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ABSTRACT 

 

Chlorpyrifos (CPF) is an organophosphate pesticide used extensively in Canada and 

around the world. Due to its highly conserved mechanism of action involving inhibition of 

acetylcholinesterase (AChE), CPF has the ability to exert toxicity on non-target species in 

aquatic systems. In fish species, exposure to CPF has been associated with a range of adverse 

effects across physiological endpoints including abnormal development, inhibition of AChE, 

immunomodulation, and molecular level effects such as altered expression of specific genes and 

global transcriptomes. However, the literature on amphibians exposed to CPF is not as extensive 

despite the known global declines of amphibian species and the hypothesized links between 

these declines and anthropogenic pesticide contamination of aquatic systems worldwide. The 

overall objective of this thesis was to gain a better understanding of the sub-lethal effects of CPF 

exposure on the model amphibian, Xenopus laevis, across levels of biological organization from 

molecular to whole animal.  

The first study (Chapter 2) examined the molecular toxicity pathways and mechanisms of 

toxicity after short-term exposure of early life-stage (ELS) X. laevis to CPF using whole body 

transcriptome analyses. The ELS transcriptomic responses were then compared to apical 

outcomes of chronic exposure to CPF to determine if identified dysregulated pathways could 

provide early indicators of these adverse outcomes. Post-hatch individuals were exposed to 

nominal CPF concentrations of 0.4, 2, or 10 μg L-1. A subset of individuals were sampled at 96 

hours (h) for whole-body transcriptomic analysis and remaining individuals were transferred to 

tanks for long-term exposure through to metamorphic climax (~ 75 days). Pathway analysis 

revealed dysregulated pathways that were related to outcomes known to be associated with 

exposure to CPF such as altered serine hydrolase activity, impacted metabolic processes, and 

immune-related outcomes. Other dysregulated pathways with less precedence in the literature 

included vasculature development and sensory perception of light stimulus. Apical outcomes of 

chronic CPF exposure included inhibition of AChE activity, increased relative liver weight, and 

a decrease in percentage of individuals that reached metamorphic climax. Dysregulation of 

serine hydrolase associated pathways after ELS CPF exposure is in agreeance with the decrease 

in AChE (a serine hydrolase enzyme) activity observed in the brains of individuals at 

metamorphic climax. Additionally, an increase in relative liver weight after chronic CPF 
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exposure could be related to dysregulation of ELS pathways associated with metabolic processes 

and immune function. In fact, several pathways related to immune function were depleted. 

In Chapter 3, we more closely examined the potential immunotoxicity of sub-lethal CPF 

exposure. Post-metamorphic individuals were exposed 1 or 10 μg L-1 CPF (nominal) for 7 days 

(d), then administered a phosphate buffered sodium (PBS) control injection or a 

lipopolysaccharide (LPS) injection to stimulate an inflammatory response. At 24 h post-

injection, morphometric indices were recorded and tissues were sampled for differential 

leukocyte counts (flow cytometry), liver pro-inflammatory cytokine expression (qPCR), and 

kidney histopathology. At 1 µg L−1 CPF, there was a decrease in circulating lymphocytes, an 

increase in circulating granulocytes, and an increase in the granulocyte:lymphocyte (GL) ratio 

regardless of immune state. Liver expression of pro-inflammatory cytokines TNF-α and CSF-1 

was increased in individuals exposed to 10 µg L−1 CPF, independent of immune state. Exposure 

to 10 μg L-1 CPF increased kidney epithelial cell height (by 18 %) and decreased lumen space in 

the convoluted tubules of the kidney. This study provided evidence that exposure to CPF can 

lead to changes in key biomarkers of immune status in amphibians in both immune-rested (PBS-

injected) and immune-stimulated (LPS-injected) states. Additionally, we found that LPS was an 

effective mitogen in our study, capable of inducing a robust and measurable stress response in X. 

laevis. This response included a decrease in circulating lymphocytes, and increase in circulating 

monocytes, and an increase in the GL ratio. In addition, increased liver expression of pro-

inflammatory cytokines TNF-α, IL-1β, and CSF-1 was induced by LPS injection. We conclude 

that LPS is an appropriate immunostimulatory agent in an immune challenge assay using X. 

laevis and that exposure to CPF does not appear to impact the response to LPS exposure.  

Overall, our findings show that exposure to environmentally relevant concentrations of 

CPF has the ability to impact amphibians at multiple levels of biological organization. A number 

of affected molecular pathways warrant further study in terms of the underlying mechanisms of 

CPF-mediated toxicity as well as the associated outcomes of CPF exposure in amphibians. This 

research provides novel data on the effects of CPF exposure to amphibians, which are generally 

overlooked and under-represented in the literature despite links between pesticide exposure and 

globally declining amphibian populations.  
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PREFACE 

 

This thesis is organized and formatted to follow the University of Saskatchewan College 

of Graduate Studies and Research guidelines for a manuscript-style thesis. Therefore, there is 

some repetition between the material presented in each chapter. Chapter 1 is a general 

introduction and literature review, including project goals and objectives. Chapter 4 is a general 

discussion and overall conclusion. Chapters 2 and 3 are organized as manuscripts for publication 

in peer-reviewed scientific journals and a description of author contributions is provided in the 

preface for these chapters. References cited in each chapter are combined and listed in the 

References section of the thesis. Supporting information associated with the research chapters 

are presented in the Appendix section at the end of this thesis



1 
 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

Preface 

Chapter 1 is a review of the available literature regarding the topics of chlorpyrifos, it’s 

physicochemical properties, fate in the environment, mechanism of toxic action, as well as 

toxicity to aquatic organisms, and the current state of knowledge regarding the effects of 

chlorpyrifos on various amphibian species. Chapter 1 also includes the overall goals and 

objectives of the research studies conducted as part of this thesis, as well as the null hypotheses. 
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1.1 Chlorpyrifos 

1.1.1 Usage and application rates 

Chlorpyrifos (CPF) [O, O-diethyl O-3,5,6-trichloro-2-pyridinyl phosphorothioate] is an 

organophosphate (OP) insecticide, acaricide, and miticide used in Canada and worldwide in both 

agricultural and commercial settings. It is one of the most widely used pesticides globally 

(Solomon et al., 2014). Chlorpyrifos was first manufactured and distributed by the Dow 

Chemical Company in 1965 and it’s use increased significantly in the early 1970s with the 

banning of dichlorodiphenyltrichloroethane (DDT) (Lee, 2017). Currently, usage of CPF in 

Canada is being re-evaluated as a part of the Pest Management Regulatory Agency’s (PMRA) 

initiative to re-evaluate active ingredients registered prior to 1995 with identified potential risk 

issues (PMRA, 2018). According to the manufacturer, CPF is authorized for use in almost 100 

countries worldwide on more than 50 different types of crops (Dow AgroSciences, 2018). The 

global demand for CPF was projected to be 200 000 tonnes in 2015 and the production and 

consumption of the pesticide are increasing each year (John and Shaike, 2015). Application of 

CPF is done by ground or aerial equipment and the chemical is sold in a variety of forms 

including liquid, gel, granular, soluble, emulsifiable, and flowable concentrates, 

microencapsulated material, pellets, tablets, impregnated materials, baits, wettable powders, 

dusts, and ready-to-use formulations (Dow AgroSciences, 2018; John and Shaike, 2015). In 

Canada and the United States, homeowner use and commercial use around residential areas has 

been largely restricted or eliminated due to concerns surrounding human neurotoxicity after 

exposure (CCME, 2008; US EPA, 2018). In 2012, the United States Environmental Protection 

Agency (US EPA) limited the use of CPF by lowering the acceptable application rates and 

creating buffer zones around public spaces where the pesticide cannot be sprayed (US EPA, 

2012). Regulations in Canada set forth by the PMRA dictate that spray buffer zones of 28-74 m, 

dependent on application method and rate, are to be maintained around aquatic ecosystems 

during agricultural use of CPF (PMRA, 2003).  

1.1.2 Physicochemical properties and mechanism of action 

The half-life of CPF is 30-50 days (d) in surface waters, 7-120 d in soil, and 39-200 d in 

sediment (Mackay et al., 2014; Racke, 1993). However, studies have shown that the aquatic half-
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life of CPF can vary greatly with water quality parameters such as pH; for example, at pH 9, 7, 

and 5 the half-life of CPF ranges from 16, 72-81, and 73 d, respectively (Racke 1993). It is 

considered to have low to moderate water solubility with a range of 1.4-2 mg L−1 at 25°C (John 

and Shaike, 2015). The octanol-water partition coefficient (log Kow) of CPF ranges from 3.31-

5.27, indicating an affinity for lipids (CCME, 2008). The potential for bioconcentration in biota 

varies with species, exposure duration, and dose. The bioconcentration factor (BCF) of CPF 

ranges from 100-4667 under field conditions and 58-5100 in laboratory settings, indicating a 

moderate to very high potential for bioconcentration in fish (CCME, 2008; Franke et al., 1994; 

Racke, 1993). Key physicochemical properties of CPF are summarized in Table 1.1. 
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Table 1.1. Physicochemical properties of chlorpyrifos under laboratory and field conditions. 

Property Units Value Reference 

Melting point ºC 36-38  

Molar mass g mol-1 350.59  

Vapour pressure mmHg 1.87x10-5 (Gebremariam et al., 2012) 

Water solubility mg L-1 

mg L-1 

1.4-2 

0.73 

(John and Shaike, 2015) 

(Mackay et al., 2014) 

Half-life in water 

 

 

days 

days 

days 

16-73* 

30-50* 

<1-3† 

(Racke, 1993) 

(Mackay et al., 2014) 

(Racke, 1993) 

Half-life in sediment days 

days 

50-150* 

39-200* 

(Mackay et al., 2014) 

(Racke, 1993) 

Half-life in soil days 7-120* (Mackay et al., 2014) 

log Kow  3.31-5.27 (CCME, 2008) 

Bioconcentration Factor  100-4667† 

58-5100* 

(CCME, 2008) 

(Racke, 1993) 

(*) indicates laboratory conditions; (†) indicates field conditions 

Values measured at 25 ºC. 
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 Organophosphate pesticides, such as CPF, target the enzyme acetylcholinesterase 

(AChE), which is responsible for hydrolysis of the neurotransmitter acetylcholine (ACh) in 

cholinergic synapses at neuromuscular junctions (Fukuto, 1990). Specifically, AChE inhibition 

occurs via a chemical reaction in which the serine hydroxyl moiety in the enzyme active site is 

phosphorylated. The phosphorylated serine hydroxyl group is no longer able to participate in the 

breakdown of ACh by hydrolysis (Fukuto, 1990). In target species, this inhibition leads to an 

accumulation of ACh at the neuromuscular junctions of nerve synapses, causing the desired 

effects through repeated and uncontrolled firing of neurons eventually leading to loss of 

respiratory control and death by asphyxiation (Costa, 2006; Sparling and Fellers, 2007). 

However, the neurotransmitter action of ACh and the role of AChE in the post-synaptic 

breakdown of ACh is conserved across species and as such, the mechanisms and adverse effects 

of CPF exposure is manifested in both target and non-target species (Fukuto, 1990; Giesy et al., 

2014). The AChE enzyme is present in and has been isolated from numerous non-target species 

across various taxa including mammals, fish, birds, reptiles, amphibians, and insects (Fukuto, 

1990). A decrease in AChE activity after CPF exposure has been reported across life stages in 

amphibian species including Rhinella arenarum (Liendro et al., 2015), Xenopus laevis (Richards 

and Kendall, 2002; Wacksman et al., 2006), Peudacris regilla, Rana boylii (Sparling and Fellers, 

2009), Rana sphenocephala (Widder and Bidwell, 2006, 2008), Hyla chrysoscelis, Acris 

crepitans, and Gastrophryne olivacea (Widder and Bidwell, 2008). These studies are evidence 

that CPF mechanism of action is conserved across amphibian species.  

 Although the phosphorylated enzyme is highly stable, recovery of AChE inhibited by 

CPF has also been demonstrated in a number of sub-lethal exposure scenarios in non-target 

organisms (Costa, 2006; Giddings et al., 2014). Additionally, chronic exposure to OPs generally 

results in tolerance to the cholinergic effects of these chemicals (Costa, 2006). Studies have 

shown that CPF exposure has the ability to elicit neurotoxicity prior to innervation of the 

cholinergic system, which suggests that there are multiple mechanisms of toxicity (Richards and 

Kendall, 2002). For example, a study where fetal rat brain cells were exposed to CPF reported 

altered cell numbers and packing densities in the brain that could not be explained by inhibition 

of AChE and subsequent cholinergic stimulation (Campbell et al., 1997). In humans, CPF is 

known to cause a syndrome unrelated to AChE inhibition (Organophosphate-Induced Delayed 

Polyneuropathy), which again demonstrates that toxic action of CPF can be unrelated to 
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inhibition of the enzyme (Costa, 2006; Lotti and Moretto, 2005). Additionally, multiple studies 

using AChE knockout mice exposed to OP pesticides showed the chemical has other potential 

targets of toxic action including butyrylcholinesterase, muscarinic receptors, adenylyl cyclase, 

acylpeptide hydrolase, and neuropathy target esterase (Duysen et al., 2001; Lockridge et al., 

2005). These findings indicate that there are several important underlying mechanisms that can 

contribute to adverse effects of CPF exposure. 

Metabolic activation and detoxification of CPF occurs primarily in the liver in fish 

species, although similar activity has been reported in other tissues including brain and intestine  

(ATSDR, 1997; Bonansea et al., 2017). Phase I biotransformation mediated by cytochrome P450 

monooxygenase enzymes results in the oxon-analog of CPF, a more potent cholinesterase-

inhibitor than the parent compound (Fukuto 1990; Wacksman et al., 2006). In fact, the formation 

of the oxon-analog from CPF is essential to the potency of the chemical, as the parent compound 

itself is not considered to be a strong inhibitor of AChE (Solomon et al., 2014). Other phase 1 

biotransformation pathways such as hydrolysis via carboxylesterases produce degradation 

products that are less toxic than the parent compound and are eventually excreted (Wacksman et 

al., 2006). In addition to this biotransformation within the liver of the exposed individual, 

bacteria and other environmental factors can also convert CPF into its oxon-analog, making it 

available for uptake from the environment (Sparling and Fellers, 2007). A number of CPF 

degradation products are considered more toxic than the parent compound including the oxon-

analog and the secondary metabolite 3,5,6trichloro-2-pyridinol (TCP) (Fig. 1.1; John and Shaike, 

2015; Sparling and Fellers, 2007).  
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Figure 1.1.  Biotransformation pathways of chlorpyrifos. Biotransformation occurs primarily in 

the liver, brain, and intestine in aquatic vertebrates. Structures in the yellow boxes are 

dialkylphosphate metabolites that are non-inhibitory and excreted in the urine. Structures in the 

red boxes are chlorpyrifos-adducted BchE, one example of a serine active-site enzyme that is 

inhibited by the oxon analog. Figure from Marsillach et al. (2016). 
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1.1.3 Environmental fate and occurrence in aquatic environments 

 Measurable levels of CPF have been reported in a variety of environmental mediums 

including marine sediments, streams, sumps, sloughs, rivers, urban storm drains, freshwater 

lakes, groundwater, fog, rain, and air around the world (Gebremariam et al., 2012). Chlorpyrifos 

is also involved in long range transport, and concentrations of the pesticide have been measured 

at locations distant from point sources (Mackay et al., 2014). In fact, samples taken from remote 

places including snow from Alaskan arctic estuaries and sea-ice from the Bering Sea have 

reported measurable CPF concentrations although there would be no CPF applications in the 

region (Muir et al., 2004).  

 Following soil or foliar application, CPF can be distributed to different environments. 

Degradation after application generally occurs through microbial processes, hydrolysis, and 

photolytic mechanisms (Gebremariam et al., 2012). Due to its relatively low water solubility and 

moderate vapour pressure, the pesticide exhibits a tendency to adsorb to soil, sediment, and 

organic matter (Gebremariam et al., 2012). The water-soil adsorption coefficient of CPF ranges 

between 973-31000 mL g−1 with a mean of 8216 mL g−1 indicating that it strongly adsorbs to soil 

(Solomon et al., 2014). Once adsorbed, the persistence of CPF is greatly increased as the 

chemical is less available for degradation (Bondarenko and Gan, 2004; John and Shaike, 2015) 

and adsorption to soil represents a major route by which the chemical can enter aquatic systems 

(Gebremariam et al., 2012; Williams et al., 2014). Once in these systems, CPF adsorbs to 

sediments where it can then be released into the water through erosion to interact with non-target 

species living in affected environments (Gebremariam et al., 2012). Chlorpyrifos is considered 

persistent in aquatic sediments (Bondarenko and Gan, 2004). Along with adsorption to soils and 

sediments, there are several other routes by which CPF can make its way into aquatic ecosystems 

directly. These include spray drift, foliar wash-off, and, in some cases, direct application (Díaz-

Resendiz et al., 2015; Jin et al., 2015; John and Shaike, 2015). Numerous studies have measured 

CPF concentrations in various aquatic systems around the world, with concentrations as high as 

3.7 µg L−1 being recently reported from agriculturally intensive areas in North America (Uniyal 

and Kumar Sharma, 2018). The Canadian Council of Ministers of the Environment (CCME) has 

set the maximum allowable concentration of CPF for protection of aquatic life in surface fresh 

water at 0.02 μg L-1 for short-term exposures and 0.002 μg L-1 for long-term exposures (CCME, 

2008). In 2003, Environment Canada implemented the first nation-wide water surveillance 
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program for pesticides in Canada, which includes monitoring CPF levels. Detected 

concentrations of CPF in Canadian surface waters ranged from <0.0000005 to 0.205 µg L−1 with 

the highest concentrations reported in samples taken from the Ontario region (CCME, 2008). 

1.2 Toxicity of chlorpyrifos 

1.2.1 Toxicity to aquatic organisms 

The World Health Organization (WHO) classifies CPF as R50/53, which means that it is 

considered very toxic to aquatic animals with the potential to cause long-term adverse effects in 

aquatic environments (WHO, 2015). Giddings et al. (2014) performed a comprehensive review 

of available CPF literature and an ecotoxicological risk assessment for aquatic taxa and found 

that crustaceans were the most sensitive, followed by insects and then fish. Literature values for 

23 species of crustacea and 25 species of fish were evaluated. Median lethal dose (LC50) values 

at 96 hours (h) for crustacea ranged from 0.035 to 457µg L−1 CPF. In fish species, 96 h LC50 

values ranged from 0.53 to >806 µg L−1 CPF (Giddings et al., 2014). In this same review it was 

noted that there was a lack of good quality data on CPF toxicity to amphibians and, as such, 

amphibians were not included in the ecotoxicological risk assessment. A study by (Sparling and 

Fellers, 2007) reported 96 h LC50 values for CPF as 1 µg L−1 in Bufo americanus and 3 mg L−1 

in Rana pipiens. For the laboratory model amphibian Xenopus laevis, the CPF 96 h LC50 was 

560 µg L−1 for metamorphs, 2410 µg L−1 for early embryos, and 14600 µg L−1 for premetamorphs 

(El-Merhibi et al., 2004; Richards and Kendall, 2002).  

 A wide range of sub-lethal effects have been reported in non-target aquatic species 

exposed to CPF including developmental delays and abnormalities (Jin et al., 2015; Kienle et al., 

2009; Richards and Kendall, 2003), histological abnormalities across a range of organs 

(Colombo et al., 2005; Kunjamma et al., 2008; Scheil et al., 2009; Xing et al., 2012), inhibition 

of AChE activity (Colombo et al., 2005; Jin et al., 2015; Liendro et al., 2015; Richards and 

Kendall, 2002), immunologic effects (Adel et al., 2017; Jin et al., 2015; Kerby and Storfer, 2009; 

Maharajan et al., 2017), oxidative stress and reactive oxygen species (ROS) production (Liendro 

et al., 2015; Xing et al., 2012; Zhang et al., 2017), as well as molecular level changes including 

altered expression of specific genes and global transcriptomes (Wang et al., 2018; Zhang et al., 

2017). There are a number of factors which ultimately influence the outcomes of exposure to 
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CPF in non-target organisms. Frequency, duration, and intervals between exposures to CPF will 

influence responses observed. The relationship between duration of exposure to CPF and toxicity 

observed is reciprocal – that is, shorter exposures at higher concentrations result in the same 

level of response as longer exposures at lower concentrations (Giddings et al., 2014). 

Additionally, inter- and intra-species differences can impact outcomes of CPF exposure. For 

example, a study by Watson et al. (2014) compared morphological abnormalities in zebrafish 

and X. laevis larvae after CPF exposure and concluded that the amphibian species was more 

sensitive based on that particular endpoint. Life stage also plays an important role in CPF-

mediated toxicity, especially in amphibian species due to their unique life cycle. In studies with 

X. laevis exposed to CPF, metamorphs were the most sensitive life stage based on 96 h half-

maximal effective concentration (EC50) for CPF-induced malformations, followed by embryos, 

and then premetamorphs (El-Merhibi et al., 2004; Richards and Kendall, 2002). 

1.2.2 Immunomodulatory effects of chlorpyrifos  

 Immunomodulatory effects of CPF have been reported in a number of fish species (Chen 

et al., 2014; Díaz-Resendiz et al., 2015; Jin et al., 2015; Li et al., 2013; Ural, 2013; Wang et al., 

2011; Zhang et al., 2017). The immunomodulatory effects of CPF on amphibians are not as 

extensively researched, although Kerby and Storfer (2009) reported an increase in susceptibility 

to viral infection and larval mortality after exposure of Ambystoma tigrinum to CPF. Due to the 

conserved nature of many components of the innate immune system across jawed vertebrates 

(Riera Romo et al., 2016), immunological assays have been adapted for use across taxa and it is 

proposed that immunomodulating effects of chemicals in one animal model could serve to 

predict the immunotoxicity in other animals (Zelikoff, 1998). However, there are a number of 

reasons why amphibian species should be considered separately. One of the main reasons is the 

unique amphibian life stage of metamorphosis, when the immune system undergoes widespread 

remodeling and the organism is particularly vulnerable to exposure to both environmental 

contaminants and biological stressors (Robert and Ohta, 2009; Rollins-Smith, 1998). Another 

important consideration is the potential disease-driven mechanisms of global amphibian declines. 

In a host-resistance study conducted by Kerby and Storfer (2009) on tiger salamanders, it was 

found that exposure to 200 µg L−1 of CPF decreased larval survival rate by 20%. When combined 

with exposure to Ambystoma tigrinum virus (ATV) larval survival decreased by >60% at the 
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same concentration and the combination of ATV and CPF resulted in lower survival rates and 

higher infection rates at concentrations as low as 2 µg L−1 (Kerby and Storfer, 2009). 

 The mechanisms underlying CPF immunotoxicity in aquatic vertebrates, including 

amphibian species, are largely unknown. A putative mechanism of action suggests that the 

immunotoxicity of CPF is related to the well-characterized CPF-induced production of ROS, 

which can then induce cellular destruction via apoptosis of effector cells of innate immunity, 

such as leukocytes (Marchand et al., 2017). In a study by Ural (2013), common carp exposed to 

CPF demonstrated increased white blood cell count and altered expression and activity of 

antioxidant enzymes across a range of tissues; however, when an antioxidant agent, Lycopene, 

was administered concurrently with CPF exposure these toxic effects were neutralized. This 

supports the theory that ROS-mediated damage to effector cells of innate immunity, such as 

white blood cells, is an underlying mechanism of immunotoxicity (Ural, 2013). 

1.3 Amphibians in the environment  

1.3.1 Amphibian significance and status of decline 

 Often overlooked and underrepresented in the literature is the vast array of amphibian 

species that play a vital role in aquatic ecosystems in Canada, and around the world. In addition 

to being an important food source for higher trophic organisms, larval amphibians play vital 

roles as primary consumers, detritivores, as well as predators (Blaustein and Kiesecker, 2002; 

Hocking and Babbitt, 2014). Moreover, due to their unique ecothermic physiology, amphibians 

can exploit resources that are typically seen as “energy-poor”. This creates a valuable link 

between the lowest and highest trophic levels in a community (Hopkins, 2007). 

Declines in amphibian populations have been noted from various locations worldwide 

since the early 1980s and were first recognized as a global issue in the early 1990s (Blaustein, 

1994; Carey et al., 1999; Hayes et al., 2010). In 2004, a global assessment by the International 

Union for Conservation of Nature (IUCN) found that 32.5% of amphibian species are considered 

threatened and at least 43.2% of all amphibian species are known to be experiencing some form 

of population decrease (Stuart et al., 2004). In addition, the IUCN found that a much higher 

proportion of amphibian species (22.5%) compared to birds (0.8%), or mammals (5.3%) were 

considered data deficient, meaning not enough information was known about them to assign an 
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extinction threat category (Stuart et al., 2004). The causes of worldwide amphibian declines 

include habitat loss and degradation, environmental contamination, invasive species, emerging 

diseases, climate change, and overexploitation (Carey et al., 1999; Hocking and Babbitt, 2014). 

There is not likely to be a single cause for amphibian population declines, but rather a 

combination of factors. One proposed mechanism of globally occurring amphibian declines 

involves direct or indirect immunosuppression or immunomodulation by anthropogenic 

contaminants that would prevent the immune system from developing an adequate immune 

response against pathogen infection (Carey et al., 1999; Daszak et al., 1999). Amphibians are 

considered sensitive bioindicators of ecosystem health and, because of this, declining amphibian 

populations throughout the world and increasing rates of decline are potentially indicative of a 

much larger problem within our aquatic systems (Carey et al., 1999). 

1.3.2 Amphibian immunity and disease  

The two main components of the amphibian immune system are considered 

fundamentally similar to that of humans and immune defence mechanisms, in particular the 

molecules and cells involved in the innate response, maintain their functionality throughout 

vertebrates (Carey et al., 1999; Chen and Robert, 2011; Du Pasquier et al., 1989; Riera Romo et 

al., 2016). Resistance to pathogens encountered in the environment involves aspects of both the 

innate and adaptive immune responses in amphibian species. The innate immune system 

provides rapid and non-specific protection until the adaptive immune response has time to 

develop (Grogan et al., 2018). The innate immune response is of critical importance during larval 

life stages of the amphibian, a time when tadpoles are free swimming, developing externally, and 

confined to aquatic systems where contaminants and pathogens may be present concurrently. 

During the unique transitional life stage of metamorphosis, the immune system undergoes a 

substantial reorganization that includes, for example, a sharp decrease in lymphocyte populations 

and physical transformation of immune-related organs including the thymus and spleen (Du 

Pasquier et al., 1989; Rollins-Smith, 1998).This period of reorganization is accompanied by 

immunosuppression that persists for up to six months post-metamorphosis (Grogan et al., 2018). 

Effector cells of innate immunity that play vital roles in all amphibian species include 

leukocytes, macrophages, and natural killer type cells (Chen and Robert, 2011; Grogan et al., 

2018). The actions of many of these classes of effector cells are mediated by the release of 
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signaling molecules known as pro-inflammatory cytokines (Chen and Robert, 2011). The role of 

the innate immune response does not end with metamorphic climax. In fact, the innate immune 

system continues to play a critical role into adulthood in initiation of adaptive responses to 

specific foreign antigens (Grogan et al., 2018; Robert and Ohta, 2009). The adaptive immune 

response requires time to be activated after exposure to a pathogen and provides a specific 

response to pathogen infection together with the formation of memory cells, which respond 

rapidly and specifically to subsequent pathogen exposure (Carey et al., 1999). The amphibian 

adaptive immune response is relatively slow to manifest, and responds with lesser magnitude and 

efficiency than that of mammals (Grogan et al., 2018). During early life stages and into 

metamorphosis, the tadpole immune response is competent but functionally less developed than 

in post-metamorphic amphibians. A study by Sifkarovski et al. (2014) highlights the impacts of 

compromised immune system during critical developmental stages on immune function in post-

metamorphic amphibians. Following exposure to atrazine, a common herbicide, during 

metamorphosis (and even after a recovery period in clean water), researchers found that adult 

frogs displayed a persistent impaired ability to mount certain inflammatory responses to 

Ranavirus infection (Sifkarovski et al., 2014). 

1.4 Integrating transcriptomics with adverse effects of chlorpyrifos in amphibians 

 Integrating ‘omics technologies into the field of ecotoxicology has been a topic of much 

discussion in recent years as these technologies provide the unprecedented opportunity to  link 

adverse outcomes of chemical exposure to a specific molecular perturbation pattern in an 

increasingly reliable and high-throughput manner (Zhang et al., 2018). The transcriptome is 

defined as the ‘complete complement of mRNA molecules generated by a cell or population of 

cells’ (Piétu et al., 1999). Looking at the transcriptome of an individual gives information on 

which genes are expressed in that individual and at what level (McGettigan, 2013). In the context 

of ecotoxicology, transcriptomic data can be utilized to determine which genes are differentially 

expressed in response to chemical exposure in both field and laboratory scenarios (Feswick et al., 

2017). A list of these differentially expressed genes (DEGs) can then be mapped to biological 

pathways and processes to examine mechanisms of toxicity which, without this big data, would 

not be easily identifiable. When transcriptomic outcomes are integrated with other ‘omic 

approaches within a systems biology framework, apical outcomes of exposure can be anchored 
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to molecular and cellular level responses, and better define the mechanism of action of specific 

chemicals (Basu et al., 2019; Kavlock et al., 2018). With the recent development and 

increasingly widespread adoption of RNA-Seq technologies based on next generation sequencing 

platforms, transcriptomic data can be used to evaluate chemicals for their ability to alter key 

molecular pathways that precede phenotypic adverse outcomes of chemical exposure. Thus, 

toxicogenomics, the combination of toxicology and genomics technologies, also shows great 

promise as an early screening tool to prioritize chemicals with potential risk for adverse effects.  

In amphibians, there is a relative lack of mechanistic data regarding the toxicity of many 

contaminants of concern, including CPF. If predictive of apical outcomes, the larval 

transcriptomic profile has the potential to be employed as a rapid screening approach to assess 

the large number of contaminants threatening amphibian species globally. In addition, 

transcriptomic profiling after short-term, larval exposure has the potential to direct research into 

relevant outcomes of exposure to specific contaminants. To date, reference genomes for three 

anuran amphibian species, Xenopus tropicalis (Hellsten et al., 2010), Nanorana parkeri (Sun et 

al., 2015), and X. laevis (Session et al., 2016), have been published. 

 Studies in aquatic vertebrates other than amphibians have identified a number of gene 

pathways across a range of physiological processes and functions that respond to CPF exposure. 

Examining the transcriptome of the ciliate Uronema marinum following CPF exposure revealed 

changes in pathways related to cellular and metabolic processes, binding functions, and catalytic 

activities (Wang et al., 2018). Zhang et al. (2017) reported significant effects on the head kidney 

transcriptome of common carp exposed to CPF, specifically pathways involved in antioxidant 

systems and immune response as well as targeted effects on cytokine activity, oxidoreductase 

activity, and cell growth and death among others. Similarly, transcriptome and metabolome level 

analyses revealed that CPF exposure modulated pathways related to oxidative stress, energy and 

lipid metabolism, endocrine function, and proteolysis in Atlantic salmon hepatocytes (Olsvik et 

al., 2015). To date, there have been no studies examining CPF-mediated effects on the 

transcriptome of any amphibian species. However, in one study, exposure of Rana chensinensi to 

the OP pesticide trichlorfon led to significant transcriptome-level effects on cellular and 

metabolic processes, binding functions, and catalytic activities in the liver (Ma et al., 2018). Due 

to the widespread usage of CPF coupled with increased disease incidence and population 
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declines of some amphibian species, further research into the adverse effects and underlying 

mechanisms of CPF-mediated toxicity in amphibians is warranted. 

1.5 Project rationale 

There is limited data on the consequences of exposure to sub-lethal, environmentally 

relevant levels of CPF in amphibian species. Studies performed on fish species and other aquatic 

vertebrates are not always protective of sensitive amphibian species, especially when considering 

exposure during critical stages of development such as metamorphosis. To our knowledge, there 

is no literature regarding transcriptomic responses in amphibians after exposure to CPF. 

Additionally, there is no literature on the immune-related effects of short-term, sub-lethal 

exposure of amphibian species to CPF. For these reasons, and in the context of globally 

declining amphibian populations, it is important to address the lack of information currently 

available on the exposure of amphibian species to this common environmental contaminant.  

The overall goal of this thesis research was to gain a better understanding of the effects of 

CPF exposure on amphibians and provide much needed data on responses across levels of 

biological organization, from transcriptome to whole animal. Research was first focused on 

evaluating adverse outcomes of chronic exposure to CPF and linking key molecular response 

patterns that may be altered during exposure to CPF to these outcomes. I then focused 

specifically on effects of short-term CPF exposure on immune parameters and the ability of 

amphibians to respond to immune stimulation. Studies were conducted with the laboratory model 

amphibian X. laevis because (1) of the abundance of publicly available information including a 

fully sequenced genome (Session et al., 2016) and standardized exposure protocols throughout 

life stages, (2) it has been used as a model for studies of immunity (Robert and Ohta, 2009) as 

well as of immunotoxicity (De Jesús Andino et al., 2017; Sifkarovski et al., 2014) in amphibians, 

(3) hormone-induced breeding can provide embryos year-round, and (4) the time it takes for 

development from early larval stages to metamorphic climax and early juvenile life stage is 

relatively short. The aim of this research was to investigate the effects on development, health, 

and immune status of X. laevis after exposure to the common and ubiquitous environmental 

contaminant, CPF. The first study (Chapter 2) assessed transcriptome level changes in larval X. 

laevis after acute (96 h) exposure to environmentally relevant concentrations of CPF. These 

transcriptional changes were then compared to apical outcomes observed after chronic exposure 
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throughout early life stages. The second study (Chapter 3) measured contaminant-induced 

changes in the immune system of juvenile amphibians, and ultimately the impacts on 

immunocompetence and ability to mount an appropriate immune response when challenged with 

a known immunostimulatory agent. 

1.6 Research objectives and hypotheses  

The overall objective of this thesis research was to characterize the sub-lethal toxicity of 

CPF in amphibians by first identifying biological pathways that are altered with acute exposure 

to CPF and relating these transcriptional changes to higher-level responses in following chronic 

exposure. This information was then used to inform a particular target system (i.e. immune 

system) and relevant endpoints for a more detailed assessment of CPF impacts on immune 

response in amphibians.  

Chapter-specific objectives: 

1. Determine if acute (96 h) exposure to CPF during embryo-larval life stage of  X. laevis alters 

transcriptional response compared to unexposed individuals (Chapter 2) 

 H0: There are no differences in transcriptomic responses of larval X. laevis exposed to 

CPF compared to the control group 

 

2. Determine if chronic exposure (embryo to metamorphic climax) to CPF affects apical 

outcomes in X. laevis such as growth, development traits, incidence of deformities, liver 

histopathology, or AChE activity (Chapter 2) 

H0: CPF exposure has no effect on growth, development, liver histopathology, or AChE 

activity in X. laevis when exposed from embryo to metamorphic climax. 

 

3. Determine if short-term (7 d) exposure to CPF results in immunomodulation in juvenile X. 

laevis as measured by differential leukocyte counts, changes in pro-inflammatory cytokine 

expression, and histopathology of immune organs (Chapter 3) 

H0: Exposure to CPF for 7 days does not alter basal levels of circulating leukocytes, 

expression of pro-inflammatory cytokines, or histopathology of immune organs in 

juvenile X. laevis 
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4. Determine if CPF exposure alters the ability of X. laevis to mount a response to the 

immunostimulatory agent, lipopolysaccharide (LPS) (Chapter 3) 

H0: Exposure to CPF for 7 days does not alter the response of juvenile X. laevis 

challenged with LPS  
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CHAPTER 2 

 

INTEGRATING EARLY LIFE STAGE TRANSCRIPTOME ANALYSIS WITH APICAL 

OUTCOMES OF CHRONIC CHLORPYRIFOS EXPOSURE IN THE AMPHIBIAN, 

XENOPUS LAEVIS 

 

 

Preface 

This study assessed the toxicity of an emerging aquatic contaminant of concern, 

chlorpyrifos, in the model amphibian species Xenopus laevis. Transcriptomic responses were 

evaluated after 96 hour early life-stage exposure in an attempt to integrate observed 

transcriptomic changes with adverse outcomes in metamorphic individuals following chronic 

exposure to CPF. This chapter is organized as a manuscript for publication in a peer-reviewed 

scientific journal. Author contributions are as follows: 

Nicole Baldwin (University of Saskatchewan): managed the study, conducted animal husbandry 

and exposures, collected and analysed the data and drafted the manuscript.  

Brad Park (University of Saskatchewan): conducted the histological sample preparation and 

analysis.  

Alper J. Alcaraz (University of Saskatchewan) and Othman Soufan (McGill University): 

provided input and guidance on analysis of transcriptomic data.   

Dr. Nil Basu (McGill University) and Doug Crump (Environment and Climate Change Canada): 

provided scientific input and obtained funding for the project 

Dr. Markus Hecker (University of Saskatchewan): provided scientific input, offered comments 

and edits to the manuscript, and obtained funding for the project.  

Dr. Natacha Hogan (University of Saskatchewan): was the primary supervisor, provided 

scientific input, obtained funding for the project, and offered comments and edits to the 

manuscript.  
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2.1 Abstract 

Chlorpyrifos (CPF) is one of the most widely used organophosphate pesticides 

worldwide with extensive occurrence in aquatic ecosystems. Exposure to CPF is associated with 

adverse effects across a wide range of physiological parameters in fish, most notably 

neurotoxicity through inhibition of the enzyme acetylcholinesterase (AChE). However, effects of 

exposure to CPF in amphibians are relatively poorly studied with little information on the 

underlying molecular toxicity pathways associated adverse outcomes. The main objective of this 

study was to identify key molecular response patterns that are altered in amphibians with early 

life stage exposure to CPF, which may enable prediction of apical outcomes of ecological 

relevance in amphibians. The model amphibian, Xenopus laevis was exposed to CPF (0.4, 2, 10 

μg L-1, nominal) from 24 hours (h) post-hatch through to metamorphosis (50-55 days post-

hatch). Individuals were subsampled after 96 h and whole-body transcriptome profiles were 

assessed using high throughput sequencing (RNA-Seq). Pathway analysis revealed a number of 

significant dysregulated pathways including those associated with “classic” outcomes of CPF 

exposure, such as serine hydrolase activity (AChE is a serine hydrolase enzyme) and immune 

pathways, including immune function, inflammatory response, and cytokine receptor activity. 

Other affected pathways not typically linked to CPF were altered including vasculature 

development, sensory perception of light stimulus, and blood coagulation. Tadpoles exposed to 

CPF through to metamorphosis exhibited increased relative liver weight (30% increase in 10 μg 

L-1 treatment) and a dose-dependent decreased in brain AChE activity. Disruption of pathways 

associated with serine hydrolase following CPF exposure during early life stages is in agreement 

with decreased AChE activity at metamorphosis. Transcriptomic analysis also revealed a number 

of novel dysregulated pathways that could not be directly linked to apical outcomes measured in 

this study but suggests that CPF impacts a wide range of biological pathways in amphibians that 

warrant further study. This study is part of the EcoToxChip project (www.ecotoxchip.ca). 
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2.2 Introduction 

 Amphibian populations have been declining in locations worldwide since the 1980s with 

declines being first recognized as a global issue in the early 1990s (Blaustein, 1994; Carey et al., 

1999; Hayes et al., 2010). Many hypotheses have been presented regarding the underlying 

factors driving dwindling amphibian populations including habitat loss and degradation, 

environmental contamination, invasive species, emerging diseases, climate change, and 

overexploitation (Carey et al., 1999; Hocking and Babbitt, 2014) although there is not likely to 

be a single driving factor for these declines. Either alone, or in combination with other 

environmental factors, agricultural pesticide use has been cited as a potential contributor to 

global amphibian declines and localized mass mortality events (Carey and Bryant, 1995; Hayes 

et al., 2006; Mann et al., 2009; Mason et al., 2013; Pounds and Crump, 1994).  

 Chlorpyrifos (CPF; C9H11Cl3NO3PS) is one of the most commonly used organophosphate 

(OP) pesticides throughout North America and worldwide (Adeyinka and Pierre, 2019). It is 

found ubiquitously within aquatic systems both in agriculturally intense areas and seemingly 

pristine locations far from anthropogenic sources (Muir et al., 2004; Zhang et al., 2012). In fact, 

samples taken from remote places including snow from Alaskan arctic estuaries and sea-ice from 

the Bering Sea have reported measurable CPF concentrations (Muir et al., 2004). Chlorpyrifos 

inhibits acetylcholinesterase (AChE), the enzyme responsible for hydrolysis of the 

neurotransmitter acetylcholine (ACh) in cholinergic synapses at neuromuscular junctions 

(Fukuto, 1990). In target species, this inhibition results in the desired toxic effects where ACh 

build up at neuromuscular junctions leads to loss of respiratory control and death by asphyxiation 

(Costa, 2006; Sparling and Fellers, 2007). However, AChE and the action of ACh are conserved 

across species and, as such, CPF exposure has the potential to cause toxicity in non-target 

species (Costa, 2006).  

 The World Health Organization (WHO) has classified CPF as R50/53 indicating that it is 

very toxic to aquatic animals with the potential to cause long-term adverse effects in aquatic 

ecosystems (WHO, 2015). Reported sub-lethal effects in aquatic vertebrates exposed to CPF 

include developmental delays and increased incidence of malformation (Jin et al., 2015; Kienle 

et al., 2009; Richards and Kendall, 2003), histological abnormalities across a range of tissues 

(Colombo et al., 2005; Kunjamma et al., 2008; Scheil et al., 2009; Xing et al., 2012), inhibition 

of AChE activity (Colombo et al., 2005; Jin et al., 2015; Liendro et al., 2015; Richards and 
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Kendall, 2002), immunomodulation (Adel et al., 2017; Jin et al., 2015; Kerby and Storfer, 2009; 

Maharajan et al., 2017), as well as changes at the molecular level, including changes in 

expression of specific genes and global transcriptome profiles in fish  (Wang et al., 2018; Zhang 

et al., 2017).  

In a recent comprehensive review of the available CPF literature that included an 

assessment of risk to aquatic organisms, the authors noted that there were few amphibian species 

with toxicity data for CPF (total of seven) and only three studies that met their criteria, which 

included data transparency and description of experimental procedures, among others (Giddings 

et al., 2014).  For these reasons, the authors did not consider amphibians further in the risk 

assessment (Giddings et al., 2014). Indeed, amphibian species are often overlooked and 

underrepresented in toxicity studies despite the vital and unique roles they play in aquatic 

ecosystems. Weltje et al. (2013) reviewed and compared acute and chronic toxicity data between 

fish and amphibians and concluded that larval stages of amphibians are less sensitive than fish to 

a range of chemicals, and thus, the toxicity data for fish can be extrapolated to and be protective 

of amphibians. However, a study by Watson et al. (2014) assessed morphological and 

physiological abnormalities in both zebrafish (Danio rerio) and Xenopus laevis larvae after CPF 

exposure and concluded that the amphibian species was more sensitive than zebrafish as it 

displayed by decreased heart rate and increased incidence of morphological abnormalities at 

lower concentrations of CPF (Watson et al., 2014). Cholinesterase-inhibiting pesticides have also 

been correlated with a decline of amphibian species in California, a state with very intense 

pesticide use (Davidson, 2004). Early life-stage (ELS) amphibians and tadpoles are free-

swimming, confined to aquatic systems where pesticides may be present, and lack fully 

functional detoxification pathways (Blaustein and Kiesecker, 2002; Ortiz-Santaliestra et al., 

2006). Additionally, amphibian metamorphosis includes a substantial reorganization of nearly 

every physiological system which can be accompanied by increased sensitivity to chemical and 

biological stressors in their environment (Grogan et al., 2018). This unique transitional life-stage 

is often not considered when extrapolating data from other aquatic vertebrates or when 

examining outcomes of exposure in acute exposure scenarios. 

The integration of ‘omics technologies into the field of ecotoxicology has been 

increasingly adopted in recent years due to the potential use of these technologies in both 

qualitative and quantitative measurement of changes from the molecular all the way to the 
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community level (Zhang et al., 2018). In the context of ecotoxicology, transcriptomic profiling 

can be used to determine which genes are differentially expressed in response to exposure to a 

contaminant (Feswick et al., 2017). This information can then be used to more clearly define 

previously unknown mechanisms of action of these contaminants of concern, such as CPF. These 

early toxicity pathways can be utilized to direct future research and inform on potential apical 

outcomes of relevance. Studies examining alterations in the transcriptomic profiles of aquatic 

vertebrates have identified a number of toxicity pathways across a wide range of physiological 

processes and functions after exposure to CPF. A study using the ciliate Uronema marinum 

reported effects on cellular and metabolic processes, binding functions, and catalytic activities as 

a result of CPF exposure (Wang et al., 2018). Another recent study by Zhang et al. (2017) 

reported alterations in the head kidney transcriptome of common carp (Cyprinus carpio) 

following exposure to CPF and included changes in transcripts related to cytokine activity, 

oxidoreductase activity, and cell growth and death among others. Similarly, Olsvik et al. (2015) 

reported effects on oxidative stress pathways, energy and lipid metabolism, endocrine function, 

and proteolysis in Atlantic salmon (Salmo salar) hepatocytes after exposure to CPF. To our 

knowledge, there have been no studies examining the effects of CPF exposure on the 

transcriptome of any amphibian species. 

 Despite the widespread use of CPF and its well-defined toxicity to fish species, there is a 

lack of amphibian data at multiple levels of biological organization regarding the outcomes of 

exposure to this ubiquitous aquatic contaminant. Therefore, the objectives of this study were to 

characterise the short-term, ELS transcriptomic response in X. laevis exposed to CPF and then 

identify effects of chronic exposure to sub-lethal levels of CPF from early life-stages to 

metamorphic climax. Differentially expressed genes were then identified and pathway analyses 

conducted in an attempt to establish key toxicity pathways for CPF in X. laevis and to determine 

if apical endpoints could be linked to CPF-induced changes at the molecular level. 

2.3 Materials and methods 

2.3.1 Obtaining Xenopus laevis embryos for exposures 

An adult X. laevis colony was maintained at a 12 hours (h) light:12 h dark photoperiod at 

16 ± 1 °C in the Aquatic Toxicology Research Facility at the Toxicology Centre, University of 
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Saskatchewan, Saskatoon, SK. Four sexually mature males and females were selected for 

breeding. Each was injected in the dorsal lymph sac with a 25 international unit (IU) priming 

dose of human chorionic gonadotropin (hCG, Sigma-Aldrich, St. Louis, MN, United States) 

dissolved in sterilized phosphate buffered saline (PBS;137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 1.8 mM KH2PO4). After priming injections, males and females were housed in 

separate aquaria at 21 ± l °C overnight. A second dose of hCG was administered approximately 

24 h after priming injections; males received a 250 IU dose and females received a 500 IU dose. 

Males and females were then randomly paired for breeding, placed into aquaria with water 

temperature maintained at 21 ± 1 °C, and left to spawn overnight.  

After collection, selection and preparation of embryos followed protocols outlined in 

“Standard guide for conducting the Frog Embryo Teratogenesis Assay-Xenopus (FETAX)” 

(ASTM, 2012). A maximum of 50 normally cleaving embryos were placed in individual egg 

cups, a vertical PVC pipe with two holes cut below a 100 μm Teflon mesh insert, to incubate in 

facility water maintained at 22 ± 1 °C for 24 h. After this incubation period, individuals were 

moved into petri dishes to begin the 96 h exposure period. Animals used in this study were 

handled in accordance with the University of Saskatchewan’s Animal Research Ethics Board 

(protocol #20160090) and adhered to the Canadian Council on Animal Care guidelines for 

humane animal use. 

2.3.2 Test chemical preparation  

Chlorpyrifos powder (CAS: 2921-88-2, purity: 98%) was purchased from TRC Canada 

(North York, ON, Canada). A CPF stock solution (1 mg ml−1) was prepared by dissolving the 

powder in dimethyl sulfoxide (DMSO) in a 100 ml glass bottle and stored at -4 ºC. Working 

stock solutions (4, 20, and 100 µg L−1) for each CPF exposure concentration were prepared in 

250 mL glass bottles and stored at 4 ºC. Facility water control and 0.01% v/v DMSO solvent 

control treatments were included and nominal CPF exposure concentrations for both the 96 h and 

chronic exposure were 0.4, 2.0 and 10 µg L−1 CPF. 
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2.3.3 CPF exposures and sampling 

2.3.3.1 96 h early life-stage exposure 

Exposures were initiated when the collected embryos reached approximately Nieuwkoop 

and Faber (NF) stage 29 (Nieuwkoop and Faber, 1994). Individuals were transferred into 50 mL 

glass petri dishes (30 individuals per petri dish; 10 petri dishes per treatment). Mortality, 

malformation, and abnormal behaviour were recorded and dead individuals were removed daily. 

A 50% water renewal was performed daily during the exposure period. Subsampling for 

transcriptomics was performed at the completion of the 96 h exposure when individuals (NF 

stage 46) were collected, pooled in groups of five, weighed, and flash frozen in liquid nitrogen 

and stored at -80 ºC.  

2.3.3.2 Long-term exposure through to metamorphic climax 

After the 96 h subsampling was complete, remaining individuals were transferred into 7 

L glass aquaria for the beginning of the chronic exposure period (30 individuals per tank; five 

tanks per treatment). During the chronic exposure 50 – 75% water changes were performed on 

each tank daily and mortality, malformation, and abnormal behaviour were recorded. 

Temperature was monitored daily and pH, dissolved oxygen, ammonia, nitrate, nitrite, hardness, 

alkalinity, and conductivity was monitored weekly for each tank (Appendix A). The chronic 

exposure was terminated at 75 days (d). Sampling occurred over five days, with one replicate 

tank per treatment sampled each day. Individuals were anesthetized by immersion in buffered 

0.1% tricaine methanesulfonate (MS-222) and euthanized by cervical dislocation. Morphometric 

endpoints including NF stage, wet body weight (to the nearest 0.01 g), snout-vent length (SVL; 

to the nearest 0.01 cm), total length (to the nearest 0.01 cm), and liver weight (to the nearest 0.01 

g) were measured and recorded for each individual. Brains from five individuals per tank were 

excised and flash frozen in liquid nitrogen before being stored at -80 ºC. A total of 25 whole-

body individuals per treatment (five from each replicate tank) were submerged in CalEx-II 

(Fisher Scientific) for 48 h to fix and decalcify and then transferred to 70% ethanol for storage. 

2.3.4 Analysis of CPF exposure concentrations 
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 Water samples were collected from exposure tanks at five specific times over the 

exposure period and sent to SGS AXYS (Sidney, BC, Canada) for analyses of actual waterborne 

CPF concentrations. A 47 mm all glass vacuum filter holder (Wheaton, Millville, NJ, United 

States) and a 90 mm Macherey-Nagel glass fiber filter (Fisher Scientific, Hampton, NH, United 

States) were used for filtration of samples. 200 mL of water was collected from each tank (5 

tanks/treatment) and poured into a 300 mL filtering cup where it passed through the glass fiber 

filter into a 1000 mL conical collection flask. The resultant 1 L composite sample was then 

transferred into a 1 L amber bottle for storage and shipment. An eyedropper was used to add 2 

drops of chloroform to each composite sample. Samples were stored at 4 ºC for no longer than 5 

days prior to shipment to SGS AXYS. Four time periods (exposure day 6, 40, 54, 75) throughout 

the chronic exposure period were selected for analysis of actual CPF concentrations. CPF 

concentrations were measured in each sample using high-resolution mass spectrometry.  

2.3.5 RNA extraction and Illumina sequencing   

Pooled, whole body NF stage 46 individuals were used for the transcriptomic analysis 

after 96 h exposure to CPF. RNA was extracted from five replicates each containing five 

individuals from three treatment groups: 0.01% DMSO solvent control, 2 μg L−1and 10 μg L−1 

CPF. Total mRNA was obtained using the QIAcube and the RNeasy Plus Universal Mini kit as 

directed by the manufacturer (Qiagen, Hilden, Germany). RNA concentration was measured 

using the QIAxpert (Qiagen). RNA integrity was assessed using the Bioanalyzer 2100 and 

associated RNA Nano 6000 Assay kit (Agilent Technologies, CA, USA). Samples with a 

minimum RNA Integrity Number of 7.0 were used for transcriptomic analysis. Samples were 

diluted using sterile RNAse-free water to a final volume and concentration of 25 µL of 100 ng 

µL-1 RNA and stored at -80 ºC until sequencing. 

Transcriptome sequencing was performed at Genome Quebec Innovation Center (McGill 

University, Montreal, QC, Canada). Briefly, libraries of double-stranded DNA from total RNA 

were prepared using the Illumina TruSeq Stranded mRNA library prep kit (Illumina Inc., San 

Diego, CA, United States). Size selection of DNA fragments was performed using solid phase 

reversible immobilization beads. Quality of libraries were confirmed using the Bioanalyzer 2100 

and associated DNA 1000 Nano Assay kit (Agilent Technologies). Libraries were multiplexed 

with TruSeq RNA Single Index kits and loaded onto HiSeq 3000/4000 PE Cluster kit for cluster 
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generation (Illumina Inc.). Clusters were loaded onto a HiSeq 4000 Sequence-by-Synthesis kit 

and run as 100 base pair paired-end reads over 200 cycles using a HiSeq 4000 system (Illumina 

Inc.). 

2.3.6 Liver histology  

Histological analysis of liver tissue was performed on NF stage 65 individuals from the 

chronic exposure. Twenty individuals, ten each from the solvent control and the 10 µg L−1 CPF 

treatment groups, were randomly selected for histological analysis. Carcasses were trimmed to 

remove the limbs and head, and the body wall was cut away to fully expose the viscera. Each 

sample was then placed into a tissue embedding histocassette and rinsed twice with 70% ethanol 

to remove traces of fixative. Tissues were processed using a RVG1 vacuum tissue processor 

(Intelsint S.R.L., Villarbasse, TO, Italy). After processing, whole-body tissues were embedded in 

paraffin wax. Each sample was longitudinally step-sectioned at a thickness of 5 µm, mounted on 

slides, and dried at 37 °C for approximately 12 h. For each individual, two consecutive sections 

were taken at a minimum of 11 different levels at 50 μm intervals. Sections were stained with 

regressive hematoxylin and eosin and examined using an Axiostar Plus microscope (Carl Zeiss 

Microscopy, Thornwood, NY, United States). Photographs of each slide were taken using an 

attached INFINITY1-1M digital camera, and associated Infinity Analyze software (Lumenera 

Corporation, Ottawa, ON, Canada). Liver sections were screened qualitatively for signs of 

hepatoxicity and each individual was scored (0=absent; 1=mild; 2=moderate; 3=severe) for 

degree of hepatocyte vacuolization, incidence of hepatocyte necrosis, number and size of 

melanomacrophages, and degree of sinusoid dilation.  

2.3.7 Acetylcholinesterease activity assay 

Acetylcholinesterase activity in brain was measured using the Acetylcholinesterase 

Activity Assay kit (MAK119) in accordance with the manufacturer protocols (Sigma-Aldrich, St. 

Louis, MN, United States). Tissues were homogenized in 0.1 M phosphate buffer at pH 7.5 (75.4 

mM H15Na2O11P, 24.6 mM H4NaO5P) using a PowerGen 125 tissue homogenizer (Fisher 

Scientific, Hampton, NH, United States). Samples were then centrifuged at 14 000 rpm for 5 min 

at room temperature and the supernatant was collected to be used for the assay. Six brains from 

the 0.01% DMSO, and each CPF treatment group were analyzed in duplicate. A SpectraMax 
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microplate reader at 412 nm wavelength was used to determine the AChE activity of each 

sample (Molecular Devices LLC, San Jose, CA, United States). Data are presented as Units 

AChE per g tissue where units AChE is equal to μmol substrate hydrolyzed per minute. 

2.3.8 Transcriptomic data preparation and statistical analysis 

 RNA-Seq reads were uploaded to the Galaxy platform https://usegalaxy.eu/ (Afgan et al., 

2018). Quality control checks were performed using FastQC (Andrews, 2010) and two of the 2 ug 

L-1 CPF samples were found to have low per base sequence quality. Further analysis continued 

with the solvent control and 10 ug L-1 CPF concentration samples. Poor quality sequences were 

trimmed using the Trimmomatic tool (Bolger et al., 2014) with a phred quality score of 28 and a 

minimum sequence length of 35. Reads were mapped using HISAT2 (Kim et al., 2015) to the X. 

laevis reference genome (GCF_001663975.1) available online at the National Center for 

Biotechnology Information website (https://www.ncbi.nlm.nih.gov/). SAMtools sort (Wysoker et 

al., 2009) was then used to sort the resultant alignments by read name. Finally, ht-seq count 

(Anders et al., 2015) was used to count the number of reads mapped to each gene feature.  

 Counts data to be used for gene-level differential expression analysis was then uploaded 

into EcoToxXplorer (https://www.ecotoxxplorer.ca). The edgeR tool built into the 

EcoToxXplorer platform was utilized for differential gene expression analysis (Robinson et al., 

2009). The solvent control treatment was used as a common control and genes were considered 

significantly differentially expressed at false discovery rate (FDR) = 0.1. The ClueGo (v 2.5.3; 

Bindea et al., 2009) plugin on Cytoscape was used to identify functionally grouped networks 

(Shannon et al., 2003). ClueGo visualization of functional networks formed from significantly 

dysregulated pathways were based on Gene Ontology (GO) vocabularies biological processes, 

molecular functions, and cellular components (accessed on: 13/03/2019). Pathways were built 

using at least 5 genes from the differentially expressed genes (DEGs) after 96 h ELS exposure to 

10 ug L-1 CPF (p ≤ 0.05). Statistical test was set to a right-sided hypergeometrical test with a 

Bonferroni (step down) p-value correction and a kappa score of 0.4.  

2.3.9 Statistical analysis 

Data obtained from apical endpoints measured were tested for a normal distribution using 

the Shapiro-Wilk test and for homoscedasticity using Levene’s test. In cases where the 

https://usegalaxy.eu/
https://usegalaxy.eu/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ecotoxxplorer.ca/
https://www.ecotoxxplorer.ca/
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assumption of normality was violated, data was analyzed using the non-parametric Kruskal-

Wallis H test (p ≤ 0.05). This was followed by pairwise comparisons using Dunn’s procedure 

with a Bonferroni correction for multiple comparisons. When the assumptions of normality and 

homoscedasticity were met, data was analyzed using a one-way analysis of variance (ANOVA). 

Post-hoc tests (either Tukey’s HSD or an LSD test) were employed in cases where ANOVA 

revealed a significant difference between groups (p ≤ 0.05). Hypothesis testing was two-tailed. 

All analyses were conducted using SPSS Statistics 25 (IBM Corporation, Armonk, NY, United 

States). 

2.4 Results 

2.4.1 Chemical analysis of CPF 

 Recovery of CPF was 17% in the 0.4 ug L-1 concentration group (0.066 ug L-1), 24% in 

the 2 ug L-1 concentration group (0.485 ug L-1), and 29% in the 10 ug L-1 concentration group 

(2.890 ug L-1) (Table 2.1).  From this point forward, the concentrations are referred to as “low”, 

“medium”, and “high” treatment groups. 
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Table 2.1. Nominal and actual concentrations of chlorpyrifos (CPF) throughout the chronic 

exposure period as measured by high-resolution mass spectrometry. 

 

 

Exposure  

Day (D) 

 CPF Concentration (μg L-1) 

0.01%  

DMSO 0.4 2 10 

 D6 0.0029 0.143 0.864 4.200 

 D40 0.0015 0.005 0.278 1.700 

 D54 0.0038 0.044 0.342 1.750 

 D75 0.0076 0.070 0.455 3.900 

Average   0.0039 0.066 0.485 2.890 

Percent of Nominal   17% 24% 29% 

D6 = Exposure Day 6; D40 = Exposure Day 40; D54 = Exposure Day 54; D75 = Exposure Day 75 
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2.4.2 Differentially expressed gene and pathway analysis 

Whole body transcriptome analysis examined 24205 genes total and revealed 50 DEGs 

after 96 h ELS exposure to the highest CPF concentration as compared to the solvent control 

(FDR = 0.1). Of these, 17 were upregulated and 33 were downregulated (Table 2.2). Key 

biological processes and pathways affected by CPF exposure were visualized as functional 

networks (Fig. 2.1) formed from significantly upregulated (Fig. 2.2) or depleted pathways (Fig. 

2.3). These pathways were based on GO terms related to biological processes, molecular 

functions, and cellular components.   
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Table 2.2. Differentially expressed genes in X. laevis after 96 h early life-stage exposure to chlorpyrifos. 

Gene ID log Fold Change Name 

LOC108699634 5.5981 RNA polymerase II degradation factor 1-like, transcript variant X3 

LOC108707016 4.6741 RING finger protein 212B-like 

LOC108697970 2.76 taste receptor type 2 member 9-like 

cyp2j2.L 1.4291 cytochrome P450 family 2 subfamily J member 2 L homeolog, transcript variant X1 

MGC84235 1.0533 MGC84235 protein 

LOC108716281 0.74148 fucolectin-4-like 

arr3.L 0.70224 arrestin 3, retinal (X-arrestin) L homeolog 

LOC108707450 0.53404 retinoschisin-like 

hsd3b7.S 0.51542 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7 S homeolog, transcript variant X1 

masp2.S 0.39813 mannan-binding lectin serine peptidase 2 S homeolog, transcript variant X1 

LOC108701136 0.39432 alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 1-like 

LOC108703002 0.34747 dual 3’,5’-cyclic-AMP and -GMP phosphodiesterase 11A-like 

LOC108714924 0.26441 mucin-5AC-like 

LOC108709438 0.14402 plakophilin-1-like 

LOC108704439 0.13438 E3 ubiquitin-protein ligase TRIM39-like 

xclca2 0.1117 calcium activated chloride channel 

LOC108702356 0.068711 up-regulator of cell proliferation-like 

LOC108711733 -0.04594 A.superbus venom factor 1-like 

LOC108702434 -0.13085 NADPH oxidase organizer 1-like 

MGC68455 -0.26697 Glucose-6-phosphatase-like 

LOC108698286 -0.30285 NADPH oxidase 1-like 

LOC108714562 -0.42 cytokine receptor common subunit beta-like 

c3.L -0.4549 complement component 3 L homeolog 

LOC108717079 -0.52738 ceruloplasmin-like 

LOC108715543 -0.54158 transmembrane protein 125-like 

LOC108710049 -0.61908 glycerophosphodiester phosphodiesterase domain-containing protein 5-like, transcript variant X1 

LOC398210.L -0.62757 uncharacterized LOC398210 L homeolog 

LOC494638 -0.68665 uncharacterized LOC494638, transcript variant X2 

LOC108696196 -0.70299 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1-like, transcript variant X3 
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LOC108697412 -0.70506 probable carboxypeptidase X1 

LOC108715761 -0.75516 protein FAM83F-like 

LOC108710292 -0.90759 dual oxidase 1-like 

LOC108719393 -1.3564 transient receptor potential cation channel subfamily V member 4-like 

LOC108713225 -1.5865 protein DVR-1-like 

LOC108719568 -1.786 thiosulfate sulfurtransferase-like 

LOC108696752 -1.8144 uncharacterized LOC108696752, transcript variant X2 

steap4.L -1.9427 STEAP4 metalloreductase L homeolog 

LOC108703485 -2.3044 nuclear factor interleukin-3-regulated protein-like 

LOC108708918 -2.3482 alpha-tectorin-like 

LOC108708107 -2.424 cell wall protein DAN4-like 

LOC108709478 -2.5071 uromodulin-like 

LOC100036845 -2.5134 uncharacterized LOC100036845 

LOC108708109 -2.5619 pancreatic secretory granule membrane major glycoprotein GP2-like 

LOC108706182 -2.6118 platelet glycoprotein Ib alpha chain-like 

LOC108701668 -2.6226 NADPH oxidase organizer 1-like 

thdl18.L -2.7757 thyroid hormone down-regulated protein (gene 18) L homeolog 

thdl20.S -2.7968 thyroid hormone down-regulated protein (gene 20) S homeolog 

LOC108709109 -2.851 uromodulin-like 

lrg1.L -3.011 leucine-rich alpha-2-glycoprotein 1 L homeolog 
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Figure 2.1. ClueGo visualization of functionally grouped networks formed from significantly 

dysregulated pathways based on Gene Ontology (GO) databases (13/03/2019). Pathways were 

built using at least five differentially expressed genes (p ≤ 0.05) in early life-stage X. laevis after 

96 h of chlorpyrifos exposure. Statistical test was set to a right-sided hypergeometrical test with a 

Bonferroni (step down) p-value correction and a kappa score of 0.4. Node size represents 

pathway significance and darker shades represent higher gene proportion associated with 

pathway. Green node = depleted pathway, gray node = un-specific pathway, red node = 

upregulated pathway. A list of all significantly dysregulated pathways as well as this figure with 

all terms labelled is provided in Appendix B.  
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Figure 2.2. ClueGo output displaying pathways and biological processes associated with 

upregulated genes in X. laevis based on gene ontology (GO) vocabularies (13/03/2019) after 96 h 

early life-stage exposure to chlorpyrifos. (A) Networks formed from significantly upregulated 

pathways (p ≤ 0.05). Node size represents pathway upregulation significance. (B) Overview 

chart of functional groups including specific pathways associated with upregulated genes. The 

proportion of each group (%) is based on the number of GO terms included within each group. 

(C) Bar chart displaying the percentage of total genes (top) and number of differentially 

expressed genes (end of bar) associated with each GO term colour coded by pathway or function. 

 
A) B) 

C) 
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Statistically significantly upregulated GO terms are represented by: (***) = p ≤ 0.001, (**) = 

0.001 < p < 0.05, (*) = p ≤ 0.05.  
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Figure 2.3. ClueGo output displaying pathways and biological processes associated with 

downregulated genes in X. laevis based on gene ontology (GO) vocabularies (13/03/2019) after 

96 h early life-stage exposure to chlorpyrifos. (A) Networks formed from significantly depleted 

pathways (p ≤ 0.05). Node size represents pathway depletion significance. (B)  Overview chart 

of functional groups including specific pathways associated with downregulated genes. The 

proportion of each group (%) is based on the number of GO terms included within each group. 

(C) Bar chart displaying the percentage of total genes (top) and number of differentially 

expressed genes (end of bar) associated with each GO term colour coded by pathway or function. 

Statistically significantly depleted GO terms are represented by: (***) = p ≤ 0.001, (**) = 0.001 

< p < 0.05, (*) = p ≤ 0.05. 

  

 
A) B) 

C) 
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2.4.3 Morphometrics  

There was no effect of treatment on survival after chronic CPF exposure (ANOVA: F(4,24) 

= 0.525; p = 0.718). Overall survival in the water and solvent control treatments combined was 

95%.  No difference in SVL or wet body weight occurred after chronic exposure to CPF (Table 

2.3). There was a statistically significant decrease in NF stage in the medium CPF treatment as 

compared to the low CPF treatment (data not shown, Kruskal-Wallis: H(4)=9.963, p=0.041).  A 

significant decrease in the percentage of tadpoles that reached metamorphic climax, NF stage 65, 

occurred in the medium and high treatment groups compared to the water control (Table 2.3, 

ANOVA: F(2, 24) = 3.393, p = 0.028). Relative liver weight was 30% higher in individuals from 

the high CPF treatment group compared to the solvent control (Table 2.3, ANOVA: F(4,122) = 

2.862; p = 0.026). 

2.4.4 Effects of CPF on liver histology 

 Individuals from the solvent control group displayed a typical liver structure, comprised 

of hepatocytes arranged in cords 1-2 cells thick with sinusoids between cords containing 

erythrocytes. Qualitative screening for histopathological indicators of hepatotoxicity revealed no 

apparent differences in the structure of high CPF exposed livers as compared to the solvent 

control (Table 2.4).  

2.4.5 Effects of CPF on AChE activity 

 A concentration-dependent decrease in AChE activity was observed in brains of X. laevis 

at metamorphic climax following chronic exposure to CPF. Compared to the solvent control, 

median AChE activity was 2.1% lower in the low treatment group, 17.9% lower in the medium 

treatment group, and 24.0% lower in the high treatment group (Fig. 2.4). These differences were 

significant at the highest CPF treatment group (Kruskal-Wallis: H(3) = 9.647, p = 0.022). 
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Table 2.3. Morphometric indices (mean ± SEM) including snout-vent length (SVL), wet body 

weight, relative liver weight, and % individuals at Nieuwkoop Faber stage 65 for X. laevis 

tadpoles exposed chronically to waterborne chlorpyrifos (CPF). 

 

Treatment SVL (mm) Wet Weight (g) 
Relative Liver 

Weight (mg g-1) 

% at  

NF stage 65 

Facility Water  15.74 ± 0.30 0.313 ± 0.019 0.0097 ± 0.0009 15a 

0.01% DMSO  15.86 ± 0.35 0.312 ± 0.020 0.0083 ± 0.0007 13ac 

0.4 μg L-1 CPF 14.97 ± 0.20 0.306 ± 0.018 0.0104 ± 0.0008 14a 

2 μg L-1 CPF 15.16 ± 0.24 0.340 ± 0.023 0.0089 ± 0.0007 5b 

10 μg L-1 CPF 15.47 ± 0.26 0.336 ± 0.021 0.0120 ± 0.0009* 7bc 

 

Asterisk (*) indicates significant difference from solvent control (ANOVA: F(4,122) = 2.862; p = 0.026). 

Letters indicate significant differences between groups (ANOVA: F(2, 24) = 3.393, p = 0.028) 

Sample size (n) = 62-74 for SVL, wet body weight, % at NF; n=25 for relative liver weight. 
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Table 2.4. Severity of histological parameters qualitatively examined in liver of X. laevis at 

metamorphic climax after chronic exposure to waterborne chlorpyrifos (CPF).  

-- = absent; + = mild, ++ = moderate; +++ = severe 

 

  

 Individual Vacuolization Necrosis 
Melano-

macrophages 
Sinusoids 

0.01% 

DMSO 

1 -- -- -- -- 

2 -- -- ++ + 

3 -- -- +++ + 

4 -- -- +++ -- 

5 -- -- ++ ++ 

6 -- -- + - 

7 -- -- +++ + 

8 -- -- + -- 

9 -- -- + -- 

10 -- + + ++ 

10 μg L-1 

CPF 

1 -- -- +++ -- 

2 ++ -- ++ -- 

3 -- -- ++ -- 

4 -- -- + -- 

5 -- -- +++ +++ 

6 -- -- ++ -- 

7 -- -- ++ ++ 

8 -- -- + -- 

9 -- -- +++ ++ 

10 -- ++ ++ ++ 
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Figure 2.4. Median (± IQR) brain acetylcholinesterase (AChE) activity in NF stage 57 – 64 X. 

laevis after chronic exposure to chlorpyrifos (CPF). Data is presented in Units AChE per g tissue 

where units is equal to μmol substrate hydrolyzed per minute. Asterisk (*) indicates significant 

differences between groups (Kruskal-Wallis: H(3) = 9.647, p = 0.022). 
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2.5 Discussion  

 In the present study, we analyzed the transcriptomic responses of X. laevis after 96 h of 

CPF exposure as well as apical outcomes of chronic CPF exposure on X. laevis at metamorphic 

climax. This was the first study to look at the short-term transcriptomic responses of ELS X. 

laevis after CPF exposure. Pathway analysis revealed impacts on the biological processes and 

molecular functions of ELS X. laevis after short-term exposure to environmentally relevant 

concentrations of CPF. Some of these significantly dysregulated pathways were associated with 

“classic” and well-documented outcomes of CPF exposure, such as serine hydrolase activity, and 

others were related to outcomes not generally associated with exposure to CPF or OP pesticides, 

such as altered vasculature development.  

2.5.1 Developmental processes affected by CPF exposure 

Pathways related to vasculature development (GO:0001944) were significantly depleted 

after 96 h exposure to CPF. Across vertebrate species, blood vessels are among the first organs to 

develop during embryogenesis (Carmeliet and Collen, 1998). Alterations of the developing 

vascular system in ELS organisms are associated with a range of pathologies from malformation 

and deformity to mortality (Katagiri, 1983; Zhong et al., 2018). However, evidence suggests that 

exposure to some compounds can cause vascular abnormalities without any external signs of 

malformation. In a study on zebrafish (D. rerio) embryos exposed to cadmium, Cheng et al. 

(2001) examined effects on development of the vasculature by injection of microbeads into the 

circulation and found vasculature defects which were not associated with any visible 

malformation. Components of the extracellular matrix, such as fibronectins and collagen, play a 

primary role in vasculature development (Carmeliet and Collen, 1998). In the present study, 

transcriptome profiling in ELS X. laevis revealed that the extracellular region (GO:0005576) was 

the most significantly impacted cellular component after 96 h CPF exposure. The extracellular 

region is specifically involved in the production of endothelial cells that line the vasculature. The 

impacts of CPF on the extracellular regions of cells, and the potential alteration of vasculature 

development as an outcome warrants further exploration. 

The depletion of pathways associated with vasculature development included effects on 

the development of the cardiovascular system (GO:0072358) specifically. This is not surprising 
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as OP pesticides, including CPF, are known cardiotoxic agents in aquatic animals including 

Carcinus maenas and Oreochromis niloticus even after acute exposure (Lundebye et al., 1997; 

Thomaz et al., 2009). However, the literature regarding the cardiotoxic effects of CPF in 

amphibians is relatively scarce. A study by Watson et al. (2014) reported a dose-dependent 

decrease in heart rate in larval X. laevis after 96 h exposure to environmentally relevant 

concentrations of CPF. In the present study, DEG analysis revealed the most significantly 

differentially expressed gene after 96 h of CPF exposure in ELS X. laevis was an upregulated 

cytochrome p450 (CYP) isoform, CYP-2J2. In humans and zebrafish (D. rerio), this gene is an 

arachidonic acid epoxygenase with vasoprotective roles in the cardiovascular system (Goldstone 

et al., 2010). If the function of this gene is conserved across species, upregulation of CYP-2J2 

agrees with the pathway analysis revealing cardiovascular effects of CPF exposure in early life 

stage tadpoles.  

Body size of metamorphic individuals was not affected by CPF after chronic exposure 

despite the fact that ELS exposure to CPF clearly altered transcriptomic profiles related to 

vasculature development and other developmental processes. Studies on amphibian species Rana 

dalmatina and Rana fernandezae reported no effect on amphibian body size after chronic 

exposure to CPF concentrations ranging from 10 – 500 μg L-1  (Bernabò et al., 2011; Ruiz de 

Arcaute et al., 2012). Similarly, Sparling and Fellers (2009) reported no difference in SVL after 

exposure to CPF concentrations as high as 200 μg L-1 and a significant decrease in body weight 

only in the 200 μg L-1 treatment group in Rana boylii after a 56 d exposure period. Dimitrie and 

Sparling (2014) reported dose-dependent decreases in SVL and body weight after exposure to 

CPF from larval stages through to metamorphosis in Pseudacris regilla. However, this exposure 

was conducted at nominal concentrations ranging from 134 – 294 μg L-1 CPF, which is 

approximately 44 – 98 times higher than our highest measured CPF concentration. In contrast, 

Jayawardena et al. (2011) reported a dose-dependent increase in SVL and body weight in Bufo 

melanostictus after chronic CPF exposure at concentrations ranging from 50 – 500 μg L-1. There 

was no increased incidence of malformations present in any CPF treatment group in this study. 

As with reported effects of CPF on body weight and SVL in across published studies, effects of 

CPF exposure on incidence of malformations is also highly variable across exposure 

concentrations and species (Dimitrie and Sparling, 2014; Jayawardena et al., 2011).  
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In the present study, chronic exposure to CPF resulted in fewer individuals reaching NF 

stage 65 (metamorphic climax) at termination of the exposure. This finding is supported by a 

number of studies with amphibians that report increased time to metamorphosis after CPF 

exposure (Dimitrie and Sparling, 2014; Jayawardena et al., 2011; Sparling and Fellers, 2009).  

Exposure to CPF led to dysregulation of a number of pathways related to energy metabolism and 

various metabolic processes, which will be discussed in further detail in following sections. 

Disruption of these metabolic functions could be tied to the observed decrease in successful 

completion of metamorphosis as more energy is used to keep up with increased metabolic 

demand and less is available for the process of metamorphosis. The range of reported effects on 

morphometric indices in amphibian species after exposure to CPF highlights the importance of 

considering species differences in amphibian research. At our exposure concentrations, 

significant dysregulation of pathways specific to vasculature development and development of 

the cardiovascular system occurred after short-term exposure. This, combined with the lack of 

significant alteration of classic morphometric indices such as wet body weight and SVL after 

long-term exposure, suggests that future research into the developmental effects of CPF exposure 

in amphibians should consider morphological changes in the vasculature and cardiovascular 

system. 

2.5.2 CPF inhibits AChE and pathways associated with serine hydrolase activity  

One of the classic biomarkers of exposure to OP pesticides is inhibition of AChE, a 

serine hydrolase enzyme, and this is the mechanism of toxic action of CPF. Specifically, enzyme 

inhibition occurs when the serine hydroxyl moiety in the enzyme active site is phosphorylated 

leaving the enzyme unable to participate in the breakdown of ACh (Fukuto, 1990). Short-term 

exposure to CPF can inhibit AChE activity in amphibian species (including X. laevis) at 

concentrations as low as 8.87 μg L-1  (Colombo et al., 2005; El-Merhibi et al., 2004; Liendro et 

al., 2015; Wacksman et al., 2006; Widder and Bidwell, 2006). It is important to note, however, 

that these studies are limited in scope in that they use only short-term exposures with CPF 

concentrations higher than environmentally relevant and consider early larval life-stages only, 

despite evidence that metamorphs are more sensitive to AChE inhibition by CPF than 

premetamorphs (Richards and Kendall, 2002). The present study is the first to show that chronic 

exposure to CPF at environmentally relevant concentrations results in AChE inhibition in the 
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brain of metamorphic X. laevis. This observed characteristic response to CPF also confirms 

waterborne CPF exposure in our experimental system, despite the fact that our analysed 

concentrations were 20% of our nominal concentrations. There was also a significant and non-

specific dysregulation in pathways associated with serine hydrolase activity after short-term 

exposure in ELS individuals. Acetylcholinesterase is a serine hydrolase enzyme. Thus, 

dysregulation of this pathway as indicated in the ELS transcriptome may be associated with the 

apical outcome of AChE inhibition in metamorphic individuals.  

2.5.3 CPF-induced changes in metabolic processes and liver weight 

 Pathways associated with metabolic processes were significantly upregulated in ELS X. 

laevis after 96 h exposure to CPF. These included pathways related to the regulation of 

proteolysis as well as biosynthesis of carbohydrates. Within the pathways associated with 

proteolysis and protein metabolism, negative regulation of proteolysis (GO: 0045861) was the 

most significantly upregulated. This indicates that CPF interfered with the frequency, rate, or 

extent of the hydrolysis of a peptide bond or bonds within a protein (MGI, 2019). A study by 

Olsvik et al. (2015) examined the transcriptomic and metabolomic profiles of Atlantic salmon (S. 

salar) after exposure to CPF and  reported a significant increase in multiple free amino acids in 

hepatocytes. They concluded that the accumulation of these compounds was indicative of a 

decrease in protein synthesis, or an increase in proteolysis (Olsvik et al., 2015). Other studies 

have reported significant activation of protease, a hydrolytic peptidase enzyme, after CPF 

exposure in rats and mice with the highest level of activation found within liver tissues (Muniya 

Naik et al., 2018; Savithri et al., 2016). This activation is indicative of altered protein metabolism 

and increased proteolysis. A number of GO terms in the present study that were related to 

protease activity were significantly upregulated including: peptidase regulator activity 

(GO:0061134), regulation of peptidase activity (GO:0052547), and negative regulation of 

hydrolase activity (GO:0051346). In addition to protein metabolism, CPF exposure in ELS X. 

laevis also altered carbohydrate metabolism with the most significantly upregulated pathway 

being the hexose biosynthetic process (GO:0019319). This indicates that CPF exposure 

interfered with the chemical reactions and pathways resulting in the formation of hexose (MGI, 

2019). Metabolomic profiles in Atlantic salmon (S. salar) liver after CPF exposure also revealed 

dysregulation of carbohydrate metabolism, specifically a reduction in multiple hexoses as well as 
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their metabolic pro- and pre-cursors (Olsvik et al., 2015). Although the present study analysed 

whole-body transcriptomic profile while the study by Olsvik et al. (2015) focused on fish 

hepatocytes specifically, similar pathways related to protein and carbohydrate metabolism and 

metabolic processes were affected, suggesting metabolic consequences of CPF exposure can be 

applied across taxa.  

The liver is a key metabolic organ across vertebrate species, including amphibians, and 

the site of many metabolic processes, such as carbohydrate and protein synthesis (Rui, 2014) 

(Akiyoshi and Inoue, 2012). Despite dysregulation of key metabolic pathways after the ELS 

exposure to CPF, there were limited apical effects of chronic CPF exposure in the liver of X. 

laevis at metamorphic climax. Relative liver weight was higher in individuals chronically 

exposed to the highest concentration of CPF. This could be associated with the observed 

dysregulation of metabolic processes at the early life stages, specifically upregulation of 

processes associated with proteolysis and carbohydrate biosynthesis, as hepatocytes expand to 

compensate for increased metabolic demand. Endpoints for qualitative histopathological 

assessment were selected to lend further insight into the impacts on metabolism and metabolic 

processes after CPF exposure. Qualitative histopathological assessment of liver tissue from 

metamorphic X. laevis revealed no obvious tissue-level effects of chronic CPF exposure despite 

overall increase in liver weight relative to body size and an upregulation of metabolic pathways 

in the transcriptome of ELS individuals.  

2.5.4 CPF exposure depletes pathways related to immune function and response 

 Exposure to CPF has been linked to immunosuppression and immunomodulation in fish 

following both short-term (Adel et al., 2017; Jin et al., 2015; Marchand et al., 2017) and long-

term (Ural, 2013; Wang et al., 2011, 2013; Zhang et al., 2017) exposures. A recent study 

examined transcriptomic profiles in C. carpio exposed to CPF and reported significant 

dysregulation in pathways related to immune response and immune system function (Zhang et 

al., 2017). In the present study, short-term exposure to CPF significantly affected pathways 

involved in immune function in ELS X. laevis. Gene ontology terms immune function 

(GO:0006955), inflammatory response (GO:0006954), and cytokine receptor activity 

(GO:0004896) were all significantly depleted after 96 h exposure to CPF. In the only other study 

examining the impact of CPF on immune-related responses in an amphibian, Kerby and Storfer 
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(2009) reported a >60 % decrease in survival in tiger salamanders (Ambystoma tigrinum) when 

exposed concurrently to CPF and Ambystoma tigrinum virus as compared to individuals exposed 

to the same concentration of CPF alone. The depletion immune-related pathways after ELS 

exposure to CPF observed in our study provides some insight into which pathways are 

modulated by CPF, potentially leading to immunomodulation/immunosuppression and pathogen 

susceptibility. The present study did not measure apical endpoints associated with 

immunotoxicity after chronic CPF exposure; however, given the established immunotoxicity of 

CPF in fish species and the alteration of immune-related pathways in the ELS X. laevis 

transcriptome, further examination of the immunotoxic effects of CPF in amphibian species is 

warranted.    

2.5.5 ELS exposure to CPF modulates other biological pathways in X. laevis 

There were several other pathways dysregulated with ELS exposure to CPF and included 

pathways associated with blood coagulation, sensory perception of light stimulus, and molecular 

function and binding. Blood coagulation (GO:0007596) falls under the umbrella of response to 

stress (GO:0006950) and, more specifically, wound healing (GO:0042060), which is the series of 

events that restores integrity to damaged tissue following an injury (MGI, 2019). Blood 

coagulation is an integral part of the immune system, and is considered a sentinel for the immune 

response when considered in conjunction with activation of the complement system (Bougas et 

al., 2013). In fact, when visualized in Cytoscape the upregulated pathways involving blood 

coagulation were overlapping with the depleted pathways involving immune response, 

suggesting that the two responses are highly related. Dysregulation of blood coagulation 

pathways has been reported in a number of aquatic vertebrates after exposure to biological and 

contaminant stressors including Chytrid fungus in Xenopus tropicalis (Rosenblum et al., 2009) 

and heavy metals in Perca flavescens (Bougas et al., 2013). 

 There were two categories of significantly dysregulated GO terms related to molecular 

function in the present study – those to do with enzyme activity, which were both upregulated 

and depleted, and those associated with cellular binding, which were specifically upregulated. 

The most significantly upregulated GO term associated with binding was tetrapyrrole binding 

(GO:0046906). Tetrapyrrole binding is the parent term for heme binding, which was also 

significantly upregulated (GO:0020037). Heme binding is defined as a selective and non-
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covalent interaction with heme, any compound of iron complexed in a tetrapyrrole ring (MGI, 

2019). When taken up by an organism, CPF undergoes phase I biotransformation mediated by 

CYP monooxygenase enzymes to produce the oxon-analog, a more potent anticholinesterase 

(Fukuto 1990; Wacksman et al., 2006). In fact, the formation of the oxon-analog from CPF is 

essential to the mode of action as the parent compound itself is not considered to be a strong 

inhibitor of AChE (Solomon et al., 2014). More specifically, the mechanism of action involves 

an irreversible binding of CPF to the heme iron of CYP enzymes to produce the phosphate oxon 

active metabolite (Rajpoot et al., 2013). Monooxygenase activity (GO:0004497) was 

significantly upregulated in the same network as upregulation of tetrapyrrole binding after CPF 

exposure. From these results, it appears that in amphibians, as in other vertebrates, the 

mechanism of toxic action for CPF is mediated by phase I biotransformation enzymes. 

Another significantly upregulated pathway in ELS X. laevis after CPF exposure was sensory 

perception of light stimulus (GO:0050953), neurological process that falls under the umbrella of 

nervous system process (GO:0050877). The primary mechanism of toxic action of OP pesticides 

in general, including CPF, is neurotoxicity, as such, effects on the nervous system are an expected 

outcome of CPF exposure (Galloway and Handy, 2003). Altered swimming behaviour in response 

to stimulation of light to dark photoperiod transitions have been reported in zebrafish after 96 h 

exposure to CPF (Jin et al., 2015). There are no studies on behavioural responses to light stimulus 

following CPF exposure in amphibians but based on the transcriptomic response in the present 

study and response in zebrafish, altered behavioural responses may be a relevant adverse outcome 

to CPF in amphibians as well.  

2.6 Conclusion  

 This work demonstrated that short-term (96 h) exposure to CPF during early stages of 

larval development has the potential to disrupt many important pathways and processes in the 

model amphibian species, X. laevis. Physiological systems are often interdependent with both 

obvious and subtle overlap, and it is likely that the pathways found to be dysregulated in this 

study are linked to one another as well as to apical outcomes of exposure. Pathway analysis of 

the transcriptomic data attests that various metabolic pathways and enzymatic processes are 

disturbed by CPF exposure and may contribute to the observed adverse outcomes when chronic 
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CPF exposure was carried through to metamorphic climax. In terms of novel transcriptomic 

pathways identified in this study, immune function, cardiovascular development, metabolic 

processes, and behavioural responses to light stimulus are biological processes that could be a 

target for CPF in amphibians, with consequences for apical outcomes that should be explored. 

This study contributes to a better understanding of the potential consequences of chronic 

exposure of amphibians to environmental concentrations of CPF, suggesting that this widespread 

and heavily-used pesticide could impact a wider range of biological pathways.   
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CHAPTER 3 

 

EFFECT OF CHLORPYRIFOS, ALONE AND COMBINED WITH A 

LIPOPOLYSACCHARIDE CHALLENGE, ON IMMUNE PARAMETERS IN THE 

AMPHIBIAN XENOPUS LAEVIS 

 

 

Preface 

 Chlorpyrifos (CPF) has known immunotoxic effects in fish species, but the research 

regarding the immunotoxicity of the pesticide in amphibians is relatively scarce. In the previous 

chapter, we used whole transcriptome analysis to demonstrate that short-term, early life stage 

exposure to CPF in Xenopus laevis leads to disruption of a number of biological pathways 

related to immunotoxicity. This aided in design of the second study that focused on the immune 

system for a system-specific assessment of CPF impacts in amphibians. In this study, we further 

examined the potential immunotoxicity of CPF in the model amphibian species, X. laevis, using 

an immune challenge exposure model. The immune challenge assay allows for evaluation of a 

host’s ability to mount an appropriate immune response when challenged with a known 

immunostimulatory agent after exposure to a potential immunotoxic chemical. The objectives of 

the present study were to: (1) evaluate the effects of short-term exposure (seven days) to sub-

lethal concentrations of CPF on immune-related parameters in the amphibian X. laevis, and (2) 

determine whether exposure to CPF alters their ability to mount an immune response when 

challenged with lipopolysaccharide (LPS), a known immunostimulatory agent. Specific 

endpoints measured were histopathology of kidney tissues, circulating blood leukocyte 

populations, and expression of key pro-inflammatory cytokines in the liver. This chapter is being 

prepared as a manuscript for submission to a scientific journal. Author contributions are as 

follows: 



 

50 

 

Nicole Baldwin (University of Saskatchewan): conducted the animal husbandry, managed the 
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3.1 Abstract 

Numerous contaminants present in the aquatic environment have the potential to disrupt 

immune defences and potentially increase disease susceptibility. Amphibians are known to 

inhabit contaminated environments, and there is growing concern that known immunotoxic 

chemicals may magnify the impacts of globally emerging infectious diseases. Chlorpyrifos 

(CPF) is one of the most commonly used organophosphate pesticides in Canada and worldwide. 

This pesticide can induce a variety of adverse effects in non-target aquatic vertebrates, including 

immunomodulation; however, studies specifically on amphibians are lacking. The objectives of 

this study were to (1) determine if short-term exposure to CPF results in immunomodulation in 

juvenile Xenopus laevis, the model amphibian species and, (2) determine if this 

immunomodulation results in impaired ability to mount a response to a simulated pathogen, 

lipopolysaccharide (LPS). Individuals were aqueously exposed to CPF (1 or 10 µg L-1) for seven 

days, then injected with either phosphate buffered saline (PBS; immune-rested) or 10 µg g-1 LPS 

(immune-stimulated) and sampled one day post-injection. Differential leukocyte profiles (by 

flow cytometry), expression of cytokines in the liver (by qPCR), and histopathology of the 

kidney were assessed in immune-rested and immune-stimulated individuals.  Exposure to 10 µg 

L−1 CPF resulted in an increase in kidney epithelial cell height (18% compared to control). 

Individuals exposed to CPF also displayed an overall reduction in circulating lymphocytes, an 

increase in circulating granulocytes, and increased expression pro-inflammatory cytokines, TNF-

α and CSF-1, in the liver. This study demonstrates that CPF can modulate the inflammatory 

immune parameters, providing some of the first evidence of the immunotoxic potential of CPF in 

amphibians. Given the fundamental role of inflammation in immune responses, these findings 

suggest that exposure to CPF may have consequences for amphibian susceptibility to 

ecologically relevant pathogens. 
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3.2 Introduction 

  Chlorpyrifos (CPF; C9H11Cl3NO3PS) is one of the most commonly used organophosphate 

(OP) pesticides in Canada and worldwide (Adeyinka and Pierre, 2019). Numerous studies have 

assessed CPF concentrations in various aquatic systems around the world, with concentrations as 

high as 3.7 µg L−1 reported in agriculturally intense areas in North America (Zhang et al., 2012). 

Chlorpyrifos contamination of aquatic ecosystems poses a threat to the non-target species 

inhabiting these systems. The main mechanism of toxic action of CPF is inhibition of 

acetylcholinesterase (AChE), the enzyme responsible for the breakdown of acetylcholine (ACh) 

at nerve synapses (Fukuto, 1990). The accumulation of ACh at nerve junctions causes 

uncontrolled firing of neurons resulting in secondary effects that can lead to the death of fish and 

other aquatic animals (Fukuto, 1990; Kienle et al., 2009; Watson et al., 2014). Exposure of 

aquatic vertebrates to CPF can also alter a wide range of physiological parameters including 

growth and development (Kharkongor et al., 2018; McClelland et al., 2018; Tussellino et al., 

2016), oxidative stress (Jin et al., 2015; Zahran et al., 2018), cellular integrity (Ali et al., 2009; 

Altun et al., 2017), and immune response (Chen et al., 2014; Li et al., 2013; Wang et al., 2011). 

To date, most of the detailed studies specifically regarding CPF immunomodulation have been 

conducted in rats with clear effects on a variety of immune parameters, including pathology of 

immune organs, changes in immune cell populations, and reduced responsiveness to immune 

stimulating factors (Mokarizadeh et al., 2015; Oostingh et al., 2009).    

Studies on immune-related outcomes of CPF exposure in aquatic species are largely 

biased towards fish, with reported effects such as histopathological changes in key immune 

organs, altered immune parameters (e.g. leukocyte populations, cytokine expression) and 

decreased resistance to pathogen infection. In both fish and amphibians, the kidney is a key 

immune organ (Chen and Robert, 2011; Zhang et al., 2017) and an infection target for some 

pathogens such as Ranavirus, a prevalent viral agent plaguing wild amphibian populations (De 

Jesús Andino et al., 2012; Wendel et al., 2018). Changes in kidney structures such as tubules, 

glomeruli and interstitial connective tissues in fish following CPF exposure have been observed 

in various species, including Danio rerio (Scheil et al., 2009), Oreochromis niloticus (Zahran et 

al., 2018), Cyprinus carpio (Altun et al., 2017; Wang et al., 2013; Xing et al., 2012) and this 

tissue damaged is often attributed to oxidative stress. In a study by Xing et al. (2015), the kidney 

was a site of accumulation for CPF and its metabolites in C. carpio and this accumulation was 
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detectable after up to 40 days of depuration. Leukocytes (or white blood cells) play diverse and 

complex roles in the inflammatory response to pathogens. Fish exposed to CPF have displayed 

altered circulating leukocyte populations including lymphocytes (Adewumi et al., 2018; Ali et 

al., 2009; Zahran et al., 2018), granulocytes (Maharajan et al., 2017), and monocytes (Adewumi 

et al., 2018; Raibeemol and Chitra, 2018). Changes in cell populations are sometimes observed 

together with altered expression of cytokines (Zahran et al., 2018), effector molecules that are 

synthesized and secreted by immune cells and are vital in modulating the amplitude of an 

immune response. Specific roles of cytokines identified in vertebrates (including amphibians) 

include initiation of pro-inflammatory cascades (De Jesús Andino et al., 2012), macrophage 

activation and recruitment (Wang et al., 2011; Zahran et al., 2018), and development, 

differentiation, and proliferation of phagocytes (Grayfer and Robert, 2016). Across many fish 

species, exposure to CPF is reported to upregulate expression of  tumor necrosis factor alpha 

(TNF-α) (Chen et al., 2014; Jin et al., 2015; Zahran et al., 2018) as well as interleukin 1-beta (IL-

1β) (Jin et al., 2015; Wang et al., 2011; Zahran et al., 2018). While there is clear evidence that 

CPF exposure can have immunomodulatory effects in fish, similar studies with amphibians are 

scarce despite the hypothesized links between pesticide contamination of aquatic environments 

and globally declining amphibian populations (Davidson, 2004; Hayes et al., 2006; Sparling and 

Fellers, 2009).  

The impact of pesticides, such as CPF, entering the aquatic environment and their 

potential immunomodulatory effects in amphibians are of particular concern. Amphibian 

populations have been declining globally since the 1980s (Hayes et al., 2010; Rollins-Smith, 

1998; Stuart et al., 2004). The reasons for this decline are complex with a number of potential 

contributing factors including climate change, habitat loss, anthropogenic chemical 

contamination, and presence of opportunistic pathogens (Carey et al., 1999; Miller et al., 2011). 

Environmental stressors rarely occur in isolation and it is likely that a combination of these 

factors play a role in localized mass mortality events and global declines. Exposure to 

environmental contaminants may alter components of the immune system, resulting in a level of 

immunomodulation that impairs an individual’s ability to mount an effective immune response to 

pathogens encountered in their environment thus leading to infection, disease, and mortality 

(Buck et al., 2015). Resistance to pathogens encountered in the environment involves aspects of 

both the innate and adaptive portion of the amphibian immune system. Beginning at the late 
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tadpole stages (pro-metamorphosis) and continuing into early metamorphosis, the amphibian 

immune system undergoes a substantial reorganization, which is accompanied by 

immunosuppression that persists for up to six months post-metamorphosis (Grogan et al., 2018). 

Exposure to environmental contaminants during these sensitive early life-stages may lead to 

long-term impacts on the organism’s ability to defend against pathogen infection. Although it is 

difficult to make causative links, immunomodulation due to exposure to anthropogenic 

contaminants and increased susceptibility to disease have been implicated in localized mass 

mortality events of amphibian populations, as well as widespread declines (Carey et al., 1999; 

Hayes et al., 2010).  

The objective of the present study was to determine the effects of short-term exposure to 

sub-lethal concentrations of CPF on immune-related parameters in the amphibian Xenopus laevis 

and to evaluate whether exposure to CPF alters their ability to mount an immune response when 

challenged with lipopolysaccharide (LPS), a known immunostimulatory agent. A major 

component of the bacterial outer cell wall membrane, LPS is often used in immunotoxicology 

studies to stimulate the inflammatory response and simulate a pathogen infection (Swain et al., 

2008). We conducted an immune challenge study and examined the effects on immune-related 

parameters in both non-stimulated and immune-stimulated (LPS-injected) individuals. Specific 

endpoints evaluated included histopathology of kidney tissues, circulating blood leukocyte 

populations, and expression of key pro-inflammatory cytokines in the liver. Concentrations of 

CPF chosen for the short-term exposure were within range of those found in aquatic systems; for 

example, concentrations of CPF have been recently reported as high as 3.7 µg L−1 in 

agriculturally intensive areas in North America (Uniyal and Kumar Sharma, 2018).  The CPF 

concentrations chosen are also considered sub-lethal for amphibians (based on previous literature 

3.3 Materials and Methods 

3.3.1 Obtaining Xenopus laevis for exposures 

An adult X. laevis colony was maintained under a 12 hours (h) light:12 h dark 

photoperiod at 16 ± 1 °C in the Aquatic Toxicology Research Facility at the Toxicology Centre, 

University of Saskatchewan, Saskatoon, SK. Four sexually mature males and females were 

selected for breeding. Each was injected in the dorsal lymph sac with a 25 international unit (IU) 
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priming dose of human chorionic gonadotropin (hCG, Sigma-Aldrich, St. Louis, MN, United 

States) dissolved in sterilized phosphate buffered saline (PBS;137 mM NaCl, 2.7 mM KCl, 10 

mM Na2HPO4, 1.8 mM KH2PO4). After priming injections males and females were housed in 

separate aquaria at 21 ± l °C overnight. A second dose of hCG was administered approximately 

24 h after priming injections; males received a 250 IU dose and females received a 500 IU dose. 

Breeding pairs were then selected at random, placed into aquaria with water temperature 

maintained at 21 ± 1 °C, and left to spawn overnight.  

After collection, selection and preparation of embryos followed protocols outlined in 

“Standard guide for conducting the Frog Embryo Teratogenesis Assay-Xenopus (FETAX)” 

(ASTM, 2012). A maximum of 50 normally cleaving embryos were placed in individual egg 

cups, a vertical PVC pipe with two holes cut below a 100 μm Teflon mesh insert, to incubate in 

facility water maintained at 22 ± 1 °C for 24 h. After this incubation period tadpoles were reared 

in a Min-O-Cool tank (Frigid Units Inc., Toledo, OH, United States) under a 12 h light:12 h dark 

photoperiod at 21 ± 1 °C until they reached Nieuwkoop Faber (NF) stage 65 (Nieuwkoop and 

Faber, 1994). Tadpoles were fed SeraMicron (Sera, Heinsberg, Germany) ad libitum daily and 

then transitioned to Arcadia EarthPro Amphibigold pellets (Arcadia Reptile, Mepal, 

Cambridgeshire, England) at metamorphosis. Animals used in this study were handled in 

accordance with the University of Saskatchewan’s Animal Research Ethics Board (protocol no. 

20130045) and adhered to the Canadian Council on Animal Care guidelines for humane animal 

use.  

3.3.2 Short-term chlorpyrifos exposure with LPS challenge 

Chlorpyrifos powder (CAS: 2921-88-2, purity: 98%) was purchased from TRC Canada 

(North York, ON, Canada). Stock concentrations of 10 and 100 µg L−1 CPF were prepared in 

dimethyl sulfoxide (DMSO) and added to exposure tanks for a final solvent concentration of 

0.01% v/v and nominal CPF exposure concentrations of 1 and 10 µg L−1, respectively.  

Sixty individuals at NF stage 65 were transferred from the general population into 7 L 

tanks (5 individuals/tank) in a temperature controlled environmental chamber for a one-week 

acclimation period under a 16 h light:8 h dark photoperiod at 21 ± l °C.  Frogs were fed crushed 

Arcadia EarthPro Amphibigold pellets ad libitum daily throughout the acclimation and the 

exposure period. One day prior to exposure, individuals were weighed and sorted to ensure an 
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even distribution of sizes across treatments. Individuals were exposed to CPF for seven days 

under static renewal conditions with four tanks per treatment and five individuals per tank (n=20 

individuals/CPF treatment). Water parameters were recorded daily (pH 7-7.5, dissolved oxygen 

> 90%, temperature = 20 ± 0.5°C) and a 75% water change was conducted where tanks were re-

dosed with CPF to maintain the nominal target concentrations. During the exposure period water 

quality was monitored daily (Appendix C) and 75% water renewal was conducted where tanks 

were re-dosed with CPF to maintain the nominal target concentrations.  

After seven days of CPF exposure, each CPF treatment was divided so that ten 

individuals received PBS injection and ten received the LPS injection. This resulted in a 2 x 3 

factorial design, with six unique treatments and 10 individuals per treatment. LPS (E. coli 

055:B5; Sigma-Aldrich, St. Louis, MN, USA) was solubilized in sterile PBS on the day of 

injections. Animals were lightly anesthetized by immersion in buffered 0.2 g L-1 tricaine 

methanesulfate (MS-222) prior to injection and then injected intraperitoneally on the lower left 

portion of the abdomen with sterilized PBS or with 10 µg LPS g−1 body weight using a 29-gauge 

needle. Following injections, PBS-injected and LPS-injected individuals of each CPF treatment 

group were housed separately in clean facility water.  

Individuals were sampled one day post-injection (1 dpi). This time frame was chosen 

based on data from previous work with LPS showing maximal immune stimulatory response 

(Gallant and Hogan, unpublished). Individuals were euthanized by immersion in buffered 0.1% 

MS-222 and morphometric endpoints such as wet body weight (to the nearest 0.01 g), total body 

length (to the nearest 0.01 cm), and liver weight (to the nearest 0.01 g) were measured and 

recorded (n = 9 for solvent groups; n = 10 for 1 and 10 µg L−1 CPF treatment groups). Whole 

blood (10 µl) was collected from each individual by cardiac puncture with a heparinized 

hematocrit tube. Livers were excised, weighed (to the nearest 0.01 g), and immediately flash 

frozen for targeted gene expression analysis. The whole carcasses with all other organs intact 

were then submerged in CalEx-II (Fisher Scientific, Hampton, NH, United States) for 48 h of 

fixing and decalcifying prior to transfer into 70% ethanol for preservation. 

3.3.3 Kidney histology 

Kidneys from each individual were excised, placed into a tissue embedding histocassette, 

and fixed using a RVG1 vacuum tissue processor (Intelsint S.R.L., Villarbasse, TO, Italy). After 
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processing, kidneys were embedded in paraffin wax. Each kidney was longitudinally sectioned at 

a thickness of 6 µm, mounted on slides, and dried at 37 °C for approximately 12 h. Sections were 

stained with regressive hematoxylin and eosin (H&E) and examined using an Olympus BX41 

microscope (Olympus, Center Valley, PA, United States). Photographs of each slide were taken 

using an attached Olympus DP71 camera and the associate DP Manager software (Olympus). 

One section at the same plane of view per kidney was chosen for measurement of tubule 

epithelial cell height. Ten tubules were chosen at random from each section and four random 

epithelial cells within each tubule were measured. Measurement of kidney tubule epithelial cells 

was performed blinded using the open source ImageJ 1.x software (Bethesda, Rockville, MD, 

United States). 

3.3.4 Leukocyte profiles using DiOC5(3) staining and flow cytometry 

Blood collected during the sampling period was transferred from the hematocrit tube to a 

heparinized vacutainer (32 IU sodium heparin; BD Bioscience, Franklin Lakes, NJ, USA) 

containing 1 mL cold PBS to prevent coagulation. Samples were taken in duplicate per 

individual and stored on ice for a maximum of 1 h before staining and preparation for flow 

cytometry analysis as described in Burraco et al. (2017). Briefly, 1 µL of 2 mM 3,3’-

dipentyloxacarbocyanine iodide (DiOC5(3)) dye was added to the blood and PBS solution, for a 

final concentration of 2 µM DiOC5(3). Samples were mixed and incubated at room temperature 

for 5 min, centrifuged at 4°C for 5 min at 1000 rpm, and then supernatant was aspirated prior to 

re-suspension of the cells in 1 mL PBS. Stained samples were analyzed by flow cytometry on the 

Accuri C6 (BD Bioscience), where 100,000 events were recorded per sample. In each sample, 

erythrocytes, lymphocytes, monocytes, and granulocytes were identified based on side scatter 

measuring the granularity or complexity of the cell and the fluorescent intensity of the cell in the 

FL1 channel. Each homogeneous cell population was gated, and event rate and population 

percentage were calculated using the BD Accuri C6 Plus software (BD Biosciences). 

3.3.5 Gene expression analysis of pro-inflammatory cytokines  

 Liver tissues were disrupted using an Omni Bead Ruptor (Omni International, 

Kennesaw, GA, USA) for two 45 second (s) cycles. Total liver mRNA was obtained using TRI 

reagent as directed by the manufacturer (Invitrogen, Carlsbad, CA, United States) and re-
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suspended in RNase-free water. Concentration of RNA was measured using a Nanodrop-1000 

spectrophotometer (Thermo Fisher Scientific, Waltham, United States) and RNA quality was 

confirmed on a 1% agarose gel. Genomic DNA (gDNA) cleanup and complementary DNA 

(cDNA) synthesis of 1 μg total RNA was performed using the QuantiTect reverse transcription 

kit (Qiagen, Mississauga, ON, Canada) as described by the manufacturer. 

Gene expression analysis was performed by qPCR using the CFX96 Real-time C1000 

Thermal Cycler (Bio-Rad Laboratories) and SsoFast EvaGreen Supermix (Bio-Rad Laboratories) 

using previously described methods (Gallant and Hogan, 2018). Gene-specific primer sets 

(Invitrogen, Carlsbad, CA, United States) for target genes IL-1β, TNF-α, and CSF-1 as well as 

GAPDH and EF1α (reference genes) are detailed in Table 3.1. Briefly, each 20 µL qPCR 

reaction volume contained 1x SsoFast EvaGreen Supermix (Bio-Rad Laboratories), optimized 

concentrations of each primer set, and 2 µL of diluted cDNA template. Samples were run in 

duplicate and a no template and no reverse transcriptase control were included on each plate. A 

standard curve made from a serially diluted pool of cDNA was also included on each plate for 

interpolation of relative mRNA abundance of targeted genes in each sample. Each standard curve 

had an R2 > 98%. The thermal cycle program was comprised of an enzyme activation at 95 °C 

for 30 s, 40 amplification cycles at 95 °C for 5 s and 5 s at the gene specific annealing 

temperature (Table 3.1), denaturation at 95 °C for 1 min, and melt curve analysis from 55 °C to 

95 °C (increasing 1 °C every 30 s). The mean starting quantity of each sample was normalized to 

the geometric mean of the reference genes, EF-1 and GAPDH. Data are presented as fold-change 

relative to the 0.01% DMSO control + PBS-injected group. 
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Table 3.1 List of target genes and associated forward and reverse primers used for transcript expression analysis by qPCR in Xenopus 

laevis liver tissues. 

Target Primer Sequence (5’ → 3’) Accession 

Number 

Amplicon 

Length 

(bp) 

Annealing 

Temp (°C) 

References 

IL-1β FWD GGCCTCAATGAAACCTCCAC NM_001085605.1 232 60 (Gallant and 

Hogan, 2018) REV AGGCAGATATCTCCCAGCAC 

 

TNF-α FWD TGTCAGGCAGGAAAGAAGCA AB298595.1 203 62 (Sifkarovski et 

al., 2014) REV CAGCAGAGAGCAAAGAGGATGGT 

 

CSF-1 FWD ATCGAACTCTGTCCAAGCTGGATG NM_001280600.1 123 60 (Sifkarovski et 

al., 2014) REV GGACGAAGCAAGCATCTGCCTTAT 

 

GADPH FWD GACATCAAGGCCGCCATTAAGACT AF549496.1 130 58.4 (Sifkarovski et 

al., 2014) REV AGATGGAGGAGTGAGTGTCACCAT 

 

EF-1 FWD GAGGGTAGTCTGAGAAGCTCTCCACG NM_001086133.1 221 60 (Gallant and 

Hogan, 2018) REV CCTGAATCACCCAGGCCAGATTGGTG 

 

Fwd = forward; Rev = reverse. 
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3.3.6 Statistical analysis 

Data were tested for a normal distribution using the Shapiro-Wilk test and for 

homoscedasticity using Levene’s test. In cases where data failed the assumptions of parametric 

statistics, a log transformation was applied and data was reanalyzed. Data were analyzed using a 

two-way ANOVA (CPF exposure × LPS challenge). In cases where a CPF × LPS interaction was 

significant (interaction p ≤ 0.05), pairwise comparisons were applied with a Bonferroni-adjusted 

p value. In cases where there was no significant interaction detected (interaction p > 0.05), each 

main factor (CPF exposure and LPS challenge) was interpreted and if found significant (p ≤ 

0.05), groups were distinguished using the appropriate post-hoc test (Tukey’s HSD for CPF 

exposure and multiple pair-wise comparisons test for LPS challenge). Hypothesis testing was 

two-tailed. All analyses were conducted using SPSS Statistics 25 (IBM Corporation, Armonk, 

NY, United States) and graphs were generated using Prism 8 (GraphPad Software, La Jolla, CA, 

USA). 

3.4 Results 

3.4.1 Morphometrics  

Two individuals died with undetermined cause in the 0.01% DMSO treatment during the 

7 day (d) CPF exposure period and prior to injection. There was no effect of CPF exposure on 

body weight (CPF: F(2,58)= 0.246, p = 0.783; LPS: F(1,58)= 0.731, p = 0.396; CPF × LPS: F(2,58)= 

0.190, p = 0.828) or total length (CPF: F(2,58)= 0.403, p = 0.671; LPS: F(1,58)= 0.270, p = 0.606; 

CPF × LPS: F(2,58)= 0.304, p = 0.739) following CPF exposure with LPS challenge (Appendix 

D). There was no difference in relative liver weight across treatments (CPF: F(2,57)= 0.814, p = 

0.449; LPS: F(1,57)= 3.727, p = 0.059; CPF × LPS: F(2,57) = 0.265, p = 0.768); however, there was 

a trend towards higher relative liver weights in individuals injected with LPS. 

3.4.2 Effects of CPF on kidney histology 

There was no significant interaction between CPF × LPS (F(2,36)= 2.667, p = 0.086) on 

kidney epithelial cell height (Fig. 3.1) but there were main effects of both CPF exposure (F(2,36)= 

10.702, p ≤ 0.01) and LPS challenge (F(1,36)= 17.454, p ≤ 0.01). Regardless of challenge state, 

epithelial cells in individuals exposed to 10 µg L−1 CPF were 18% larger than in individuals from 
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the 0.01% DMSO control group (mean ± SEM; 7.126 ± 0.424 μm vs 8.689 ± 0.217 μm; p ≤ 

0.001). Upon observation, the tubules appeared swollen with a reduction in lumen size (Fig. 3.2). 

Kidney epithelial cell height also increased with LPS injection when compared with PBS-

injected individuals independently of CPF exposure (p ≤ 0.001).
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Figure 3.1. Effects of chlorpyrifos (CPF) exposure and lipopolysaccharide (LPS) challenge, 

alone and in combination, on mean (± SEM) kidney tubule epithelial cell height in metamorphic 

X. laevis. Individuals were exposed to CPF for 7 days and then injected with phosphate buffered 

saline (PBS) or LPS (10 µg g-1) and sampled 1 dpi. Ten tubules from each kidney (n=6 

individuals/treatment group) were randomly selected and four epithelial cells per tubule were 

measured. Data were analyzed using two-way ANOVA with CPF exposure and LPS challenge as 

factors. Letters indicate significant differences among CPF exposure (p ≤ 0.05) and * indicates 

significant effect of LPS injection (p ≤ 0.05). 
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Figure 3.2. Photomicrographs of hematoxylin and eosin stained kidney sections from 

metamorphic X. laevis after 7 day exposure to chlorpyrifos (CPF). (A) Representative section 

from kidney of individual exposed to 0.01% DMSO control + PBS-injected showing normal 

organization of structures. (B) Representative section of kidney from an individual exposed to 10 

µg L−1 CPF + PBS-injected showing epithelial cell hypertrophy and decreased lumen size in 

convoluted tubules. G = glomerulus, dt = distal convoluted tubule, pt = proximal convoluted 

tubule. Bar = 100.0 μm. 
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3.4.3 Effects of CPF on basal and LPS-stimulated leukocyte populations 

For the proportion of lymphocytes in blood (Fig. 3.3A), there were main effects of both 

CPF exposure (F(2,58)= 3.973, p = 0.025) and LPS challenge (F(1,58)= 95.664, p ≤ 0.001) but no 

interaction between factors (F(2,58)= 0.061, p = 0.941). Individuals exposed to 1 µg L−1 CPF had 

lower proportion of circulating lymphocytes compared to those exposed to 0.01% DMSO (p = 

0.020), but this was not observed in the 10 µg L−1 CPF treatment group (p = 0.218). There was 

also an overall decrease in circulating lymphocytes in the LPS-injected animals compared to 

those injected with PBS (p ≤ 0.001). For blood monocyte populations (Fig. 3.3B), there was a 

main effect of LPS challenge (F(1,58)= 107.763, p ≤ 0.001) but no main effect of CPF exposure 

(F(2,58)= 0.053, p = 0.949) or interaction between CPF exposure and LPS challenge (F(2,58)= 

1.115, p = 0.336). Circulating monocyte populations increased after LPS injection compared to 

PBS-injected individuals (p ≤ 0.001).There was a main effect of CPF exposure (F(2,58)= 5.299, p 

= 0.008) on circulating granulocytes (Fig. 3.3C) where individuals exposed to 1 µg L−1 CPF had 

higher circulating granulocytes when compared to the 0.01% DMSO control (p = 0.007) but this 

increase was not present in the 10 µg L−1 CPF exposure group (p = 0.071). There was no main 

effect of LPS challenge (F(1,58)= 1.830, p = 0.182) on proportion of circulating granulocytes and 

no interaction between CPF exposure and LPS challenge (F(2,58)= 1.557, p = 0.220). There were 

main effects of both CPF exposure (F(2,58)= 4.725, p = 0.013) and LPS challenge (F(1,58)= 11.540, 

p = 0.001) on the granulocyte:lymphocyte (GL) ratio (Fig. 3.3D) but no interaction between 

main factors (F(2,58)= 0.455, p = 0.637). When compared to individuals exposed to 0.01% 

DMSO, there was an increase in the GL ratio with exposure to 1 µg L−1 CPF (p = 0.002) and 10 

µg L−1 CPF (p = 0.028). There was also an increase in the GL ratio in individuals injected with 

LPS as compared to those injected with PBS (p = 0.001). 
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Figure 3.3. Effects of chlorpyrifos (CPF) exposure and lipopolysaccharide (LPS) challenge on 

the proportion of (A) lymphocytes, (B) granulocytes, (C) monocytes, and (D) 

granulocyte:lymphocyte (GL) ratio in whole blood of X. laevis as measured by DiOC5(3) 

staining and flow cytometry. Individuals were exposed to CPF for 7 days and then injected with 

phosphate buffered saline (PBS) or LPS (10 µg/g) and sampled 1 dpi. Bars represent mean ± 

SEM (n = 9-10). Data were analyzed using two-way ANOVA with CPF exposure and LPS 

challenge as factors. Letters indicate significant differences across CPF exposure and * indicates 

significant effect of LPS injection (p ≤ 0.05).  
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3.4.4 Effect of CPF on LPS-stimulated expression of pro-inflammatory cytokines 

Levels of TNF-α mRNA were affected by both CPF exposure (F(2,33)= 3.726, p = 0.037) 

and LPS challenge (F(1,33)= 34.607, p ≤ 0.001) but there was no interaction between the two 

factors (F(2,33)= 0.503, p = 0.610; Fig. 3.4A). Individuals exposed to 10 µg L−1 CPF had increased 

liver TNF-α mRNA expression when compared with the 0.01% DMSO treatment group (p = 

0.044). Liver TNF-α mRNA levels were also increased in LPS-injected individuals when 

compared to those injected with PBS (p ≤ 0.001). Similarly, CSF-1 expression was altered with 

exposure to CPF (F(2,35)= 3.723, p = 0.036) and there was also a main effect of LPS challenge 

(F(1,35)= 15.747, p ≤ 0.001) but there was no interaction between factors (F(2,35)= 0.639, p = 

0.535; Fig. 3.4B). Expression of CSF-1 in the liver was increased with exposure to 10 µg L−1 

CPF compared to the 0.01% DMSO control (p = 0.044) and after LPS injection compared to 

PBS-injected individuals (p ≤ 0.001). There was a main stimulatory effect of LPS challenge on 

expression of IL-1β (F(1,34)= 36.562, p ≤ 0.001) but no effects of CPF exposure (F(2,34) = 1.213, p 

= 0.312) or interaction between factors (F(2,34)= 2.021, p = 0.151; Fig. 3.4C). Expression of IL-1β 

in liver was significantly increased in individuals injected with LPS as compared to the PBS-

injected group (p ≤ 0.001). 
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Figure 3.4. Effects of chlorpyrifos (CPF) exposure and lipopolysaccharide (LPS) challenge on 

mRNA expression of (A) tumor necrosis factor α (TNF-α), (B) colony stimulating factor 1 (CSF-

1), and (C) interleukin 1β (IL-1β) in liver of X. laevis as measured by qPCR. Individuals were 

exposed to CPF for 7 days and then injected with phosphate buffered saline (PBS) or LPS (10 

µg/g) and sampled 1 dpi. Data were normalized to the geometric mean of GAPDH and EF1α and 

expressed relative to the 0.001% DMSO + PBS-injected group. Bars represent the mean ± SEM 

(n = 6). Data were analyzed using two-way ANOVA with CPF exposure and LPS challenge as 

factors. Different letters indicate significant differences between CPF concentrations and * 

indicates significant effect of LPS injection (p ≤ 0.05). 
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3.5 Discussion 

The objective of this study was to assess the immunomodulatory effects of CPF exposure 

in the laboratory model amphibian species, X. laevis, using an immune challenge approach. We 

found that short-term (7 d) exposure to 1 and 10 µg L−1 CPF resulted in structural changes in the 

kidney, altered specific circulating leukocyte populations, and increased expression of pro-

inflammatory cytokines. This study provides some of the first evidence of the immunotoxic 

effects of CPF in amphibians and indicates that exposure to CPF may impair the ability of 

amphibians to resist pathogen infection with consequences for disease occurrence.  

When analyzed by flow cytometry, the proportion of different leukocyte populations in 

peripheral blood changed with both CPF exposure and with LPS-stimulated immune challenge. 

Exposure to 1 µg L−1 CPF resulted in a decrease in circulating lymphocytes and an increase in 

circulating granulocytes and this effect was independent of the LPS challenge. A decrease in 

circulating lymphocytes and an increase in circulating granulocytes is characteristic of a 

chemical or biological stress response in amphibians (reviewed in Davis et al., 2008). Exposure 

to CPF has been associated with decreased circulating lymphocytes in a variety of vertebrates 

including rats (Rattus norvegicus) (Elelaimy et al., 2012; Goel et al., 2006), chickens (Gallus 

domesticus) (Begum et al., 2015), and catfish (Clarias gariepinus) (Adewumi et al., 2018). 

Increased circulating granulocyte populations after CPF exposure have been reported in species 

across taxa, including silk worm (Philosamia ricini) (Kankana Kalita and Devi, 2016), rats (R. 

norvegicus) (Elelaimy et al., 2012), and fresh water crab (Paratelphusa jacquemontii) 

(Maharajan et al., 2017). Interestingly, the effect of CPF exposure at 1 µg L−1 was not observed 

at 10 µg L−1 CPF where both lymphocyte and granulocyte populations were the same as control 

group. However, exposure to both 1 and 10 µg L−1 CPF increased the GL ratio, which is a 

composite measure of the stress response and is considered a more relevant parameter than 

looking at either leukocyte population alone (Davis et al., 2008; Uchendu et al., 2018). In birds, 

an elevated GL ratio has been linked to increased susceptibility to infection (Al-Murrani et al., 

2002) and an increase in GL ratio is positively related to both the magnitude of the stressor and 

circulating glucocorticoids in most vertebrates (reviewed in Davis et al., 2008). Based on this 

composite measure of inflammatory state, it appears that exposure to 1 and 10 µg L−1 CPF can 

induce an inflammatory response in metamorphic X. laevis. It is also important to note that for 

this immune-challenge study, we targeted nominal CPF concentrations that were sub-lethal for 
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amphibians (based on previous studies) and that were environmentally relevant. These 

concentrations were not confirmed analytically and are likely to fall below the nominal values, 

based on what is known about CPF physicochemical properties including adsorption to glass 

(Thomas and Mansingh, 2002) and algae (Giddings et al., 2014), and a high escaping tendency in 

laboratory exposure systems (Manzanti et al., 2003). Therefore, we would hypothesize that CPF 

exposure could have effects on immune parameters in amphibians at actual concentrations lower 

than those nominally tested in the present study.  

Expression of key pro-inflammatory cytokines, which are effector molecules that allow 

communication between components of the immune system, was also evaluated as an indicator 

of immune status. Pro-inflammatory cytokines have many important roles during the immune 

response to chemical or biological stress, including leukocyte production and migration 

(Nourshargh and Alon, 2014). We observed that exposure to 10 µg L−1 CPF increased liver 

mRNA levels of pro-inflammatory cytokines TNF-α and CSF-1. Increased TNF-α expression has 

been reported after CPF exposure in various fish species including C. carpio (Chen et al., 2014),  

O. niloticus (Zahran et al., 2018), and D. rerio (Jin et al., 2015). Upregulation of TNF-α is 

indicative of an inflammatory response and expression of TNF-α is rapidly induced after viral 

and bacterial infection in fish and amphibians (Morales et al., 2010; Teles et al., 2011). During 

the innate immune response, TNF-α induces apoptosis and enhances granulocyte migration 

(Erger and Casale, 1998; MacKenzie et al., 2003). A potential explanation for the apparent return 

to basal levels of granulocytes observed in the 10 µg L−1 CPF group may be due, in part, to the 

increased expression of TNF-α enhancing migration of granulocytes out of circulation and into 

tissues, such as the kidney. CSF-1 is one of the principal mediators of the development, 

differentiation, proliferation, and survival of macrophages across vertebrates, including 

amphibians (Grayfer and Robert, 2014; Pixley and Stanley, 2004). Currently, there are no studies 

characterizing the response of CSF-1 to CPF or any OP pesticide exposure in aquatic vertebrates, 

although our results indicate that exposure to CPF can induce CSF-1 expression in X. laevis. 

Monocytes are the activated precursors to macrophages, and in the present study there was no 

apparent effect of CPF exposure on circulating monocyte populations. CSF-1 is critically 

involved in proliferation and differentiation of progenitor cells into macrophages, so it is possible 

that increased CSF-1 led to increased activated macrophage development from circulating 
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monocytes and may explain, in part, the apparent return to basal monocyte levels at the highest 

CPF concentration. 

 Histological examination of kidney tissues from CPF-exposed X. laevis revealed an 

increase in kidney epithelial cell size in individuals exposed to 10 µg L−1 CPF. Hypertrophy of 

kidney epithelial cells and decreased lumen size with exposure CPF has been reported in a 

number of species including rats (R. norvegicus) and common carp (C. carpio) (Raina and 

Hamid, 2013; Xing et al., 2015). The kidney plays a dual role in amphibians, both as a key 

component of body fluid homeostasis and an immune organ (Carey and Bryant, 1995), and is the 

known target organ for Ranavirus, an environmentally relevant pathogen of concern that has 

been implicated in globally declining amphibian populations (Daszak et al., 1999; Miller et al., 

2011). Kidney epithelial cells also play a role in the innate immune response and act as both the 

site of production and cellular target for inflammatory mediators such as pro-inflammatory 

cytokines and leukocytes (Cantaluppi et al., 2014). In a recent study by Zhang et al. (2017), 

transcriptomic responses were assessed in head kidney of common carp (C. carpio) after CPF 

exposure and pathways related to immune response, immune system processes, and cytokine 

activity and function were significantly upregulated. As kidney epithelial cells are an active site 

of cytokine production, CPF-induced inflammation resulting in increased production and release 

of pro-inflammatory cytokines, such as TNF-α and CSF-1, may be contributing to the observed 

cellular hypertrophy, along with tissue damage associated with this inflammatory response. In 

this study, histopathological examination of kidney tissue did not include lymphoid tissue which 

would lend further insight into the immunotoxicological effects of CPF exposure in X. laevis. 

In our study, X. laevis mounted an appropriate molecular and cellular response to LPS 

although this characteristic response did not appear to be impacted by CPF. When compared to 

the PBS-injected group, LPS-injected individuals had lower circulating lymphocytes, increased 

monocytes, and increased GL ratio in whole blood. The observed changes in lymphocytes and 

GL ratio are characteristic of amphibians in stressed states, such as after exposure to 

corticosterone (Falso et al., 2015) and hydrocortisone (Bennett et al., 1972). In fish, LPS 

exposure is reported to increase circulating monocyte populations (Swain et al., 2008), which is 

consistent with the results of our study. There is a lack published data on changes in blood 

monocyte population in response to stress; however, in a previous study by our lab, there was a 

similar an increase in monocytes in X. laevis after LPS exposure (Gallant and Hogan, 
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unpublished). In contrast, Falso et al. (2015) reported no change in circulating monocyte 

populations in X. laevis or Lithobates catesbeianus with long-term corticosterone exposure.  

Interestingly, an increase in circulating granulocytes is also a characteristic response in 

amphibians in stressed conditions (reviewed in Davis et al., 2008) and this was not observed in 

our study. However, in a recent study in three-spined stickleback (Gasterosteus aculeatus), the 

authors reported no change in proportion of granulocytes after 4 d exposure to CPF 

concentrations up to 1.75 µg L−1 followed by intraperitoneal LPS injection (Marchand et al., 

2017). In a separate immune-challenge study by our group, there was also no change in 

granulocyte populations after LPS injection in X. laevis and it was hypothesized that contrasting 

responses of different types of granulocytes (neutrophils and eosinophils), which are 

indistinguishable using the DiOC5(3) assay, may contribute to apparent lack of overall change in 

granulocytes (Gallant and Hogan, unpublished).  

The roles of leukocytes and cytokines in the inflammatory response are interdependent 

and so it was not surprising to find expression of pro-inflammatory cytokines TNF-α, IL-1β, and 

CSF-1 increased in liver of LPS-injected frogs. Both lymphocytes and activated macrophages 

(derived from monocytes) play critical roles in the synthesis and release of pro-inflammatory 

cytokines including TNF-α and IL-1β. (Arango Duque and Descoteaux, 2014; Swain et al., 

2008). Overall, it appears that LPS is an effective mitogen in amphibians, affecting leukocyte 

populations and pro-inflammatory cytokine expression as well as inducing hypertrophy of 

kidney epithelial cells.  

3.6 Conclusion 

 In this study, short-term (7 d) exposure to environmentally relevant concentrations of 

CPF resulted in changes to markers of immune status as well as histopathological changes of the 

kidney in metamorphic X. laevis. In general, exposure to CPF appeared to induce an 

inflammatory response independent of the LPS challenge but individuals were still able to mount 

an appropriate immune response to LPS exposure, specifically changes in targeted leukocyte 

populations and increased expression of pro-inflammatory cytokines. This research contributes 

to a better understanding of the potential immunotoxicity of CPF in amphibians in light of recent 

concern regarding pesticide contamination of aquatic systems, immunotoxicity and disease-

driven amphibian declines. Future research using this immune-challenge approach with an 
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environmentally relevant pathogen, such as Ranavirus, could provide further insight into the 

potential consequence of CPF contamination and exposure on immunocompetence in 

amphibians. 
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CHAPTER 4 

GENERAL DISCUSSION 

 

4.1 Project objective and focus 

 As the global demand for pesticide use increases, so too does the amount of these 

chemicals occurring within aquatic systems in Canada, North America, and worldwide. 

Chlorpyrifos (CPF), is one of the most commonly used organophosphate (OP) pesticides and has 

been measured in aquatic systems close to point sources as well as in remote and seemingly 

pristine locations (Adeyinka and Pierre, 2019; Muir et al., 2004). This ubiquitous contamination 

poses a threat to non-target species interacting with or inhabiting affected aquatic environments. 

Amphibian species are of particular concern due to potential links between pesticide 

contamination of aquatic ecosystems leading to increased susceptibility to pathogen infection 

and disease outbreaks (Carey et al., 1999). Exposure to CPF has been associated with a range of 

sub-lethal effects in aquatic vertebrates including morphometric abnormalities (Jin et al., 2015; 

Kleinhenz et al., 2012; Richards and Kendall, 2003), histopathological alteration across a range 

of tissues (Colombo et al., 2005; Scheil et al., 2009; Xing et al., 2012), acetylcholinesterase 

(AChE) inhibition (Colombo et al., 2005; Liendro et al., 2015; Richards and Kendall, 2002), 

immunotoxicity (Adel et al., 2017; Harford et al., 2005; Kerby and Storfer, 2009), oxidative 

stress (Liendro et al., 2015; Xing et al., 2012; Zhang et al., 2017), and changes in expression of 

target genes and transcriptomic profiles (Wang et al., 2018; Zahran et al., 2018; Zhang et al., 

2017). The overall objective of this thesis was to gain a better understanding of the sub-lethal 

effects of exposure to CPF on the model amphibian species, Xenopus laevis, and to provide 

novel amphibian data on responses across levels of biological organization from molecular to 

whole animal. 
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The research conducted in Chapter 2 of this thesis aimed to characterize and compare the 

transcriptome responses of short-term early life stage (ELS) exposure to CPF in X. laevis and 

apical outcomes after chronic CPF exposure through to metamorphic climax. There were several 

reasons for choosing amphibians as the test animal and CPF as the chemical of interest. Firstly, 

amphibians are generally underrepresented in the toxicological literature and little is known 

related to sub-lethal effects of CPF exposure at environmentally relevant concentrations. 

Secondly, there is a complete lack of data regarding the effects of CPF on the transcriptome of 

amphibians which, if known, could help us understand underlying toxicity pathways leading to 

negative apical outcomes of exposure. Finally, this work was conducted as part of the 

EcoToxChip project, which aims to to develop and validate quantitative PCR arrays and a data 

evaluation tool (EcoToxXplorer.ca) for characterization, prioritization, and management of 

environmental contaminants in model laboratory species and native species of concern 

(www.ecotoxchip.ca; Basu et al., 2019). The pathway analysis in Chapter 2 revealed a number of 

pathways specifically related to immune functions and processes, suggesting that the developing 

immune system may be a target of CPF toxicity in ELS X. laevis. To determine whether this 

CPF-mediated ELS pathway dysregulation led to a functional impact, the immune system was 

selected as the focus for further examination. The research conducted in Chapter 3 of this thesis 

focused on immunotoxicity as a potential mode of action for adverse effects of CPF exposure in 

amphibians. The aim of this chapter was to determine if CPF was able to alter biomarkers of 

innate immunity and whether this translated to impairment in the ability to mount an effective 

immune response to a simulated pathogen, lipopolysaccharide (LPS). Again, there is a lack of 

literature regarding the effects of short-term, sub-lethal CPF exposure on the amphibian immune 

system despite evidence of immunotoxicity in various fish species. The limited studies that do 

exist in this context do not use an immune-challenge approach that actually evaluates the 

capacity for an individual to mount an immune response following exposure. Previous studies 

have also not examined impacts during the metamorphic life-stage. Amphibians undergo a 

widespread remodeling of many physiological systems, including the immune system, during 

metamorphosis and there is evidence that metamorphs are more sensitive to CPF exposure than 

pre-metamorphs in some cases (Richards and Kendall, 2003; Rollins-Smith, 1998). Thus, this 

research focussed on the effects of CPF exposure during the unique transitional life-stage of 

metamorphosis. 
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4.2 Major findings and conclusions of research  

The research conducted as part of this thesis evaluated the effect of sub-lethal exposure to 

CPF in X. laevis across levels of biological organization from transcriptome to whole animal. 

Overall, exposure to CPF caused significant changes in several endpoints measured across 

various levels of biological organization. Effects of CPF exposure included dysregulation of 

pathways and expression of specific genes at the molecular level, changes in circulating 

leukocytes at the cellular level, histopathological alterations at the tissue/organ level, and 

morphometric changes at the level of the whole animal. 

In Chapter 2, 96 hour (h) exposure to CPF in ELS X. laevis resulted in upregulation of 

pathways associated with protein and carbohydrate metabolism, blood coagulation, tetrapyrrole 

binding, and sensory perception of light stimulus. We also observed depletion of pathways 

associated with immune function and vasculature development after CPF exposure. Additionally, 

non-specific dysregulation of pathways involving serine hydrolase activity and the extracellular 

region of cells was induced by short-term CPF exposure. Due to the interdependency of many 

physiological systems when exposed to a contaminant such as CPF, it is likely that these 

pathways are linked to one another. In some cases, the links between pathways are obvious. For 

example, pathways involved in serine hydrolase activity, tetrapyrrole and heme binding, and 

monooxygenase activity are all related to the inhibition of AChE activity which is an expected 

outcome of exposure to OP pesticides, including CPF. In other cases, the links between pathways 

may be more subtle. For example, it is possible that the multitude of effects on energy 

metabolism and metabolic processes were a more general response to the changes observed in 

more specific outcomes, such as immune function and neurological processes. Apical outcomes 

of chronic CPF exposure were also observed, including inhibition of AChE activity, increased 

liver weight relative to body weight, and a decrease in percentage of individuals that reached 

Nieuwkoop and Faber (NF) stage 65 (Nieuwkoop and Faber, 1994). In some cases, the altered 

transcriptomic pathways following ELS exposure could be related to the observed apical 

outcomes. For example, pathways related to serine hydrolase activity were dysregulated after 96 

h ELS exposure and AChE, a serine hydrolase enzyme, was inhibited in the brains of X. laevis at 

metamorphic climax after chronic exposure to 10 μg L-1 CPF. Additionally, dysregulation of 

pathways associated with immune function as well as protein and carbohydrate metabolism 

occurred, which could potentially be associated to the observed increase in liver weight relative 
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to body weight after chronic exposure to 10 μg L-1 CPF. Pathways associated with 

immunotoxicity, cardiovascular toxicity, tetrapyrrole and heme binding, and blood coagulation 

were unsurprisingly dysregulated after CPF exposure. Outcomes of CPF exposure related to 

these pathways have precedence in the literature and have been noted in amphibians or other 

aquatic vertebrates. These results strengthen the known mechanisms of action and endpoints 

associated with CPF exposure in aquatic species and provide novel data for amphibians to add to 

the relatively large amount of data for fish species. Some of the transcriptomic pathways that 

were dysregulated by CPF exposure had little or no precedence in the literature, regardless of 

taxa. These included effects on vasculature development, response to light stimulus, and effects 

on the extracellular region of cells specifically. These findings have the potential to direct new 

research into the outcomes of CPF exposure in amphibians. In Chapter 2, we demonstrated that 

short-term, ELS exposure to CPF has the potential to disrupt a range of important pathways and 

processes in X. laevis. Pathway analysis revealed disruption of biological processes and 

molecular functions which may be associated with adverse outcomes after chronic exposure 

through metamorphic climax. To our knowledge, this is the first research to assess changes in the 

ELS transcriptomic profile after CPF exposure in amphibian species. 

Immunotoxicity is a known outcome of CPF exposure in fish species; however, the 

literature regarding CPF-mediated immunotoxicity of amphibians is relatively scarce. In Chapter 

2, depletion of immune-related pathways including cytokine receptor activity, immune function, 

and inflammatory response occurred after 96 h ELS exposure to CPF.  Further examination of 

CPF-induced immunotoxicity was warranted due to the potential links between sub-lethal 

pesticide exposure, immunomodulation, and increased susceptibility to disease. In some cases, 

pesticide exposure in the environment has been linked to both localized mass mortality events, as 

well as widespread declines of amphibian populations globally (Carey et al., 1999; Hayes et al., 

2010). Therefore, research presented in Chapter 3 aimed to determine whether impacts on 

immune-related pathways after ELS exposure translated to disrupted immune function and to 

examine the potential immunomodulatory effects of CPF exposure on amphibians at the critical 

and unique transitional life stage of metamorphosis when challenged with a the known 

immunostimulatory agent, LPS. Exposure to CPF for 7 days (d) resulted in immunomodulation 

in X. laevis metamorphs as demonstrated by changes in endpoints related to immune function. 

Exposure to 10 μg L-1 CPF increased epithelial cell height as well as decreased lumen space in 
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convoluted tubules of the kidney. Circulating leukocyte populations were also affected with 

decreased lymphocytes and increased granulocytes observed after exposure to 1 μg L-1 CPF 

along with a higher granulocyte:lymphocyte (GL) ratio at 1 and 10 μg L-1 CPF. Lastly, the 

expression of pro-inflammatory cytokines TNF-α and CSF-1 in the liver increased with exposure 

to 10 μg L-1 CPF. To our knowledge, this is the first study to examine the immune-related effects 

of short-term exposure to CPF in amphibians and considering responses in an immune-

stimulated state. However, despite evidence that CPF exposure alone can alter immune 

parameters, this exposure did not appear to hinder the animal’s ability to mount an appropriate 

response to the immunostimulatory agent LPS. Following LPS injection we observed the 

characteristic responses reported in aquatic vertebrates, namely decreased circulating 

lymphocytes, increased circulating monocytes, and an increased GL ratio (Swain et al., 2008). 

We did not observe an increase in proportion of circulating granulocytes which is an expected 

response to stress in amphibians (reviewed in Davis et al., 2008). Injection of LPS also induced 

expression of pro-inflammatory cytokines, TNF-α, IL-1β, and CSF-1. Several in vitro studies 

with fish cells report that LPS stimulates macrophages to produce pro-inflammatory cytokines 

(reviewed in Swain et al., 2008) and this appears to be conserved in amphibians as well (Robert 

and Ohta, 2009). We conclude that LPS is an effective mitogen in X. laevis and is appropriate for 

usage in an immune-challenge assay as it induces a robust and measurable inflammatory 

response. Overall, we conclude that CPF exposure altered biomarkers of immune status and 

histopathological changes in X. laevis kidneys but that these observed outcomes did not 

necessarily translate into immunosuppression or impaired ability to mount an appropriate 

response to LPS exposure. 

4.3 Limitations of research and future directions 

 The nominal waterborne concentrations of CPF used in Chapter 2 (0.4, 2, and 10 μg L-1) 

were chosen based on a literature review to determine sub-lethal and environmentally relevant 

concentrations in amphibians as well as a 21-d pilot exposure to identify sub-lethal 

concentrations in X. laevis. Water samples were collected from each tank at five time points 

throughout the exposure period, and composite samples from each treatment group were 

analysed to determine actual water CPF concentrations throughout the chronic exposure. The 

average recovery throughout the exposure ranged from 17 – 29% of nominal, with the highest 
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recovery in the sample taken at the earliest time point in the exposure period. In the aquatic 

environment, CPF is reported to adsorb to algae (Giddings et al., 2014) and glass (Thomas and 

Mansingh, 2002). In the present study, it is possible that some of the waterborne CPF was being 

adsorbed to the algae and that this adsorption proportionally increased throughout the exposure 

period with increasing algal growth. Additionally, adsorption of the chemical to the glass 

aquaria, the glass sampling equipment, and the glass bottles used to store and ship the composite 

samples could account for further losses of measured CPF. A study by Mazanti et al. (2003) 

examined the aqueous-phase disappearance of CPF from both laboratory and field exposure 

systems. They found that CPF was rapidly lost from these systems initially, and concluded that, 

based on its physicochemical properties, CPF had a very high escaping tendency in aquatic 

systems (Mazanti et al., 2003). Measuring actual body burden of CPF within exposed individuals 

may provide a more accurate picture of the actual exposure concentrations. In addition, future 

studies using waterborne CPF over a chronic exposure period would benefit from measuring 

chemical concentration within the stock solutions as well as water samples to ensure degradation 

is not occurring in the stock solutions themselves. 

 The endpoints measured in Chapter 2 at the end of chronic exposure to CPF (at 

metamorphic climax) were pre-determined based on scientific literature and selected prior to 

knowledge of the changes in the transcriptome profiles of ELS individuals. To ensure that the 

most relevant outcomes of chronic CPF exposure were measured, apical endpoints could have 

been selected after completion of pathway analysis. This would have allowed us to target 

pathways and processes that were shown to be dysregulated after ELS CPF exposure and to 

determine if these ELS disturbances translated to apical outcomes of chronic exposure. For 

example, the immune-related effects of exposure to OP pesticides, including CPF, in aquatic 

vertebrates are becoming more widely discussed in the literature. The ELS transcriptomic profile 

showed dysregulation of a number of pathways associated with immune function after short-term 

CPF exposure. An immune challenge study measuring infection rates, morbidity, and mortality 

after chronic CPF exposure would help determine if immune-related ELS pathway dysregulation 

led to functional alteration of the immune system later in life. 

In Chapter 3, LPS injection was used as an immunostimulant and to determine whether 

CPF-exposed individuals were able to mount an appropriate immune response. 

Lipopolysaccharide is commonly used in the context of immune challenge exposures and, as 
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such, the expected immune response to LPS exposure is noted in the literature (Swain et al., 

2008). Although effective in simulating a pathogen infection, LPS is not a pathogen of concern 

in an environmentally relevant scenario. Use of an environmentally relevant amphibian pathogen 

of concern, such as Ranavirus, would better reflect the immune-related outcomes of amphibians 

in a CPF-contaminated environment. In the wild, Ranavirus has been implicated in both 

localized mass mortality events as well as globally declining amphibian populations. Amphibian 

pathogen and contaminant exposure occurs simultaneously in the environment. Recent studies 

have explored the links between amphibian exposure to pesticides leading to immunosuppression 

and increased incidence of disease. Some have discussed the possibility that Ranavirus, and other 

pathogens of concern, are not emergent but rather the inability to mount an appropriate immune 

response because of pesticide exposure is what is emergent (Hayes et al., 2006). A follow up 

study examining the effects of CPF exposure on the immune response to an environmentally 

relevant pathogen, such as Ranavirus, could provide insight on the potential links between 

ubiquitous CPF contamination and increased opportunistic pathogen infection.  

4.4 Applicability of research findings 

In the research conducted in Chapter 2 of this thesis, we examined the transcriptomic 

responses to CPF exposure in ELS X. laevis. This study was a part of a large, collaborative 

research project (the EcoToxChip project) that aims to to develop and validate quantitative PCR 

arrays and a data evaluation tool (EcoToxXplorer.ca) for characterization, prioritization, and 

management of environmental contaminants in model laboratory species and native species of 

concern (www.ecotoxchip.ca; Basu et al., 2019). Specifically, the EcoToxChip project aims to 

link multi-omics endpoints (transcriptomic, metabolomic, and proteomic) after ELS exposure to 

apical outcomes of chronic exposure to contaminants of concern. The findings of this study will 

be combined with other ‘omic and apical endpoint analyses in both X. laevis and a native North 

American Ranid amphibian, Lithobates pipiens (Northern leopard frog), as well as fish and avian 

species. The observed transcriptome-level responses to CPF in ELS individuals, especially 

identification of novel dysregulated pathways not identified in previous studies, have the 

potential to drive future research into the underlying mechanisms of CPF-mediated toxicity in 

amphibians. Over the chronic exposure period, there were a number of apical outcomes that were 

altered at environmentally relevant concentrations. However, some endpoints that are normally 
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associated with CPF exposure in aquatic vertebrates, such as changes in morphometric indices 

and incidence of malformation, were largely unaffected in our study. This could be attributed to 

both species and life stage differences and highlights the importance of considering amphibians 

separately when conducting toxicological research. Some of the dysregulated pathways 

identified in this study after ELS exposure to CPF could direct future research on relevant and 

novel apical outcomes of chronic CPF exposure in amphibians. These outcomes may, in some 

cases, differ from the more widely examined endpoints of CPF exposure in aquatic vertebrates 

which are largely based on studies performed in fish species.  

In Chapter 3 of this thesis, we used an exposure approach optimized in our lab where a 

short-term chemical exposure using the model amphibian species, X. laevis, is followed by an 

immune challenge using LPS as an immunostimulant. Our work shows that this exposure model 

could be effective for rapid screening of environmental contaminants for potential 

immunotoxicity and specifically their capacity to compromise an appropriate immune response. 

This approach could be used in a variety of exposure scenarios with different classes of 

chemicals, different species of amphibians, and different immunostimulatory agents or pathogens 

including environmentally relevant pathogens of concern.  

4.5 Concluding statement  

 This thesis research was conducted to gain a better understanding of the effects of CPF 

exposure on amphibians and to provide novel data on responses across levels of biological 

organization, from molecular to whole animal. The results indicate that exposure to CPF can 

affect endpoints across a range of physiological parameters at all levels of biological 

organization, suggesting that CPF exposure in aquatic environments poses a threat to amphibian 

species. These findings add to the growing body of evidence regarding the potential links 

between pesticide contamination, opportunistic infection leading to disease, and global 

amphibian declines and overall highlight the importance of considering amphibian species when 

examining the impacts of contaminants on aquatic vertebrates. 
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APPENDICES 

 

Appendix A: Mean (± SEM) for water quality parameters measured over the chronic chlorpyrifos (CPF) exposure period. Parameters 

were measured from each tank a minimum of twice weekly over 75 days of exposure. 

 

 

 

 

 

 

 

 

 

 

  

   CPF Concentration (μg L-1) 

 Facility Water 0.01% DMSO 0.4 2 10 

Temperature (ºC) 21.72 ± 0.04 21.60 ± 0.05 21.48 ± 0.05 21.62 ± 0.04 21.56 ± 0.05 

pH 7.96 ± 0.03 7.97 ± 0.04 7.99 ± 0.04 7 .97 ± 0.04 7.95 ± 0.04 

Dissolved Oxygen (%) 75.87 ± 1.40 77.13 ± 1.41 78.88 ± 1.13 77.66 ± 1.04 77.94 ± 1.17 

Ammonia (ppm) 0.53 ± 0.04 0.50 ± 0.04 0.54 ± 0.04 0.54 ± 0.04 0.53 ±0.04 

Nitrate (ppm) 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 

Nitrate (ppm) 0.05 ± 0.00 0.05 ± 0.00 0.07 ± 0.02 0.05 ± 0.00 0.05 ± 0.00 

Hardness (ppm) 179.88 ± 0.22 180.12 ± 0.19 180.08 ± 0.38 179.80 ± 0.12 179.96 ± 0.04 

Alkalinity (mg/L) 122.33 ± 0.55 122.08 ± 0.48 122.32 ± 0.48 122.24 ± 0.53 122.49 ± 0.56 

Conductivity (µS/cm) 472.13 ± 1.25 471.64 ± 1.05 471.94 ± 1.10 472.28 ± 1.15 472.40 ± 1.14 
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Appendix B: (A) Table displaying all significantly altered (p ≤ 0.05) Gene Ontology (GO) terms after 96 h chlorpyrifos (CPF) 

exposure in early life-stage X. laevis. The term p values were corrected with a Bonferroni step down. (B) ClueGo visualization of 

functionally grouped networks formed from significantly (p ≤ 0.05) altered pathways based on GO databases. Pathways were built 

using at least 5 differentially expressed genes (p ≤ 0.05) in early life-stage X. laevis after 96 h of CPF exposure. Statistical test was set 

to a right-sided hypergeometrical test with a Bonferroni (step down) p-value correction and a kappa score of 0.4. Node size represents 

pathway significance and darker shades represent higher gene proportion associated with pathway. Green node = depleted pathway, 

gray node = un-specific pathway, red node = upregulated pathway. Text colour has been changed for clarity.  

 

(A) 

GO Term GO ID 

Term P 

Value 

GO 

Levels 

% 

Associated 

Genes 

# Associated 

Genes Upregulated/Depleted 

sensory perception of light stimulus GO:0050953 0.01 [5] 11.76 10.00 Upregulated 

tetrapyrrole binding GO:0046906 0.00 [3] 11.71 24.00 Upregulated 

heme binding GO:0020037 0.00 [3,4] 11.50 23.00 Upregulated 

monooxygenase activity GO:0004497 0.00 [4] 12.41 17.00 Upregulated 

oxidoreductase activity, acting on paired donors GO:0016705 0.00 [4] 9.28 18.00 Upregulated 

monosaccharide metabolic process GO:0005996 0.00 [3,4] 15.25 9.00 Upregulated 

hexose metabolic process GO:0019318 0.00 [4,5] 16.36 9.00 Upregulated 

monosaccharide biosynthetic process GO:0046364 0.00 [4,5] 30.43 7.00 Upregulated 

glucose metabolic process GO:0006006 0.00 [5,6] 21.88 7.00 Upregulated 

hexose biosynthetic process GO:0019319 0.00 [5,6] 30.43 7.00 Upregulated 

blood coagulation GO:0007596 0.00 [3,5] 25.00 14.00 Upregulated 

response to wounding GO:0009611 0.00 [3] 20.59 14.00 Upregulated 

regulation of body fluid levels GO:0050878 0.00 [3] 22.58 14.00 Upregulated 

hemostasis GO:0007599 0.00 [4] 25.00 14.00 Upregulated 

wound healing GO:0042060 0.00 [4] 22.58 14.00 Upregulated 

negative regulation of metabolic process GO:0009892 0.00 [2,3,4] 7.79 31.00 None Specific 
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negative regulation of macromolecule metabolic 

process 
GO:0010605 0.00 [3,4,5] 8.05 31.00 None Specific 

negative regulation of cellular metabolic process GO:0031324 0.00 [3,4,5] 8.96 30.00 None Specific 

negative regulation of molecular function GO:0044092 0.00 [3] 11.26 26.00 Upregulated 

negative regulation of nitrogen compound 

metabolic process 
GO:0051172 0.00 [3,4,5] 9.23 30.00 None Specific 

negative regulation of protein metabolic process GO:0051248 0.00 [4,5,6] 12.44 27.00 None Specific 

negative regulation of cellular process GO:0048523 0.00 [2,3,4] 6.70 40.00 Upregulated 

negative regulation of catalytic activity GO:0043086 0.00 [4] 12.21 26.00 Upregulated 

enzyme inhibitor activity GO:0004857 0.00 [5] 12.92 23.00 Upregulated 

negative regulation of hydrolase activity GO:0051346 0.00 [5] 13.79 20.00 Upregulated 

regulation of proteolysis GO:0030162 0.00 [5,6] 14.71 20.00 Upregulated 

regulation of peptidase activity GO:0052547 0.00 [5,6,7] 16.67 20.00 Upregulated 

negative regulation of proteolysis GO:0045861 0.00 [5,6,7,8] 17.09 20.00 Upregulated 

peptidase regulator activity GO:0061134 0.00 [5,6,7,8] 17.09 20.00 Upregulated 

cytokine receptor activity GO:0004896 0.03 [5,6,7] 12.90 8.00 Depleted 

defense response GO:0006952 0.03 [3] 8.84 13.00 Depleted 

inflammatory response GO:0006954 0.00 [4] 14.67 11.00 Depleted 

positive regulation of response to stimulus GO:0048584 0.00 [2,3,4] 10.16 19.00 None Specific 

activation of immune response GO:0002253 0.00 [2,4,5,6] 15.52 9.00 None Specific 

positive regulation of immune system process GO:0002684 0.02 [2,3,4] 12.16 9.00 None Specific 

positive regulation of immune response GO:0050778 0.01 [3,4,5] 13.43 9.00 None Specific 

cardiovascular system development GO:0072358 0.02 [4,5,6] 14.89 7.00 Depleted 

vasculature development GO:0001944 0.02 [4,5,6,7] 14.89 7.00 Depleted 

regulation of immune response GO:0050776 0.02 [3,4] 11.11 10.00 Depleted 

Serine hydrolase activity GO:0017171 0.00 [3] 9.09 25.00 None Specific 

extracellular space GO:0005615 0.00 [2,3] 12.83 24.00 None Specific 
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(B) 
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Appendix C:  Water quality parameters measured over a 7  day exposure of metamorphic 

Xenopus laevis to chlorpyrifos (CPF).  

  CPF Concentration (μg L-1) 

 0.01% DMSO 1 10 

Temperature (ºC) 21.50 ± 0.10 21.35 ± 0.08 21.48 ± 0.11 

pH 7.91 ± 0.23 7.97 ± 0.22 7.98 ± 0.22 

Dissolved Oxygen (%) 87.54 ± 2.21 90.44 ± 1.53 88.16 ± 1.98 

Ammonia (ppm) 0.78 ± 0.11 0.84 ± 0.10 0.78 ±0.11 

Nitrate (ppm) 0.92 ± 0.08 1.00 ± 0.00 0.92 ± 0.08 

Nitrate (ppm) 0.07 ± 0.02 0.05 ± 0.00 0.05 ± 0.00 

Hardness (ppm) 180.00 ± 0.00 180.00 ± 0.00 180.00 ± 0.00 

Alkalinity (mg/L) 120.00 ± 0.00 120.00 ± 0.00 120.00 ± 0.00 

Conductivity (µS/cm) 464.46 ± 2.80 464.16 ± 2.77 465.08 ± 2.52 

Parameters were measured from each tank every two days over the exposure period (4 

tanks/concentration; 5 individuals/tank) and are provided as the mean (± SEM) for each CPF 

treatment. 
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Appendix D: Morphometric parameters following 7 day exposure to chlorpyrifos (CPF) and 

PBS or LPS injection in metamorphic Xenopus laevis. 

Exposure Injection Body weight (g) Body 

length (mm) 

Relative Liver 

Weight (mg g-1) 

0.01% DMSO  PBS 1.665 ± 0.444 24.87 ± 2.08 0.032 ± 0.005 

 LPS 1.501 ± 0.479 24.24 ± 2.09 0.037 ± 0.006 

1 μg L-1 CPF PBS 1.485 ± 0.582 23.71 ± 3.62 0.037 ± 0.009 

 LPS 1.486 ± 0.509 24.10 ± 2.51 0.038 ± 0.008 

10 μg L-1 CPF PBS 1.568 ± 0.549 24.27 ± 2.71 0.034 ± 0.005 

 LPS 1.386 ± 0.489 23.42 ± 2.70 0.039 ± 0.007 

Data are presented as mean ± SEM (n=9-10 individuals/treatment). 

Data were analyzed using a two-way ANOVA with Exposure and Injection as factors.
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