value and fermentation features of animal feedstuff have been reported to be 

influenced by the inherent molecular structure (Yu, 2012b). The infrared spectroscopy can detect 
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and identify molecular information of feed (Yu, 2012b). Molecular spectroscopic methods, such 

as FTIR, is a rapid, direct, non-destructive, and non-invasive bioanalytical technique used to detect 

the infrared spectrum of absorptions or emissions of liquid, gas, or solids (Smith, 2011). The FTIR 

comprises three essentials spectrometer elements: (1) the radiation source; (2) the interferometer; 

(3) the detector (Hsu, 1997).  

In recent years, studies in animal feed science reported the success of FTIR to reveal 

structural changes of molecules for different types of feed in relation to nutrient values, nutrient 

utilization, and availability (Abeysekara et al., 2013; Peng et al., 2014; Xin and Yu, 2013a, b). For 

instance, the FTIR has been used to identify the molecular structure for different crop varieties, 

feed ingredients, and to study the impacts of feed processing on protein- and carbohydrate-related 

structures (Abeysekara et al., 2013; Peng et al., 2014; Xin and Yu, 2013a,b). 

2.5.3. Univariate and Multivariate Analysis for Spectra 

There are two common methods for spectral analysis, the univariate and the multivariate 

analyses (Yu, 2005, 2012b). The univariate analysis uses a mathematical parameter related to 

spectra, such as band height and area intensities, band frequencies, and the band intensity ratios 

(Yu, 2012b). The univariate analysis can be used to correlate with the chemical and biological 

features of feeds (Yu, 2012b). The drawback of the univariate analysis is its limited ability to 

analyze and compare massive spectral data. Multivariate analysis technique is favored (Yu, 2005). 

The multivariate analysis includes the hierarchical cluster analysis (CLA) and principal component 

analysis (PCA; Yu, 2005c).  

The protein metabolism in dairy cows could be affected by the type of proteins and 

hydrolytic enzyme activities in the gastrointestinal tract and protein molecular structure (Yu and 

Nuez-Ortín, 2010; Huang et al., 2017). The protein secondary structures comprise α-helix and β-
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sheet (Marinkovic and Chance, 2002). The primary molecular structure of protein (amide I and 

amide II and their ratio) and secondary structure of α-helix and β-sheet features may affect protein 

utilization, protein bioavailability, and digestive behavior in ruminants (Yu and Nuez-Ortín, 2010; 

Huang et al., 2017), mostly because molecular structure of protein influences accessibility of 

rumen bacteria and gastrointestinal tract enzymes, which affect protein values and protein 

availability (Yu and Nuez-Ortín, 2010).  

 

2.6. Literature Review Summary, Overall Research Objectives, and Hypothesis 

The co-products from bio-energy processing are often used as a source of protein 

supplement in the livestock industry. New co-products from bio-fuel processing of carinata seed 

have become available in Canada. However, to date, no study has been carried out to evaluate the 

effect of feeding this new feed in dairy cows relative to the conventional protein source such as 

canola meal or distillers’ grains. Previous studies showed that the canola meal and carinata meal 

have a higher rate and extent of digestion in the rumen. Thus, it necessary to use appropriate 

methods for reducing the degradability in the rumen, i.e., using feed additive (lignosulfonate, 

tannins) and proper feed processing (heat treatment).  

Using vibrational molecular spectroscopy with chemometrics, including univariate and 

multivariate techniques, would reveal information about the molecular structure features related 

to the N-utilization in dairy cows. However, to date, there has been no systemic study that has been 

carried out to evaluate an association among molecular structure feature related to the amide region 

in different blend-pelleted products based on bio-energy co-products and the nutrient 

bioavailability and production efficiency in dairy cows.  
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2.6.1. Project Hypotheses  

• Blend-pelleted products that developed here can be used effectively as an alternative protein 

concentrates in replacing conventional diet that is based on soybean meal and peas ration in 

the dairy industry in western Canada without any adverse effect on milk production. 

• Adding lignosulfonate (LSO3) to the blend-pelleted products should improve protein 

digestion in the rumen and optimize nutrient supply to dairy cattle which could improve milk 

production of dairy cows. 

• Processing-induced molecular structure changes in blend-pelleted products and blend-

pelleted products based-total mixed ration will be significantly associated with nutrient 

utilization and availability and production performance of dairy cows. 

2.6.2. Project Objectives 

• To detect pelleting-induced molecular structural changes in terms of chemical functional 

groups related to the amide region in the blend-pelleted products based on a combination of 

carinata meal or canola meal with pea screenings, and lignosulfonate at different levels.  

• To reveal the interactive association between the molecular spectral profiles related to amide 

region and the nutrient utilization and availability of blend-pellet products in dairy cattle. 

• To determine chemical profiles, energy values, and nutrient fractions of protein, ruminal and 

intestinal utilization and availability of nutrients for the blend-pelleted products in high 

producing dairy cows. 

• To examine the effect of feeding different blend-pelleted products on production 

performance, nutrients digestibility, nitrogen balance, ruminal fermentation characteristics, 

and ruminal pH profile in lactating dairy cows.  
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• To examine the interactive association between blend-pelleted products based-total mixed 

ration molecular spectral profile and nutrient digestion, nitrogen balance in high producing 

dairy cow. 
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3. INTERACTIVE ASSOCIATION OF MOLECULAR STRUCTURE OF BLEND- 

PELLETED PRODUCTS BASED ON COMBINATION OF NEW CO-PRODUCTS 

FROM BIO-ENERGY PROCESSING, PULSE SCREENINGS, AND 

LIGNOSULFONATE COMPOUND WITH PROTEIN UTILIZATION IN DAIRY 

COWS 

3.1. Abstract 

This study to determine the molecular structural features related to amide region and to quantify 

the relationship between molecular structural profile of amide region and protein bioavailability 

of blend-pelleted products (BPPs) based on canola meal and new bio-fuel co-products (carinata 

meal) with different proportions of pea screenings and lignosulfonate compound in dairy cows. 

The molecular structures of amide region were determined using the advanced vibrational 

molecular spectroscopy (FTIR). The results showed that increasing the level of canola and carinata 

meal in the blend products significantly increased (P < 0.05) the amide area and amide peak  height 

of the BPPs. All BPPs exhibited similar protein secondary structures (α helix to β sheet ratio). 

Protein molecular structure profiles were highly-associated (P < 0.05) with the ruminal 

degradation and estimated intestinal digestion characteristics of the protein. In conclusion, the 

vibrational molecular spectroscopy could detect inherent structural characteristics in the BPPs 

based on different co-products from bio-energy processing. The molecular structural features 

related to the protein region were highly-associated with the protein utilization in dairy cows. 

  

 

A version of this chapter has been published: Ismael, A., Guevara-Oquendo, V., Refat, B, and Yu, P. 

Interactive association between processing induced molecular structure changes and nutrient delivery on a 

molecular basis, revealed by cutting-edge vibrational biomolecular spectroscopy. Journal of Animal science 

and biotechnology. In press. https://doi.org/10.1186/s40104-019-0384-z  

 

https://doi.org/10.1186/s40104-019-0384-z
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3.2. Introduction 

Due to the high worldwide demands of oils and fuel in industry, bio-energy processing 

(bio-fuel, bio-oil, and bio-ethanol) has resulted in large amounts of co-products such as canola 

meal, carinata meal, and distiller's dried grains with solubles (Ban and Yu, 2016; Canola Council 

of Canada, 2015; Xin and Yu, 2013a). Many studies have investigated the utilization of canola 

meal  in ruminant or monogastric animals (Heendeniya et al., 2012; Huang et al., 2017; 

Theodoridou and Yu, 2013a). Nevertheless, to our knowledge, there is limited information that 

could be found in the literature on the carinata meal (a new co-product) when it is blended with 

other feedstuff to optimize its feeding value, particularly physicochemical or biopolymer 

functions. 

There are several methods for feed evaluation, such as wet chemistry analysis; however, 

wet analytical techniques could damage the main structure of samples (Yu et al., 2014). The 

feeding value and fermentation features of feedstuff have been reported to be influenced by the 

inherent molecular structure (Yu, 2004). The IR spectral region (ca. 4000–800 cm−1) has a strong 

characteristic vibrational transition compared with near-IR region, especially in the wavelength 

range between ca. 1800 and 800 cm−1, which is called the “fingerprint region” (Liu, 2009; Yu, 

2004). Vibrational spectroscopy such as FTIR is commonly used to detect the molecular structure 

of feed. The FTIR spectroscopy is a direct, rapid, non–destructive, and non–invasive bioanalytical 

technique used to reveal the infrared spectrum of absorptions or emissions of liquid, gas, or solids 

(Smith, 2009).   

The FTIR spectroscopy has many advantages such as revealing the molecules structural 

changes of different types of feed and determining the nutrient utilization and bioavailability of 

feed in ruminants (Reynolds et al., 1994). Moreover, this technique could recognize the molecular 
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structure of different crop varieties, feed ingredients, and studying the effects of feed processing 

on protein and carbohydrate–related intrinsic structures (Abeysekara et al., 2013; Huang et al., 

2015; Khan et al., 2015; Peng et al., 2014; Xin and Yu, 2013b). However, there is no systematic 

study that has been conducted to determine how blend-pelleted products (BPPs) based on 

different co-products of bio-oil or bio-fuel processing (i.e. carinata or canola meal), could induce 

changes in protein intrinsic molecular structures and how these changes influence the protein 

utilization in dairy cows. Therefore, the current study was performed to: 1) investigate the 

magnitude of differences among eight different BPPs from the bio-energy processing (carinata 

meal vs. canola meal) with different proportions of pea screenings and lignosulfonate in terms of 

protein molecular structure and 2) estimate the protein inherent structure changes in relation to 

protein profile, CNCPS protein sub-fractions, energy values, protein digestion (rumen and 

intestine), and the metabolizable protein supply in dairy cows.  

3.3. Materials and Methods 

3.3.1. Sample preparation 

The experiment was performed at the Department of Animal and Poultry Science, 

University of Saskatchewan (Saskatoon, SK, Canada). The co-products of canola meal and 

carinata meal were used in BPPs in combination with different levels of pulse pea screenings and 

lignosulfonate compound. Eight blends were formulated; the BPPs from 1 to 4 are based on 

carinata meal (Agrisoma; Saskatoon, Canada) with different levels of pea screenings and 

lignosulfonate; and the BPPs from 5 to 8 are based on canola meal (Cargill Animal Nutrition, 

Clavet, Canada) with different levels of lignosulfonate and pea screenings. The composition of the 

BPPs (on dry matter (DM) basis) is as follow: 

BPP1: lignosulfonate 0 % + carinata meal 50 % + pea screenings 50.0 % DM.  
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BPP2: lignosulfonate 4.8 % + carinata meal 47.6 % + pea screenings 47.6 % DM. 

BPP3: lignosulfonate 0 % + carinata meal 75 % + pea screenings 25 % DM.  

BPP4: lignosulfonate 4.8 % + carinata meal 71.4 % + pea screenings 23.8 % DM.  

BPP5: lignosulfonate 0 % + canola meal 50 % + pea screenings 50.0 % DM.  

BPP6: lignosulfonate 4.8 % + canola meal 47.6 % + pea screenings 47.6 % DM. 

BPP7: lignosulfonate 0 % + canola meal 75 % + pea screenings 25 % DM. 

BPP8: lignosulfonate 4.8 % + canola meal 71.4 % + pea screenings 23.8 % DM. 

Pea screenings were sourced from ILTA Grain Company (Surrey, BC, Canada), while the 

lignosulfonate was obtained from Ameri-bond (Canada). The feed was produced in two different 

batches for each BPP. The pelleting was conducted at Canadian Feed and Research Centre (CFRC, 

North Battleford, Canada). For the pellet processing, the following procedure was followed to 

obtain the BPP: 1) Mixing the combinations in the Scott Equipment model TSM 363 (New Prague, 

MN, USA) for two minutes, 2) Heating the different combinations by using Colorado Mill 

Equipment ECO–R30 (Cañon City, USA) at 65°C and pelleting through a 3.6 mm diameter die 

such that the residence time of the blends in the die did not exceed 15 seconds, and 3) Cooling at 

room temperature.  

3.3.2. Detection of blend-pelleted products impact on protein molecular structure 

changes  

The detailed chemical composition, in situ rumen degradation profile, and the predicted 

nutrients supply to dairy cows, were previously reported by Guevara-Oquendo et al. (2018).  The 

detailed chemical profile, Cornell Net Carbohydratevand Protein System (CNCPS) fraction, and 

energy values of the combined samples (n = 16) of BPPs (carinata meal or canola meal with 

different combinations of peas and lignosulfonate) are summarized in Table 8.1, 8.2 (Appendix). 
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These data were used for the correlation and regression studies. The crude protein (CP) was 

analyzed according to AOAC official method (984.13; AOAC, 1990). Neutral detergent insoluble 

crude protein (NDICP), non protein nitrogen (NPN), and acid detergent insoluble crude protein 

(ADICP) were estimated as described by Licitra et al. (1996). Soluble crude protein (SCP) was 

analyzed by incubating samples with bicarbonate–phosphate buffer then filtrating through 

Whatman filter paper (Roe et al., 1990). For energy profiles, total digestible nutrient (TDN), 

metabolizable energy (ME), digestible energy (DE), and net energy (NE) were used for estimating 

the available energy in BPP. The total digestible crude protein (tdCP), total digestible nutrients at 

maintenance level (TDN1x), digestible energy at level 3x maintenance (DE3x), metabolizable 

energy at level 3x maintenance (ME3x), and net energy of lactation at level 3x maintenance (NEL3x) 

were estimated by using a summative approach of the NRC (2001).   

The in situ rumen degradation and the intestinal digestion of CP were performed in 

according to Yu et al. (2003). Degradation characteristics of CP were estimated by applying the 

first-order kinetics degradation model described by Orskov and Mcdonald (1979). The results were 

calculated using the NLIN procedure of SAS 9.4 with an iterative least-squares regression (Gausse 

Newton method): 

R(t) = U + D × e−Kd × (t − T0) 

where R(t) = residue present at t h incubation (%); U = undegradable fraction (%); D = potentially 

degradable fraction (%); Kd = degradation rate (h−1) and T0 = lag time (h). 

The rumen bypass crude protein (BCP) was estimated according to NRC (2001): 

% BCP = U + D × Kp / (Kp + Kd) 

where, Kp stands for estimated passage rate from the rumen (h1) and was assumed to be 6 %/h 

for CP.  
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The predicted nutrient supply was estimated using the NRC (2001) model. In this model, the 

metabolizable protein (MP; g/kg DM) was calculated based on the following equation (NRC, 

2001):  

MP = AMCP+ ARUP + AECP 

where, AMCP is the absorbable microbial protein, ARUP is the truly absorbable rumen 

undegraded feed protein, and AECP is the truly absorbable endogenous protein in the small 

intestine. 

The feed milk value (FMV) was predicted based on the metabolizable protein content of BPP, 

where the efficiency of utilizing of metabolizable protein in dairy cows was assumed to be 0.67, 

and protein composition in milk was assumed to be 33 g protein / 1 kg of milk (NRC, 2001). 

3.3.3. Fourier Transform Infrared (FTIR) Vibration Spectroscopy Analysis 

3.3.3.1. Univariate Molecular Spectral Analysis of Protein Profile 

For the molecular analysis, the samples were grounded to pass a 0.12 mm sieve (Retsch 

ZM200, Rose, Scientific Ltd., Canada) for FTIR spectroscopic analysis. Every sample was 

spectroscopically scanned for five times. The molecular spectral data of samples were collected 

and corrected for the background spectrum using FTIR molecular spectroscopy (JASCO 4200, 

JASCO International Co. Ltd., Tokyo, Japan). The spectra were generated in the mid–IR (ca. 

4000–800 cm−1) and the fingerprint region (ca. 1800–800 cm−1) with a spectral resolution of 4 

cm−1. The FTIR spectra were processed by using OMNIC 7.3 (Spectra–Tech, Madison, WI). The 

regions of specific interest in this study included the primary molecular protein structural (amide 

I and amide II) and the secondary molecular protein structural (α–helix and β–sheet) in the mid-

IR. The structural spectra information on the protein was determined by analyzing the absorption 

peak parameter such as region, baseline, peak, height, and area according to Yu (2004). 
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The univariate spectral analysis of protein structure comprised the primary and the 

secondary protein structures. The primary protein structures included amide I and II. The baseline 

of protein spectral was centered at ca. 1480–1730 cm–1 (Figure 3.1). The baseline of the amide I 

area was centered at ca. 1569–1730 cm–1 (Figure 3.2a). The baseline of the amide II area was 

centered at ca. 1480–1569 cm–1 (Figure 3.2c). The peak height of the amide I was centered at ca. 

1638–1649 cm–1 (Figure 3.2b), while the peak height of amide II was centered at ca. 1533–1540 

cm–1  (Figure 3.2d). The secondary protein structures of the amide I region were estimated by using 

the 2nd derivative funcitona and Fourier self–deconvolution function on OMNIC 7.4 Software 

(Spectra Tech, Madison, WI) according to previous studies (Theodoridou and Yu, 2013b; Yu, 

2005). The secondary protein structures were comprised mainly α–helix and β–sheet. The peak 

height of α–helix was centered at ca. 1647–1653 cm–1, while the peak height of β–sheet was 

centered at ca. 1625–1631 cm–1. 

3.3.3.2. Multivariate Molecular Spectral Analysis of Protein Profile 

The principal component analysis (PCA) on FTIR data was performed using the 

Unscrambler 10.3 (CAMO Software AS, Oslo, Norway) for clustering any variation among blend- 

pelleted products. The raw data were preprossessed using baseline offset. The Savitzky–Golay 

algorithm was used to calculate the second derivative. Three principal components were selected 

for analysis. The two dimention (2D) plots were used to display the clustering among data sets. 

Loading points’ plots for the most important principal components were used to display the 

relations among variables of data.  
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Figure 3.1. Typical Fourier transform infrared (FTIR) spectrum of the blend-pelleted products 

based on carinata or canola meal for protein region ca. 1730 to 1480 cm-1, showing the 

functional group makeup of protein amide I and II 
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(a) 

 

 (b) 

 

(c) 

 

(d) 

 

Figure 3.2. Spectral profile of the blend-pelleted products related to protein region (a) amide I 

area (ca. 1730-1569 cm−1); (b) Amide I peak height (ca. 1638-1649 cm-1);  (c) Amide II area (ca. 

1569-1480 cm-1); (d) Amide II peak height (ca. 1533-1540 cm-1) 
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3.3.4. Statistical analysis  

The data of chemical functional groups in the protein region (ca. 1480–1730 cm–1) were 

analyzed by SAS 9.4 (SAS Institute, Inc., Cary, NC, USA).  The experiment was designed using 

the randomized complete block design (RCBD) with pellet processing run as a random block 

effect. The RCBD model assumptions were checked by using a Residual Analysis. The residual 

normality was tested using Proc Univariate with Normal Plot option. Multi-treatment comparison 

was carried out by using Tukey method. 

The correlation between the functional groups related to protein region (amide I, II peak 

hights and areas, α–helix, β–sheet and their ratio) and the chemical profiles of protein, energy 

values, rumen degradation kinetics parameters, intestinal digestive characteristics of protein, and 

the truly-absorbed protein supply was analyzed by using the PROC CORR procedure in SAS 9.4 

(SAS Institute, Inc., Cary, NC, USA). Rank correlation with the SPEARMAN option and 

normality test with the UNIVARIATE option were used in the correlation study.  

Multiple regression analysis (with model variable selection method) was performed to 

select the best functional groups that would explain the nutritive values of BPP using the PROC 

REG procedure of SAS with a reversed stepwise option. The following model was used for the 

multiple regression with model variable selection: model Y= spectral parameter 1 + spectral 

parameter 2 + spectral parameter 3 + spectral parameter 4 + ... + error. The model used a 

“STEPWISE” option with variable selection criteria: “SLENTRY = 0.05, SLSTAY = 0.05”. All 

variables left in the final prediction models were significant at the 0.05 level. Residual analysis for 

multiple-regression was performed using the Residual Analysis and residual normality was 

checked using the Univariate procedure of SAS with Normal and Plot options.  

3.4. Results  
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3.4.1. Protein spectral intensities of blend-pelleted products  

The spectral protein profiles include the primary and secondary structures of protein of 

different BPPs based on canola meal or carinata meal with different level of lignosulfonate and 

pea screenings by using FTIR vibrational spectroscopy are shown in Table 3.1. The results showed 

That BPP7 and BPP3 had the highest (P < 0.01) amide I peak height (averaged 0.307 IU), while 

the BPP2 and BPP6 had the lowest values (averaged 0.259 IU). The amide I area was significantly 

different (P < 0.01) among BPPs, where the BPP7 and BPP3 had the highest amide I area (averaged 

21.2 IU), whereas the BPP2 and BPP6 had the lowest values.  

Our results showed that the ratio of amide I to II had a higher value (P < 0.05) in BPP based 

on carinata meal compared with canola meal (2.12 vs. 1.98). Furthermore, adding the pea 

screenings decreased (P < 0.05) the ratio of amide I to II in BPP based on carinata from 2.19 to 

2.05, and in BPP based on canola from 1.95 to 2.02.  

The secondary structures such as α–helix and β–sheet and their ratio of BPPs are presented 

in Table 3.1. It has been found that the α–helix, β–sheet height ratio was the same for all treatments 

(P = 0.10). This study showed that the ratio of α–helix to β–sheet decreased (P < 0.05) from 1.17 

to 1.13 with decreasing the level of co-products in the BPPs. 

3.4.2. Correlation analysis between the amide spectral features and nutrients profiles 

in the blend-pelleted products  

The correlation analysis between the vibrational spectral features and protein profiles, 

protein sub-fractions, and the predicted energy values of BPPs are shown in Table 3.2. The CP had 

positive correlations with amide I area (r = 0.70, P < 0.05), total amide area (r = 0.58, P = 0.02),  
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Table 3.1. Molecular spectral features related to amide region for different blend-pelleted products (BPP)*. 

CO-P Pea LSO3 Treatment 
Amide 

I height 

Amide 

II height 

Amide I, 

II ratio 

Amide 

I area 

Amide 

II area 

Amide 

area 
α-helix 

β-sheet 

height 

α: β 

ratio 

CR High NO BPP1 0.23cd 0.13bc 2.07bc 19.02d 6.46bc 25.49de 0.32cd 0.27de 1.17 

CR High Add BPP2 0.25e 0.12d 2.03bc 17.50e 5.76d 23.26f 0.29e 0.25f 1.17 

CR Low NO BPP3 0.30ab 0.14b 2.15ab 21.25a 6.53b 27.78ab 0.34b 0.30bc 1.14 

CR Low Add BPP4 0.28c 0.13cd 2.22a 20.00c 6.00cd 26.01cd 0.32cd 0.28cde 1.14 

CN High NO BPP5 0.28cd 0.14b 1.96cd 19.03d 6.40bc 25.44de 0.33bc 0.29cd 1.15 

CN High Add BPP6 0.27de 0.14b 1.93cd 18.00e 6.55b 24.56e 0.31d 0.27e 1.19 

CN Low NO BPP7 0.31a 0.16a 1.89d 21.09ab 7.64a 28.73a 0.37a 0.33a 1.12 

CN Low Add BPP8 0.29bc 0.14b 2.14ab 20.22bc 6.60b 26.82bc 0.35b 0.31b 1.11 

SEM 0.006 0.004 0.070 0.335 0.213 0.429 0.007 0.007 0.020 

P-Value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.18 

Contrast 

P-value 

CO-P CR vs CN 0.04 <0.01 <0.01 0.52 <0.01 0.02 <0.01 <0.01 0.45 

LSO3 No vs Add <0.01 <0.01 0.07 <0.01 <0.01 <0.01 <0.01 <0.01 0.67 

Pea High vs Low <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
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Table 3.1. Cont’d. Molecular spectral profile related to amide region for different blend-pelleted products (BPP)* 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and lignosulfonate; SEM: Standard error of 

means; a-f Means with the different letters in the same column are significantly different (P < 0.05); Multi-treatment comparison using Tukey method; 

BPP1: lignosulfonate 0 % DM + carinata meal 50 % DM + pea screenings 50.0 % DM.; BPP2: lignosulfonate 4.8 % DM + carinata meal 47.6 % 

DM + pea screenings 47.6 % DM; BPP3: lignosulfonate 0 % DM + carinata meal 75 % DM + pea screenings 25 % DM; BPP4: lignosulfonate 4.8 

% DM + carinata meal 71.4 % DM + pea screenings 23.8 % DM; BPP5: lignosulfonate 0 % DM + canola meal 50 % DM + pea screenings 50.0 % 

DM; BPP6: lignosulfonate 4.8 % DM + canola meal 47.6 % DM + pea screenings 47.6 % DM; BPP7: lignosulfonate 0 % DM + canola meal 75 % 

DM + pea screenings 25 % DM; BPP8: lignosulfonate 4.8 % DM + canola meal 71.4 % DM + pea screenings 23.8 % DM; CO-P: Co–Product. CR:  

Carinata meal. CN: Canola meal. LSO3: Lignosulfonate; Baseline for protein spectral peak: ca. 1480–1730 cm–1; protein amide I region: ca. 1569–

1730 cm–1; protein amide II region: ca. 1480–1569 cm–1; center range of amide I peak: ca. 1638–1649 cm–1; center range of amide II peak: ca. 1533–

1540 cm–1; center range for α–helix: ca. 1647–1653cm–1; center range for β–sheet: ca. 1625–1631cm–1 
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Table 3.2. Correlation between protein profile of different blend-pelleted products (BPP)* and the molecular spectral profile related to 

amide region. 

Items  
Amide 

I height 

Amide II 

height 

Amide I, II 

ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α-helix 

height 

β-sheet 

height 
α, β ratio 

CP 

(g/kg DM) 

r 0.55 0.11 0.40 0.70 0.16 0.58 0.39 0.44 -0.55 

P-value 0.03 0.69 0.13 0.01 0.56 0.02 0.14 0.08 0.03 

NDICP 

(g/kg CP) 

r -0.06 -0.50 0.52 0.08 -0.40 -0.08 -0.33 -0.32 0.12 

P-value 0.82 0.05 0.04 0.77 0.13 0.77 0.21 0.23 0.66 

ADICP 

(g/kg CP) 

r 0.29 0.56 -0.36 0.18 0.51 0.32 0.53 0.55 -0.40 

P-value 0.27 0.02 0.17 0.49 0.04 0.23 0.03 0.03 0.13 

SCP 

(g/kg CP) 

r 0.25 0.48 -0.38 0.05 0.35 0.16 0.41 0.37 -0.12 

P-value 0.36 0.06 0.15 0.85 0.19 0.56 0.12 0.15 0.65 

NPN 

(g/kg CP) 

r -0.71 -0.12 -0.56 -0.80 -0.22 -0.68 -0.61 -0.67 0.64 

P-value 0.01 0.67 0.02 0.01 0.42 0.01 0.01 0.01 0.01 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and lignosulfonate; CP: crude protein; 

NDICP: neutral detergent insoluble crude protein; ADICP: acid detergent insoluble crude protein; SCP: soluble crude protein; NPN: non–protein 

nitrogen. 
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and amide I height (r = 0.55, P = 0.03) in BPPs. However, CP exhibited a negative 

correlation with the ratio of α–helix to β–sheet (r = –0.55, P = 0.03).  

The results in the current study showed that NDICP had a negative correlation with amide 

II height (r = –0.50, P = 0.05) and a positive association with the ratio of amide I to II height 

(r = 0.52; P = 0.04). The content of ADICP was found to be positively correlate with the amide II 

height (r = 0.56, P = 0.02) or the amide II area (r = 0.51, P = 0.04). The concentration of NPN was 

negatively correlated with the amide I area (r = –0.80, P = 0.01), amide I height (r = –0.71, P < 

0.05), amide I to II area ratio (r = –0.68, P < 0.05), amide I to II height ratio (r = –0.56, P < 0.05), 

β-sheet height (r = –0.67, P < 0.05), and α–helix height (r = –0.61, P < 0.05). However, there was 

a positive correlation between NPN and the ratio of α–helix to β sheet (r = 0.64, P = 0.01).  

For the truly digestible crude protein, the results showed some correlations between tdCP 

and amide I area (r = 0.68, P = 0.01), amide I height (r = 0.53, P < 0.05), and the amide area (r = 

0.56, P = 0.02; Table 3.3). On the other hand, there was no correlation (P > 0.05) between the 

predicted energy values by the NRC-model and the molecular structure features related to protein 

amide region.  

For protein subfractions partitioned by the CNCPS 6.5 model, the results showed that the 

slowly degradable protein (PB2 fraction) was positively associated with the amide I to II height 

ratio (r = 0.50, P = 0.05) and negatively related to the amide II height (r = –0.52, P = 0.04; Table 

3.3). The PC fraction was observed to be positively associated with the amide II height (r = 0.56, 

P = 0.02) and amide II area (r = 0.51, P = 0.04).  

In the current study, it has been found the degradation rate of feed protein was negatively 

correlated with the amide I area (r = –0.36, P < 0.01) and the amide I to II height ratio (r = –0.36,



   

36 
 

Table 3.3. Correlation between protein subfractions and predicted energy values of different blend-pelleted products (BPP)* and the 

molecular spectral profile related to the amide region. 

Items 

 

Amide I 

height 

Amide II 

height 

Amide I, II 

ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α-helix 

height 

β-sheet 

height 
α, β ratio 

CNCPS v.6.5 protein subfractions (g/kg CP) 

PA2 
 

r 0.23 0.47 -0.39 0.04 0.34 0.15 0.40 0.36 -0.10 

P-value 0.39 0.06 0.13 0.90 0.19 0.59 0.13 0.17 0.71 

PB1 
 

r -0.28 -0.31 0.18 -0.10 -0.20 -0.15 -0.32 -0.28 0.06 

P-value 0.29 0.24 0.50 0.70 0.46 0.58 0.22 0.29 0.83 

PB2 
 

r -0.11 -0.52 0.50 0.03 -0.43 -0.13 -0.38 -0.37 0.18 

P-value 0.68 0.04 0.05 0.92 0.10 0.64 0.15 0.16 0.51 

PC 
 

r 0.29 0.56 -0.36 0.18 0.51 0.32 0.53 0.55 -0.40 

P-value 0.27 0.02 0.17 0.49 0.04 0.23 0.03 0.03 0.13 

Predicted energy values (Mcal/kg) 

MEp3x 
 

r -0.12 -0.43 0.36 -0.02 -0.38 -0.15 -0.38 -0.39 0.27 

P-value 0.67 0.09 0.17 0.94 0.14 0.58 0.15 0.13 0.30 

NELp3x 
 

r -0.12 -0.44 0.37 -0.02 -0.39 -0.15 -0.37 -0.39 0.27 

P-value 0.67 0.09 0.16 0.95 0.14 0.59 0.15 0.14 0.32 
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Table 3.3. Cont’d. Correlation between protein subfractions and predicted energy values of different blend-pelleted products (BPP)* 

and the molecular spectral profile related to the amide region. 

Items 

 

Amide I 

height 

Amide II 

height 

Amide I, II 

ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α-helix 

height 

β-sheet 

height 
α, β ratio 

Predicted total digestible nutrients (g/kg DM) 

tdCP 

 

r 0.53 0.09 0.41 0.68 0.13 0.56 0.36 0.42 -0.53 

P-value 0.03 0.75 0.12 0.01 0.62 0.02 0.17 0.11 0.03 

TDN1x 

 

r -0.38 -0.53 0.23 -0.33 -0.50 -0.43 -0.59 -0.63 0.55 

P-value 0.15 0.03 0.40 0.21 0.05 0.10 0.02 0.01 0.03 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and lignosulfonate ; PA2: soluble true protein; 

PB1, insoluble true protein; PB2: fiber–bound protein; PC: indigestible protein; MEp3×: metabolizable energy at production level of intake (3×); 

NELp3×: net energy for lactation at production level of intake (3×); tdCP: truly digestible crude protein; TDN1×: total digestible nutrient at one time 

maintenance.  
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P = 0.04), while the slowly degradable fraction of protein was positively correlated with the amide 

I height, amide I area and amide area (Table 3.4). The amide II area and the ratio of amide I to II 

height were found to be negatively related to the EDCP of BPPs (P < 0.05; Table 4). Additionally, 

the undegradable CP fraction of BPPs was found to be negative correlated with the heights or areas 

of amide I and amide II. The intestinal digestion of BCP (%dIDP) and the total intestinal 

digestibility of CP (IADP%) were positively correlated with the amide I to II height ratio (r = 0.55, 

P < 0.05). The results showed that the α -helix to β-sheet ratio was correlated with the slowly 

degradable fraction of CP (r = –0.44, P = 0.01) and the undegradable fraction of CP (r = 0.45, P = 

0.01).  

The correlation between protein molecular structure and the predicted protein supply of 

BPP is shown in Table 3.5 The data showed significant correlation between AMCP and the amide 

II height (r = –0.53, P < 0.01), the amide II area (r = –0.50, P < 0.01), the amide area (r = –0.43, 

P < 0.01), and the α helix to β-sheet ratio (r = 0.55, P < 0.01). For the truly absorbable rumen 

undegraded protein in the small intestine, ARUP exhibited a positive correlation with the amide I 

to II height ratio (r = 0.62, P < 0.01). The MP had a positive correlation with amide I to II height 

ratio (r = 0.61, P < 0.01) and a negative correlation with the amide II height (r = –0.43, P = 0.02). 

The DPB had positive correlations with amide II height (r = 0.70, P < 0.01), the total amide area 

(r = 0.65, P < 0.01), amide II area (r = 0.64, P < 0.01), amide I height (r = 0.63, P < 0.01), amide 

I area (r = 0.57, P < 0.01), β-sheet height (r = 0.79, P < 0.01), and α helix height (r = 0.77, P < 

0.01) but a negative correlation with α helix to β-sheet ratio (r = –0.62, P < 0.01). The FMV had a 

positive correlation with amide I to II height ratio (r = 0.45, P = 0.01), while negatively correlated 

with the amide II height (r = –0.39, P = 0.03). 
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Table 3.4. Correlation between ruminal and intestinal digestion of protein for different blend-pelleted products (BPP)* and the 

molecular spectral profile related to amide region. 

Items 
Amide 

I height 

Amide II 

height 

Amide I, 

II ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α-helix 

height 

β-sheet 

height 
α, β ratio 

In situ ruminal degradation of CP 

Kd (%/h) 
r -0.22 0.13 -0.53 -0.36 0.12 -0.19 0.02 -0.09 0.25 

P-value 0.22 0.49 <0.01 0.04 0.53 0.30 0.90 0.62 0.17 

S (%) 
r 0.23 0.67 -0.65 -0.03 0.59 0.18 0.44 0.32 -0.10 

P-value 0.20 <0.01 <0.01 0.85 <0.01 0.33 0.01 0.07 0.59 

D (%) 
r 0.35 0.24 0.12 0.40 0.25 0.38 0.44 0.47 -0.44 

P-value 0.05 0.18 0.50 0.02 0.17 0.03 0.01 <0.01 0.01 

U (%) 
r -0.40 -0.57 0.32 -0.25 -0.50 -0.36 -0.60 -0.56 0.45 

P-value 0.02 <0.01 0.07 0.16 <0.01 0.04 <0.01 <0.01 <0.01 

BCP 

(g/ kg DM) 

r 0.13 -0.35 0.58 0.34 -0.29 0.15 -0.17 -0.03 -0.14 

P-value 0.46 0.05 <0.01 0.06 0.11 0.40 0.36 0.88 0.45 

EDCP 

 (g/ kg DM) 

r 0.65 0.62 -0.20 0.58 0.53 0.68 0.75 0.77 -0.64 

P-value <0.01 <0.01 0.26 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
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Table 3.4. Cont’d. Correlation between ruminal and intestinal digestion of protein for different blend-pelleted products (BPP)* and the 

molecular spectral profile related to amide region. 

Items 
Amide 

I height 

Amide II 

height 

Amide I, 

II ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α-helix 

height 

β-sheet 

height 
α, β ratio 

Intestinal digestion of CP 

dIDP  

(%) 

r -0.16 -0.58 0.55 -0.04 -0.47 -0.19 -0.39 -0.38 0.16 

P-value 0.39 <0.01 <0.01 0.85 0.01 0.30 0.03 0.03 0.38 

IDP 

(g/kg DM) 

r -0.10 -0.56 0.59 0.07 -0.44 -0.10 -0.36 -0.33 0.07 

P-value 0.59 <0.01 <0.01 0.70 0.01 0.59 0.04 0.06 0.70 

IDP 

 (%) 

r 0.18 -0.34 0.61 0.36 -0.27 0.18 -0.12 0.01 -0.13 

P-value 0.31 0.06 <0.01 0.04 0.13 0.33 0.53 0.97 0.47 

Ruminal and intestinal digestion of CP 

TDP  

(g/kg DM) 

r 0.02 -0.18 0.27 -0.02 -0.14 -0.10 0.01 -0.04 0.18 

P-value 0.91 0.33 0.13 0.91 0.45 0.58 0.95 0.81 0.31 

TDP 

(g/kg CP) 

r 0.61 0.09 0.43 0.74 0.10 0.62 0.37 0.51 -0.54 

P-value <0.01 0.61 0.01 <0.01 0.60 <0.01 0.04 <0.01 <0.01 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and lignosulfonate; Kd: degradation rate; S: soluble 

fraction in the in situ incubation; D: potentially degradable fraction; U: undegradable fraction, BCP: bypass crude protein; EDCP: effectively degraded 

of crude protein; dIDP: intestinal digestibility of rumen bypass protein on percentage basis; IDP: intestinal digested crude protein; TDP: Ruminal and 

intestinal digestion. 
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Table 3.5. Correlation between the predicted protein supply for different blend-pelleted products (BPP)* and the molecular spectral 

profile related to amide region 

Items 
Amide 

I height 

Amide II 

height 

Amide I, II 

ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α-helix 

height 

β-sheet 

height 
α, β ratio 

Absorbable microbial protein synthesis in the rumen (g/kg DM)  

MCPRDP 
r 0.64 0.68 -0.25 0.58 0.62 0.65 0.76 0.78 -0.60 

P-value <0.01 <0.01 0.16 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

MCPTDN 
r -0.38 -0.53 0.23 -0.33 -0.50 -0.43 -0.59 -0.63 0.55 

P-value 0.03 <0.01 0.22 0.06 <0.01 0.02 <0.01 <0.01 <0.01 

AMCP 
r -0.38 -0.53 0.23 -0.33 -0.50 -0.43 -0.59 -0.63 0.55 

P-value 0.03 <0.01 0.22 0.06 <0.01 0.02 <0.01 <0.01 <0.01 

Truly absorbable rumen undegraded protein in the small intestine (g/kg DM) 

RUP 
r 0.17 -0.33 0.59 0.37 -0.24 0.19 -0.08 -0.03 -0.20 

P-value 0.35 0.07 <0.01 0.04 0.19 0.29 0.66 0.86 0.27 

ARUP 
r 0.11 -0.41 0.62 0.30 -0.31 0.12 -0.15 -0.11 -0.12 

P-value 0.54 0.02 <0.01 0.09 0.09 0.50 0.41 0.55 0.50 

Total metabolizable protein and degraded protein balance (g/kg DM)   

MP 
r 0.08 -0.43 0.61 0.27 -0.32 0.09 -0.18 -0.15 -0.09 

P-value 0.65 0.02 <0.01 0.14 0.07 0.62 0.32 0.43 0.64 
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Table 3.5. Cont’d. Correlation between the predicted protein supply for different blend-pelleted products (BPP)* and the molecular 

spectral profile related to amide region 

Items 
Amide 

I height 

Amide II 

height 

Amide I, II 

ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α-helix 

height 

β-sheet 

height 
α, β ratio 

DPB 
r 0.63 0.70 -0.26 0.57 0.64 0.65 0.77 0.79 -0.62 

P-value <0.01 <0.01 0.15 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Feed milk value (kg milk/ kg feed) 

FMV 
r -0.02 -0.39 0.45 0.15 -0.30 0.01 -0.25 -0.23 0.02 

P-value 0.91 0.03 0.01 0.43 0.10 0.97 0.17 0.21 0.90 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and lignosulfonate; MCPRDP: microbial protein 

synthesized in the rumen based on available protein calculated as 0.85 of rumen-degraded protein; MCPTDN: microbial protein synthesized in the 

rumen based on available energy (discounted TDN); AMCP: truly absorbed rumen–synthesized microbial protein in the small intestine; RUP: 

ruminally undegraded feed CP, calculated according to the formula in NRC–2001 dairy model; ARUP: truly absorbed rumen–undegraded feed 

protein in the small intestine; MP: metabolizable protein (true protein that is digested postruminally and the component amino acid absorbed by the 

intestine); DPB: reflects the difference between the potential microbial protein synthesis based on ruminally degraded feed CP and that based on 

energy–TDN available for microbial fermentation in the rumen; FMV: feed milk value (based on metabolic characteristics of protein predicted by 

NRC system). 

 



   

43 
 

3.4.3. Multiple regression analysis to choose the most important protein spectral 

parameters to predict protein nutritive profile and utilization in dairy cows 

The multiple regressions analysis is shown in Table 3.6. The equations of protein profile showed 

that CP could be predicted from amide I area and α–helix height, taking 73% of the total variance. 

Amide I to II ratio could also be used to predict NDICP and NPN. The amide II height could be 

used to predict the ADICP, PB2, and PC. For truly digestible nutrients, tdCP could be predicted 

from amide I area and α–helix height, while the amide I height and β–sheet height could be used 

to predict TDN1x with an explained total variance of 81%.  

        Table 3.7 shows that the amide I area and the α–helix height could be used to estimate the Kd 

and the undegradable fraction of CP with 46% and 62% of the total variance, respectively. The 

amide I height and β–sheet height were the best spectral variables to predict the EDCP with 67% 

of the variance. The amide I to II height ratio, amide area, β–sheet height and α helix to β-sheet 

ratio could be used to predict the intestinal digestion of CP with 90% of the variance. The results 

in Table 3.8 showed that the amide I to II height ratio was the best spectral feature in estimating 

the ARUP, MP, and FMV of BPPs, while the amide I height and β–sheet height would be used to 

estimate the DBP and AMCP.  

3.1. Discussion 

Recently, advanced vibrational spectroscopic techniques have been established to quantitatively 

estimate the primary and secondary molecular make-up of feed protein (Khan et al., 2014; Yu, 

2007a). Generally, the amide I and II bands are used to detect the information about protein 

structure makeup and concentration (Damiran and Yu, 2011; Peng et al., 2014). However, the 

amide I is used more frequently than amide II to reveal the molecular structure of the protein, since 

the amide II originates from complex vibrations that includes numerous functional groups such as  
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Table 3.6. Multiple regression analysis to choose the most important protein spectral parameters to predict protein profile and energy 

profile. 

Predicted variable 

 (Y) 

Variable selection (variables 

left in the model with 

P < 0.05) 

Equation prediction:  

Y = a + b1 × x1 + b2 × x2 +……. 

Model 

R2 
RSD P-value 

Basic protein profile 

CP (g/kg DM) 
Amide I area, 

α-helix height 

Y = 4.19 + 4.12×Amide I area – 137.95 

× α-helix height 
0.73 2.048 <0.01 

NDICP (g/kg CP) Amide I, II ratio Y = –17.26 + 13.27 × Amide I, II ratio 0.27 3.304 0.04 

ADICP (g/kg CP) Amide II height Y = –2.65 + 35.84 × Amide II height 0.32 0.792 0.02 

NPN (g/kg CP) Amide I, II ratio, Amide I area 
Y = 93.01 – 10.83 × Amide I, II ratio – 

1.95 × Amide I area 
0.78 2.081 <0.01 

Predicted energy values by NRC (2001)    

tdCP (g/kg DM) Amide I area, α-helix height 
Y = 4.47 + 4.21 × Amide I area – 

145.52 × α-helix height 
0.73 2.137 <0.01 

TDN1x (g/kg DM) 
Amide I height, β-sheet 

height 

Y = 72.96 + 241.16 × Amide I height – 

228.54 × β-sheet height 
0.81 1.301 <0.01 
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Table 3.6. Cont’d. Multiple regression analysis to choose the most important protein spectral parameters to predict protein profile and 

energy profile. 

Predicted variable 

(Y) 

Variable selection (variables 

left in the model with 

P < 0.05) 

Equation prediction: 

Y = a + b1 × x1 + b2 × x2 +……. 

Model 

R2 
RSD P-value 

Protein subfractions by Cornell Net Carbohydrate and Protein System     

PB2 (g/kg CP) Amide II height Y = 30.35 –164.28 × Amide II height 0.27 4.053 0.04 

PC (g/kg CP) Amide II height Y = –2.65 +35.84 × Amide II height 0.32 0.792 0.02 

RSD: residual standard deviation; CP: crude protein; NDICP: neutral detergent insoluble crude protein; ADICP: acid detergent insoluble crude 

protein; NPN: non–protein nitrogen; tdCP: truly digestible crude protein; TDN1×, total digestible nutrient at one time maintenance; PB2: fiber–

bound protein; PC: indigestible protein. 

. 
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Table 3.7. Multiple regression analysis to choose the most important protein spectral parameters to predict protein ruminal digestion 

of crude protein (CP). 

Predicted variable 

(Y) 

Variable selection 

(variables left in the model 

with P < 0.05) 

Equation prediction:  

Y = a + b1 × x1 + b2 × x2 +……. 

Model 

R2 
RSD P-value 

Degradation kinetics of CP 

Kd (%/h) 
Amide I area, 

α–helix height 

Y = 21.70 – 2.33×Amide I area – 100.29 × 

α–helix height 
0.46 1.808 <0.01 

S (%) 
Amide II height, Amide II 

area 

Y = 1.57 + 399.24 × Amide II height – 6.05 

× Amide II area 
0.51 2.050 <0.01 

D (%) 
Amide I height, β-sheet 

height 

Y = 65.67 – 199.00 × Amide I height + 

213.44 × β-sheet height 
0.42 3.202 <0.01 

U (%) Amide area, α–helix height 
Y = 30.82 +3.87 ×Amide area –364.64 × α–

helix height 
0.62 3.252 <0.01 

BCP (g/kg DM) Amide I to II ratio Y = -132.49 + 14247 × Amide I, II ratio 0.34 28.925 <0.01 

EDCP g/kg DM) 
Amide I height, β-sheet 

height 

Y = 125.35 – 827.29 × Amide I height – 

1187.03 × β-sheet height 
0.67 13.537 <0.01 

Intestinal digestibility of CP 

dIDP (%) 
Amide II height, Amide II 

area 

Y = 102.68 –749.79× Amide II height 

+11.50× Amide II area 
0.48 4.055 <0.01 
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Table 3.7. Cont’d. Multiple regression analysis to choose the most important protein spectral parameters to predict protein ruminal 

digestion of crude protein (CP). 

Predicted variable 

(Y) 

Variable selection 

(variables left in the model 

with P < 0.05) 

Equation prediction: 

Y = a + b1 × x1 + b2 × x2 +……. 

Model 

R2 
RSD P-value 

IDP (%) 

Amide I, II ratio, 

Amide area, β-sheet height, 

α to β-ratio 

Y = 113.54 + 19.77 × Amide I, II 

ratio+6.73 ×Amide area –571.92 × β-sheet 

height–117.54 × α, β-ratio 

0.90 2.149 <0.01 

Total tract digestibility of CP    

TDP (g/kg DM) 
Amide I area, 

α-helix height 

Y = 42.01 + 37.43×Amide I area – 1282.98 

× α-helix height 
0.76 16.705 <0.01 

RSD, residual standard deviation; kd: degradation rate; S: soluble fraction in the in situ incubation; D: potentially degradable fraction; U: U: 

undegradable fraction; BCP: bypass crude protein; EDCP: effectively degraded of crude protein; dIDP: intestinal digestibility of rumen bypassass 

protein on percentage basis; IDP: intestinal digested crude protein; TDP: total digestion of crude protein. 
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Table 3.8. Multiple regression analysis to choose the most important protein spectral parameters to predict protein supply using the 

NRC model. 

Predicted variable 

(Y) 

Variable selection 

(variables left in the model 

with P < 0.05) 

Equation prediction: 

Y = a + b1 × x1 + b2 × x2 +……. 

Model 

R2 
RSD P-value 

Absorbable microbial protein synthesis in the rumen (g/kg DM)  

MCPRDP 
Amide I height, β-sheet 

height 

Y = 106.55 – 703.13 × Amide I 

height + 1008.90 × β-sheet height 
0.67 11.507 <0.01 

MCPTDN 
Amide I height, β-sheet 

height 

Y = 87.07 + 287.78 × Amide I 

height – 272.73 × β-sheet height 
0.82 1.470 <0.01 

AMCP 
Amide I height, β-sheet 

height 

Y = 55.72 + 184.17 × Amide I 

height – 174.54 × β-sheet height 
0.82 0.941 <0.01 

Truly absorbable rumen undegraded protein in the small intestine (g/kg DM) 

RUP Amide I to II ratio 
Y = –132.49 – 142.47×Amide I, II 

ratio 
0.34 28.926 <0.01 

ARUP Amide I to II ratio 
Y = –165. 71 – 138.71×Amide I, II 

ratio 
0.38 26.039 <0.01 
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Table 3.8. Cont’d. Multiple regression analysis to choose the most important protein spectral parameters to predict protein supply using 

the NRC model. 

Predicted variable (Y) 

Variable selection 

(variables left in the model 

with P < 0.05) 

Equation prediction: 

Y = a + b1 × x1 + b2 × x2 +……. 

Model 

R2 
RSD P-value 

Total metabolizable protein and degraded protein balance (g/kg DM) 

MP Amide I to II ratio 
Y = –110.83 – 142.07×Amide I, II 

ratio 
0.37 27.278 <0.01 

DPB 
Amide I height, β-sheet 

height 

Y = 22.61 – 1166.80 × Amide I 

height + 1508.67 × β-sheet height 
0.74 13.358 <0.01 

Feed Milk Value (kg milk/ kg feed) 

   FMV Amide I to II ratio Y = –1.62 + 2.45 × Amide I, II ratio 0.20 0.710 <0.01 

RSD: residual standard deviation; MCPRDP, microbial protein synthesized in the rumen based on available protein calculated as 0.85 of rumen-

degraded protein; MCPTDN: microbial protein synthesized in the rumen based on available energy (discounted TDN); AMCP: truly absorbed 

rumen–synthesized microbial protein in the small intestine; RUP: ruminally undegraded feed CP, calculated according to the formula in NRC–

2001 dairy model; ARUP: truly absorbed rumen–undegraded feed protein in the small intestine; MP: metabolizable protein (true protein that is 

digested postruminally and the component amino acid absorbed by the intestine); DPB: reflects the difference between the potential microbial 

protein synthesis based on ruminally degraded feed CP and that based on energy–TDN available for microbial fermentation in the rumen; FMV: 

feed milk value (based on metabolic characteristics of protein predicted by NRC 2001).  



   

50 
 

 ligneous compounds (Jackson and Mantsch, 1995). Our results showed that amide I area and peak 

height were the highest in BPP7 and BPP3 and lowest in BPP2 and BPP6. These results are in 

agreement with the results obtained from wet chemistry analyses (Guevara-Oquendo et al., 2018). 

The high CP or amide I area values are attributed to the high inclusion level of co-product (canola 

or carinata meal) in those BPPs. The total amide area was highly sensitive to the changes in BPPs 

composition, where the amide area was increased with increasing the co-products levels or with 

decreasing pea screenings levels in BPPs. For example, the BPP3 or BPP7 (carinata or canola meal 

75 % DM + pea screenings 25 % DM) had a higher (P < 0.05) total amide area than BPP1 or BPP5 

(carinata or canola meal 50 % DM + pea screenings 50.0 % DM).   

The ratio of amide I to II is influenced by the heat processing of feed (Doiron et al., 2009; 

Liu et al., 2012; Yu, 2006). Previous studies noted that the amide I to II ratio had a positive 

correlation with the MP of feed (Khan et al., 2014). Based on the current study results, the high 

amide I to II ratio of BPPs could be a consequence of the high inclusion level of co-products or 

adding carinata meal to BPPs. In agreement with these findings, Guevara-Oquendo et al. (2018) 

reported a higher indigestible protein content in the BPP based on canola meal (1.5% CP) than that 

of BPP based on carinata meal (3.2% CP). The low PC in BPP based on carinata meal was 

attributed to the higher content of NDICP and a lower content ADICP in carinata meal compared 

with canola meal. The NDICP is slowly degraded in the rumen and largely contributes to escaping 

feed protein from ruminal degradation (Russell et al., 1992). Thus, a large amount of NDICP could 

reach the small intestine and hence, increasing the MP supply to dairy cows (Russell et al., 1992). 

On the other hand, the ADICP reflects the amount of feed protein that is entirely indigestible in 

the gastrointestinal tract (Russell et al., 1992). Therefore, increasing the concentration of ADICP 

in feed could limit the total tract digestibility of protein in cattle.  
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The secondary structures such as α–helix and β–sheet and their ratio are commonly used 

to detect the information about the protein’s molecular makeup (Damiran and Yu, 2011; Yu and 

Nuez-Ortín, 2010). In the current study, all BPPs underwent the same processing. Thus it is not 

surprising that the ratio did not change among all BPPs. Yu (2006) and Samadi and Yu (2011) 

found that the ratio of α–helix to β–sheet was altered by the moist heating of soybean and canola 

seeds. The alteration in the ratio of α–helix to β–sheet by heat treatment was also reported by 

Doiron et al. (2009). The changes in the secondary structure of the protein are possibly related to 

the denaturation of α–helix and β–sheet during heat treatment. The current results showed that the 

ratio of α–helix to β–sheet decreased with decreasing the level of co-products in the BPPs, which 

would reflect a reduction in the MP supply in BPPs. In agreement with these results, Guevara-

Oquendo et al. (2018) found that MP supply was reduced by decreasing the inclusion level of 

carinata or canola meal in BPPs.  

The PCA procedure was used in the current study to reduce the number of variables. The 

PCA was performed on the molecular structure related to protein amide region (1480-1730 cm-1). 

The first two PCs derived from the PCA classification of these spectra described 94% of the total 

variance in the BPPs (Figure 3.4a, b). Most of the BPPs based on canola meal such as BPP6, BPP7, 

and BPP8 were separated from the BPPs based on carinata meal by the PC2 which accounted for 

5% of the total variance. The BPP1 exhibited the least negative values in PC2, while the BPP7 and 

BPP8 had the highest positive values. The PC1 which accounts for 89% of the variations among 

BPPs in terms of the molecular structure features did not cluster most of the BPPs. The overlapping 

between BPPs in the PC1 would indicate that these pellets had similar molecular structure features 

in the amide region. 
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The loading point plots were used to determine the most important areas responsible for 

the clustering (Figure 3.5). The amide I peak at ca. 1650 cm−1 was heavily loaded in PC1 and PC2, 

which separated the negative scores of spectra that belong to BPPs based on carinata meal from 

the positive score of the spectra that related to the BPP6, BPP7, and BPP8 (Figure 3.3). These 

findings indicate that the amide region at ca. 1650 cm−1 of PC2 was the most important parameters 

for discriminating the BPPs. These data demonstrated that the amide I peak at ca. 1650 cm−1 for 

BPPs based on carinata meal was lower than that of the BPP6, BPP7, and BPP8. These data are in 

agreement with the univariate analysis (Table 2) that showed BPPs based on canola meal were 

significantly higher in the amide I peak height compared with BPPs based on carinata meal. Based 

on these findings, the amide I band which is sensitive to small differentiation in molecular structure 

and hydrogen bonding motifs is important in the determination of protein structural and 

conformational changes. To obtain clear and precise peak positions of protein bands by FTIR, the 

raw spectra were processed by taking the second derivative (Figure 3.5a,b), which gives a negative 

peak for each band and shoulder in the absorption spectrum and hence allows us to identify the 

individual peaks among complex spectra. The PCA score plot demonstrated that the clusters of all  

BPPs were overlapped along PC1 (51%) and PC2 (17%).  The PCA loading plots of PC1 and PC2 

are shown in Figure 3.6 The loading plot showed that the positive loading could explain the 

variations along PC2 in the amide II region (centered at ca. 1548 cm-1; N-H (60%) bending and C-

N (40%) stretching vibrations: proteins a-helix), which separated the negative score of some BPPs 

based on canola from the positive score of BPPs based on carinata meal. 

The correlation analysis between the vibrational spectral features and protein profiles, 

protein subfractions and the predicted energy values of BPPs. Our results for the correlation 

between CP and primary structure and secondary are in agreement with previous studies that  
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(a) 

 

(b) 

 

 

Figure 3.3. Two-dimensional score plot of the preprocessed data represents grouping of spectra 

along PC1 and PC2 components, describing in total 94% of variability in the blend-pelleted 

products a) effect of blend-pelleted products on the molecular structure changes related to 

protein region; b) effect of co-products on the molecular structure changes related to protein 

region: carinata meal (CR) vs. canola meal (CN) 

  



   

54 
 

(a) 
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Figure 3.4. Loading plot of the first two main components (a) PC1 and (b) PC2 chosen based on 

the score plot of the preprocessed data  
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(a) 

 

(b) 

 

Figure 3.5. Two-dimensional score plot of the second derivative data represents grouping of 

spectra along PC1 and PC2 components, describing in total 68% of variability in the blend- 

pelleted products a) effect of blend-pelleted products (BPP) on the molecular structure changes 

related to protein region; b) effect of co-products on the molecular structure changes related to 

protein region: carinata meal (CR) vs. canola meal (CN). 
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reported positive correlations between CP and amide I area and amide I height of carinata meal or 

canola meal samples (Ban et al., 2017). Furthermore, the correlation between NDICP and primary 

structure is similar to the previous studies that showed NDICP had a negative association with the 

amide II height and a positive relationship with the ratio of amide I to II height (Yu and Nuez-

Ortín, 2010).  Our results showed there was no correlation (P > 0.05) between the predicted energy 

values by the NRC-model and the molecular structure features related to protein region. In line 

with findings, Xin and Yu (2013a) and Theodoridou and Yu (2013b) did not detect any association 

between the predicted energy values and the molecular structure characteristics of the protein.   

For the CNCPS fractions, the current study results are in agreement with Theodoridou and 

Yu (2013b) who reported a positive correlation between PB2 subfraction with the amide I to II 

height ratio. However, there was no association between the CNCPS fractions and α-helix to β-

sheet ratio. In agreement with observations, Huang et al. (2017) reported no correlation between α 

-helix to β-sheet ratio and the protein subfractions estimated by the CNCPS model.   

For the in situ degradation parameters, a previous study noted that the ratio of amide I to II was 

highly correlated with the in situ rumen degradation kinetic parameters of feed protein (Yu and 

Nuez-Ortín, 2010). These associations are affected by the enzymatic digestion of protein in the 

rumen (Yu and Nuez-Ortín, 2010). It has been observed the changes in the ratio of α -helix to β-

sheet ratio would induce alterations in the molecular protein makeup (Yu, 2007b). Heat treatment 

of feed was found to decrease the solubility of feed protein and increase the ADICP and NDICP 

in the feed as a consequence of protein denaturation during the heating process. Furthermore, the 

heat treatment could increase the cross-linkages among the amino acids in the polypeptide chain 

and reduce the sugars and finally decrease the solubility of CP (Licitra et al., 1996). Previous 

studies found that applying the heat treatment and increasing the heating time, caused an increase  
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(b) 

 

Figure 3.6. Loading plot of the first two main components (a) PC1 and (b) PC2 chosen based on 

the score plot of the second derivative data.  

  

1537 cm-1
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in the α–helix to β-sheet ratio in flaxseed and bio-ethanol co-products, respectively (Doiron et al., 

2009; Yu and Nuez-Ortín, 2010).  In the current study, the α -helix to β-sheet ratio was correlated 

with the slowly degradable fraction of CP (r = –0.44, P = 0.01) and the undegradable fraction of 

CP (r = 0.45, P = 0.01). These findings are in agreement with a previous study that found strong 

correlations between the α -helix to the β-sheet ratio of camelina seeds and the in situ ruminal 

degradation parameters of feed protein (Khan et al., 2015). The estimated correlation coefficient 

values in this study were lower than that reported by Khan et al. (2015) due to the diversity in 

protein origin in BPPs which applied adverse effects on the accuracy of predictions (Williams and 

Starkey, 1980). 

3.2. Conclusions 

        In conclusion, the results in the current study indicated that the FTIR spectroscopy could 

reveal molecular structure features related to the protein of blend-pelleted products based on canola 

or carinata meal. The univariate analysis showed differences in absorption intensity of the 

functional groups related to the primary structure of the protein. The secondary structure of protein 

was not affected by BPP because all ingredients underwent to the same processing condition. The 

amide I to II height ratio was the best spectral parameter to estimate the changes in the protein 

degradation and the metabolizable protein of BPP. 
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On the basis of results in the previous chapter (Chapter 3), the blend pelleted-product based on 

carinata meal  (BPP4)  or based on canola meal (BPP8) have higher metabolizable protein supply 

and higher AmideI to II ratio that can exhibit a high feeding value in dairy cows, however the 

results of the current are based on in situ or FTIR analyses. Therefore, for my next experiments 

(Chapter 4, 5) I focused on evulating the blend pelleted-product based on carinata meal (BPP4) on 

dairy cows performance in comparison with blend pelleted-product based on conventional protein 

source i.e canola meal (BPP8). Also, studying the correlation between the molecular structure 

features of these pellets and the production performance of high producing diary cows. 
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4. ASSOCIATION BETWEEN MOLECULAR STRUCTURE FEATURES AND       

PRODUCTION EFFICIENCY OF BLEND-PELLETED PRODUCTS BASED ON 

BIOENERGY CO-PRODUCTS IN HIGH PRODUCING DAIRY COWS 

4.1. Abstract  

The main objectives of this study were: (1) to examine the effects of feeding newly-developed 

blend-pelleted products based on carinata meal (BPPCR) or blend-pelleted products based on 

canola meal (BPPCN) in combination with pea screenings and lignosulfonate on production 

efficiency of high producing dairy cows; (2) to determine amide molecular structure profiles 

changes in relation to nutrient utilization and bioavailability of BPPCR and BPPCN in dairy cows; 

and (3) to quantify the correlation between the molecular structural features related to the amide 

region and nutrient utilization in high producing dairy cows. In this study, nine mid-lactating (3 

cannulated + 6 non-cannulated ) Holstein cows (body weight: 679 ±124 kg; days on milk = 96 ± 

22; average parities = 3) were randomly assigned to one of the following three dietary treatments: 

Control = control diet (common barley-based diet in western Canada); BPPCR = basal diet 

supplemented with 12.3 %DM BPPCR (carinata meal 71.4 % + pea screenings 23.8% + 

lignosulfonate 4.8 %DM), and BPPCN = basal diet supplemented with 13.3 %DM BPPCN (canola 

meal 71.4% + pea screenings 23.8 % + lignosulfonate 4.8%DM) in triplicated 3×3 Latin square 

design. Each experimental period lasted for 21 days with14 days for adaptation and seven days of 

sampling. The results showed that there were no differences (P > 0.10) among treatments in milk 

yield (averaging 47.5 kg/d) and FCM 3.5% (averaging 44.8 kg/d). There was no effect (P > 0.10) 

of dietary treatments on milk composition or milk component yield. The feed efficiency expressed 

as fat corrected milk / dry matter intake was not affected (P > 0.10) by the treatments (averaging 

1.76). Gross milk revenue (butterfat revenue + protein revenue + other solids revenue) was similar 
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among the three groups (averaging $30.8 cow/day). The income over feed cost was not affected 

(P > 0.10) by all dietary treatments (averaging $23.4 cow/day). Total-tract digestibility of feed 

nutrients was not (P > 0.10) affected by different treatments. There was no effect of dietary 

treatments on the secondary molecular structural features of the amide region (P > 0.10). The 

correlation study showed that the amide I area and height tended to correlate with urinary N 

excretion (g/d) (0.05 < P < 0.10). Amide II area exhibited a good correlation with fecal N excretion 

(r = -0.71, P < 0.05) and total N excretion (r = - 0.79, P < 0.05). As to milk N, both amide I height 

and α to β ratio were correlated with milk N content (P < 0.05). Amide I height tended to correlate 

with the apparent N balance (0.05 < P < 0.10). In conclusion, the blend-pelleted products based 

on carinata meal as a new co-product from bio-fuel processing industry was equal to the other 

pelleted products based on canola meal as a protein source for dairy cattle without affecting the 

performance of high producing dairy cows. Molecular spectroscopy could identify structural 

characteristics in dietary treatments based on different bio-energy co-products. Molecular 

structural features related to the amide region were highly associated with the nutrient utilization 

in dairy cows. 

4.2. Introduction 

Canada produces more canola oil than any other country with about 20 million tonnes produce 

of canola seeds per year (Canola Council of Canada, 2018). Canola meal is a co-product of canola 

oil processing which is characterized by a high protein content (about 36-39% CP); furthermore, 

canola meal is a good source of amino acids (AAs; Canola Council of Canada, 2015).A new co-

product, carinata meal, is an excellent protein source, as it contains approximately 48% CP (Xin 

and Yu, 2013a) and AAs (Guevara et al., 2018). Canada is a second country in the world to produce 

peas. Pea is a good source of protein, with approximately 24% DM and starch 46% DM (Hickling 
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et al., 2003). Nevertheless, to our knowledge, there is limited information that could be found in 

the current literature on carinata or canola meal in combination with other feedstuff to optimize its 

feeding value, and in particular, their, physicochemical functions. Heat and chemical treatments 

are the most common methods to maximize the utilization of protein and protected the AAs. It is 

essential to use heat treatments to improve the nutritional, chemical, hygienic, physical, and other 

animal feed characteristics. The heat treatment can modify the AAs residues of proteins by reacting 

with other compounds to decrease ruminal protein degradation. Chemical treatments, such as 

formaldehyde (Crooker et al., 1983), tannins (Chung et al., 2013), lignosulfonate, and xylose 

(McAllister et al., 1993) can also decrease rumen degradable protein in different rations. 

There are many methods for feed evaluation such as wet chemistry analysis; however, this 

technique could damage the main structure of samples (Yu et al., 2014). The feeding value and 

fermentation features of feedstuff have been reported to be influenced by the inherent molecular 

structure (Yu, 2005). The infrared (IR) spectral region (ca. 4000-800 cm-1) has a strong 

characteristic vibrational transition compared with the near-IR region, especially in the wavelength 

ranged between ca. 1800 and 800 cm-1, which is called the “fingerprint region” (Liu, 2009; Yu, 

2005). Vibrational spectroscopies such as FTIR is commonly used to detect the molecular structure 

of feed. FTIR spectroscopy is a direct, rapid, non–destructive, and non–invasive bioanalytical 

technique used to reveal the infrared spectrum of absorptions or emissions of liquid, gas, or solids 

(Smith, 2009). FTIR spectroscopy has many advantages such as explaining molecular structural 

changes of different types of feed and determining the nutrient utilization of feed in ruminants (Yu, 

2005). Moreover, this technique could recognize the molecular structure of different crop varieties, 

feed ingredients, and could be used to study the effects of feed processing on protein and 

carbohydrate-related structures (Abeysekara et al., 2013; Huang et al., 2015; Peng et al., 2014; Xin 
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and Yu, 2013b). However, there is no systematic study has been conducted to determine how the 

BPP based on different co-products from bio-oil or bio-fuel processing (i.e., carinata or canola 

meal) could induce changes in protein intrinsic molecular structures and how these changes 

influence N-utilization in dairy cows.  

The main objectives for the current study were: (1) to investigate the effects of feeding 

newly-developed blend-pelleted product based on new protein feed (carinata meal) or conventional 

protein feed (canola meal) in combination with pea screenings and lignosulfonate on production 

performance and economic return in high-producing dairy cows; (2) to assess the protein molecular 

structure profiles changes relative to nutrient bioavailability of blend-pelleted co-products in dairy 

cows; and (3) to estimate the correlation between molecular structure features related to amide 

region and the nutrient utilization in high producing dairy cows. 

4.3. Materials and Methods 

4.3.1. Animals and experiment design  

Nine multiparous lactating Holstein cows (body weight: 679 ±124 kg; days on milk= 96 ± 

22; average parities = 3) were used in a triplicated 3 × 3 Latin square design with three dietary 

treatments. Each experimental period lasted for 21 days, consisting of 14 days of diet adaptation 

and seven days of sample collection. Three cows were ruminally-cannulated cows, and they were 

used to determine dietary effects on ruminal fermentation. All cows were housed in individual tie-

stalls at the Rayner Dairy Research and Teaching Facility (University of Saskatchewan, Saskatoon, 

Canada).  

4.3.2. Experimental treatments  

Nine cows were randomly assigned to one of the following three dietary treatments: 

Control = control diet: common barley-based diet in western Canada (6.2% canola meal + 2.2 % 
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soybean meal + 3.9 % peas), BPPCR diet: basal diet supplemented with 12.3 %DM BPPCR 

(carinata meal 71.4 % + pea screenings 23.8% + lignosulfonate 4.8 %DM), and BPPCN diet = 

basal diet supplemented with 13.3 %DM BPPCN (canola meal 71.4% + pea screenings 23.8 % + 

lignosulfonate 4.8 %DM; Table 4.1). All diets were formulated using NDS Professional software 

based on CNCPS 6.55 (RUM&N, Italy). Carinata meal from bio-fuel processing of Brassica 

carinata seed was acquired from Agrisoma (Saskatoon, SK, Canada). Canola meal from bio-oil 

processing of canola seed was obtained from Cargill Animal Nutrition (Calve, SK, Canada). Pea 

screenings, the by-product of pulse peas processing, came from ILTA Grain Company (Surrey, 

BC, Canada) and lignosulfonate is a chemical compound (Ameribond) which was used as a feed 

additive. All the ingredients were acquired through the Canadian Feed and Research Centre 

(CFRC, North Battleford, SK, Canada). Minerals premix and tallow fat were added to the pellets 

to avoid any negative effect of minerals on palatability. For pellet processing, the different 

combinations were mixed in the Scott Equipment model TSM 363 (New Prague, MN, USA) for 

two minutes. All different mixtures were pelleted using Colorado Mill Equipment ECO-R30 

(Cañon City, CO, USA) at 65°C and through a 3.6 mm diameter die. Dwelling time in the die did 

not exceed 15 seconds. Then, the pellets were cooled at room temperature (21°C) before collecting 

and storing them.   

4.3.3. Sampling and data collecting 

The feed intake and refusal were recorded daily before morning feeding in each period for 

determining the nutrients intake. From day 17 to 21, the fresh total mixed ration and refusal 

samples were collected and stored at -20°C for later analysis. For milk production, daily milk yield 

for all nine cows were recorded for each period. From day 15 to 17, milk samples were collected 

from all three milking’s at 0630, 0230, and 2130 h into vials contained 2-bromo-2-nitropropane-
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1-2-diol as a preservative. Samples were pooled per cow per day proportionally based on milk 

yield and submitted to the CanWest DHI Laboratory (Edmonton, AB, Canada) for CP, fat, lactose, 

and milk urea nitrogen (MUN) analysis using a near infrared analyzer (Foss System 4000, Foss 

Electric, Hillerod, Denmark) according to AOAC (1990). Each cow was weighted at the beginning 

and end of each period for determining the body weight change. 

Total collections of feces were conducted from 0700 h on day 18 to 0700 h on day 20 using 

six cows. For nitrogen balance, urine total collection was performed from day 18 until day 20. 

Indwelling Bardex Foley urinary bladder catheters (26 Fr, 75cc ribbed balloon, lubricious-coated; 

C.R. Bard Inc., Covington, GA, USA) were inserted at 0800 h on day 17. To protect the catheter 

inside the urinary bladder, the ribbed balloon was infused with 80 mL of double-distilled water 

(ddH2O) after inserting the catheter into the urinary bladder. Urinary bladder catheters were 

connected to urine collection tubing on day 18 at 0700 h. Urine was acidified twice daily by adding 

50 mL of 10 N sulfuric acid to the collection vessel to prevent nitrogen loss. Total daily urine was 

weighted and recorded (the weight of added HCl was considered negligible) and a 5% sub-sample 

that was pooled by the cow for each period was collected and stored at -20°C for later N analysis.  

Feces were collected into large steel trays that were placed the gutter behind each tie-stall. 

The total daily fecal output of each cow was thoroughly mixed inside the steel tray and transferred 

into a pre-weighed plastic container and weighed. A 2.5% sub-sample of daily fecal production 

was collected and stored at -20°C for later chemical analysis and digestibility. 

4.3.4. Chemical analysis of the samples 

 At the end of each period, total mixed ration (TMR), refusal, and fecal samples were 

thawed and dried at 60°C in a forced-ventilation oven, air equilibrated, (AOAC, 1990; method 

930.15) and weighed to determine partial DM. Once dried, these samples were ground using a 
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knife mill fitted with a 1-mm screen using a Christy-Norris mill (Christy and Norris Ltd., 

Chelmsford, England). Fecal samples were ground through a 1-mm screen using a Retsch ZM100 

ultra centrifuge mill (Retsch-Allee 1-5, 42781 Haan, Germany). The TMR, refusal, and fecal 

samples were pooled per collection period for each cow. All TMR samples were analyzed for 

quantification of ash (AOAC, 1990; method 942.05), CP (AOAC, 1990; method 990.03), ether 

extract (EE; AOAC, 1990; method 2003.05), neutral detergent insoluble crude protein (NDICP), 

acid detergent insoluble crude protein (ADICP), and non protein nitrogen (NPN; Licitra et al., 

1996), soluble crude protein (SCP; Roe et al. 1990), neutral detergent fiber (NDF; Van Soest et al., 

1991 with modifications), acid detergent fiber (ADF) and lignin (ADL; AOAC, 1990; method 

973.18 with modifications), carbohydrate (CHO; which was estimated as: CHO = 100 - EE - CP – 

ash), and non-fiber carbohydrate (NFC; which was estimated as NFC = 100 - (NDF - NDIP) - EE- 

CP – ash), and starch (which was analyzed using Assay Kit (Wicklow, Ireland) and by the α-

amylase/amyloglucosidase method; McCleary et al., 1997). For refusal and fecal samples, DM, 

CP, NDF, and ADF were analyzed using the same analysis procedure. Frozen urine samples were 

thawed at room temperature and subsequently analyzed for total N using the macro-Kjeldahl 

procedure (AOAC, 1990; method 976.05). For energy values, total digestible CP (tdCP), tdNFC, 

total digestible NDF (tdNDF), total digestible fat (tdFA), total digestible nutrients at a maintenance 

level (TDN1x), digestible energy at 3x maintenance level (DE3x), metabolizable energy at 3x 

maintenance level (ME3x), and net energy of lacation at 3x maintenance level (NEL3x) were 

estimated using NRC (2001) dairy.  

The protein and carbohydrate subtractions were calculated using Cornell Net Carbohydrate 

and Protein System (CNCPS) v.6.5. For protein fractions, PA2 was estimated using the following 

equation: PA2 = SP × CP/100 and its Kd range was 10-40 %/h,  PB1 was estimated using the 
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following equation: PB1 = CP − ( PA2 − PB2 − PC) and its Kd range was 3-20 %/h, PB2 was 

equal to (NDICP − ADICP) × CP / 100 ) and its Kd range was 1-18 %/h, and PC fraction as 

indigestible protein evaluated as PC = ADICP × CP / 100. For carbohydrate fractions, CA4 and its 

Kd range was 40-60 %/h; CB1 and its Kd range was 20-40 %/h, fraction CB2 was estimated using 

the following equation: CB2 = NFC − CA4 − CB1 and its Kd range was 20-40 %/h, CB3 fraction 

evaluated using the following equation: CB3 = aNDFom – CC; and CC fraction evaluated as CC 

= (aNDFom × (Lignin × aNDFom) × 2.4)/100. 

4.3.5. Collecting spectra related to the primary and secondary structural components 

of the amide region 

For the molecular structure analysis, the TMR samples were grounded to pass a 0.12 mm 

sieve (Retsch ZM200, Rose, Scientific Ltd., Canada) for FTIR spectroscopic analysis. All feed 

samples were analyzed as described in Chapter 3. The spectral features related to the amide region 

were analyzed using the univariate approach.  

4.3.6. Statistical analysis 

Production data from all 9 cows were analyzed by Proc Mixed procedure of SAS (SAS 

version 9.4; SAS INC, CARY, NC, USA) as a triplicated 3 × 3 Latin square design using the 

following model: Y
ijkl 

= μ + S
i 
+ P

j(i) 
+ C

k(i) 
+ T

l 
+ ST

il 
+ E

ijkl
, where, Y

ijkl 
was the dependent 

variable, μ was the overall mean, S
i 
was the fixed effect of i

th 
square, P

j(i) 
was the fixed effect of j

th 

period (within square i), C
k(i) 

was the random effect of k
th 
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l 
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effect of l
th 

dietary treatment, ST
il 

was the interaction between i
th 

square and l
th

, and E
ijkl 

was the 

residual error.  
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Apparent ruminal, nitrogen balance and total-tract nutrient digestibility were analyzed 

using the Proc Mixed procedure of SAS as a 3 × 3 Latin square design according to the following 

model: Yjkl = μ + S
i 
+ Pj + Ck + Tl + Ejkl  where, Yjkl was the dependent variable, μ was the overall 

mean, Pj was the fixed effect of the jth period, Ck was the random effect of the kth cow, Tl was the 

fixed effect of the lth treatment, S
i 
was the fixed effect of i

th 
square, and Ejkl was the residual error. 

The Kenward-Roger method was used to approximate degrees of freedom. Multi-treatment 

comparison was carried out by using Tukey method. Significance was declared at P < 0.05 and 

tendencies were declared at 0.05 < P ≤ 0.10. 

The data of functional groups in amide region (ca. 1480–1730 cm–1), chemical profile, 

CNCPS, energy values were analyzed by SAS 9.4 (SAS Institute, Inc., Cary, NC, USA). The 

experimental data were analyzed using a completely randomized design.  

  The correlation between the functional groups related to protein region (amide I, II peak 

highest and areas, α–helix, β–sheet and their ratio) and the chemical profiles of protein, energy 

values, and nitrogen balance was analyzed by using the PROC CORR procedure in SAS 9.4 (SAS 

Institute, Inc., Cary, NC, USA). Rank correlation with the SPEARMAN option and normality test 

with the UNIVARIATE option were used in the correlation study.  

Multiple regression analysis (with model variable selection method) was performed to 

select the best functional groups that would explain the nutritive values of BPP using the PROC 

REG procedure of SAS with a reversed stepwise option. The following model was used for the 

multiple regression with model variable selection: model Y= spectral parameter 1 + spectral 

parameter 2 + spectral parameter 3 + spectral parameter 4 + ... + error. The model used a 

“STEPWISE” option with variable selection criteria: “SLENTRY = 0.05, SLSTAY = 0.05”. All 

variables left in the final prediction models were significant at the 0.05 level. Residual analysis 
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was performed to check model assumptions and normality was tested using the Univariate 

procedure of SAS with Normal and Plot options.  

4.4. Results 

4.4.1. Dietary characteristics  

 The control diet is an example of a commercial diet that is commonly used in the western 

Canada, and which contains barley grain as an energy source a blend of canola meal and soybean 

meal as a source of N, while peas are used as a pelleting agent (Table 4.1). For the other dietary 

treatments, BPPCR diet was supplemented with 12.3 %DM blend-pelleted products based on 

carinata meal (BPPCR: carinata meal 71.4% + pea screenings 23.8 % + lignosulfonate 4.8 %DM) 

and BPPCN was supplemented with 13.3% blend-pelleted products based on canola meal 

(BPPCN: canola meal 71.4 % + pea screenings 23.8 % + lignosulfonate 4.8 %DM). 

4.4.2. Chemical profiles 

Table 4.2 shows the chemical profiles for the different dietary treatments (n = 3). There 

was no significant (P > 0.10) difference among the different diets in CP and EE contents. 

Furthermore, there was no effect (P > 0.10) of the three dietary treatments on protein profiles 

(SCP, ADICP, and NDICP) and carbohydrate profiles (CHO, NDF, ADF, and starch). However, 

the lignin content expressed as ADL was significantly lower (P = 0.01) in the BPPCN diet (3.5 

%DM) compared with BPPCR diet and control diet (averaging 4.1%DM).   



   

70 
 

Table 4.1 Chemical composition and ingredient of total mixed ration for the supplement diet 

treatments  

Items  
Dietary treatments 

Control BPPCR  BPPCN 

Ingredient (%DM)    

Barley silage 38.0 38.0 38.0 

Alfalfa hay 16.0 16.0 16.0 

Barley grain 30.0 30.0 29.0 

Canola meal 6.2 - - 

Soybean meal 2.2 - - 

Peas 3.9 - - 

BPPCR  - 12.3 - 

BPPCN  - - 13.3 

Potassium magnesium sulfate 0.2 0.2 0.2 

Sodium bicarbonate 0.5 0.5 0.5 

Tallow 0.8 0.8 0.8 

Limestone ground 0.1 0.1 0.1 

Mineral Premix* 1.0 1.0 1.0 

Ameribond (Lignosulfonate) 0.2 0.2 0.2 

Palmitic acid 0.9 0.9 0.9 

Control diet: common barley-based diet in western Canada; BPPCR: basal diet supplemented with 12.3 

%DM blend-pelleted products based on carinata meal (BPPCR: carinata meal 71.4 % + pea screenings 

23.8% + lignosulfonate 4.8 %DM); BPPCN: basal diet supplemented with 13.3% blend-pelleted products 

based on carinata meal (BPPCN: canola meal 71.4% + pea screenings 23.8 % + lignosulfonate 4.8%DM);  

Composition of the premix: Calcium= 16%; Phosphorus= 8.0%; Chloride= 10.4%; Sodium= 7.6%; 

Potassium= 1.8%; Sulfur=1.0%; Magnesium= 4.5%; Copper= 535 ppm; Zinc= 2100 ppm; Manganese= 

1500 ppm; Iron= max 1050 ppm; Selenium= 16 ppm; Iodine = 45 ppm; Cobalt= 16 ppm; Vitamin A (KIU) 

= 330; Vitamin D (KIU) = 60; Vitamin E (IU) = 2500. 
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Table 4.2 Chemical profiles for total mixed rations (TMR) with blend-pelleted products* in 

lactating dairy cows. 

 Dietary treatments   Contrast P-value 

Items 
Control BPPCR BPPCN SEM 

P- 

value 

Control Vs. 

(BPPCR + BPPCN) 

Basic chemical profile of TMR     

Ash (%DM) 6.83 6.90 6.65 0.227 0.74 0.74 

EE (%DM) 3.93 4.34 4.44 0.187 0.20 0.23 

       

Protein profile       

CP (%DM) 15.87 15.77 16.20 0.188 0.30 0.15 

SCP (%CP) 40.99 38.32 39.97 1.307 0.40 0.23 

SCP (%DM) 6.50 6.30 6.20 0.149 0.41 0.32 

ADIP (%CP) 7.35 6.93 7.18 0.309 0.65 0.93 

ADIP (%DM) 1.17 1.09 1.16 0.054 0.59 0.63 

NDIP (%CP) 8.22 7.84 8.11 0.372 0.77 0.87 

NDIP (%DM) 1.30 1.24 1.31 0.061 0.65 0.58 
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Table 4.2 Cont’d. Chemical profiles for total mixed rations (TMR) with blend-pelleted products* 

in lactating dairy cows. 

 Dietary treatments   Contrast P-value 

Items 
Control BPPCR BPPCN SEM 

P- 

value 

Control vs. 

(BPPCR + BPPCN) 

Carbohydrates profile    

CHO (%DM) 73.37 72.99 72.70 0.320 0.40 0.27 

NDF (%DM) 29.43 29.37 29.53 0.737 0.99 0.89 

ADF (%DM) 17.43 17.90 17.63 0.517 0.82 1.00 

Starch (%DM) 25.87 24.27 24.07 0.690 0.21 0.28 

NFC (%DM) 45.24 44.86 44.48 0.638 0.72 0.50 

NFC (%CHO) 61.66 61.46 61.19 0.954 0.94 0.77 

Lignin contents     

ADL (%DM) 4.00a 3.54b 4.09a 0.094 0.01 0.03 

ADL (%NDF) 13.60a 12.06b 13.88a 0.382 0.03 0.07 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in combination with 

pea screenings and lignosulfonate; SEM = standard error of mean; a-b Means with different letters in the 

same row are significantly different (P < 0.05); Multi-treatment comparisons using Tukey method; DM: 

dry matter; EE: ether extract; CP: crude protein; SCP: soluble crude protein; NDICP: neutral detergent 

insoluble crude protein; ADICP: acid detergent insoluble crude protein; CHO: carbohydrate (CHO = 100 

− EE − CP – ash); NDF: neutral detergent fiber; ADF: acid detergent fiber, non-structural carbohydrate; 

ADL: acid detergent lignin; ADL: NFC, non-fiber CHO [NFC = 100 − (NDF − NDICP) –  

EE − CP − ash]. 
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4.4.3. Protein and carbohydrate subfractions 

Protein and CHO were sub-fractioned using Cornell Net Carbohydrate and Protein System 

(CNCPS v.6.5). All protein subfractions were not affected (P > 0.10) by three dietary treatments 

(Table 4.3). However, when the protein fractions expressed as true protein, PA2 tended to be 

higher in BPPCN diet (61 %TP) compared with the control and BPPCR diets (averaging 56 %TP). 

On the other hand, there was no effect (P > 0.10) of different diets on CHO subfractions. 

4.4.4. Protein FTIR spectral of the experimental diets  

The amide spectral profile including the primary structures of Amide I and Amide II and 

the secondary structure of Amide I (i.e., α-helix and β-sheet) for different diets are presented in 

Table 4.4. The BPPCN diet had higher (P = 0.02) Amide I peak height (0.14 IU) compared with 

control diet and BPPCR diet (averaging 0.13 IU). There was no effect of dietary treatments (P > 

0.10) on Amide II peak height. The ratio of Amide I to II height was significantly (P = 0.04) higher 

in BPPCN diet (2.73 IU) than control and BPPCR diets (averaging 2.38 IU). Amide I area was 

significantly higher (P = 0.01) in BPPCN diet (11.7 IU) compared with control diet and BPPCR 

diet (averaging 9.8 IU). However, Amide II area was not affected (P > 0.10) by different diets. 

There was no effect (P > 0.10) of different diets on the secondary structure of Amide I (α–helix 

and β–sheet) and their ratio. 

4.4.5. Energy value 

The dairy model (NRC 2001) was used to estimate the energy values for the different 

experimental diets (Table 4.5). Total digestible NFC, CP, NDF, and FA were not affected (P > 

0.10) by dietary treatments. Furthermore, there were no significant (P > 0.10) differences among  
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Table 4.3 Protein and carbohydrate subfractions of the total mixed ration with blend-pelleted 

products (BPP)* in lactating dairy cows in the rumen using Cornell Net Carbohydrate and Protein 

System (CNCPS) v.6.5. 

 Dietary treatments   

P- 

value 

Contrast P-value 

Items 
Control BPPCR BPPCN SEM 

Control vs.  

(BPPCR + BPPCN) 

Protein subfractions      

PA2 (%DM) 6.30 6.35 6.00 0.064 0.24 0.16 

PB1 (%DM) 8.36 8.11 9.31 0.108 0.12 0.08 

PB2 (%DM) 0.12 0.12 0.06 0.070 0.85 0.64 

PC (%DM) 1.02 1.08 1.23 0.089 0.54 0.36 

True protein (%CP) 42.63ab 43.58a 39.04b 0.133 0.04 0.03 

PA2 (%TP) 56.56 55.63 60.57 0.354 0.10 0.07 

PB1 (%TP) 0.81 0.79 0.39 0.487 0.84 0.63 

PB2 (%TP) 0.94 0.98 1.00 0.266 0.98 0.88 

Carbohydrates subfractions     

CA4 (%DM) 4.80 5.45 5.90 0.447 0.53 0.41 

CB1 (%DM) 26.70 23.95 25.30 0.574 0.27 0.98 

CB2 (%DM) 11.98 14.01 12.57 0.798 0.44 0.75 

CB3 (%DM) 25.29 26.18 24.37 0.447 0.31 0.26 

CC (%DM) 4.01 3.62 3.83 0.064 0.21 0.89 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in combination with 

pea screenings and lignosulfonate; SEM = standard error of mean; a-b Means with different letters in the 

same row are significantly different (P < 0.05); Multi-treatment comparisons using the Tukey method; 

PA2: soluble true protein; PB1: insoluble true protein; PB2: fiber-bound protein; PC: indigestible protein; 

CA4: sugars; CB1: starch; CB2: soluble fibers; CB3: digestible fiber; CC: indigestible fiber. 
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Table 4.4 Protein spectral profile of total mixed ration with blend-pelleted products (BPP)* using 

FTIR 

 Treatments   Contrast P-value 

Items 
Control BPPCR BPPCN SEM 

P- 

value 

Control vs. 

(BPPCR + BPPCN) 

Protein primary structure3 

Amide I peak height 0.13b 0.13b 0.14a 0.006 0.02 0.01 

Amide II peak height 0.06 0.06 0.05 0.003 0.70 0.42 

Amide I, II height ratio 2.38b 2.38b 2.73a 0.193 0.04 0.01 

Amide I area 9.71b 9.96b 11.70a 0.724 0.01 0.01 

Amide II area 1.78 1.76 1.60 0.079 0.22 0.09 

Amide area  11.49b 11.72b 13.30a 0.741 0.02 0.01 

Amide I (%amide area) 84.43b 84.89b 87.62a 0.867 0.01 0.01 

Protein secondary structure 

α-helix height 0.10 0.10 0.10 0.033 0.86 0.59 

β-sheet height 0.11 0.11 0.10 0.033 0.89 0.64 

α-helix, β-sheet height 

ratio 0.98 0.95 0.97 0.023 

 

0.65 

 

0.95 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and 

lignosulfonate; SEM: standard error of mean; a-b Means with the different letters in the same row are 

significantly different (P < 0.05); Multi-treatment comparison using Tukey method; Baseline for protein 

spectral peak: ca. 1480–1730 cm-1; protein amide I region: ca. 1569–1730 cm-1; protein amide II region: 

ca. 1480–1569 cm-1; center range of amide I peak: ca. 1638–1649 cm-1; center range of amide II peak: ca. 

1533–1540 cm-1; center range for α–helix: ca. 1647–1653cm-1; center range for β–sheet: ca. 1625–1631cm-

1. 
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Table 4.5 Energy value of total mixed ration with blend-pelleted products (BPP)* for lactating 

dairy cows.  

 Dietary treatments   Contrast P-value 

Items 
Control BPPCR BPPCN SEM P-value 

Control vs.  

(BPPCR + BPPCN) 

Truly digestible nutrients (%DM)  

tdNFC  44.33 43.96 43.59 0.625 0.72 0.50 

tdCP  14.53 14.51 14.86 0.165 0.30 0.14 

tdNDF  14.04 14.64 13.98 0.464 0.56 0.55 

tdFA  2.93 3.34 3.44 0.187 0.20 0.23 

Total digestible nutrients (%DM)  

TDN1x 72.50 73.63 73.18 0.389 0.20 0.82 

TDN3x 66.58 67.62 67.21 0.358 0.20 0.81 

Predicted energy values (Mcal/kg day)  

DE1x 3.24 3.29 3.27 0.017 0.20 0.64 

DEp3x  2.97 3.02 3.00 0.016 0.24 0.69 

MEp3x  2.56 2.61 2.59 0.016 0.24 0.69 

NELp3x  1.61 1.65 1.64 0.013 0.25 0.69 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in combination with 

pea screenings and lignosulfonate; SEM = standard error of mean; tdNFC: truly digestible non-fiber 

carbohydrates; tdCP: total digestible crude protein; tdNDF: total digestible neutral detergent fiber; tdFA: 

total digestible fatty acid; TDN1x: total digestible nutrients; TDN1x: total digestible nutrients at a production 

level (3x maintenance); DE1x: digestible energy; DEp3x: digestible energy at a production level (3x 

maintenance); MEp3x: metabolizable energy at a production level (3x maintenance); NELp3x: net energy at 

a production level (3x maintenance). 

  



   

77 
 

different diets in TDN at the maintenance level or at the production level. Similarly, all the 

predicted energy values, i.e, digestible energy, metabolizable energy, and net energy, were not 

affected (P > 0.10) by the three different diets.  

4.4.6. Nutrient intakes and apparent nutrients digestibility  

All dietary treatments did not affect (P > 0.10) DM, CP, and ADF intakes or digestibility 

(Table 4.6). Starch intake tended to increase (P = 0.09) when cows fed control diet were compared 

with other diets. Nevertheless, apparent starch digestibility, when expressed as a percentage of 

total starch intake was not affected (P > 0.10) by dietary treatments. Cows fed control die, or 

BPPCN tended to have low NDF intake (P = 0.08) compared with the BPPCR diet. However, 

apparent NDF digestibility when expressed as a percentage of total NDF intake was not affected 

(P > 0.10) by different diets.    

4.4.7. Apparent nitrogen balance  

There was no effect of diets (P > 0.10) on urinary excretion, fecal excretion, and total N 

excretion either expressed as a percentage of N intake or as grams per day (Table 4.7). Milk N 

secretion expressed as a percentage of N intake or grams per day was not similary affected (P > 

0.10) by the different diets.    

4.4.8. Milk Production and Composition 

The results presented in Table 4.8 on milk production and composition are from all nine 

cows that were used in the study. Milk yield, fat corrected milk (FCM), and energy corrected milk 

(ECM) were not affected (P > 0.10) by the different diets. Our results showed that milk fat, milk 

protein, and SNF were not affected (P > 0.10) by any of the experimental diets. Milk urea nitrogen 

(MUN) was not affected (P > 0.10) by diets. There was no effect (P > 0.10) of the experimental  



   

78 
 

Table 4.6 Feed intake and total-tract nutrient digestibility for high producing dairy cows fed total mixed ration with blend-pelleted 

products (BPP)* 

Items 
Dietary treatments 

SEM P-value 
Contrast P-value 

Control BPPCR BPPCN Control vs. (BPPCR + BPPCN) 

Dry matter       

Intake (kg/d) 27.55 25.90 27.04 0.868 0.45 0.77 

Apparent digestion (% of intake)  72.30 71.93 71.17 1.305 0.56 0.81 

       

Starch       

Intake (kg/d) 7.26 6.46 6.63 0.240 0.09 0.44 

Apparent digestion (% of intake) 97.28 97.06 96.97 0.544 0.93 0.79 

       

Crude protein        

Intake (kg/d) 4.35 4.06 4.38 0.147 0.33 0.37 

Apparent digestion (% of intake) 71.16 72.60 70.81 2.192 0.88 0.76 

       

Neutral detergent fiber        

Intake (kg/d) 7.98 7.46 7.84 0.243 0.08 0.46 

Apparent digestion (% of intake) 47.52 46.65 45.96 1.850 0.83 0.63 
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Table 4.6 cont’d. Total tract nutrient digestibility for high producing dairy cows fed total mixed ration with blend-pelleted products 

(BPP)* 

Items 
Dietary treatments 

SEM 
P-

value 

Contrast P-value 

Control BPPCR BPPCN Control vs. (BPPCR + BPPCN) 

Acid detergent fiber        

Intake (kg/d) 4.66 4.51 4.70 0.169 0.64 0.48 

Apparent digestion (% of intake)  41.33 41.79 38.60 2.840 0.69 0.41 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in combination with pea screenings and lignosulfonate; SEM: 

standard error of mean.  
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Table 4.7 The apparent nitrogen balance for high producing dairy cows fed total mixed ration blend-pelleted products (BPP)* 

Items 
Dietary treatments 

SEM P-value 
Contrast P-value 

Control BPPCR BPPCN Control vs. (BPPCR + BPPCN) 

N intake (g/d) 696.33 652.92 699.77 21.411 0.27 0.36 

Urinary Excretion       

Total (kg/d) 19.91 20.79 20.22 1.843 0.94 0.95 

Total N (g/d) 188.42 183.15 187.43 7.662 0.88 0.86 

Total N (% of N intake) 27.45 28.03 26.84 1.399 0.75 0.52 

Fecal Excretion       

N (g/d) 200.57 187.03 201.93 11.568 0.62 0.58 

N (% of N intake) 27.79 30.67 28.27 1.481 0.45 0.65 

Total N Excretion       

N (g/d) 388.95 370.18 389.38 3.111 0.52 0.55 

N (% of N intake) 56.03 57.02 56.02 2.374 0.94 0.86 
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Table 4.7 cont’d. The apparent nitrogen balance for high producing dairy cows fed total mixed ration with blend-pelleted products 

(BPP)* 

Items 
Dietary treatments 

SEM P-value 
Contrast P-value 

Control BPPCR BPPCN Control vs. (BPPCR + BPPCN) 

Milk N       

N (g/d) 297.68 275.37 263.25 19.570 0.48 0.35 

N (% of N intake) 43.09 42.27 37.55 2.643 0.36 0.17 

Apparent N balance (g/d) 9.70 7.37 47.13 25.008 0.48 0.24 

Productive N (g/d) 307.38 282.72 310.40 22.044 0.64 0.58 

Milk nitrogen/nitrogen 

intake 
43.12 42.25 37.55 2.535 0.29 0.13 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in combination with pea screenings and lignosulfonate; SEM: 

standard error of mean.  

 



   

82 
 

Table 4.8 Milk yield and milk compositions in lactating dairy cows fed total mixed ration with 

blend-pelleted products (BPP)* 

Items 

Dietary treatments   

SEM 
P-

value 

Contrast P-value 

Control BPPCR BPPCN 
Control vs. (BPPCR 

+ BPPCN) 

Milk yield (kg/d)       

Milk 47.81 47.36 47.46 1.561 0.79 0.84 

3.5% FCM 44.78 45.37 44.24 1.601 0.78 0.73 

ECM 45.33 45.44 44.67 1.475 0.20 0.21 

Milk component yield (kg/d)     

Fat  1.51 1.55 1.49 0.112 0.32 0.28 

Protein 1.48 1.44 1.44 0.051 0.26 0.41 

Lactose  2.16 2.14 2.13 0.086 0.81 0.57 

SNF 4.10 4.05 4.03 0.131 0.60 0.41 

Milk composition       

Fat (%) 3.22 3.29 3.16 0.161 0.72 0.50 

Protein (%) 3.09 3.05 3.05 0.063 0.33 0.43 

Lactose (%) 4.50 4.53 4.49 0.045 0.79 0.59 

Total solids (%) 11.80 11.83 11.66 0.225 0.49 0.25 

SNF (%) 8.59 8.53 8.52 0.098 0.36 0.51 

MUN (mg/L)  10.47 10.13 9.53 0.535 0.46 0.25 

Efficiency        

ECM/DMI 1.77 1.80 1.73 0.049 0.26 0.11 

FCM/DMI 1.73 1.79 1.70 0.050 0.19 0.19 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in combination with 

pea screenings and lignosulfonate; SEM = standard error of mean; FCM = Fat-corrected milk calculated 

as: 0.35*M + 18.57*F; where M = quantity of milk in kg, F = amount of fat in kg 'M' quantity of milk; 

ECM = Energy-corrected milk calculated as: =0.3246*kg of milk+12.86*kg of milk fat+7.04*kg of milk 

protein; SNF= Solids-not-fat; MUN = milk urea nitrogen.  
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diets on the efficiency when it was expressed as FCM/DMI and ECM/DMI. Additionally, there 

was no significant effect (P > 0.10) of the different diets on body weight gain and estimated net 

energy values (Table 4.9). 

4.4.9. Economic analysis 

The economic revenue of milk components is presented in Table 4.10. Results in the 

current study showed that the butterfat revenue, protein revenue, and other solids revenue were 

not affected (P > 0.10) by the different diets. Also, income over feed cost was not affected (P > 

0.10) by the different diets. 

4.4.10.  Correlation analysis between amide spectral features and protein profiles and 

apparent nitrogen balance   

Table 4.11 shows that CP had a positive correlation with Amide I to II height ratio (r = 

0.68, P = 0.04) and tended to have a positive correlation with Amide I height (r = 0.62, P = 0.08). 

The SCP expressed as DM had a negative correlation with Amide I height (r = -0.73, P = 0.03), 

Amide I area (r = -0.70, P= 0.03), and total Amide area (r = -0.68, P = 0.04).  

For the predicted energy, tdCP tended to have a positive correlation with Amide I height 

(r = 0.62, P = 0.08; Table 4.12). The DEp3x and MEp3x tended to have a negative correlation with 

α–helix height (r = -0.59, P= 0.09) and β–sheet height (r = -0.63, P = 0.07). The NELp3x tended to 

have a negative correlation with β–sheet height (r = -0.60, P= 0.09). 

For protein subfractions, PA2 had a negative correlation with Amide I height (r = -0.73, P 

= 0.03) and Amide I area (r = -0.70, P = 0.03; Table 4.13). The PB1 had a positive correlation with 

Amide I height (r = 0.68, P= 0.04) and Amide I to II height ratio (r = 0.69, P = 0.04), and tended 

to have a positive correlation with Amide I area (r = 0.64, P = 0.06) and total Amide area (r = 0.61,  
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Table 4.9 Effect of different total mixed ration with blend-pellet products (BPP)* body weight 

gain and estimated energy values of lactating dairy cows 

Items 

Dietary treatments  

SEM 
P- 

value 

Contrast P-value 

Control BPPCR BPPCN 
Control vs.  

(BPPCR + BPPCN) 

BW gain (kg/d) 0.40 -0.25 0.79 0.464 0.30 0.22 

       

Calculated net energy values (Mcal/d)    

Milk 30.86 30.98 30.34 1.053 0.73 0.44 

BW gain + Milk 32.86 29.82 34.31 2.444 0.44 0.34 

Total 43.63 40.57 45.10 2.465 0.43 0.34 

NE 1.70 1.60 1.76 0.113 0.61 0.44 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in combination with 

pea screenings and lignosulfonate; SEM: standard error of mean; BW: Body Weight; Calculated NEL: 

calculated total net energy: Mcal d-1/ DMI (kg/d). 
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Table 4.10 The economic revenue of component production efficiency for total mixed rations with blend-pelleted products (BPP)* in 

lactating dairy cows 

Items 
Dietary treatments 

SEM P-value 
Contrast P-value 

Control BPPCR BPPCN Control vs. (BPPCR + BPPCN) 

Milk component revenue ($)      

Butter fat revenue  23.77 24.40 23.42 1.107 0.73 0.54 

Protein revenue  3.24 3.31 3.29 0.170 0.92 0.94 

Other solids revenue  3.58 3.64 3.63 0.019 0.29 0.50 

Revenue/cow/day ($) 30.73 31.29 30.27 1.215 0.62 0.83 

IOFC ($) 23.36 23.96 22.89 1.183 0.70 0.50 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in combination with pea screenings and lignosulfonate; SEM: 

standard error of mean; IFOC: Income after purchased feed cost; Income efficiency: $ income/unit DM fed.  
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Table 4.11. Correlation between the basic chemical profile of protein for total mixed ration with blend-pelleted products (BPP)* in 

lactating dairy cows and protein molecular structure  

Items 
Amide I 

height 

Amide II 

height 

Amide I, 

II ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α–helix 

height 

β–sheet 

height 
α, β ratio 

Basic Protein Profile        

CP 

(%DM) 

r 0.62 -0.33 0.68 0.56 -0.37 0.53 -0.58 -0.56 -0.10 

P–value 0.08 0.39 0.04 0.11 0.33 0.14 0.10 0.12 0.79 

SCP 

(%CP) 

r -0.75 0.10 -0.64 -0.71 0.34 -0.68 0.39 0.34 0.27 

P–value 0.02 0.79 0.07 0.03 0.37 0.04 0.29 0.37 0.49 

SCP 

(%DM) 

r -0.73 -0.03 -0.54 -0.70 0.29 -0.68 0.25 0.18 0.32 

P–value 0.03 0.94 0.14 0.03 0.46 0.04 0.52 0.64 0.40 

ADICP 

(%CP) 

r 0.12 0.06 0.09 0.07 0.33 0.10 -0.47 -0.46 -0.27 

P–value 0.76 0.87 0.82 0.86 0.39 0.80 0.21 0.21 0.49 

ADICP 

(%DM) 

r 0.28 -0.04 0.27 0.22 0.18 0.24 -0.58 -0.57 -0.26 

P–value 0.47 0.92 0.48 0.57 0.64 0.53 0.10 0.11 0.49 

NDICP 

(%CP) 

r 0.15 0.56 -0.20 0.13 0.45 0.17 -0.03 -0.02 -0.30 

P–value 0.70 0.12 0.61 0.74 0.23 0.65 0.95 0.96 0.43 

NDICP 

(%DM) 

r 0.32 0.44 0.01 0.29 0.31 0.32 -0.19 -0.17 -0.32 

P–value 0.40 0.24 0.98 0.45 0.41 0.40 0.63 0.65 0.41 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and lignosulfonate; CP: crude protein; SCP: 

soluble crude protein; NDICP: neutral detergent insoluble crude protein; ADICP: acid detergent insoluble crude protein. 
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Table 4.12. Correlation between predicted energy profiles and feed milk value for total mixed ration with blend-pelleted products 

(BPP)* in lactating dairy cows and protein molecular structure  

Items 
Amide 

I height 

Amide II 

height 

Amide I, II 

ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α–helix 

height 

β–sheet 

height 

α, β 

ratio 

tdCP 

(%DM) 

r 0.62 -0.36 0.69 0.58 -0.47 0.53 -0.48 -0.45 -0.04 

P–value 0.08 0.34 0.04 0.11 0.20 0.14 0.19 0.22 0.92 

TDN1x 

(%DM) 

r 0.12 -0.21 0.22 0.16 -0.44 0.12 -0.50 -0.54 0.26 

P–value 0.76 0.58 0.58 0.67 0.23 0.76 0.17 0.13 0.50 

DE1x 

(%DM) 

r 0.18 -0.24 0.28 0.23 -0.50 0.18 -0.52 -0.55 0.25 

P–value 0.65 0.54 0.46 0.55 0.17 0.64 0.15 0.12 0.52 

TDN3x 

(%DM) 

r 0.12 -0.21 0.21 0.17 -0.44 0.12 -0.50 -0.54 0.26 

P–value 0.76 0.59 0.58 0.67 0.23 0.76 0.17 0.14 0.50 

DEp3x 

(%DM) 

r 0.21 -0.28 0.34 0.26 -0.50 0.21 -0.59 -0.63 0.20 

P–value 0.59 0.46 0.37 0.50 0.17 0.59 0.09 0.07 0.61 

MEp3x 

(%DM) 

r 0.21 -0.28 0.34 0.26 -0.50 0.21 -0.59 -0.63 0.20 

P–value 0.59 0.46 0.37 0.50 0.17 0.59 0.09 0.07 0.61 

NELp3x4. 

(%DM) 

r 0.14 -0.29 0.29 0.20 -0.51 0.14 -0.55 -0.60 0.26 

P–value 0.71 0.45 0.45 0.61 0.16 0.71 0.12 0.09 0.50 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and lignosulfonate; tdCP: truly digestible crude 

protein; TDN1×: total digestible nutrient at one times maintenance. DE1×: digestible energy at production level of intake; TDN3x: total digestible 

nutrients at production level of intake (3×); DEP3×: digestible energy at production level of intake (3×); MEp3×: metabolizable energy at production 

level of intake (3×); NELP3×: net energy for lactation at production level of intake (3×). 
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Table 4.13. Correlation between protein subfractions of protein of total mixed ration with blend-pelleted products (BPP)* in lactating 

dairy cows in the rumen and intestine using the Cornell Net Carbohydrate and Protein System (CNCPS) v.6.5 and protein molecular 

structure.  

Items 
Amide I 

height 

Amide II 

height 

Amide I, 

II ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α–helix 

height 

β–sheet 

height 
α, β ratio 

PA2 (%DM) 
r -0.73 -0.03 -0.54 -0.70 0.29 -0.68 0.25 0.18 0.32 

P–value 0.03 0.94 0.14 0.03 0.46 0.04 0.52 0.64 0.40 

PB1 (%DM) 
r 0.68 -0.27 0.69 0.64 -0.43 0.61 -0.46 -0.41 -0.16 

P–value 0.04 0.47 0.04 0.06 0.25 0.08 0.22 0.27 0.67 

PB2 (%DM) r 0.12 0.79 -0.40 0.15 0.25 0.17 0.56 0.57 -0.13 

P-value 0.76 0.01 0.29 0.71 0.52 0.66 0.12 0.11 0.74 

PC (%DM) 
r 0.28 -0.04 0.27 0.22 0.18 0.24 -0.58 -0.57 -0.26 

P–value 0.47 0.92 0.48 0.57 0.64 0.53 0.10 0.11 0.49 

PA2 (%TP) 
r -0.72 0.11 -0.62 -0.69 0.37 -0.66 0.35 0.29 0.24 

P–value 0.03 0.78 0.08 0.04 0.33 0.05 0.36 0.45 0.54 

PB1 (%TP) 
r 0.70 -0.23 0.67 0.66 -0.40 0.62 -0.43 -0.38 -0.21 

P–value 0.04 0.55 0.05 0.05 0.28 0.07 0.25 0.32 0.58 

PB2 (%TP) r 0.08 0.80 -0.43 0.12 0.27 0.14 0.58 0.59 -0.12 

P–value 0.83 0.01 0.25 0.77 0.49 0.71 0.10 0.10 0.76 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and lignosulfonate; PA2: soluble true 

protein; PB1: insoluble true protein; PB2: fiber-bound protein; PC: indigestible protein. 
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P = 0.08). The PB2 presented as DM had a positive correlation with Amide II height (r = 0.79, P 

= 0.01). 

For apparent nitrogen balance, urinary N excretion tended to have a positive correlation 

with Amide I area (r = 0.62, P = 0.08). Fecal N had a negative amide II area (r = -0.71, P= 0.03; 

Table 4.14). Total N excretion had a negative amide II area (r = -0.79, P= 0.01). Milk N tended to 

have a negative correlation with amide I height (r = -0.67, P = 0.05), Amide I to II height ratio (r 

= -0.60, P = 0.09), amide I area (r = -0.63, P = 0.07), and total amide area (r = -0.64, P = 0.06). 

Apparent N balance tended to have a positive amide I height (r = 0.60, P= 0.09). 

4.4.11. Multiple regression analysis for predicting nitrogen utilization using amide 

spectral profiles  

Multiple regressions analysis was used to predict the protein profiles and protein 

subfractions using the Amide spectral features of dietary treatments. The regression analysis 

showed that the CP could be predicted from Amide I to II height ratio, taking 47% of the total 

variance. The SCP could be predicted from Amide I height, taking 51% of the total variance.  For 

the predicted energy, tdCP could be predicted from Amide I to II height ratio, taking 48% of the 

total variance (Table 4.15). 

For protein subfractions, PA2 could be predicted from Amide I height, with 53% of the 

total variance (Table 4.16). The PB1 presented could be predicted from amide I to II height ratio 

and amide I height, with 48% of the total variance. For the apparent nitrogen balance, fecal 

excretion could be predicted from α–helix to β–sheet ratio, with 47% of the total variance (Table 

4.17). Milk N secretion could be predicted from α–helix to β–sheet ratio, with 50% of the total 

variance. Milk N intake could be estimated from amide I height, with 49% of total variance.   
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Table 4.14. Correlation between the apparent nitrogen balance for high producing dairy cows fed total mixed ration with blend- 

pelleted products (BPP)* and protein molecular structure.  

Items 
Amide 

I height 

Amide 

II height 

Amide I, 

II ratio 

Amide I 

area 

Amide 

II area 

Amide 

area 

α–helix 

height 

β–sheet 

height 
α, β ratio 

N intake (g/d) 
r 0.31 - 0.14 0.29 0.27 -0.31 0.24 - 0.37 - 0.39 0.19 

P–value 0.41 0.71 0.44 0.49 0.42 0.54 0.32 0.30 0.63 

Urinary N 

Excretion (g/d) 

r 0.59 - 0.21 0.52 0.62 - 0.25 0.60 - 0.26 - 0.21 - 0.22 

P–value 0.10 0.58 0.15 0.08 0.52 0.09 0.50 0.59 0.57 

Fecal N (g/d) 
r - 0.38 - 0.38 - 0.03 - 0.24 - 0.71 - 0.32 - 0.01 - 0.11 0.69 

P–value 0.32 0.32 0.93 0.53 0.03 0.41 0.98 0.79 0.04 

Total N 

excretion (g/d) 

r - 0.02 - 0.46 0.25 0.12 - 0.79 0.04 - 0.15 - 0.21 0.50 

P–value 0.96 0.21 0.51 0.76 0.01 0.92 0.70 0.59 0.17 

Milk N  

(g/d) 

 - 0.67 - 0.05 - 0.60 - 0.63 - 0.03 - 0.64 0.54 0.49 0.70 

P–value 0.05 0.91 0.09 0.07 0.93 0.06 0.13 0.18 0.03 

Apparent N 

balance (g/d) 

r 0.60 0.08 0.44 0.49 0.06 0.50 - 0.53 - 0.49 - 0.36 

P–value 0.09 0.84 0.24 0.19 0.89 0.18 0.15 0.18 0.34 

Productive N 

(g/d) 

r 0.36 0.07 0.20 0.24 0.05 0.25 - 0.35 - 0.34 - 0.04 

P–value 0.34 0.85 0.60 0.53 0.90 0.52 0.36 0.38 0.91 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and lignosulfonate. 
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Table 4.15. Multiple regression analysis to choose the most important protein spectral parameters to predict basic protein profile and 

predicted energy profile  

Predicted variable (Y) 

Variable selection (variables 

left in the model with 

P < 0.05) 

Equation prediction: 

Y = a + b1 × x1 + b2 × x2 +……. 

Model 

R2 
RSD P-value 

Basic Protein Profile 

CP (%DM) Amide I, II ratio Y = 14.22 + 0.69× Amide I, II ratio 0.47 0.664 0.04 

SCP (%CP) Amide I height, α, β– ratio 
Y = 106.08 – 230.78 × Amide I height – 

37.00 α, β– ratio 
0.79 4.044 <0.01 

SCP (%DM) Amide I height Y = 8.25 – 14.51 × Amide I height 0.51 0.534 0.03 

      

Predicted energy values     

tdCP (%DM) Amide I, II ratio Y = 13.10 + 0.61 × Amide I, II ratio     0.48    0.591 0.04 

RSD: residual standard deviation; CP: crude protein; SCP: soluble crude protein; tdCP: truly digestible crude protein. 
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Table 4.16. Multiple regression analysis to choose the most important protein spectral parameters to predict protein subfractions, 

ruminal degradable and undegradable subfractions of protein 

Predicted variable 

(Y) 

Variable selection 

(variables left in the 

model with P < 0.05) 

Equation prediction: 

Y= a + b1 × x1 + b2 × x2 +……. 

Model 

R2 
RSD 

P-

value 

Protein subfractions 

PA2 (%DM) Amide I height Y = 8.25 - 14.51× Amide I height 0.53 0.534 0.03 

PB1 (%DM) Amide I, II ratio Y = 5.59 + 1.10 × Amide I, II ratio  0.48 1.056 0.04 

PA2 (%TP) 
Amide I height, 

 α, β– ratio 

Y = 117.28 – 253.51 × Amide I height – 42.30 

 α, β– ratio 
0.77 4.399 0.01 

PB1 (%TP) Amide I height Y = 38.12 + 136.78× Amide I height 0.48 5.036 0.04 

RSD: residual standard deviation; PA2: rapidly degradable true protein; PB1: moderately degradable true protein. 
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Table 4.17. Multiple regression analysis to choose the most important protein spectral parameters to the apparent nitrogen balance 

Predicted 

variable (Y) 

Variable selection 

(variables left in the 

model with P < 0.05) 

Equation prediction: 

Y= a + b1 × x1 + b2 × x2 +……. 

Model 

R2 
RSD 

P-

value 

Fecal Excretion 

N, g/d α, β– ratio Y = –80.20 + 285.92 × α, β– ratio  0.47 37.011 0.04 

 

Milk N 

g/d α, β– ratio Y = -76.13 + 366.72 × α, β– ratio 0.50 47.469 0.03 

% of N intake Amide I height Y = 73.23 - 243.86× Amide I height 0.49 8.978 0.04 

RSD: residual standard deviation. 
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4.5. Discussion  

 In recent years, intensive dairy and feedlot operations have faced pressure due to the 

demands of meat and milk production. Improving nitrogen utilization in this system would 

improve the efficiency of cows, and thus decreases the cost of feed meanwhile increasing the 

productivity of cows. The protein supplement is the most cost-effective feed source in lactating 

rations. High producing dairy cows require 14-17% CP in their daily rations (NRC, 2001). The 

absorbed RUP and microbial protein synthesis are the most important contributors for milk protein 

production in dairy cows. Carinata meal is a new feed that has not been fully-registered by the 

Canadian Food Inspection Agency (CFIA) for use in dairy cows’ diets. Carinata meal is a co-

product from bio-fuel processing of carinata seed (Agrisoma Boisciences Inc. 2015). Carinata crop 

is characterized by its high yield in semi-arid regions (Agrisoma Boisciences Inc. 2015). 

Therefore, carinata meal would have a high potential to be a good source of protein to dairy cows 

in western Canada and the north of the US. To our knowledge, so far only one study investigated 

the effects of feeding carinata meal as dietary CP supplement for growing dairy heifers (Rodriguez-

Hernandez and Anderson, 2018). 

The dietary ingredients and chemical compositions of experimental diets fed to lactating 

dairy cows are presented in Table 4.1. The pelleted products BPPCR and BPPCN were used based 

on the screening study done by Guevara et al. (2018), who found theses blend-pelleted co-products 

had the highest feed milk value (FMV) with low glucosinolates levels. The same authors also 

found adding lignosulfonate to BPP based on canola increased the aRUP and FMV in dairy cows. 

Thus, we used these results to develop a dairy trial to assess the actual feeding values of these 

BPPs in high producing dairy cows. The control diet was a commercial diet that is commonly used 

by dairy producers in western Canada. This diet has a blend of soybean meal, canola meal, and 
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peas. Peas are typically utilized for improving the durability index of pellets. All diets were 

formulated to be isonitrogenous and isocaloric. All diets exhibited similar CP and CHO profiles, 

however, the diet based on canola meal BPPCN and control had a higher indigestible fiber as 

expressed as ADL compared with diets based BPPCR. These findings are in line with Guevara-

Oquendo et al. (2018) who found that the BPP based on carinata meal had lower ADL (%NDF) 

compared with canola meal (10 vs. 30% NDF). The indigestible fiber in the feed is the main 

limiting factor for DMI. High producing dairy cows’ diets are characterized by high NDF content 

(30-35% on DM basis). Increasing the ADL content in the diets would increase the gut fill, and 

hence decrease the energy intake (Dado and Allen, 1995). Adding BPP based on carinata meal 

would, in turn, increase energy intake, particularly during early lactation stage when the feed intake 

is limited.  

Evaluating the diet using the CNCPS model showed that the BPP based on canola meal 

tended to have a higher content of soluble true protein fraction (PA2 %TP). This fraction has high 

Kd values (25 %/h) and less mean retention time in the rumen (4h). The PA2 is used mainly as the 

primary N source for microbial growth in the rumen (Higgs et al., 2015). The previous study by 

Guevara-Oquendo (2018) found the BPP2 was higher in Canola BPP compared with BPP based 

on carinata meal.  

The energy values for the different diets were estimated using the NRC dairy model (2001). 

All diets exhibited the same energy values. Ban et al. (2017) found that the carinata meal had 

higher TDN and energy values than canola meal, due to the higher protein content (48 vs. 38 

%DM). Guevara-Oquendo et al. (2018) reported that the BPP based on canola had a lower TDN 

and energy values than BPP based on carinata (71 vs 76.5) meal because of the high protein 
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content. The similar energy values for all diets in the current study is attributed to that all diets has 

been balanced in N and energy.   

There was no significant effect of the dietary treatments on nutrient digestibility of lactating 

dairy cows. Furthermore, there was no significant effect of BPP on DM, CP and ADF intakes. 

However, the cows fed the control diet tended to have a higher starch intake, while the cows fed 

BPPCR tended to have a low NDF intake. The lower NDF intake or high starch intake would 

decrease the gut fill in the rumen and could increase energy intake in dairy cows (Dado and Allen, 

1995). The effect of feeding canola meal on nutrients intake and digestibility have been reported 

in many studies. However, there is no report on the effect of feeding carinata meal on nutrients 

digestibility of lactating dairy cows. Rodriguez-Hernandez and Anderson (2018) studied the effect 

of feeding carinata meal and DDGS on the growth performance of growing dairy heifers. They did 

not detect any significant impact of carinata meal on DMI compared to DDGS based diet. Guidotti 

(2018) studied the effects of carinata meal relative to canola meal when fed alone or in combination 

with wheat DDGS on nutrient intakes and nutrients digestibility in growing beef heifers. They did 

not detect any effect of the different diets on nutrient intake and digestibility. Using the in situ and 

in vitro techniques to predict the ruminal and intestinal digestibility of carinata and canola meals, 

Xin and Yu (2013) reported higher OM digestibility (86 vs. 80%) and CP digestibility (93 vs. 89%) 

for carinata meal relative to canola meal. Rodriguez-Hernandez (2018) found that dairy heifers fed 

a diet with solvent-extracted carinata meal at 10% (DM basis) had similar total-tract digestibility 

of nutrients, with heifers fed the canola meal.  

The effect of feeding different blend products based on carinata meal or canola meal on 

milk production and milk composition has been examined in the current study. To our knowledge, 

there was no study before on the effect of feeding of carinata meal on milk production or milk 
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component yield in high producing dairy cows. Dairy cows require an adequate supply of MP 

supply and amino acids, i.e., lysine and methionine for maintaining high milk yield. In a previous 

study, Guevara-Oquendo et al. (2018) reported that BPP based on carinata had a high FMV 

compared to canola meal. The higher feeding value of carinata meal was due to the higher protein 

content in the carinata meal compared with canola meal. The same authors reported a higher 

methionine (1.94 vs. 1.76 %DM) and lysine in canola meal (5.90 vs. 4.24 %CP) compared with 

canola meal. The lysine to methionine ratio was higher in BPP based on canola meal compared 

with carinata meal (3.0 vs. 2.4). Lysine and methionine are the most limiting factors for milk 

protein production. The diets in the present study were formulated to have the same protein content 

for better understanding the MP supply of both diets on milk production. Guidotti (2018) found 

that feeding diet based on carinata meal alone or in combination with wheat DDGS did not improve 

the growth performance of growing beef cows relative to canola meal. Rodriguez-Hernandez and 

Anderson (2018) also did not observe any significant effect of feeding carinata meal on growth 

performance of growing dairy heifers. To my knowledge, this is the first study demonstrating that 

carinata meal can be fed and exhibit a similar production performance compared with commonly 

used feedstuffs in the dairy industry. However, it is warranted to conduct more studies to examine 

the effect of this new feed using other feeding additives and to compare it with other protein 

sources such as DDGS or soybean meal either alone or in combination with other protein feeds. 

Adding lignosulfonate to blend-pelleted products did not affect protein utilization and 

hence the milk protein and milk yield. These findings are not in line with a previous study by 

Wright et al. (2005) who found that adding lignosulfonate improved the N utilization in dairy cows 

and increased milk yield. The higher N-utilization was attributed to increasing RUP and decrease 

urinary N excretion in dairy cows. However, these authors formulated a diet with high CP content 
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compared with our study (17% vs.16%). Thus, further studies are required to examine the effect 

of adding lignosulfonate to carinata meal in the diet with high CP content. Adding lignosulfonate 

to BPPCR and BPPCN diet did not influence the apparent digestibility of nutrients. These findings 

are not in agreement with Wright et al. (2005), who found the ruminal degradable protein (71% 

vs. 30%) and CP digestibility (74% vs. 71%) were lower for cows fed the canola treated with 

lignosulfonate compared with the untreated canola. The lack effect of adding lignosulfonate to 

canola meal or carinata meal was attributed to the lack effect of this feed additive on the ruminal 

degradable protein.  

Income over feed cost (IOFC) is defined as the part of the revenue from milk sold that 

remains after paying for purchased and farm-raised feed used to produce the milk. IOFC was 

increased by about $1.07 per cow/d in BPPCR as compared to feeding BPPCN diet. Feeding the 

cows on BPPCR increased IOFC and dairy herd profitability. Although there was no significant 

difference among treatments, with using more animals, it would decrease the standard error of the 

mean, and thus clarify this difference. 

In recent years, several studies have been reported that the chemometric methods based on 

mid-infrared region (MIR) can accurately predict rumen degradability of feed nutrients (Andrés et 

al., 2005; Ohlsson et al., 2007). Nevertheless, to our knowledge, there is no report on the capability 

of FTIR spectrometry to predict the N utilization value of different diets with blend-pelleted 

products based on different protein feeds in high producing dairy cows. Furthermore, there is no 

study on the association between the spectral features related to the amide region and the 

production performance of dairy cows. The MIR spectroscopic methods can provide more benefit 

than NIR analysis because the light absorptivity is greater in the MIR than in the NIR range. 

Moreover, the MIR region (ca. 4000-400 cm-1) contains information on the fundamental molecular 
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vibrations, which are stronger than the overtone absorptions observed in NIR (4000-12500 cm-1; 

Manley, 2014). As a result, generally MIR has higher sensitivity and precision than NIR and 

therefore could give a better insight into the chemical composition of the feed sample. Yu (2005) 

reported that protein secondary structures are highly correlated with digestive behavior and protein 

makeup. The amide structures have been reported to be affected by ruminal and intestinal 

digestibility of protein through changing the solubility of protein and the access of proteolytic 

enzymes to protein molecules in the gastrointestinal tract of dairy cattle (Theodoridou and Yu, 

2013a). In the current study, there was no significant effect of different diets on the secondary 

structure of amide region, indicating a similar protein utilization potential for the various 

treatments in dairy cows.  

The correlation between the amide structures would explore the association between the 

inherent molecular structures of feed with predictions of  production performance in dairy cows. 

The results in the current study showed that fecal nitrogen exertion was significantly correlated 

with the amide II region, while the milk nitrogen was found to be significantly associated with 

amide I region and the secondary structure of amide I region. These correlations in data suggests 

that protein molecular structure is strongly affects N-utilization in dairy cows. The differences in 

the amide I and amide II spectral intensities demonstrate the quantitative differences in protein 

contents and indigestible protein content, respectively (Peng et al., 2014). The Amide I to II and 

α-helix to β-sheet ratios reflect the N utilization in dairy cows (Yu, 2007).  

4.6.  Conclusions 

The blend-pelleted products based on carinata meal as a new co-product from bio-fuel 

processing industry was equal to the other pelleted products based on canola meal as a protein 

source for dairy cattle without affecting the lactational performance of dairy cows. Adding 

file:///C:/Users/brefat/Desktop/%5d%20P.%20Yu,%20Potential%20protein%20degradation%20balance%20and%20total%20metabolizable%20protein%20supply
file:///C:/Users/brefat/Desktop/%5d%20P.%20Yu,%20Protein%20molecular%20structures,%20protein%20subfractions,%20and%20protein%20availability%20affected%20by%20heat%20processing:%20a%20review,%20Am.%20J.%20Biochem.%20Biotechnol.%203%20(2007)%2070–90
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lignosulfonate to BPP did not improve the protein utilization in dairy cows. Further research is 

warranted to determine the influence of adding other feed additives on carinata meal degradability 

and to compare the lactational performance of cows fed carinata meal to those fed more traditional 

protein supplements such as soybean meal. The molecular spectroscopy could detect inherent 

structural characteristics in the blend-pelleted products based on different bio-energy co-products. 

The molecular structural features related to the protein region were highly associated with the 

protein utilization in dairy cows.  
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5. ASSOCIATION BETWEEN MOLECULAR STRUCTURE FEATURES AND 

METABOLIC CHARACTERISTICS OF BLEND-PELLETED PRODUCTS BASED 

ON BIOENERGY CO-PRODUCTS IN HIGH PRODUCING DAIRY COWS 

5.1. Abstract  

The main objectives of this study were to detect the impact of feeding newly developed blend- 

pelleted products based on carinata meal (BPPCR) or canola meal (BPPCN) in combination with 

pulse screenings and lignosulfonate on ruminal fermentation characteristics, ruminal degradability 

and intestinal digestion in high producing dairy cows, and also to examine the changes of amide 

molecular structure spectral profiles in relation to ruminal degradability and intestinal digestion of 

BPPCR diet and BPPCN diet in dairy cows. Three mid-lactating cannulated Holstein cows were 

randomly assigned to one of the following three dietary treatments: Control = control diet 

(common barley-based diet in western Canada); BPPCR = basal diet supplemented with 12.3 

%DM BPPCR (carinata meal 71.4 % + pea screenings 23.8 % + lignosulfonate 4.8 %DM), and 

BPPCN = basal diet supplemented with 13.3 %DM BPPCN (canola meal 71.4 % + pea screenings 

23.8 % + lignosulfonate 4.8 %DM) in a 3×3 Latin square design. Each experimental period lasted 

for 21 days with 14 days for adaptation and seven days of sampling. The results showed that there 

were significant differences (P < 0.05) among diets in pH duration and rumen pH area, where the 

BPPCN diet exhibited the highest pH duration and pH. The control diet was higher (P < 0.05) in 

total VFA rumen concentration (138 mmol/L) relative to BPPCN. There was no dietary effect (P 

> 0.10) on the concentration of rumen ammonia. There was no effect (P > 0.10) of dietary 

treatments on in situ ruminal degradation kinetics of dietary nutrients. There was no significant 

difference (P > 0.10) among the different diets on intestinal digestion of nutrients. The predicted 

metabolizable protein was not affected (P > 0.10) by different dietary treatments. Similarly, the 
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feed milk values were not affected (P > 0.10) by different diets. The blend-pelleted products 

exhibited significant correlation with ruminal and intestinal digestion of amide region. In 

conclusion, the blend-pelleted products based on carinata meal as a new co-product from bio-fuel 

processing industry was equal to the other pelleted products based on canola meal as a protein 

source for dairy cattle without affecting the ruminal fermentation features. The molecular 

spectroscopy could identify structural characteristics in dietary treatments based on the two co-

products. 

 

5.2. Introduction 

The use of biofuel industry by-products as feedstuffs for dairy cows is a realistic option to 

decrease feed cost and increase the production efficiency of high producing dairy cows (Canola 

Council of Canada, 2015). New co-product from bio-fuel processing is the carinata meal. Carinata 

meal is a good source of crude protein (CP) about 48% CP (Xin and Yu, 2013a). However, carinata 

meal is characterized by its higher level of rumen degradable protein compared with canola meal 

(Ban et al., 2017). In recent years, Canada has become the second country in terms of pea 

production (Hickling et al., 2003). In 2014, Saskatchewan grew about 64% of the dry pea crop and 

90% of chickpea crop of the total Canadian pea production (Saskatchewan Pulse Growers, 2015). 

Pea is a high in protein, at about 24% dry matter (DM) and also contain a high level of starch 46% 

DM (Hickling et al., 2003). The rumen degradable protein (RDP) of peas is about 78% 

(Kudlinskiene et al., 2016). Decreasing the rumen degradability of protein supplements is an 

essential strategy used to improve the dietary amino acids (AAs) supply to the small intestine. This 

concept assumes enhancing milk production from increased amino acids supply to the lactating 

dairy cow. 
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Because of the high level of RDP in canola meal, carinata meal, and pea screenings, it is 

essential to slow down the degradation (extent and rate) of ruminal degradation (Schwab, 1995). 

The most common methods to maximize the utilization of protein and protected the AAs are heat 

treatments and feed additives. Heat treatments include techniques such as pelleting, steam flaking, 

dry roasting, etc. (Jansen, 1991; Riaz, 2007). Heat treatments are vital to improving the nutritional, 

chemical, physical, hygienic, and other animal feed characteristics (Lević et al., 2010). Feed 

additives such as formaldehyde (Crooker et al., 1983), tannins (Chung et al., 2013), lignosulfonate 

(LSO3), and xylose (McAllister et al., 1993) could decrease RDP of protein in the different ration. 

There are many methods for feed evaluation such as wet chemistry analysis; however, this 

technique could damage the main structure of samples (Yu et al., 2014). It has been reported by 

Yu (2005) that feeding value is influenced by the inherent molecular structure of amide region. 

The FTIR spectroscopy with attenuated total reflectance is a direct, rapid, non-invasive, and non-

destructive bioanalytical technique used to examine the infrared spectrum of absorptions or 

emissions of liquid, gas, or solids (Smith, 2011). FTIR has been used to detect the molecular 

structure for different crop varieties, feed ingredients, and to study the effects of feed processing 

on protein- and carbohydrate-related structures (Abeysekara et al., 2013; Peng et al., 2014; Xin 

and Yu, 2013a,b). To our knowledge, there has been no study to detect how the BPP based on 

different co-products from bio-oil or bio-fuel processing (i.e., carinata or canola meal) could 

induce protein molecular structures changes, or how these changes could influence the ruminal 

degradation and intestinal digestibility in high producing dairy cows.  

The main objectives of this study were: (1) to detect the effects of feeding newly developed 

blend-pelleted products based on new protein feed of carinata meal or canola meal in combination 

with pea screenings and lignosulfonate on ruminal degradation and intestinal digestion in dairy 
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cows;  and (2) to assess the correlation between molecular structure features related to amide 

region and ruminal degradation and intestinal digestion in high producing dairy cows. 

5.3. Materials and Methods 

5.3.1. Animals and experimental design and diets 

Three multiparous lactating Holstein cows were used in a 3×3 Latin square design with 

three different dietary treatments. Each experimental period lasted for 21 days, consisting of 14 

days of diet adaptation and seven days of sample collection. The three cows were housed in 

individual tie-stalls at the Rayner Dairy Research and Teaching Facility (University of 

Saskatchewan, Saskatoon, Canada). The cows were randomly assigned to one of the following 

three diets: Control = control diet: common barley-based diet in western Canada (6.2 % canola 

meal + 2.2 % soybean meal + 3.9 % peas), BPPCR diet: basal diet supplemented with 12.3%DM 

BPPCR (carinata meal 71.4 % + pea screenings 23.8 % + lignosulfonate 4.8 %DM), and BPPCN 

diet = basal diet supplemented with 13.3 %DM BPPCN (canola meal 71.4 % + pea screenings 

23.8 % + lignosulfonate 4.8 %DM).  

5.3.2. Ruminal pH measurements 

Rumen pH was measured every 5 minutes in the last three days for each experimental 

period using the Lethbridge Research Center Ruminal pH Measurement System (Dascor, 

Escondido, CA) as described by Penner et al. (2006). The pH probes were standardized by using 

two buffers (pH 7 and 4). All probes were collected from each cow in the last third day of pH 

measurement, washing them, and downloading the data. The electrode signal in mV was converted 

to pH data using the calibration slope. The pH probes detected the slope by measuring the 

difference in the mV reading of two different buffers (pH 7 and 4) and divided it by the difference 

in pH of the buffers. 
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5.3.3. Rumen fluid collection  

 In the last day of each experimental period (starting on day 21 at 0800 h), the ruminal fluid 

was collected over 24 hours every 3 hours (0, 3, 6, 9, 12, 15, 18, 21, 24 h). About 250-mL of 

ruminal liquid were collected from four different locations of the rumen (ventral, anterior, 

posterior, and rumen mat). After that, the ruminal fluid went through two layers of cheesecloth 

and solids discarded. Two 10-mL of the filtrate samples were sub-sampled into 15-mL centrifuge 

tubes (Fisher Scientific, Waltham, MA). One of these samples was added to a tube containing 2-

mL of 25% metaphosphoric acid for VFA analysis and the other one of these samples attached to 

a tube containing 2-mL of 1% sulphuric acid for ammonia analysis. All samples were stored at –

20 °C.   

 The frozen ruminal volatile fatty acid (VFA) samples were melted overnight at 4°C. Then 

the samples were thoroughly mixed and centrifuged at 12,000 g for 10 min at 4°C using a Beckman 

Centrifuge (Model Avanti J-E; Palo Alto, CA, USA). About 1.0-mL of this sample was placed 

into microcentrifuge tubes (VWR TM 1.5 mL Microcentrifuge tube with snap cap, Radnor, PA, 

USA). After that, samples were centrifuged at 16,000 g for 10 min at 4°C using a Microcentrifuge 

(Beckman Coulter TM, Brea, CA, USA). An internal standard containing 300 μL isocaproic acid, 

20-mL of 25% metaphosphoric acid, and double distilled water (ddH2O) were mixed with 1-mL 

of the supernatant sample in a GC vial (Agilent TechnologiesTM, Santa Clara, CA, USA) to 

determine the concentration of VFA by comparison of peak areas using an Agilent 6890 series Gas 

chromatography system (Agilent Technologies TM, Santa Clara, CA, USA) with an Agilent 7683 

series 5 μL injector, Zebron ZB-FFAP high performance GC capillary column (30 m × 320 μm × 

0.25 μm, Phenomenex, Torrance, CA, USA) and an Agilent split focus liner (Agilent 

TechnologiesTM, Santa Clara, CA, USA). Samples were prepared daily at 4°C to avoid 
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volatilization until analysis. To build a calibration curve, acetic, propionic, butyric, isobutyric, 

valeric, isovaleric, caproic, and isocaproic acids were used as a mixed standard. 

For ammonia analysis, frozen samples were kept overnight at 4°C, vortexed, and 

centrifuged at 12,000 g for 10 min at 4°C using a Beckman Centrifuge (Model Avanti J-E; Palo 

Alto, CA, USA). After that, 1.0-mL of the sample was placed in microcentrifuge tubes (VWR TM 

1.5-mL Microcentrifuge tube with snap cap, Radnor, PA, USA) and centrifuged at 16,000 g for 10 

min at 4°C using a Microcentrifuge (Beckman Coulter TM, Brea, CA, USA). Ammonia 

concentration of ruminal fluid was analyzed using the phenol-hypochlorite method of Broderick 

and Kang (1980).  

5.3.4. Cornell Net Carbohydrate and Protein System (CNCPS V.6.5) 

In the CNCPS (Higgs et al., 2015), protein is divided to PA1 ammonia (Kd =200%/h), PA2 

soluble true protein (Kd =10-40 %/h), PB1 (moderately degradable true protein, Kd = 3-20 %/h), 

PB2 (slowly degradable true protein, Kd = 4-9%/h) and PC (unavailable protein) based on their 

rumen degradation features. The carbohydrate partition is described by Higgs et al. (2015). The 

eight subfractions include CA1, CA2, CA3, CA4, CB1, CB2, CB3, and CC, based on rumen 

fermentation and microbial activity on carbohydrate availability (Van Amburgh et al., 2015). The 

CA1 fraction is VFA consisting mainly of acetate, propionate, and butyrate, which are not 

degradable (0 %/h). The CA2 fraction is lactic acid with a degradation rate of 7%/h. The CA3 

fraction degrades at 5%/h. The CA4 fraction with Kd 50%/h. The CB1 fraction with Kd rates equal 

to 30%/h. The CB2 fraction degrades at 30%/h. The CB3 fraction with Kd rates equal to 6%/h. 

The CC, mostly plant cell walls containing lignin, is considered undegradable. The Kp is 13.75 

%/h (mean retention time = 7.3 h) for CA4, PA1 and PA2, and 7.60 %/h for other CB1 and CB2 
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and PB1 fractions (mean retention time = 13.2 h) and 1.66%/h for PB2 and CB3 (mean retention 

time = 60.2 h).  

5.3.5. Rumen incubation procedure and sample analysis 

An in situ method was used to determine rumen degradation kinetics as described by Yu 

et al., (2003). The in situ procedure included weighing 7 g of each diet in each number-coded nylon 

bag (10 x 20 cm) with multiple-bags for each treatment and each incubation 0, 3, 6, 9, 12, 24, and 

48 h. The pore size of the nylon bag was ca. 41 μm. These bags were tied about 2 cm below the 

top, allowing a ratio of a sample size to bag surface area of 39 mg/cm2. The rumen incubations 

were performed with three cannulated cows according to the ‘‘gradual addition/all-out’’ schedule 

(the bags were inserted sequentially and retrieved at the same time) and incubated in the rumens 

for 3, 6, 9, 12, 24, and 48 h). After incubation, the bags were collected from the rumen and washed 

with cool water by hand for six times with ca. 10 bags each round. The 0 h bags were washed 

under the same conditions four times. After washing the bags, the bags were dried for analyzing 

DM at 55 °C for 48 h by placing all bags on stainless steel trays in a forced-air drying oven. All 

dried bags were moved to lab room conditions (temperature room at 21 °C) for at least 24 h, then 

bag + string + residue were weighed. The samples were ground through a 1-mm screen using a 

Christy-Norris mill (Christy and Norris Ltd., Chelmsford, England) for chemical analysis. In situ 

samples were analyzed for ash (AOAC, 2000; method 942.05), CP (AOAC, 2000; method 990.03), 

neutral detergent fiber (NDF), and, starch (ST; Hall, 2009). 

5.3.6. Measurement of rumen degradation kinetics of feed nutrients using the in situ 

technique 

Degradation characteristics of DM, organic matter (OM), CP, NDF, and ST were 

determined using the first-order kinetics degradation model described by Ørskov and McDonald 
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(1979) and modified by Tamminga et al. (1994). The results were estimated using the nonlinear 

(NLIN) procedure of SAS 9.4 and iterative least-squares regression (Gausse Newton method) as 

in the following equation: 

R(t) = U + D × e−Kd×(t−T0), 

where, R(t) = residue present at t h incubation (%); U = undegradable fraction (%); D = potentially 

degradable fraction (%); Kd = degradation rate (h−1), and T0 = lag time (h). 

The rumen undegradable (R) or bypass (B) values of nutrients on a percentage basis were 

calculated according to NRC Dairy (2001) as the following equation: 

%BDM, BCP or BNDF = U + D × Kp / (Kp + Kd) 

%BST = 0.1 × S + D × Kp / (Kp + Kd), 

where, Kp stands for estimated passage rate from the rumen (4.5%/h); S stands for a soluble 

fraction (%). The factor 0.1 in the formula represents the approximate 100 g/kg of the soluble 

fraction (S) that escapes rumen fermentation (Tamminga et al., 1994). 

The rumen undegradable or bypass DM, and starch (ST) in g/kg DM were calculated as the 

following equation: 

BDM or BST (g/kg DM) = DM or ST (g/kg DM) × % BDM or BST 

 Except for the rumen undegradable protein (RUP) and rumen bypass protein (BCP) were 

calculated differently in the Dutch model (Tamminga et al., 1994) and NRC Dairy 2001 model 

(NRC, 2001): 

BCP DVE (g/kg DM) = 1.11 × CP (g/kg DM) × RUP (%), 

RUP NRC (g/kg DM) = CP (g/kg DM) × RUP (%), 

where, 1.11 is the regression coefficient between in situ RUP and in vivo RUP (Yu et al., 2002; 

Tamminga et al., 1994). 
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The effective degradability (ED), or extent of degradation, of each nutrient was predicted 

according to NRC (2001) as the following equation: 

%EDDM (EDCP or EDST) = S + D × Kd / (Kp + Kd) 

EDDM (CP or ST) = DM (CP or ST) (g/kg DM) × %EDDM (EDCP or EDST) 

5.3.7. Evaluation of Intestinal Digestibility of Feed Nutrients Using In Vitro 

Techniques 

Intestinal digestion was evaluated using the three-step in vitro procedure described by 

Calsamiglia and Stern (1995). In vitro processing included the following steps: 1) dried ground 

residues containing 15 mg of N after 12 h ruminal preincubation were placed into a 50 ml 

centrifuge tube; 2) a 10 ml of pepsin (Sigma P-7012) solution (in 0.1 N HCl with pH 1.9) was 

added, vortexed, and incubated for 1 h at 38 ºC in a water bath, 3) a 0.5 ml of 1 N NaOH solution 

and 13.5 ml of pancreatin (Sigma P-7545) were added, vortexed and incubated at 38 °C for 24 h 

vortexing every 8 h approximately; 4) a 3 ml of TCA was added in order to stop enzymatic 

hydrolysis; 5) the tubes were vortexed and sit samples for 15 min at room temperature; 6) all 

samples were centrifuged for 15 min at 10000 g and supernatant (5 ml) analyzed for soluble N by 

the Kjeldahl method. The intestinal digestion of protein was measured according to TCA-soluble 

N divided by the amount of N in the rumen residue sample (Gargallo et al., 2006; Calsamiglia 

and Stern, 1995). 

5.3.8. Prediction of truly digestible protein in the small intestine using the National 

Research Council (NRC 2001) Method  

The metabolizable protein (MP) is as a composed of three major contributory protein sources 

using the NRC (2001) model as the following equation: 
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MP (g/kg DM) = AMCPNRC + ARUPNRC + AECP, 

where, AMCP is the absorbable microbial protein, ARUP is the truly absorbable rumen 

undegraded feed protein, and AECP is the truly absorbable endogenous protein in the small 

intestine (Theodoridou and Yu, 2013; NRC, 2001).  

The DBP based on data from the NRC-2001 mode reflects the difference between the 

potential microbial protein synthesis based on RDP and the potential microbial protein synthesis 

based on the energy available for microbial fermentation in the rumen. Thus, the DPBNRC was 

calculated as follows:  

DPBNRC (g/kg of DM) = RDPNRC − 1.18 × MCPTDN. 

The FMV was estimated on the characteristics of protein from NRC, 2001 model. The 

efficiency of use of metabolizable protein for lactation was assumed to be 0.67 (NRC, 2001), and 

protein composition in milk was considered to be 33 g protein / 1 kg of milk. 

5.3.9. Collecting spectra related to the protein primary and secondary structural 

components 

 The molecular spectral features related to the amide region were collected using molecular 

spectroscopy of FTIR (JASCO 4200, JASCO International Co. Ltd., Tokyo, Japan). The spectra 

were generated in the mid-IR (ca. 4000–800 cm−1) range. The FTIR spectra were performed by 

using OMNIC 7.3 (Spectra–Tech, Madison, WI, USA).   

5.3.10. Statistical analysis 

The data were analyzed using Proc Mixed SAS 9.4 (SAS Institute, Cary, NC) to examine 

digestibility, ruminal fermentation, and ruminal pH profile by using the following model:  

Y
ijkl 

= μ + P
j
+ C

k
+ T

l 
+ E

ijkl
, 
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where, Y
ijkl 

was the dependent variable, μ was the overall mean, P
j(i) 

was the fixed effect of j
th 

period, C
k(i) 

was the random effect of k
th 

cow, T
l 
was the fixed effect of l

th 
dietary treatment, and 

E
ijkl 

was the residual error.  

Means effects were detected by using the LSMEANS procedure. Normality was tested 

using the univariate procedure of SAS software with the Shapiro-Wilk test. Differences were 

declared significant if P < 0.05 and values of 0.05 < P < 0.10 were interpreted as tendencies 

towards significance. 

  The correlation between the functional groups related to protein region (Amide I, II peak 

highest and areas, α–helix, β–sheet and their ratio) and ruminal degradability and intestinal 

digestibility was analyzed by using the PROC CORR procedure in SAS 9.4 (SAS Institute, Inc., 

Cary, NC, USA). Rank correlation with the SPEARMAN option and normality test with the 

UNIVARIATE option were used in the correlation study.  

Multiple regression analysis (with model variable selection method) used to select the best 

functional groups that would explain ruminal degradability and intestinal digestion by using the 

PROC REG procedure of SAS by the following model: Y= spectral parameter 1 + spectral 

parameter 2 + spectral parameter 3 + spectral parameter 4 + ... + error. The model used a 

“STEPWISE” option with variable selection criteria: “SLENTRY = 0.05, SLSTAY = 0.05”. All 

variables left in the final prediction models were significant at the 0.05 level. Residual analysis 

was performed and normality was tested the Univariate procedure of SAS with Normal and Plot 

options.  

5.4. Results 

5.4.1. Ruminal pH profile 
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The mean pH and the maximum pH were not affected (P > 0.10) by different dietary 

treatments (Table 5.1); however, the minimum pH tended (P = 0.07) to be lower in BPPCN (5.14) 

compared with the control and BPPCR diets (average 5.45; Table 5.1). Our results showed that 

BPPCN diet was significantly (P > 0.05) higher in duration of pH < 5.8 (930 min/d) and duration 

pH < 5.5 (285 min/d) compared with BPPCR diet and control diet.  

5.4.2. Ruminal fermentation 

The total VFA was increased in the control diet (P < 0.05; 138 mmol, L) compared with 

BPPCR diet and BPPCN diet (averaging 119 mmol/L; Table 5.2). Acetate tended (0.05 < P < 0.10) 

to be higher in control diet (78.8 mmol/L) compared with BPPCR and BPPCN diets (averaging 

70.35 mmol/L). Our results showed that the control diet had higher propionate (37.2 mmol/ L) 

compared with BPPCR diet and BPPCN diet (averaging 29.05 mmol/L). Iso-butyrate, butyrate, 

iso-valerate, and iso-caproate were not affected (P > 0.10) by different dietary treatments.  

For ammonia, there was no effect of diets (P > 0.10) on ammonia concentration; however, 

when comparing control diet with the averaging of BPPCR diet and BPPCN diet, the control 

tended (0.05 < P < 0.10) to be higher in ammonia relative to other different dietary treatments. 

5.4.3. Ruminal degradation of protein and carbohydrate subfractions 

Ruminal degradable protein subfractions such as RDPA2, RDPB1, RDPB2, and TRDP and 

ruminal undegradable protein subfractions such as RUPA2, RUPB1, and RUPB2 were not affected 

(P > 0.10) by different dietary treatments (Table 5.3). However, BPPCN diet was higher (P < 0.05) 

in TRUP (4.50 %DM) compared with BPPCR diet and BPPCN diet (averaging 4.16 % DM). 
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Table 5.1 Ruminal pH pattern for high producing dairy cows fed total mixed ration with blend- 

pelleted products (BPP)* 

Items 

Dietary treatments 

SEM 
P-

value 

Contrast P-value 

Control BPPCR BPPCN 
Control vs. 

(BPPCR + BPPCN) 

Ruminal pH  

Mean 6.00 6.09 5.74 0.083 0.17 0.10 

Minimum 5.51 5.41 5.14 0.053 0.07 0.04 

Maximum 6.42 6.69 6.49 0.181 0.63 0.80 

Duration, min/d       

 pH < 5.8 172.50b 257.50b 930.00a 14.216 <0.01 <0.01 

 pH < 5.5 12.50b 45.00b 285.00a 21.262 0.02 0.01 

Area, pH × 

min/d 
      

 pH < 5.8 23.80c 41.41b 218.90a 1.255 <0.01 <0.01 

 pH < 5.5 0.77c 4.39b 42.33a 4.832 0.04 0.02 
*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in 

combination with pea screenings and lignosulfonate; SEM: standard error of mean; a-c Means with 

the different letters in the same row are significantly different (P < 0.05); Multi-treatment 

comparison using Tukey method. 
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Table 5.2 Ruminal fermentation characteristics for high producing dairy cows fed total mixed 

ration with blend-pelleted products (BPP)*. 

Items 

Dietary treatments  

SEM 
P-

value 
 

Contrast P-value 

Control BPPCR BPPCN 
Control vs. 

(BPPCR + BPPCN) 

Total VFA (mmol, L) 138.22a 121.79ab 117.01b 3.531 0.02 0.04 

VFA (mmol /L)       

Acetate  78.84 70.67 70.03 2.321 0.08 0.22 

Propionate  37.19a 30.40b 27.70b 0.983 <0.01 <0.01 

Iso-butyrate 0.90 0.72 0.73 0.067 0.19 0.36 

Butyrate 16.87 15.50 14.55 0.811 0.24 0.13 

Iso-valerate 1.29 1.09 1.13 0.111 0.45 0.65 

Valerate 2.60a 2.11b 2.08b 0.087 0.02 0.15 

  Iso-caproate 0.71 0.65 0.77 0.088 0.66 0.43 

Caproate 2.16b 2.43a 2.69a 0.071 <0.01 <0.01 

       

NH3-N (mg/dL) 5.60 5.01 4.19 0.469 0.12 0.06 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in 

combination with pea screenings and lignosulfonate; SEM: standard error of mean; VFA: volatile 

fatty acids. 
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Similarity, ruminally degradable carbohydrate subfractions such as RDCA4, RDCB1, RDCB2, 

RDCB3, and TRDC and ruminal undegradable carbohydrate subfractions such as RUCA4, 

RUCB1, RUCB2, RUCB3, and TRUC were not affected (P > 0.10) by different dietary 

treatments. However, when comparing control diet with BPPCR diet and BPPCN diet, TRDC 

tended to be higher in BPPCR diet (46.3 % DM) compared with control diet and BPPCN diet 

(averaging 45.3 % DM). 

5.4.4. In situ rumen degradation kinetics of chemical profiles  

Table 5.4 shows in situ ruminal degradation kinetics of dry matter. The rate of degradation 

(Kd) was significantly (P < 0.05) higher in the control diet (9.1 %/h) compared with BPPCR diet 

and BPPCN diet (averaging 7.2 1 %/h). However, the other ruminal degradation parameters of 

DM such as degradable fractions (D), undegradable fractions (U), rumen bypass dry matter 

(BDM) when expressed as a percentage of DM or g/kg of DM, and effectively degraded dry 

matter (EDDM) when expressed as a percentage of DM or g/kg of DM were unaffected (P > 

0.10) by dietary treatments. Dietary treatments did not affect (P > 0.10) ruminal degradation of 

organic matter (OM), starch (ST), and crude protein (CP; Tables 5.5, 5.6, and 5.7). In situ ruminal 

degradation of OM, ST, and CP such as Kd, D, U, rumen bypass organic matter (BOM) when 

expressed as a percentage of OM or g/kg of OM, effectively degraded organic matter (EDOM) 

when expressed as a percentage of OM or g/kg of OM, rumen bypass starch (BST) when 

expressed as a percentage of ST or g/kg of ST, effectively degraded starch (EDST) when 

expressed as a percentage of ST or g/kg of ST, rumen bypass crude protein (BCP) in DVE/OEB 

system when expressed as a percentage of CP or g/kg of CP, effective degraded crude protein 

(EDCP) when expressed as a percentage of CP or g/kg of CP were not affected (P > 0.10) by 

dietary treatments.   
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Table 5.3 Ruminal degradable and undegradable subfractions of protein and carbohydrates for the 

total mixed ration with blend-pelleted products (BPP)* in lactating dairy cows using Cornell Net 

Carbohydrate and Protein System (CNCPS) v.6.5. 

 Dietary treatments    Contrast P-value 

Items 
Control BPPCR BPPCN SEM 

P- 

value 

Control vs. 

(BPPCR + BPPCN) 

Ruminal degradable protein fractions (%DM)    

  RDPA2  4.92 4.96 4.69 0.051 0.24 0.17 

RDPB1 5.70 5.53 6.35 0.070 0.11 0.08 

RDPB2 0.07 0.06 0.03 0.038 0.82 0.61 

TRDP 10.69 10.55 11.07 0.089 0.23 0.16 

Ruminal undegradable protein fraction (%DM) 

 RUPA2 0.66 0.67 0.63 0.006 0.24 0.16 

 RUPB1 2.28 2.21 2.54 0.026 0.10 0.07 

 RUPB2 0.20 0.19 0.10 0.115 0.84 0.64 

TRUP 4.16b 4.15b 4.50a 0.013 0.05 0.03 

Ruminal degradable carbohydrate fraction (%DM) 

RDCA4 4.80 5.45 5.90 0.447 0.53 0.41 

RDCB1 26.70 23.95 25.30 0.574 0.27 0.98 

 RDCB2 11.98 14.01 12.57 0.798 0.44 0.75 

 RDCB3 25.29 26.18 24.37 0.447 0.31 0.26 

TRDC 46.19 46.25 44.36 0.756 0.21 0.09 
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Table 5.3 Cont’d. Ruminal degradable and undegradable subfractions of protein and 

carbohydrates for the total mixed ration with blend-pelleted products (BPP)* in lactating dairy 

cows using Cornell Net Carbohydrate and Protein System (CNCPS) v.6.5 

 Dietary treatments    Contrast P-value 

Items 
Control BPPCR BPPCN SEM 

P- 

value 

Control vs. 

(BPPCR + BPPCN) 

Ruminal undegradable carbohydrate fraction (%DM) 

 RUCA4 5.93 5.32 5.62 0.128 0.27 0.98 

 RUCB1 1.94 2.27 2.04 0.128 0.44 0.76 

 RUCB2 42.15 43.64 40.62 0.747 0.31 0.26 

 RUCB3 4.01 3.62 3.83 0.064 0.21 0.89 

 RUCC 56.17 57.27 54.73 0.485 0.25 0.20 

TRUCC 2.13 2.43 2.62 0.198 0.53 0.41 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in 

combination with pea screenings and lignosulfonate; SEM: standard error of mean; a-c Means with 

the different letters in the same row are significantly different (P < 0.05); Multi-treatment 

comparison using Tukey method; RDPA2: ruminally degraded PA2; RDPB1: ruminally degraded 

PB1; RDPB2: ruminally degraded PB2; TRDP: total ruminally degraded CP; RUPA2: ruminally 

escaped PA2; RUPB1: ruminally escaped PB1; RUPB2: ruminally escaped PB2; RUPC: 

ruminally escaped PC; TRUP: total ruminally escaped CP; RDCA4: ruminally degraded CA4; 

RDCB1: ruminally degraded CB1; RDCB2: ruminally degraded CB2; RDCB3: ruminally 

degraded CB3; TRDC: total ruminally degraded CHO; RUCA4: ruminally escaped CA4; 

RUCB2: ruminally escaped CB2; RUCB3: ruminally escaped CB3; RUCC: ruminally escaped 

CC; TRUCC: ruminally escaped CHO 
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Table 5.4 In situ rumen degradation kinetics of dry matter (DM) with total mixed ration with 

blend-pelleted products (BPP)* in lactating dairy cows. 

Items 

Dietary treatments 

SEM 
P- 

value 

Contrast P- value  

Control BPPCR BPPCN 
Control vs. 

(BPPCR + BPPCN) 

In situ rumen DM degradation        

Kd (%/h) 9.07a 7.84ab 6.49b 0.444 0.04 0.02 

T0 (h) 0.27 0.00 0.27 0.156 0.44 0.53 

S (%) 27.68 28.26 27.99 0.775 0.88 0.99 

D (%) 49.26 47.88 50.25 1.983 0.72 0.53 

U (%) 23.05 23.86 21.76 1.919 0.75 0.51 

BDM (=RUDM, 

g/kg DM) 394.21 416.60 421.93 13.964 

 

0.30 

 

0.29 

EDDM (=RDDM, 

g/kg DM) 605.79 583.40 578.07 13.964 

 

0.30 

 

0.29 

BDM 

(=%RUDM) 39.42 41.66 42.19 1.397 

 

0.30 

 

0.29 

EDDM 

(=%RDDM) 60.58 58.34 57.81 1.397 0.30 

 

0.29 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in 

combination with pea screenings and lignosulfonate; SEM: standard error of mean; a-b Means with 

the different letters in the same row are significantly different (P < 0.05); Multi-treatment 

comparison using Tukey method; DM: Dry Matter; Kd: the rate of degradation of D fraction 

(%/h); T0: lag time; S: washable fraction; D: degradable fractions; U: undegradable degradable 

fractions; BDM: rumen bypass or undegraded feed dry matter; EDDM: effective degraded dry 

matter. 
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Table 5.5. In situ rumen degradation kinetics of organic matter (OM) of the total mixed ration 

with blend-pelleted products (BPP)* in lactating dairy cows. 

Items 

Dietary treatments 

SEM 
P- 

value 

Contrast P- value  

Control BPPCR BPPCN 
Control vs. 

(BPPCR + BPPCN) 

In situ rumen OM degradation     

Kd (%/h) 10.30 6.45 8.42 0.764 0.13 0.97 

T0 (h) 0.27 0.00 0.77 0.390 0.44 0.26 

S (%) 27.68 28.26 27.99 0.775 0.88 0.99 

D (%) 49.26 47.88 51.70 1.387 0.26 0.14 

U (%) 23.05 23.86 20.31 1.404 0.28 0.14 

EDOM (g/kg DM) 569.52 548.14 566.91 15.265 0.60 0.69 

BOM (g/kg DM) 371.31 387.02 370.55 16.560 0.75 0.69 

%EDOM  60.54 58.61 60.49 1.711 0.69 0.69 

  %BOM  39.46 41.39 39.51 1.711 0.69 0.69 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in 

combination with pea screenings and lignosulfonate; SEM: standard error of mean; OM: Organic 

Matter; Kd: the rate of degradation of D fraction (%/h); T0: lag time; S: washable fraction; D: 

degradable fractions; U: undegradable fractions; BOM: rumen bypass organic matter; EDOM: 

effective degradability of organic matter. 
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Table 5.6. In situ rumen degradation kinetics of starch (ST) of total mixed ration with blend- 

pelleted products (BPP)* lactating dairy cows. 

Items 

Dietary treatments  

SEM 
P- 

value 

Contrast P-value 

Control BPPCR BPPCN 
Control vs. 

(BPPCR + BPPCN) 

In situ rumen Starch degradation      

Kd (%/h) 26.27 31.09 21.88 8.057 0.74 0.53 

T0 (h) 1.09 0.86 1.14 0.795 0.96 0.89 

S (%) 10.86 4.34 8.58 2.861 0.36 0.94 

D (%) 87.82 91.59 90.22 1.994 0.47 0.88 

U (%) 0 3.96 2.81 2.026 0.53 0.81 

BST (g/kg DM) 38.71 32.43 41.36 8.443 0.83 0.69 

EDST (g/kg DM) 215.96 195.08 196.10 18.083 0.24 0.36 

%BST 15.22 14.36 17.10 3.304 0.89 0.68 

%EDST  86.61 82.33 84.38 2.107 0.51 0.98 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in 

combination with pea screenings and lignosulfonate; SEM: standard error of mean; St: Starch; 

Kd: the rate of degradation of D fraction (%/h); T0: lag time; S: washable fraction; D: degradable 

fractions; U: undegradable fractions; BST: rumen bypass or undegraded feed starch; EDST: 

effective degraded starch. 
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Table 5.7. In situ rumen degradation kinetics of crude protein (CP) of the total mixed ration with 

blend-pelleted products (BPP)* lactating dairy cows. 

Items 

Dietary treatments  

SEM 
P- 

value 

Contrast P-value 

Control BPPCR BPPCN 
Control vs. 

(BPPCR + BPPCN) 

In situ rumen CP degradation     

Kd (%/h) 5.79 8.64 5.66 1.387 0.33 0.41 

T0 (h) 0.86 2.43 3.34 1.409 0.51 0.38 

S (%) 27.13 26.70 26.51 2.856 0.99 0.91 

D (%) 60.17 57.75 62.15 2.718 0.57 0.39 

U (%) 12.99 15.42 11.17 5.904 0.90 0.74 

%BCP=%RUP 39.01 36.64 39.39 3.437 0.84 0.73 

RUP (g/kg DM, 

NRC) 
56.61 49.20 47.92 3.477 0.39 0.39 

BCP (g/kg DM, 

DVE) 
62.83 54.62 53.19 3.862 0.39 0.39 

%EDCP (=%RDP) 60.99 63.36 60.61 3.437 0.84 0.73 

EDCP (=RDP, g/kg 

DM) 
82.85 87.05 80.74 8.177 0.86 0.70 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in 

combination with pea screenings and lignosulfonate; SEM: standard error of mean; CP: crude 

protein; Kd: the rate of degradation of D fraction (%/h); T0: lag time; S: washable fraction; D: 

degradable fractions; U: undegradable degradable fractions; BCP: rumen bypassed crude protein 

in DVE/OEB system; RUP: rumen undegraded crude protein in the NRC Dairy 2001 model; 

EDCP: effectively degraded of crude protein. 
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5.4.5. Intestinal digestion of feed nutrients 

For intestinal digestion of DM (Table 5.8), BPPCN diet was tended (0.05 < P < 0.10) to be 

higher in intestinal digestibility of rumen bypassed DM (dBDM; 47.80 %BDM) compared with 

control diet and BPPCR diet (averaging 41.05 %BDM). The intestinal digestible rumen bypassed 

DM (IDBDM) when expressed as a percentage of BDM, and g/kg of BDM tended to be affected 

(0.05 < P < 0.10) by different diets. Total digestible of DM (TDDM) when expressed as a 

percentage of DM was not affected (P > 0.10) by different diets. There was no dietary effect (P 

> 0.10) on intestinal digestion of CP such as digestible intestinal protein (IDP) when expressed 

as a percentage of CP and g/kg of DM and total digestible protein (TDP) when expressed as a 

percentage of CP and g/kg of DM by different diets. Furthermore, there was no dietary effect (P 

> 0.10) on intestinal digestion of ST such as intestinal digestible starch (IDBST) when expressed 

as a percentage of BST and g/kg of DM and total digestible starch (TDST) when expressed as a 

percentage of DM and g/kg of DM by different diets. 

5.4.6. Truly absorbed metabolizable protein 

Table 5.9 shows predicted truly absorbed metabolizable protein in which there was no 

significant difference (P > 0.10) among diets in rumen- synthesized microbial protein truly 

absorbable, rumen-undegradable protein truly absorbable, and endogenous rumen protein truly 

digested in the small intestine for the different dietary treatments. There was no dietary effect (P 

> 0.10) on total metabolizable protein (MP) in the small intestine. Moreover, degraded protein 

balance (DPB) and feed milk value (FMV) were not affected (P > 0.10) by different diets.  
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Table 5.8 Intestinal digestion and availability of total mixed ration with blend-pelleted products 

(BPP)* in lactating dairy cows. 

Items 

Dietary treatments    Contrast P-value 

Control BPPCR BPPCN SEM 
P- 

value 

Control vs. 

(BPPCR + BPPCN) 

DM intestinal digestion      

dBDM (% BDM) 39.57 42.53 47.80 1.956 0.09 0.05 

IDBDM (% BDM) 15.60 17.57 20.27 1.002 0.07 0.04 

IDBDM (g/kg DM) 61.70 72.97 86.03 6.458 0.13 0.08 

TDDM (%DM) 75.93 76.26 77.94 1.130 0.21 0.12 

CP intestinal digestion     

dIDP (%) 76.33 77.03 70.27 3.264 0.53 0.32 

IDP (% CP) 29.83 28.00 27.70 2.520 0.82 0.71 

IDP (g/kg DM) 40.17 37.10 36.83 2.019 0.50 0.51 

TDP (%CP) 89.35 91.48 89.71 1.341 0.62 0.73 

TDP (g/kg DM) 123.03 124.13 117.57 5.352 0.33 0.18 

Starch intestinal digestion     

dBST (%BST) 94.03 94.13 94.13 2.856 1.00 0.99 

IDBST (%BST) 14.47 13.50 16.13 3.419 0.91 0.71 

IDBST (g/kg DM) 6.17 4.40 7.57 2.419 0.78 0.59 

TDST (%DM) 99.27 99.13 99.03 0.292 0.86 0.67 

TDST (g/kg DM) 219.96 201.12 204.23 17.619 0.19 0.41 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in 

combination with pea screenings and lignosulfonate; SEM: standard error of mean; dBDM: 

intestinal digestibility of rumen bypassed DM, calculated as:(BDM-DM residual after 48h rumen 

incubation) / BDM × 100; IDBDM: intestinal digestible rumen bypassed DM, calculated as: BDM 

× dBDM; TDDM: total digestible DM, calculated as: EDDM + IDBDM; IDP: intestinal digestible 

protein, calculated as: BCP × dIDP; dIDP: intestinal digestibility of rumen undegraded protein; 

TDP: total digestible protein, calculated as: EDCP +IDP; dBST: intestinal digestibility of rumen 

bypassed ST, calculated as:(BST-ST residual after 48h rumen incubation) / BST × 100; IDBST: 

intestinal digestible rumen bypassed ST, calculated as: BST × dBST; TDST: total digestible ST, 

calculated as: EDST + IDBST. 
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5.4.7. Correlation analysis between amide spectral features and ruminal degradation 

and intestinal digestion 

For ruminal degradability of protein subfractions, RDPA2 had a negative correlation with 

amide I height (r = -0.72, P= 0.03) and amide I area (r = 0.69, P= 0.04; table 5.10). The RDPB1 

had a positive correlation with amide I height (r = 0.68, P= 0.04) and tended to have a positive 

correlation with amide I height (r = 0.68, P= 0.04), amide I area (r = 0.64, P= 0.06), and total 

amide area (r = 0.60, P= 0.09). RDPB2 had a positive correlation with amide II height (r = 0.78, 

P= 0.01) and tended to have a positive correlation with α–helix height (r = 0.59, P= 0.09) and β–

sheet height (r = 0.60, P= 0.09). The TRDP had a positive correlation with amide I to II height 

ratio (r = 0.70, P = 0.04). RUPA2 had a negative correlation with amide I area (r = -0.69, P = 0.04) 

and tended to have a negative correlation with total amide area (r = -0.66, P = 0.05). The RUPB1 

had positive correlation with amide I height (r = 0.68, P = 0.04) and amide I to II height ratio (r = 

0.69, P= 0.04) and tended to have a positive correlation with amide I area (r = 0.65, P = 0.06) and 

total amide area (r = 0.61, P = 0.08). The RUPB2 had a positive correlation with amide II height 

(r = 0.78, P = 0.01). The TRUP had a positive correlation with amide I height (r = 0.69, P= 0.04) 

and tended to have a positive correlation with total amide area (r = 0.64, P= 0.06).  

Table 5.11 shows that there was no correlation between Kd, S, D, U, and BCP NRC when 

expressed as g/kg of DM primary structure such as Amide I, Amide II, and their ratio and 

secondary structures such as α–helix, β–sheet, and their ratio (P > 0.10). The BCP, when expressed 

as a percentage, had a positive correlation with α–helix to β–sheet ratio (r = 0.70, P = 0.04). The 

EDCP when expressed as g/kg of DM had a negative correlation with α–helix height (r = -0.78, P 

= 0.01) and β–sheet height (r = -0.76, P = 0.02). For degradation kinetics of intestinal digestibility 

and total tract digestion, dIDP and TDP when expressed as a percentage, were not correlated with  
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Table 5.9 Predicted truly absorbed metabolizable protein to dairy cows and feed milk value: 

Comparison total mixed ration with blend-pelleted products (BPP)* 

 Dietary treatments   Contrast P-value 

Items 
Control BPPCR BPPCN SEM P-value 

Control vs. 

(BPPCR + BPPCN) 

Rumen-synthesized microbial protein truly absorbable in the small intestine (g /kg DM) 

MCPRDP 82.25 84.91 83.47 4.611 0.92 0.99 

MCPTDN 94.25 95.72 95.14 0.522 0.25 0.82 

AMCP 52.64 53.76 53.42 2.659 0.96 0.95 

Rumen-undegradable feed protein truly absorbable in the small intestine (g/kg DM) 

RUP 39.01 36.64 39.39 3.437 0.84 0.73 

ARUP 5.98 5.81 6.34 1.052 0.78 0.55 

Rumen endogenous protein truly digested in small intestine (g/kg DM) 

ECP 10.93 11.01 11.07 0.048 0.24 0.15 

AECP 4.37 4.40 4.43 0.019 0.29 0.19 

Total truly absorbed (metabolizable) protein in the small intestine (g/kg DM) 

MP 62.99 63.96 64.19 2.238 0.92 0.81 

Degraded protein balance (g/kg DM) 

DPB -14.45 -13.06 -14.06 5.328 0.98 0.96 

Feed milk value (kg milk/kg feed) 

FMV 1.28 1.30 1.31 0.044 0.91 0.77 

*Blend-pelleted products based on carinata meal (BPPCR) and canola meal (BPPCN) in 

combination with pea screenings and lignosulfonate; SEM: standard error of mean; MCPRDP: 

microbial protein synthesized in the rumen based on available protein; MCPTDN: microbial protein 

synthesized in the rumen based on available energy; AMCP: truly absorbable rumen-synthesized 

microbial protein in the small intestine; RUP: rumen-undegradable protein in the small intestine; 

ARUP: truly absorbable rumen-undegradable protein in the small intestine; ECP: rumen 

endogenous protein; AECP: truly absorbed rumen endogenous protein in the small intestine; MP: 

total metabolizable protein; DPB: degraded protein balance; FMV: feed milk value, kg milk/kg 

feed. 
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Table 5.10 Correlation between ruminal degradable and undegradable subfractions of protein of total mixed ration with blend-pelleted 

products (BPP)* using Cornell Net Carbohydrate and Protein System (CNCPS) v.6.5 and protein molecular structure  

Items  
Amide I 

height 

Amide II 

height 

Amide I, 

II ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α–helix 

height 

β–sheet 

height 

α, β 

ratio 

RDPA2 

(%DM) 

r -0.72 -0.04 -0.53 -0.70 0.28 -0.68 0.25 0.18 0.32 

P-value 0.03 0.93 0.14 0.04 0.47 0.05 0.52 0.64 0.40 

RDPB1 

(%DM) 

r 0.68 -0.27 0.69 0.64 -0.43 0.60 -0.45 -0.41 -0.16 

P-value 0.04 0.47 0.04 0.06 0.25 0.09 0.22 0.28 0.68 

RDPB2 

(%DM) 

r 0.10 0.78 -0.42 0.12 0.29 0.15 0.59 0.60 -0.12 

P-value 0.80 0.01 0.26 0.76 0.44 0.70 0.09 0.09 0.76 

TRDP 

(%DM) 

r 0.56 -0.44 0.70 0.52 -0.48 0.47 -0.53 -0.51 0.01 

P-value 0.11 0.24 0.04 0.16 0.19 0.20 0.15 0.16 0.98 

RUPA2 

(%DM) 

r -0.71 0.02 -0.55 -0.69 0.34 -0.66 0.26 0.20 0.29 

P-value 0.03 0.96 0.12 0.04 0.37 0.05 0.50 0.60 0.45 

RUPB1 

(%DM) 

r 0.68 -0.27 0.69 0.65 -0.42 0.61 -0.45 -0.40 -0.16 

P-value 0.04 0.49 0.04 0.06 0.26 0.08 0.22 0.28 0.67 

RUPB2 

(%DM) 

r 0.12 0.78 -0.39 0.15 0.25 0.18 0.55 0.56 -0.13 

P-value 0.76 0.01 0.30 0.70 0.51 0.65 0.12 0.12 0.74 

TRUP 

(%DM) 

r 0.69 0.19 0.43 0.65 -0.08 0.64 -0.33 -0.30 -0.31 

P-value 0.04 0.62 0.25 0.06 0.84 0.06 0.38 0.44 0.42 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and lignosulfonate; RDPA2: ruminally 

degraded PA2; RDPB1: ruminally degraded PB1; RDPB2: ruminally degraded PB2; TRDP: total ruminally degraded CP.  

RUPA2: ruminally undegraded PA2; RUPB1: ruminally undegraded PB1; RUPB2: ruminally undegraded PB2; TRUP: total ruminally undegraded 

CP 
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primary structures and secondary structures (P > 0.10; Table 5.12). The IDP, when expressed as 

g/kg of CP, tended to have a positive correlation with α–helix to β–sheet ratio (r = 0.65, P = 0.06). 

Also, IDP when expressed as a percentage had a positive correlation with α–helix to β–sheet ratio 

(r = 0.73, P = 0.03). The TDP when expressed as g/kg of CP had a negative correlation with α–

helix height (r = -0.84, P < 0.01) and β–sheet height (r = -0.84, P < 0.01).   

5.4.8. Multiple regression analysis for predicting the ruminal degradation and 

intestinal digestion using amide spectral profile 

Multiple regressions analysis was used to predict the protein profiles and protein 

subfractions using the Amide spectral features of dietary treatments. The regression analysis for 

ruminal degradable protein showed that RDPA2 could be predicted from amide I height, taking 

52% of the total variance (Table 5.13). The RDPB1 could be predicted from amide I to II height 

ratio, with 47% of the total difference. TRDP could be predicted from amide I to II height ratio, 

with 49% of the total difference. For ruminal degradable protein, RUPA2 could be predicted   from 

amide I height, with 50% of the total variance. RUPB1 could be predicted from amide I to Amide 

II height ratio, with 47% of the total variance. TRUP could be predicted from amide I height, with 

48% of the total variance. For degradation kinetics of CP, BCP, when expressed as a percentage, 

could be predicted from α–helix to β–sheet ratio, with 49% of the total variance (Table 5.14). The 

EDCP, when expressed as a percentage, could be predicted from α–helix to β–sheet ratio, with 

49% of the total variance. The EDCP, when expressed as g/kg of DM, could be predicted from 

Amide II height and α–helix to β–sheet ratio with 81% of the total variance. For intestinal 

digestibility, IDP, when expressed as a percentage, could be predicted from α–helix to β–sheet 

ratio, with 53% of the total variance. The TDP, when expressed as g/kg of DM, could be predicted 

from α–helix height, with 71% of the total variance.  
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Table 5.11 Correlation between degradation kinetics of crude protein of total mixed ration with blend-pelleted products (BPP)* with 

protein molecular structure.  

Items 
Amide I 

height 

Amide II 

height 

Amide I, 

II ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α–helix 

height 

β–sheet 

height 

α–helix, 

β–sheet 

ratio 

Kd (%/h) 
r 0.04 0.24 -0.15 -0.20 0.41 -0.16 -0.04 -0.02 -0.15 

P–value 0.93 0.54 0.69 0.60 0.28 0.68 0.91 0.96 0.70 

S (%) 
r 0.36 0.07 0.23 0.25 0.49 0.30 0.03 0.04 -0.57 

P–value 0.35 0.87 0.55 0.52 0.18 0.43 0.94 0.92 0.11 

D (%) 
r 0.12 -0.59 0.53 0.27 -0.40 0.23 -0.48 -0.49 -0.10 

P–value 0.77 0.10 0.14 0.49 0.29 0.56 0.19 0.18 0.79 

U (%) 
r -0.30 0.43 -0.55 -0.36 0.03 -0.36 0.37 0.36 0.42 

P–value 0.43 0.25 0.12 0.34 0.94 0.34 0.33 0.33 0.26 

BCP (%) 
 

r -0.41 0.19 -0.45 -0.24 -0.47 -0.29 0.46 0.42 0.70 

P–value 0.27 0.63 0.22 0.53 0.21 0.44 0.21 0.26 0.04 

BCP NRC 

(g/kg DM) 

r -0.27 -0.16 -0.07 -0.12 -0.59 -0.18 -0.33 -0.38 0.52 

P–value 0.48 0.68 0.85 0.76 0.10 0.64 0.38 0.32 0.15 

EDCP 

(=RDP, 

g/kg DM) 

r 0.30 -0.35 0.51 0.20 0.17 0.22 -0.78 -0.76 -0.54 

P–value 
0.43 0.35 0.16 0.60 0.66 0.56 0.01 0.02 0.14 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and lignosulfonate; Kd: the rate of degradation of 

D fraction (%/h); U: undegradable degradable fraction; D: potentially degradable fraction; T0: lag time (all zero); S: soluble fraction in the in situ 

incubation; BCP: rumen undegraded crude protein in the NRC Dairy 2001 model; EDCP, effectively degraded of crude protein.
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Table 5.12 Correlation between degradation kinetics of intestinal digestibility and total tract digestion of total mixed ration with 

blend-pelleted products (BPP)* with protein molecular structure. 

Items 
Amide I 

height 

Amide II 

height 

Amide I, 

II ratio 

Amide I 

area 

Amide II 

area 

Amide 

area 

α–helix 

height 

β–sheet 

height 

α, β ratio 

%dIDP 
r -0.23 -0.27 -0.10 -0.33 0.28 -0.31 0.18 0.17 -0.02 

P–value 0.54 0.48 0.80 0.38 0.47 0.42 0.65 0.67 0.96 

%IDP (g/kg 

CP) 

r -0.51 -0.34 -0.18 -0.37 -0.55 -0.43 -0.28 -0.34 0.65 

P–value 0.16 0.38 0.63 0.32 0.13 0.24 0.47 0.37 0.06 

IDP (%) 
r -0.55 0.07 -0.53 -0.42 -0.33 -0.46 0.59 0.54 0.73 

P–value 0.13 0.85 0.14 0.26 0.38 0.21 0.10 0.13 0.03 

TDP (g/kg 

CP) 

r 0.18 -0.43 0.46 0.12 0.05 0.12 -0.84 -0.84 -0.39 

P–value 0.64 0.25 0.21 0.76 0.91 0.75 0.00 0.00 0.31 

TDP (%) 
r 0.02 -0.27 0.12 -0.14 0.45 -0.09 -0.04 -0.03 -0.33 

P–value 0.96 0.48 0.76 0.73 0.22 0.81 0.91 0.93 0.38 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and lignosulfonate; dIDP: intestinal 

digestibility of rumen bypass protein on percentage basis; IDP: intestinal digested crude protein; TDP: total digested crude protein. 
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Table 5.13 Multiple regression analysis to choose the most important protein spectral parameters to predict protein subfractions, 

ruminal degradable and undegradable subfractions of protein 

Predicted variable 

(Y) 

Variable selection 

(variables left in the 

model with P < 0.05) 

Equation prediction: 

Y= a + b1 × x1 + b2 × x2 +……. 

Model 

R2 
RSD 

P-

value 

Ruminal degradable protein fractions    

RDPA2(%DM) Amide I height Y = 6.44 – 11.25 × Amide I height 0.52 0.414 0.03 

RDPB1(%DM) Amide I, II ratio Y = 3.82 + 0.74 × Amide I, II ratio 0.47 0.717 0.04 

TRDP(%DM) Amide I, II ratio Y = 9.73 + 0.39 × Amide I, II ratio 0.49 0.376 0.04 

Ruminal undegradable protein fractions 

RUPA2(%DM) Amide I height Y = 0.87 - 1.54× Amide I height 0.50 0.057 0.03 

RUPB1(%DM) Amide I, II ratio Y = 1.53 + 0.30 × Amide I, II ratio 0.47 0.285 0.04 

TRUP(%DM) Amide I height Y = 3.12 + 9.03× Amide I height 0.48 0.333 0.04 

RSD: residual standard deviation; PA2: rapidly degradable true protein; PB1: moderately degradable true protein; RDPA2: ruminally degraded 

PA2; RDPB1: ruminally degraded PB1; RUPA2: ruminally escaped PA2; RUPB1: ruminally escaped PB1; TRUP: total ruminally undegraded CP.
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5.1. Discussion  

Canola meal is widely used as a protein source for lactating dairy cows rations in North 

America. In recent years, carinata meal, a new protein feed has been introduced in feedlot diets 

and dairy heifers (Guidotti 2018; Rodriguez-Hernandez et al. 2108). However, there is no study 

on the effect of feeding this new feed in lactating cows in terms of ruminal digestion, ruminal 

fermentation characteristics. 

Carinata and canola meal have been shown to have high ruminal digestion of protein 

(Wright et al., 2010; Xin et al., 2013; Ban et al., 2018); thus it is essential to slow down their 

ruminal digestion in the rumen by applying heat treatment (pelleting or extrusion) or using 

feeding additives (i.e., lignosulfonate and tannins). A previous study by Guevara-Oquendo et al. 

(2018) reported that blend-pelleted products based on carinata meal would exhibit higher 

nutritive value relative to blend-pelleted products based on canola meal.  

Thus, in the current study, one pellet based on carinata meal (lignosulfonate 4.8% + 

carinata meal 71.4% + pea screenings 23.8%) was selected to study its effect on ruminal 

digestion using in situ technique relative to pelleted products based on canola meal 

(lignosulfonate 4.8% + canola meal 71.4% + pea screenings 23.8%). It was found that heat 

treatment and the addition of lignosulfonate can reduce the proportion of ruminal degradable 

protein, thereby increase the available essential amino acids to the mammary gland for milk 

synthesis (Wright, 1998; Wright et al., 2005). 

The CNCPS model was updated to predict the ruminal digestion of CHO and protein. The 

updated system uses different degradation rates and passage rates. The PA1 and PA2 have higher 

passage and degradation rates, while the PB2 has a slow degradation rate and passage rate similar 

to CB3 in carbohydrates fractions (Higgs et al., 2015). The RUP tended to be higher in BPPCN  
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Table 5.14 Multiple regression analysis to choose the most important protein spectral parameters to degradation kinetics of intestinal 

digestibility and total tract digestion 

Predicted variable 

(Y) 

Variable selection 

(variables left in the 

model with P < 0.05) 

Equation prediction: 

Y= a + b1 × x1 + b2 × x2 +……. 

Model 

R2 
RSD P-value 

Degradation kinetics of CP 

BCP (%) α, β– ratio Y = –36.70 + 77.54 × α, β– ratio  0.49 10.039 0.04 

%EDCP α, β– ratio Y = 136.70 – 77.54 × α, β– ratio 0.49 10.039 0.04 

EDCP (=RDP, 

g/kg DM) 

Amide II area, α–helix 

height 

Y = 36.16 +44.13 Amide II area – 278.59 × 

α–helix height  
0.81 28.571 <0.01 

 

Intestinal digestibility and total tract digestion of CP 

IDP, % α, β– ratio Y = -29.84 + 60.29 × α, β– ratio 0.53 7.804 0.03 

TDP, g/kg DM α–helix height Y = 146.92 – 250.64 × α–helix height 0.71 37.754 <0.01 

RSD: residual standard deviation; BCP: rumen bypassed crude protein in DVE/OEB system; EDCP: effectively degraded of crude 

protein; IDP: intestinal digested crude protein; TDP: total digested crude protein; DM: dry matter
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than the other diets, while the TRDC tended to be lower in the BPPCN compared with different 

diets. The lower TRDC would be due to the higher lignin content in BPPCN reported in the 

previous chapter. The higher TRDC would, in turn, enhance the ruminal bacteria growth and 

increase the MCP in dairy cows.  

There was no effect of different diets on in situ ruminal digestion of DM, CP, starch, and 

NDF. Adding lignosulfonate to BPPCN or BPPCR did not increase the bypass protein as expected. 

These findings are not in agreement with an earlier study by Wright et al. (2005) who reported 

improvement in N bioavailability in dairy cows and milk production. The higher N utilization is 

due to improving the bypass protein and reduction in urinary N excretion in dairy cows. Adding 

lignosulfonate to BPPCR and BPPCN diet did not influence the apparent digestibility of nutrients. 

These findings are in not in line with Wright et al. (2005) or Neves et al. (2009), who found the 

RDP and total tract digestibility decreased after adding lignosulfonate to canola meal. The TMR 

based on BPPCR exhibited similar BCP to other diets (averaging 38 %CP). In contrast, Guevara-

Oquendo (2018) reported a lower BCP in BPPCR relative to BPPCN (50 vs. 63%CP). Carinata 

meal was also reported to contain lower BCP than canola meal in previous studies (25 vs. 40% 

CP; Xin and Yu, 2014; Ban et al., 2018). Using the omasal sampling technique to evaluate the 

ruminal digestion and omasal nutrient in beef cows, Guidotti (2018) reported similar ruminal DM, 

OM, NDF, and CP for feedlot fed diets based on canola meal or carinata meal. The same author 

also reported similar RDP (averaging 65% of N intake). To my knowledge, there is no study on 

ruminal digestion and intestinal digestion in lactating cows fed TMR based on carinata meal versus 

canola meal. The results in this study indicate that BPPCR has the same digestion behavior as 

BPPCN in dairy cows.  
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Using the in vitro technique to evaluate the intestinal digestion of dietary treatments, the 

result in the current study showed that predicted intestinal digestion of protein was the same for 

all diets. The total ruminal and intestinal digestion of DM, CP, and starch were similar for all diets. 

These results are in agreement with the total tract digestibility results for the same dietary treatment 

in lactating ration showed in the previous Chapter. The MP content of a feed is the total protein 

content that contributes to milk production. The total MP in the NRC model is the summation of 

AECP, ARUP, and AMCP (NRC, 2001). The results of the current study showed that the MP 

content was the same for all dietary treatments (averaging 74 g/kg DM). These results are not in 

line with Guevara-Oquendo (2018), who reported high MP values for BPPCR relative to BPPCN 

(231 vs. 163 g/kg DM). The findings in the current study would explain the non-significant results 

found in production performance in the previous Chapter.  

The cows fed BPPCN exhibited lower ruminal pH and longer duration of rumen pH < 5.8. 

These findings are in line with Krizsan et al. (2017) who found a linear reduction in rumen pH 

after increasing the level of canola meal in the diet. The drop in ruminal pH and longer duration 

time of pH under 5.8 in BPPCN would be due to the relatively low ruminal ammonia concentration 

and higher lignin content in this diet which might increase the passage rate. The ruminal VFA was 

altered by feeding the BPPCN, where the total VFA and propionic acid were significantly lower 

in BPPCN than the control diet. The lower ruminal fermentation may be due to the lower TRDC 

in BPPCN or due to the lower ruminal pH which decreases the ruminal activity of cellulolytic 

bacteria and amylolytic bacteria and increase the activity of Lactobacilli bacteria (Wells et al., 

1997). A significant increase in the population of ruminal lactobacilli is a common attribute to 

both acute and subacute ruminal acidosis (Goad et al., 1998). The results in the current study are 

file:///C:/Users/brefat/Desktop/Aya%20thesis/Effect%20of%20dietary%20supplementation%20with%20heat-treated%20canola%20meal
file:///C:/Users/brefat/Desktop/Aya%20thesis/Wells,%20J.%20E.,%20Krause,%20D.%20O.,%20Callaway,%20T.%20R.,%20&%20Russell,%20J.%20B.%20(1997).%20A%20bacteriocin-mediated%20antagonism%20by%20ruminal%20lactobacilli%20against%20streptococcus%20bovis.%20FEMS%20Microbiology%20Ecology,%2022(3),%20237-243
file:///C:/Users/brefat/Desktop/Aya%20thesis/Goad,%20D.%20W.,%20Goad,%20C.%20L.,%20&%20Nagaraja,%20T.%20G.%20(1998).%20Ruminal%20microbial%20and%20fermentative%20changes%20associated%20with%20experimentally%20induced%20subacute%20acidosis%20in%20steers.%20Journal%20of%20Animal%20Science,%2076(1),%20234-241
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not in line with the previous research by Guidotti (2018) who did not find any difference in ruminal 

fermentation profile between beef cows fed a diet based on carinata meal and canola meal.  

The study on the association between molecular structures of different blend-pelleted products 

based on carinata meal and canola meal and the metabolic characteristic of protein in dairy cows 

showed that there was a significant correlation between the Amide I height and Amide I area and 

TRUP. It has been observed that the changes in the ratio of α-helix to β-sheet ratio could induce 

alterations in molecular protein makeup (Yu, 2005). The high proportion of β-sheet structure could 

limit the access of gastrointestinal digestive enzymes, which results in a low protein value (Yu, 

2005). In this current study, there was a significant correlation between intestinal digested crude 

protein and α-helix and β-sheet ratio.  

5.2. Conclusions  

  The blend-pelleted products based on carinata meal as a new co-product from bio-fuel 

processing industry is equal to the other pelleted products based on canola meal as a protein source 

for dairy cattle. Carinata meal as the pellet is similar to the pelleted products based on canola meal 

in the affecting nutrients utilization, rumen fermentation, and rumen degradability in lactating 

dairy cows. The molecular spectroscopy can detect inherent structural characteristics in the blend-

pelleted products based on different bio-energy co-products. The molecular structural features 

related to the protein region are highly associated with the protein utilization in dairy cows. It is 

safe to use carinata meal as an alternative source of protein for dairy cows because it contains a 

high proportion of protein and without any negative impacts in the production perforce for high 

producing dairy cows.  
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6. GENERAL DISCUSSION, OVERALL CONCLUSIONS, AND IMPLICATIONS 

A new co-product from bio-fuel processing, carinata meal, has been reported to have a high 

nutritional value. However, the metabolic characteristics, lactation performance of newly 

developed carinata meal, a co-product from bio-oil processing, as a feed ingredient has not been 

investigated in high producing dairy cows. Furthermore, there is no report on the association 

between the molecular structure features of the amide region and lactation performance and 

nitrogen balance of high producing dairy cows. This thesis research was conducted to study the 

effect of feeding different blend-pelleted products based on traditional bio-oil co-product (canola 

meal) and the new co-product from bio-fuel processing (carinata meal) in molecular structural 

features related to amide region, lactation performance, metabolic characteristics, and nitrogen 

balance in dairy cows in comparison with a typical protein blend-pelleted products (blend of canola 

and soybean meal).   

Trial 1 (Chapter 3 ) was designed to determine the molecular structure features related to 

amide region and to quantify the relationship between structural features and protein 

bioavailability of blend-pelleted products based on canola meal and the new bio-fuel co-product 

(carinata meal) with different proportions of pea screenings and lignosulfonate compound in dairy 

cows. In recent years, the FTIR spectroscopy has been established to quantitatively estimate the 

molecular make-up of feed protein (Yu, 2007a). Using FTIR can reveal information about the 

molecular structure of feed, i.e., the amide I and II bands (Damiran and Yu, 2011; Peng et al., 

2014).  The amide I to II ratio of BPPs was highest in the co-products based on carinata meal and 

due to the low inclusion level of pea screenings. The high ratio of amide I to II is influenced by 

improving the metabolizable protein supply in dairy cows (Doiron et al., 2009; Liu et al., 2012; 

Yu, 2006). The secondary structure of amid region was not influenced by co-product or pea 
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screening levels in BPPS. The lack of significant effect of co-products and pea screening is 

attributed to the similarity in processing methods. The principal component analysis (PCA) was 

conducted to reduce the number of variables and to detect the relationship among different 

treatments. The results showed that most of the BPPs based on canola meal were separated from 

the BPPs based on carinata meal by PC2 which accounted for 5% of the variance. The loading 

point plots were used to determine the essential regions responsible for the clustering. The amide 

region at ca. 1650 cm−1 of PC2 was the most important parameter for discriminating the BPPs.  

The trial 2 (Chapter 4 )was conducted to examine the effects of feeding the newly 

developed blend-pelleted products based on carinata meal (BPPCR) or canola meal (BPPCN) on 

the production efficiency of high producing dairy cows; and to study the association between the 

molecular structure features related to amide region and nitrogen utilization and the production 

efficiency in high producing dairy cows. The results in this study showed that all the dietary 

treatments were similar in milk yield, milk components yield, and feed efficiency in dairy cows. 

All diets in the present study were formulated to have the same protein content for understanding 

the protein utilization in dairy cows. Our results are in line with Guidotti (2018), who found that 

feeding carinata meal did increase the growth performance of growing beef cows in comparison 

with canola meal. Another study by Rodriguez-Hernandez and Anderson (2018) also reported no 

significant effect of feeding carinata meal on the growth performance of growing dairy heifers. 

There was no beneficial effect of adding lignosulfonate to carinata meal or canola meal in 

improving the production performance of dairy cows relative to the control diet. Adding 

lignosulfonate to BPPCR and BPPCN diet did not influence the apparent digestibility of nutrients. 

These findings are in not in line with a previous study by Wright et al. (2005), who found that 

treating canola meal with lignosulfonate decreased the digestibility of protein. The lack effect of 
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adding lignosulfonate to canola meal or carinata meal is attributed to the lack effect of this feed 

additive on the ruminal degradable protein. 

Gross milk revenue was the same for all dietary treatments (averaging $30.8 per cow/day). 

The income-over-feed cost was increased by about $1.07 per cow/day in the blend-pelleted 

products based on carinata meal relative to the blend-pelleted product based on canola meal. The 

molecular structure features related to the amide region was used to study the association between 

the amide region and nitrogen balance in high producing dairy cows. The results showed that the 

urinary N excretion, fecal N excretion, and total N excretion were significantly correlated with the 

amide region. The milk nitrogen content found to be significantly associated with the Amide I 

height and the secondary structure of Amide I region. 

Trial 3 (Chapter 5) was carried out to evaluate the effect of feeding the newly developed 

blend-pelleted products based on carinata meal or canola meal in combination with peas screenings 

and lignosulfonate on ruminal fermentation characteristics, ruminal degradability, and intestinal 

digestion in high producing dairy cows. The blend-pelleted products based on canola meal 

exhibited low ruminal pH and total VFA relative to control diet. There was no significant effect of 

adding dietary treatments on ruminal and intestinal digestion of DM, CP, and NDF in dairy cows. 

Using the omasal sampling technique to evaluate the ruminal digestion and omasal nutrient in beef 

cows, Guidotti (2018) reported similar ruminal DM, OM, NDF, and CP for feedlot fed diets based 

on canola meal or carinata meal. The same author also reported similar RDP (averaging 65% of N 

intake). To my knowledge, there is no study on ruminal digestion and intestinal digestion in 

lactating cows fed TMR based on carinata meal versus canola meal. The results from this study 

indicate that BPPCR has the same digestion behavior as BPPCN in dairy cows.  
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In conclusion, the blend-pelleted products based on carinata meal as a new co-product from 

bio-fuel processing industry is equal to the similar pelleted products based on canola meal as a 

protein source for dairy cattle without limiting the performance of high producing dairy cows. 

Adding lignosulfonate to the blend-pelleted products did not improve the N utilization in dairy 

cows. The molecular spectroscopy approach can identify structural characteristics in dietary 

treatments based on different bio-energy co-products. The molecular structural features related to 

the amide region are highly associated with the N utilization in dairy cows. Further research is 

warranted to determine the influence of other processing methods to carinata meal on degradability 

and to compare the production performance of dairy cows fed carinata meal to those fed other 

traditional protein sources such as distillers and soybean meal in high producing dairy cow. 
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APPENDIX 

Table A.1. Summary statistics values for the chemical profile, protein sub fractions and 

predicted energy profiles for the blend-pelleted products* data from (Guevara-Oquendo, 2017) 

 Items  Mean (n = 16) STD Minimum Maximum 

Basic chemical profile      

CP (g/kg DM) 392.2 38.0 336.3 457.9 

NDICP (g/kg CP) 99.2 37.4 55.5 150.8 

ADICP (g/kg CP) 23.2 9.2 10.6 36.8 

SCP (g/kg CP) 307.8 66.4 185.1 427.0 

NPN (g/kg CP) 32.75 4.15 24.66 41.41 

Predicted energy values by NRC 

tdCP (g/kg DM) 388.6 38.2 332.1 455.2 

TDN1x (g/kg DM) 753.7 28.2 709.7 793.2 

MEp3x (g/kg DM) 2.98 0.12 2.80 3.15 

NELp3x (g/kg DM) 1.91 0.09 1.78 2.03 

Protein subfractions (CNCPS v. 6.5)    

PA2 (g/kg CP) 347.7 74.7 208.4 479.7 

PB1 (g/kg CP) 553.1 53.1 464.8 655.4 

PB2 (g/kg CP) 76.0 45.8 28.0 135.2 

PC (g/kg CP) 23.2 9.2 10.6 36.8 

Ruminal degradation kinetics of CP   

Kd (%/h) 9.17 2.38 5.39 17.89 

S (%) 17.53 2.84 9.79 23.12 

D (%) 70.82 4.06 62.04 77.43 

U (%) 11.65 5.10 4.36 21.93 

BCP (%) 40.33 6.08 32.01 52.35 

EDCP (%) 59.67 6.08 47.65 67.99 

Intestinal digestion of CP    

dIDP (%) 73.56 5.44 63.07 83.37 

IDP (%) 29.92 6.34 21.20 40.65 
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Table A.1. Cont’d. Summary statistics values for the chemical profile, protein sub fractions and 

predicted energy profiles for the blend-pelleted products* data from (Guevara-Oquendo, 2017) 

 Items  Mean (n = 16) STD Minimum Maximum 

Predicted values of potential nutrient supply to dairy cattle (g/kg DM)  

MCPRDP 197.91 19.45 6333.0 171.2 

MCPTDN 89.95 3.30 2878.0 84.7 

AMCP 57.57 2.11 1842.0 54.2 

RUP 159.33 35.12 5099.0 111.6 

ARUP 118.42 32.52 3789.0 79.5 

MP 180.19 33.78 5766.0 140.3 

DPB 126.70 25.49 4054.0 91.0 

Feed Milk Values (kg milk/kg DM)     

FMV 3.39 0.78 108.3 2.1 

*Eight blend-pelleted based on carinata meal and canola meal in combination with different level of 

lignosulfanate and pea screenings ; STD : standard deviation ; CP : crude protein; NDICP: neutral detergent 

insoluble crude protein; ADICP: acid detergent insoluble crude protein; SCP: soluble crude protein; NPN: non–

protein nitrogen ; tdCP: truly digestible crude protein; TDN1×: total digestible nutrient at one time maintenance; 

ME3×: metabolizable energy at production level of intake (3×); NEL3×: net energy for lactation at production 

level of intake (3×); PA2: soluble true protein; PB1: insoluble true protein; PB2: fiber–bound protein; PC: 

indigestible protein; Kd: degradation rate; S: soluble fraction in the in-situ incubation; D: potentially degradable 

fraction; U: undegradable fraction; BCP: bypass crude protein; EDCP: effectively degraded of crude protein; 

dIDP: intestinal digestibility of rumen bypass protein on percentage basis; IDP: intestinal digested crude 

protein; TDP: total digestion of crude protein; MCPRDP: microbial protein synthesized in the rumen based on 

available protein calculated as 0.85 of rumen degraded protein; MCPTDN: microbial protein synthesized in the 

rumen based on available energy (discounted TDN); AMCP: truly absorbed rumen–synthesized microbial 

protein in the small intestine. RUP: ruminally undegraded feed CP, calculated according the formula in NRC–

2001 dairy model; ARUP: truly absorbed rumen undegraded feed protein in the small intestine; MP: 

metabolizable protein (true protein that is digested postruminally and the component amino acid absorbed by 

the intestine); DPB: reflects the difference between the potential microbial protein synthesis based on ruminally 

degraded feed CP and that based on energy–TDN available for microbial fermentation in the rumen; FMV: feed 

milk value (based on metabolic characteristics of protein predicted by NRC  2001
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Table A.2. Summary of the chemical and nutrient composition for the blend-pelleted products* 

(Guevara-Oquendo, 2017)  

Items BPP1 BPP2 BPP3 BPP4 BPP5 BPP6 BPP7 BPP8 

Basic chemical 

DM (%) 87.9 88.3 88.9 88.9 88.0 88.2 88.9 89.1 

Ash (%DM) 5.9 6.5 7.2 7.7 5.6 6.1 6.9 7.3 

EE (%DM) 1.6 1.4 1.5 1.2 2.8 2.0 3.1 2.4 

FA (%DM) 0.6 0.4 0.5 0.2 1.8 1.1 2.1 1.4 

OM (%DM) 94.1 93.6 92.8 92.3 94.4 93.9 93.1 92.7 

Protein profile 

CP (%DM) 38.8 36.4 45.0 43.1 35.9 33.7 41.9 39.0 

NDICP (%CP) 13.0 13.1 14.4 13.4 6.0 6.0 6.7 6.8 

ADICP (%CP) 1.4 1.6 1.5 1.4 2.7 3.0 3.3 3.6 

SCP (%CP) 27.3 28.0 25.4 23.7 38.7 34.7 37.1 31.4 

NPN (%CP) 34.0 35.2 29.7 29.8 36.6 37.9 29.0 29.8 

Carbohydrate profile 

CHO (%DM) 53.7 55.7 46.3 48.0 55.7 58.2 48.1 51.3 

ST (%DM) 25.4 25.3 14.6 13.3 26.8 25.8 14.5 14.8 

Sugar (%DM) 6.5 6.5 7.2 7.7 6.3 6.7 7.2 7.8 

NDF (%DM) 19.3 18.4 21.0 19.5 20.3 19.7 22.6 21.5 

ADF (%DM) 9.3 9.2 9.4 8.9 12.6 12.6 15.2 14.9 

ADL (%DM) 1.4 1.6 1.9 1.8 4.9 4.7 6.7 6.6 

*Blend-pelleted products based on carinata meal and canola meal in combination with pea screenings and 

lignosulfonate; BPP1: lignosulfonate 0 % DM + carinata meal 50 % DM + pea screenings 50.0 % DM.; 

BPP2: lignosulfonate 4.8 % DM + carinata meal 47.6 % DM + pea screenings 47.6 % DM; BPP3: 

lignosulfonate 0 % DM + carinata meal 75 % DM + pea screenings 25 % DM; BPP4: lignosulfonate 4.8 

% DM + carinata meal 71.4 % DM + pea screenings 23.8 % DM; BPP5: lignosulfonate 0 % DM + canola 

meal 50 % DM + pea screenings 50.0 % DM; BPP6: lignosulfonate 4.8 % DM + canola meal 47.6 % DM 

+ pea screenings 47.6 % DM; BPP7: lignosulfonate 0 % DM + canola meal 75 % DM + pea screenings 

25 % DM; BPP8: lignosulfonate 4.8 % DM + canola meal 71.4 % DM + pea screenings 23.8 % DM; DM: 

dry matter; EE: ether extract; FA: fatty acid; OM: organic matter; CP : crude protein; NDICP: neutral 

detergent insoluble crude protein; ADICP: acid detergent insoluble crude protein; SCP: soluble crude 

protein; NPN: non–protein nitrogen; CHO: carbohydrate; ST: starch; NDF: neutral detergent fiber; ADF: 

acid detergent fiber; ADL: lignin.   
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Table A.3. Summary for the chemical profile of the feed ingredients of blend pelleted products 

that used in this project* (Guevara-Oquendo, 2017)  

Items Pea screenings  Carinata meal Canola meal  

DM (%) 85.7 90.1 89.9 

Ash (%DM) 3.1 8.5 8.1 

EE (%DM) 1.6 1.3 3.1 

FA (%DM) 0.6 0.3 2.1 

OM (%DM) 96.9 91.5 91.9 

CP (%DM) 22.5 52.3 49.8 

NDICP (%CP) 4.0 16.9 6.5 

ADICP (%CP) 0.7 1.5 3.3 

SCP (%CP) 56.4 26.4 38.0 

NPN (%CP) 29.2 24.2 28.1 

CHO (%DM) 72.8 37.9 39.0 

ST (%DM) 48.0 1.9 2.0 

Sugar (%DM) 3.4 7.4 7.5 

NDF (%DM) 19.0 23.2 24.7 

ADF (%DM) 7.7 9.3 17.3 

ADL (%DM) 1.0 2.2 8.7 

DM: dry matter; EE: ether extract; FA: fatty acid; OM: organic matter; CP : crude protein; NDICP: 

neutral detergent insoluble crude protein; ADICP: acid detergent insoluble crude protein; SCP: soluble 

crude protein; NPN: non–protein nitrogen; CHO: carbohydrate; ST: starch; NDF: neutral detergent fiber; 

ADF: acid detergent fiber; ADL: lignin.   
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Table A.4. The cost of feed ingredients that used in this project  

Ingredient Unit cost ($) 

Barley silage 45.00 

Alfalfa hay 160.00 

Steam-flaked barley 230.00 

Bypass palmitic acid 1675.00 

Soybean meal 548.00 

Peas 265.00 

Dynk 980.00 

Sodium bicarbonate 625.00 

Tallow 800.00 

Limestone ground 185.00 

Mineral premix 2094.75 

Ameribond  977.00 

Canola meal 380.00 

Carinata meal 380.00 

Peas screenings 200.00 

Dynmate 1100.00 

Calcium propiontate 1100.00 

 


