
Special Issue on Computer Science and Software Engineering 

 

-42- 

 

 

Abstract — This Article presents a set of software process 

antipatterns, which arise as a result of bad practices within 

application development processes. Process AntiPatterns warn us 

about the harmful effects that may arise in projects, and also 

describe the features that identify them. The proposed anti-

patterns provide a catalog that serves as a vocabulary for 

communication among project participants. Such Antipatterns 

can be implemented through software tools in order to keep 

better record of their implementation. Additionally, a tool that 

can operate under GPL (General Public license) is provided for 

this purpose. 

 
Keywords — Software Process, anti-patterns.  

 

I. INTRODUCTION 

he goal of software development is to generate products 

with high levels of productivity and efficiency that ensure 

good levels of quality. To achieve this, it is necessary to avoid 

the risks introduced by bad practices of software. These bad 

practices have been labeled as anti-patterns, and occur in 

different areas. The catalog of antipatterns is an important road 

map, particularly on dark paths that might be followed when 

precautions are not taken, and of course, that cause problems 

in projects. This article presents a list of harmful practices that 

represent anti-patterns in the implementation of software 

development processes. 

II. UNDERSTANDING ANTIPATTERNS 

Alongside patterns, the anti-patterns trend is also a major 

subject of study that should be taken into account. The anti-

patterns that constitute harmful practices must be avoided to 

reduce the risk of failure in software projects. One of the most 

recognized works on anti-patterns is that proposed by Brown 

[1], where software development AntiPatterns, software 

architecture anti-patterns and antipatterns of software project 

management are put forward. Another work is that of Dikel 

[2], where a set of anti-patterns for software architectures 

according to vision, rhythm, anticipation, partnering and 

simplification is proposed. Unfortunately, it is very easy to be 

engaged in anti-patterns since they are caused by poor 

abstraction and poor implementation of the theoretical 

approaches of software. Usually, "shortcuts" and poor analysis 

approaches lead to malpractice. The time factor developers 

always have to compete against does not allow thinking more 

carefully about good practices; even patterns themselves might 

become anti-patterns when abusing their implementation. A 

definition of anti-patterns allows creating a recognizable 

vocaary that facilitates communication among the participants 

in software projects regarding dangerous situations you need 

to be aware of and avoid, or at least reduce their possible 

impact. 

III. ANTIPATTERNS OF   THE SOFTWARE  DEVELOPMENT 

PROCESS 

The application of a process in a software project is 

necessary to monitor and control it. There is a wide range of 

software processes of different kinds; each process holds out a 

way to track and coordinate activities, resources and 

knowledge in order to provide a support tool for the operation 

of a software project.  However, it is easy to incur in poor 

implementation of procedures and protocols as well as poor 

resource management, especially human resources, resulting in 

bad practices that might be called anti-patterns of software 

processes. Below we propose a set of harmful practices that 

may occur in software development processes. 

 

 

A. Top Process 

 

It is common that whenever a process is needed, the first 

choice is to pick the in-fashion process, which is generally 

proposed by a large organization, a community, a research 

center or a person or group of people who pool their expertise 

to propose a rescuing formula. Generally the top process is 

proposed as the only silver bullet [3] with regard to the 

process. However, what worked for a particular project 

environment does not necessarily work for every project 

environment. You must take into account the business 

conditions of the organization, and ultimately you must be 

careful about the inherent difference that exists between the 

application domains of the different processes. The main 

responsibility for achieving success lies in the process, as an 

essential tool for software projects, regardless of the software 

singularity [4], so the top process does not guarantee success 

(Figure 1). 

Antipatterns: A Compendium of Bad Practices 

in Software Development Processes 

Sandro Javier Bolaños Castro
1
, Rubén González Crespo

2
, Víctor Hugo Medina García

1                                                              

1
District University “Francisco José de Caldas” - Bogotá (Colombia)                                                             

2
Pontificial University of Salamanca - Madrid (Spain)                                                             

T 

DOI: 10.9781/ijimai.2011.147 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Re-UNIR

https://core.ac.uk/display/270138523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.              

 

-43- 

 

 
 
Figure 1. Top Process  

 

B. Super Process 

 

Explaining any phenomenon from all angles is an approach 

that can be adopted. Similarly, using complexity to explain a 

software process is another way; in the words of Morin: "let us 

take a contemporary cloth, it uses flax, silk, cotton, and wool 

of various colors. For that cloth, it would be interesting to 

know the laws and principles concerning each of these types of 

fibers. However, the sum of knowledge about each of these 

types of fibers that form the cloth is insufficient to meet not 

only the new reality which is the tissue, that is, the qualities 

and specific properties of the texture, but also to help us 

understand the shape and configuration"[5]. As systems (or 

objects of study) become more complex, that is, not just 

consist of more parts but also the interaction between them 

becomes increasingly complex, it seems that the explanation of 

the phenomena presented by the behavior of such systems 

tends to take into account the "context", the environment, that 

is, the phenomena’s "totality"[6]. The complexity theory 

focuses on identifying that we already have enough to work on 

only by making the activities of a process harmonize, the 

proposed schemes end up in incomprehensible schemes, which 

include size, spirals, tables and other notations, often 

overloaded unnecessarily, becoming a burden that a 

development team cannot bare (Figure 2). 

 
 

Figure 2. Super Process 

 

C. Extreme Process 

 

“There are profound differences between theory and mere 

computer technological rules" [7], for Popper, it is clear that 

there are two extremes: on the one hand, the theoretical 

approach, and on the other hand, instrumentalism. It seems that 

software processes fluctuate between these frequencies; 

unfortunately for any project, it is inconvenient to fall in these 

limits. On the one hand, theorizing about the issue of processes 

is a task not only valuable but also necessary, but the task itself 

must take into account that the processes should be practical, 

and it is at this point where the development steers into the 

other edge, namely instrumentalism. It is common for a 

software process to be successful in one project and fail in 

another, so relative success is not universal guarantor for a 

process, in this sense, pure instrumentalism runs out of 

arguments. Finding the right amount of theory, mostly as a  

result of the a-priori approach of reflection, along with a dose 

of instrumentalism can be a good combination. In this sense, 

developers should not rely entirely on a theory without proof, 

nor shoud they rely just on a test (probably successful but 

without epistemological foundation) when   bearing in mind 

that processes follow a technical application that does not 

neglect the theoretical reflection on their problematic core 

(Figure 3). 

 



Special Issue on Computer Science and Software Engineering 

 

-44- 

 

 
 

Figure 3. Extreme Process 

D. Casual Process 

 

Conducting a software process often becomes an ad hoc 

activity, resulting in improvisation of the tasks. Such type of 

work takes place when an organization is not aware of the 

importance of processes and usually ends up diverting all the 

workload onto development activities. Ad hoc processes arise 

primarily because there is not a process manager who guides 

the selection of at least one process to perform. Ad hoc 

processes are not aware of the roles and end up creating 

handyman roles, promoting anti-patterns that generally 

resemble the project management anti-patterns [1]. An ad hoc 

process ends up extending schedules, repeating efforts and 

consuming resources. Because the process is not clearly 

identified, it may end up taking different names from a list 

given by the participants, which is usually inconsistent. A 

casual process tends to be confused with an organization’s 

customized process, therefore, care must be taken when the 

course of the process has features like those listed above. 

(Figure 4) 

 
 

Figure 4. Casual Process 

E. Slide Process 

 

Adopting a process that encourages the production of 

outputs from a given input regardless of the way in which 

workflow occurs is generally counterproductive. Software 

processes should not be slides, which do not pay interest to the 

way results are obtained, since in the workflow participate a 

society of roles that may be sacrificing not only the quality in 

the process, but most importantly, sacrificing performance 

conditions and quality of life. In a slide process, it is typical to 

start at a certain speed and finish with acceleration. In the 

same way, a process without rhythm [2] starts with extended 

times in its initial phases and have tight schedules in 

development and deployment phases. A slide process does not 

control time, delaying projects; it also accelerates at critical 

stages, sacrificing product quality.  These processes end up 

adjusting schedules, paying fines, conducting renegotiations, 

and making considerable losses for the organization (Figure 

5). 

 

 
 

Figure 5. Slide Process 

 

F. Immutable Process 

 

Thinking that an immutable process represents a great 

advantage is a problem if you consider Heraclitus paraphrased 

words regarding his theory of perpetual flow "do not use the 

same process twice." Proposals such as CMM [8], about the 

repeated process as one of the levels of maturity, point at a 

feature that is apparently advantageous; however, such a 

setting is unfeasible given that the conditions and specific 

process variables are impossible to repeat; even when in the 

extreme case where conditions are very simillar, time becomes 

an impediment. A process, as opposed to be considered 

immutable, should be treated with high doses of adaptation, as 

proposed by methodologies like ASD [9]. Each time a 

software process is conducted, it truly becomes a new process. 

The fact that a process has a general guide should not be 

confused with executing the same process over and over again. 

Considering a process as immutable eliminates the possibility 



International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.              

 

-45- 

 

of seeking new knowledge when developing the process, 

losing the possibility of improving the process (Figure 6). 

 

 

 
 

Figure 6. Immutable Process 

 

G. Process without evidence 

 

Usually, software development processes involve creating 

documents related to the product being made, such as 

developing manuals and user manuals, among others. 

However, a document of the process itself, which at least 

provides information about what was learnt from the process 

execution, is a task that is never performed. When the process 

lacks evidence of its execution, it is highly probable that the 

same actions will be re-executed with the same fundamental 

flaws. These side effects result in process delays, repeating and 

perpetuating defects. Processes without evidence, are a sign 

that there is no process manager, who leads the process and 

records its past history for new process implementations 

(Figure 7). 

 

 
 

Figure 7. Process without evidence 

H. Process without rhythm 

 

A software development process should try to keep a sort of 

rhythm in each of its activities so that there are no gaps that 

hinder efforts and resource investment from efficiently 

contributing to constituent-workflow tasks. It is common to 

find elongated-time activities, while other activities are time-

constraint, the proportions of time allocation must be fair 

without causing trauma. The time resource should be one of 

the main variables to govern the processes, the workflow must 

balance the periods of time employed in each activity, thus 

avoiding botched executions. A process without rhythm occurs 

when other antipatterns are inserted, such as paralysis of 

analysis or design by committee [1]. In these harmful 

practices, it is evident that the imbalance in a specific activity 

impedes the normal execution of the remaining activities 

(Figure 8). 

 

 
 

Figure 8. Process without rhythm 

 

I. Domino Process 

 

A development process tempered by a high interdependence 

between the activities that constitute its workflow will result in 

a domino process.Initial activities are critical and cause 

exponential effects on final activities to the point that it 

becomes impossible to produce an activity i +1 if you have not 

fully completed activity i. A domino process leads to stiffness 

and reduces the possibility of feedback at early stages in the 

workflow. A problem is detected when the cost has increased 

considerably, leading to elongation in the schedules, as well as 

to inefficient use of resources. Unfortunately, when developing 

software, it is very common to find problems in the 

requirements phase, given the volatility and ambiguity typical 

of gathering requirements; under these conditions, if a process 

does not propose strategies to deal with the activities 

themselves as well as with the activity-coupling management, 

a domino process will evolve easily (Figure 9). 

 

 



Special Issue on Computer Science and Software Engineering 

 

-46- 

 

 

 
 

Figure 9. Domino Process 

 

J. Perpetual Process 

 

When a process becomes interminable is said to be a perpetual 

process.  Generally speakig, the process falls into infinite 

loops when the workflow is repeated without generating useful 

products. This type of process is evidence of the immaturity 

associated to the organization that runs the process as well as 

of its lack of adequate estimation, its failure to meet the 

requirements and development. Such immaturity is most 

obvious when in the testing phase, where developers will need 

to constantly repair things, with the aggravating circumstance 

that these repairs might cause further inconveniences. In the 

perpetuity of the process there is no proper configuration 

management, and quality control is summarized in trying to fix 

an accumulation of defects that cause poor reliability [10] of 

the results obtained at a prticular point of development. When 

a process becomes perpetual, it usually ends abruptly with 

negative collateral implications for the participants (Figure 

10). 

 
 
Figure 10. Perpetual Process 

 

K. Headless process 

 

Poorly managed processes, and /or processes with 

leadership problems in the various disciplines, are referred to 

as headless processes. This type of process does not define 

clear functional objectives and responsibilities, there is a poor 

identification and assessment of the roles and therefore there is 

no adequate assessment of the disciplines; activities usually 

focus on the production of code without ensuring appropriate 

quality conditions; moreover, ad-hoc delegations occur. 

Headless processes exhibit exaggerated rotation of staff, 

stalling the workflow and leading to an abrupt end with 

unfavorable implications for the parties involved (Figure 11). 

 

 
 

Figure 11. Headless Process 

 

L. Processes without Communication 

 

Communication between the parts of a process is critical to 

ensure the flow of information and of the knowledge 

management processes [11]. For a software process it is 

important to create role networks to integrate the different 

functions and responsibilities. The lack of communication 

makes processes slow, consequently, work flow stagnates and 

redundancy of labor is produced; moreover, resources wear 

out and delivery times are easily exceeded. Communication 

must flow in the organization in every possible way, not only 

from the command roles to subordinates, but also from basic to 

higher roles. Some agile methodologies, such as daily 

meetings, propose good practice regarding communication, 

where project-roles interaction strengthens the processes. This 

results in the generation of evidence and promotes continuous 

improvement. Lack of communication promotes the loss of 

resources and also slows work flow down (Figure 12). 

 



International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.              

 

-47- 

 

 
 

Figure 12. Process without Communication 

 

IV. ANTIPATTERNS SUPPORT THROUGH SOFTWARE PROCESS  

 

One of the advantages of having a catalog of antipatterns for 

software processes is to implement the catalog using 

automated tools, which allows timely identification of a bad 

practice within a process. Th purpose is to generate a labelled-

fault  control record that helps developers avoid following 

wrong paths whenever running a process in a software project. 

In this particular case, we have developed a process 

antipatterns component for the Coloso platform [10], (Figure 

13). 

 
 

Figure 13. Coloso Software, www.colosoft.com.co 

 

 

V. CONCLUSION 

The anti-patterns generate a vocabulary and a list of risks 

that can arise when using a software process. This vocabulary 

facilitates effective communication between the different roles 

of the process and contributes to failure detection and quick 

response whenever risks are encountered in a project. 

Software processes have been accepted as heroic formulas 

but processes themselves are part of the problem of software 

development and although such processes need not be 

permanently reinvented, it is extremely necessary to see their 

weaknesses and strengths in order to avoid trauma when 

conducting projects. 

 

ACKNOWLEDGMENT 

Special thanks to designer and art student Paula Milena 

Sanchez, who made the drawings in this article. 

 

REFERENCES 

[1] Brown, W., Malveau, R., Hays, M., & Mowbray, T. AntiPatterns: 

Refactoring Software, Architectures, and Projects in Crisis . John 

Wiley & Sons. 1998. 

[2] Dikel, D., Kane, D., & Wilson, J. Software Architecture. Prentice Hall. 

2001. 

[3] Brooks, F. The Mythical Man - Month. Addison Wesley.1995. 

[4] Bolaños, S., Medina, V., & Joyanes, L. Principios para la Formalización 

de la Ingeniería de Software. Ingenieria, 31-37.2009. 

[5] Morin, E. Introducción al Pensamiento Complejo. Gedisa. 2001. 

[6] Johansen, O. Introducción a la Teoria General de Sistemas. Limusa. 

2001. 

[7] Popper, K. Realismo y el Objetivo de la Ciencia. Tecnos. 1998 

[8] Humphrey, W. Managing the Software Process. Addison Wesley.1989. 

[9] Highsmith III, J., & Orr, K. Adaptive Software Development : A 

Collaborative Approach to Managing Complex Systems . Nueva York, 

EUA: Dorset House.2000. 

[10] Meyer, B. Construcción de Software Orientado a Objetos. Prentice 

Hall. 1999. 

[11] Nonaka, I. A Dynamic Theory of Organizational Knowledge Creation. 

Aroganization Science, 14-37.1994. 

http://www.colosoft.com.co/

