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ABSTRACT Medical applications challenge today’s text categorization techniques by demanding both
high accuracy and ease-of-interpretation. Although deep learning has provided a leap forward in regard to
accuracy, this leap comes at the sacrifice of interpretability. In this paper, we introduce a text categorization
approach that leverages the recently introduced Tsetlin Machine to address this accuracy-interpretability
challenge. Briefly, we represent the terms of a text as propositional variables. From these variables, we cap-
ture categories using simple propositional formulae, such as: IF ‘‘rash’’ AND ‘‘reaction’’ AND ‘‘penicillin’’
THENAllergy. The Tsetlin Machine learns these formulae from labeled text, utilizing conjunctive clauses to
represent the particular facets of each category. Therefore, also the absence of terms (negated features) can
be used for categorization purposes. Our empirical comparisons with Naïve Bayes classifiers, decision trees,
linear support vector machines (SVMs), random forest, long short-term memory (LSTM) neural networks,
and other techniques, are quite conclusive. Using relatively simple propositional formulae, the accuracy of
the TsetlinMachine either outperforms or performs approximately on par with the best evaluated methods on
both the 20 Newsgroups and IMDb datasets, as well as on a clinical dataset containing authentic electronic
health records (EHRs). On average, the Tsetlin Machine delivers the best recall and precision scores across
the datasets. The main merit of the proposed approach is thus its capacity for producing human-interpretable
rules, while at the same time achieving acceptable accuracy. We believe that our novel approach can have
a significant impact on a wide range of text analysis applications, providing a promising starting point for
deeper natural language understanding with the Tsetlin Machine.

INDEX TERMS Classification algorithms, health informatics, machine learning, supervised learning, text
categorization, Tsetlin machine.

I. INTRODUCTION
Understanding natural language text involves interpreting
linguistic constructs at multiple levels of abstraction: words
form phrases that interact to form sentences, which in
turn are interweaved into paragraphs that carry implicit
and explicit meaning [1], [2]. Because of the complex-
ity inherent in the formation of natural language, text
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understanding has traditionally been a difficult area for
machine learning algorithms [3]. Medical text understanding
is no exception. First, medical language is typically intricate.
In addition, the method used for text understanding must
be interpretable for health professionals to inform medical
decision-making [4], [5].

Although deep learning in the form of convolutional neural
network (CNN), recurrent neural network (RNN), and Long
Short-Term Memory (LSTM) recently has provided a leap
ahead in text categorization accuracy [2], [6]–[8], this leap
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has come at the expense of interpretability and computa-
tional complexity [9]. Simpler techniques such as the Naïve
Bayes classifier, logistic regression, decision trees, random
forest, k-nearest neighbors (kNN), and the support vector
machine (SVM) are still widely used, arguably because they
are simple and efficient, yet, provide reasonable accuracy,
in particular when data is limited [5], [10].

A. CHALLENGES ADDRESSED IN THIS PAPER
Despite recent successes, natural language understanding
continues to challenge machine learning [11], [12].

First, realistic vocabularies can be surprisingly rich, lead-
ing to high-dimensional input spaces. Depending on the fea-
ture selection strategy, text categorization has to deal with
thousands to tens of thousands (or even more) of features.
Even though natural language text typically contains high
volumes of duplicated words (e.g., stop words), few are irrel-
evant [13]. Low frequency terms further carry considerable
information that may be relevant for categorization [14].
As a result, a vocabulary can be so diverse that documents
covering the same category may not even share a single
medium frequency term [15]. As an example, the elec-
tronic health record (EHR) dataset that we target in the
present paper abounds with jargon, misspellings, acronyms,
abbreviations, and a mixture of Latin, English, and mother
tongue [4].

Another challenge is the inherently complex composi-
tion of natural language [3], [9]. For example, determining
whether a patient is allergic to drugs or not based on EHRs has
proven to be very difficult without introducing handcrafted
rules [4]. Rather than relying on the additivity of individual
features to discriminate among categories, full sentences,
paragraphs and even complete records must be considered in
context. Indeed, the temporal dynamics of EHRs is a strong
confounding variable. Simultaneously, EHRs may also con-
tain ambiguous considerations and speculations which must
be treated as false positives despite their similarity to true
positives on the individual feature level [4], [16].

A third challenge is interpretability. While rule-based
methods such as decision trees are particularly easy to under-
stand, other techniques tend to be more complex [5], [17].
Neural networks are arguably among the most complicated
and have been criticized for being ‘‘black boxes’’ [9]. That
is, it is very difficult for humans to understand how they
produce their results. Even trained data scientists may have
problems explaining their outcomes, or such explanations
may demand comprehensive and time-consuming analysis.
It has been argued that as doctors or nurses are expected to
justify their decisions, so should machine learning algorithms
be able to explain their decisions [5], [17]. There has been
recent progress on postprocessing techniques for neural net-
works to address this issue [12]. However, such approaches
add to the already inherent complexity of the neural networks
by introducing a new abstraction layer. How to provide both
an exhaustive and compact explanation of neural network
reasoning is currently an open question.

At the same time, learning propositional formulae from
data has been notoriously difficult [18], with the space of
candidate formulae growing exponentially with the number
of propositional variables involved [19]. This exponential
growth becomes particularly severe in text categorization
involving extensive vocabularies. A text categorization prob-
lem may consist of thousands, or even tens of thousands,
of propositional variables. The full range of possible propo-
sitional formulae is thus immense. As a result, extreme care
must be taken during training to maximize the precision and
recall of the categorization, while simultaneously combating
overfitting.

In this paper, we attack the above challenges by introducing
the first approach to text categorization that leverages the
recently introduced Tsetlin Machine [19].

B. THE TSETLIN MACHINE
The TsetlinMachine has garnered significant interest because
it facilitates human-understandable pattern recognition by
composing patterns in propositional logic. Without losing
the important property of interpretability, it has outperformed
state-of-the-art pattern recognition techniques in benchmarks
involving pattern discrimination, image recognition, and opti-
mal move prediction for board games [19].

The Tsetlin Machine builds on the Tsetlin Automaton,
a pioneering solution to themultiarmed bandit problem devel-
oped by M. L. Tsetlin in the Soviet Union in the early
1960s [19], [20].

At the heart of the Tsetlin Machine, we find a novel
game theoretic scheme that orchestrates decentralized teams
of Tsetlin Automata. The orchestration guides the Tsetlin
Automata to jointly learn arbitrarily complex propositional
formulae in conjunctive normal form, capturing the various
facets of the patterns faced [19]. Such formulae have turned
out to be particularly suited for human interpretation, while
still allowing complex nonlinear patterns to be formed [21].

Apart from being simple to interpret, the Tsetlin Machine
represents both inputs, patterns, and outputs as bit sequences.
Recognition of patterns, in turn, involves decentralized
manipulation of those bits. This provides the Tsetlin Machine
with an advantage computationally, compared to methods
that rely on more complex mathematical modeling.

C. PAPER CONTRIBUTIONS AND ORGANIZATION
The contributions and organization of the paper can be sum-
marized as follows: In Section 2, we provide the details
of our Tsetlin Machine-based method to text categoriza-
tion. We further demonstrate how the conjunctive clauses
are formed to capture complex patterns in natural lan-
guage. Next, in Section 3, we evaluate our scheme empir-
ically on the 20 Newsgroups and the IMDB movie review
(IMDb) datasets, as well as on a newly published clinical
dataset, in comparison with selected state-of-the-art tech-
niques. In addition, we conduct experiments to investigate
the learning behavior and the execution speed of the Tsetlin
Machine. We also provide examples of clauses formulated
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FIGURE 1. Example of bit vector representation of document sentences,
taken from the medical dataset used in one of the experiments.

by the Tsetlin Machine, assessing their interpretability. Fur-
thermore, we examine how parameter selection influences the
classification performance. Finally, in Section 4, we conclude
and provide directions for further research, including contex-
tual language models for the Tsetlin Machine.

II. TEXT CATEGORIZATION WITH THE TSETLIN MACHINE
In this section, we first present our Tsetlin Machine based
framework for text categorization. To highlight the key char-
acteristics of the framework, we provide a running example
from the medical domain – detection of an Allergy in the
EHRs. Thereafter, we present the learning procedure itself,
demonstrating step-by-step how the Tsetlin Machine extracts
sophisticated linguistic patterns from labeled documents and
simultaneously combats overfitting. The overall algorithm for
text categorization is shown in Algorithm 1 and explained in
the following.

A. REPRESENTING TEXT AS PROPOSITIONAL VARIABLES
The Tsetlin Machine takes a vector of k propositional vari-
ables, X = [x1, x2, . . . , xk ], as input, each taking the value
0 or 1 (or equivalently, False or True). As illustrated in
Fig. 1, we represent text (sentences, paragraphs, or in our
case, documents) as follows. First, we form a vocabulary,
V = {t1, . . . , tk}, consisting of each unique term to found in
the target text corpus, D. A propositional variable, xo, o ∈{1,
. . . , k}, is then introduced to represent each term, to ∈V.
This allows us to model a document, d ∈D, as a vector, X,
of |V| propositional variables (stored as a vector of bits). The
vector tells us which terms are present and which are absent
in d .
Example: For the topic Allergy, terms such as ‘‘penicillin’’

and ‘‘reacts’’ would for instance be of importance, providing
the propositional variables x‘‘penicillin′′ and x‘‘reacts′′ .

B. LINGUISTIC PATTERNS IN CONJUNCTIVE NORMAL
FORM
To build patterns that accurately capture categories, we com-
pose propositional formulae in conjunctive normal form.
These relate the propositional variables into compounds that
trigger on evidence for or against a category.

Each compound, i.e., a conjunctive clause, is built by
employing the conjunction operator on the propositional vari-
ables and their negations (referred to as literals):

C j (X) = xq1 ∧ xq2 ∧ . . . ∧ xqr ∧ ¬xqr+1 ∧ . . . ∧ ¬xqs .

(1)

Algorithm 1 Function Categorize Text
(
X,C

)
Input:A feature vectorXmarking the absence or presence
of phrases; A set of clausesCj ∈ C produced by the Tsetlin
Machine
Output: Categorization y
Begin
1. Evaluate each clause, Cj ∈ C, with X as input.
2. Sum up output of clauses (votes with positive and
negative polarity [see Section II.C]):

f6 (X) =

(
m−1∑

j=1,3,...
Cj (X)

)
−

(
m∑

j=2,4,...
Cj (X)

)
.

3. The final output, y, is decided by thresholding f6 (X) to
identify the category:

y = 1 if f6 (X) > 0, otherwise 0.
4. Return y.
End

FIGURE 2. The Tsetlin Machine architecture, introducing clause polarity,
a summation operator collecting ‘‘votes,’’ and a threshold function
arbitrating the final output.

In (1), qu are indexes from {1, . . . , k} that identify which
propositional variables take part in the conjunction. Note that
empty clauses (those without literals) output 1 during training
and 0 during categorization.
Example: For instance, the clause ‘‘rash’’ ∧ ‘‘reaction’’
∧ ‘‘penicillin’’ can act as evidence (a vote) for the category
Allergy.

The beauty of the conjunctive normal form is that it
can capture arbitrarily refined patterns by looking at mul-
tiple terms in conjunction, forming a global view of the
input vector. This is opposed to modeling features inde-
pendently, as done by linear models like the Naïve Bayes
classifier.

Finally, note the similarity between the conjunctive clauses
in our model and the Boolean model of information retrieval,
where Boolean expressions of terms are used to form queries
by means of the AND-, OR-, and NOT operators [11].

C. CATEGORIZATION: ADDING UP EVIDENCE FROM
CLAUSES
As illustrated in Fig. 2, in order to provide a rich and robust
representation of each category, a Tsetlin Machine utilizes
multiple clauses, C = {C1, . . . ,Cm}, forming an ensemble
of patterns. Each clause is further assigned a polarity (+/−).
We use odd indexed clauses to capture patterns that provide
evidence on the presence of a category (positive polarity),
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while even indexed clauses capture evidence on the absence
of the category (negative polarity).

As further depicted in Fig. 2, evidence obtained from
clauses are aggregated by summation:

f6 (X) =

 m−1∑
j=1,3,...

Cj (X)

−
 m∑
j=2,4,...

Cj (X)

 (2)

The concluding categorization is decided from the sign of
f∑(X):

y = 1, if f∑(X) > 0; otherwise y = 0. (3)

That is, only when the number of clauses providing a positive
output outweigh those with negative output is the document
assigned the target category (y = 1, i.e., Allergy in our case).
Altogether, this means that the Tsetlin Machine both learns

what a category looks like, and what it does not look like.
By summing evidence for and against the category, the thresh-
old mechanism arbitrates the final decision.
Example:Recall our clause: ‘‘rash’’∧ ‘‘reaction’’∧ ‘‘peni-

cillin.’’ If the terms ‘‘rash,’’ ‘‘reaction,’’ and ‘‘penicillin’’ are
all present in the document being categorized, the clause
would evaluate to 1. This outcome would count as evidence
for Allergy if the clause has positive polarity, and if none of
the clauseswith negative polarity evaluates to 1, the document
would be assigned the category Allergy (y = 1).

D. LEARNING THE COMPOSITION OF CLAUSES
Wenow turn to learning of the propositional formula8(X) =
C1
∨
. . .
∨
Cm for categorizing text. The Tsetlin Machine

addresses this challenge by decomposing the problem into a
large number of simple decisions. These decisions are coor-
dinated by a novel decentralized game between independent
Tsetlin Automata – one automaton per clause per literal [19].
Each automaton decides whether to include or exclude the
assigned candidate literal in the given clause. That is, whether
a literal should take part in a clause is collectively regulated
by the competing presence of multiple candidate literals.

As shown in Algorithm 2, the learning is performed online,
processing one training example, (X, y) at a time. The input
vector X = [x1, x2, . . . , xo] dictates which terms are present
and which are absent in the current document. The target,
y, to be predicted is simply the category of the document
(Allergy or No Allergy in our case).
The Tsetlin Automaton:The Tsetlin Automaton that we use

can be defined as a quintuple [22]: {8, α, β,F(·, ·),G(·)}.
8 = {ϕ1, ϕ2, . . . , ϕ2N } is the set of internal states; α =
{αExclude, αInclude} is the set of automaton actions; and β =
{βInaction, βPenalty, βReward } is the set of inputs that can be
given to the automaton. An output function G[ϕt ] determines
the next action performed by the automaton given the current
automaton state: (1) G[ϕt ] = αExclude for 1 ≤ t ≤ N ; and (2)
G[ϕt ] = αInclude for N + 1 ≤ t ≤ 2N . Finally, a transition
function F[ϕt , βu] determines the new automaton state from:
(1) the current automaton state and (2) the response of

the environment to the action performed by the automaton.

Algorithm 2 Function Learning Propositional Formula
(D,m,T , s)

Input: Training data (X, y) ∈ D, number of clauses m,
target T , specificity s

Output: Propositional formula 8(X)
Begin
The Tsetlin Machine learns 8(X) by means of a game:
1. The arrival of a labeled document (X, y) from D

signals the start of new game round.
2. Each Tsetlin Automaton decides whether to include or

exclude its designated literal, leading to a new
configuration of clauses C. Recall that each decision
is based on the state of the Tsetlin Automaton, as
exemplified in Fig. 3.

3. Each clause,Cj ∈ C, is then evaluated withX as input.
4. We use the parameter T as a target for the summation

f6(X). This parameter decides the update probability
of each clause (see Section II.D).

5. If a clause is selected for updating, each of its Tsetlin
Automata are independently and randomly given
either Reward, Inaction, or Penalty feedback,
according to Table 1 or Table 2, parameterized by s:
a. If y = 1 the Type I Feedback Table is activated,
while the Type II Feedback Table is activated
if y = 0 (reversed for negative clauses).

b. The probability of each kind of feedback is
decided by the action of the automaton (either
include or exclude literal xk / ¬xk ), the value of
the target clause, Cj, and the value of the literal
xk / ¬xk .

6. The Tsetlin Automata update their states based on the
feedback, exemplified in Fig. 3.

7. Goto 1 if the stopping criteria (e.g., the number
of epochs) is unfulfilled.

8. Return propositional formula
8(X) = C1

∨
. . .
∨
Cm obtained from the

last Tsetlin Automata decisions.
End

Briefly, we have: (1) ϕt+1 = F[ϕt , βPenalty] for 1 ≤ t ≤ N ;
(2) ϕt−1 = F[ϕt , βPenalty] for N + 1 ≤ t ≤ 2N ; (3)
ϕt−1 = F[ϕt , βReward ] for 1 < t ≤ N ; ϕt+1 = F[ϕt ,
βReward ] for N + 1 ≤ t < 2N ; and (4) ϕt = F[ϕt ,
·] otherwise [19]. The crucial issue is to design automata
that can learn the optimal action when interacting with the
environment.
Example: Fig. 3 depicts six Tsetlin Automata with

N = 100 states per action, collaborating to build a sin-
gle clause. The three Tsetlin Automata to the left (TA)
control the terms ‘‘to,’’ ‘‘Voltaren,’’ and ‘‘reacts,’’ while
the three to the right (TA’) control the negation of the
same terms. Those moving away from the central states
in the figure (‘‘Voltaren,’’ ‘‘reacts,’’ ¬‘‘reacts,’’ ¬‘‘to,’’ and
¬‘‘Voltaren’’) have received a βReward , while those moving
toward the center have received a βPenalty.
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TABLE 1. The type I feedback table has been designed to combat false
negative output. It is triggered when a document correctly evaluates to
true (i.e., both output value and target value are 1), or wrongly to false
(i.e., output value is 0, while target value is 1).

TABLE 2. The type II feedback table combats false positive output. It is
triggered when a document has wrongly evaluated to false, i.e. output
value is 1, while the target value is 0.

FIGURE 3. Six tsetlin automata with 100 states per action. Each
automaton learns to either exclude or include a candidate literal (a term
or its negation) in a clause.

Remark: Note that a state near 1 conveys very strong
support for αExclude, while a state close to 2N means strong
support for αInclude. The center reflects uncertainty.
The Nature of the Tsetlin Machine Game: The whole team

of Tsetlin Automata, across all the categories and clauses,
is orchestrated by means of a novel game [19]. In this game,
the Tsetlin Automata partake as independent players. Two
simple tables specify the complete multidimensional game
matrix, where the Tsetlin Automata are the decision makers:
(1) Type I Feedback and (2) Type II Feedback.
As shown in Fig. 3, a Tsetlin Automaton that receives a

Reward moves away from the center (the Tsetlin Automaton
becomes more confident in the action it currently selects).
Conversely, when receiving a Penalty, the state of a Tsetlin
Automaton shifts toward the center states, i.e., the states N
and N + 1, signaling increased uncertainty.

The Type I Feedback Table is activated when a document
is either correctly assigned the target category (true positive),
or mistakenly ignored (false negative). The feedback given by
this table has two effects. First, clauses are refined by intro-
ducingmore literals from the document. Left alone, this effect
will make the clause memorize the document, by including
every literal. However, this effect is countered by the second
effect. The second effect is weaker by a factor of s, seeking
to make all clauses evaluate to 1, whenever a document of
the target category appears. This effect counters overfitting.
Indeed, the ‘‘granularity’’ of the clauses produced can be
controlled by means of s, decided by the user.

The second table, the Type II Feedback Table, is activated
when a document is wrongly assigned the target category (a
false positive categorization). The effect of this table is to
introduce literals that render the clauses false whenever they
face a document of the incorrect category.

Note that the above reasoning applies to clauses with
positive polarity. For clauses with negative polarity, Type I
Feedback takes the role of Type II Feedback, and vice versa.

Both of the tables are thus interacting, making the whole
game of Tsetlin Automata converge toward robust pattern
recognition configurations.

As detailed further in [19], in order to effectively
utilize sparse pattern representation capacity (a con-
strained number of clauses), we introduce the user set
parameter T as a target for the summation f6 (X).
In all brevity, the probability of activating Type I
Feedback is: (T − max(−T ,min(T , f 6 (X))))/2T , while
Type II Feedback is activated with probability:
(T + max(−T ,min(T , f 6 (X))))/2T . If the votes accumu-
late to a total of +/ − T or more, neither rewards or penal-
ties are handed out to the involved Tsetlin Automata. This
mechanism thus helps to alleviate the vanishing signal-to-
noise ratio problem [19], as it effectively removes clauses
(and their literals) that already are able to capture a pattern
(supporting the correct classification) from further feedback.
Remark: The computational simplicity and small mem-

ory footprint of Tsetlin Automata, combined with the
decentralized nature of the above game, makes the Tsetlin
Machine particularly attractive for execution on GPUs. This
is explored further in the empirical results section.

E. DETAILED WALKTHROUGH OF THE LEARNING STEPS
Fig. 4 provides a step-by-step walkthrough that exemplifies
how the Tsetlin Machine is able to gradually learn the target
concept Allergy, building and refining clauses, document-by-
document. For the sake of clarity, we focus on a substring of
each document, although the steps we now describe occur for
each term of the vocabulary, for each document processed.
We explain the figure from left to right, starting with Exam-
ple 1 (from the top).
Processing of Document 1: The first document, d1, con-

tains the substring ‘‘reacts to Voltaren.’’ Each of these terms
are associatedwith propositional variables, say, x29123, x32232,
and x37372. Again, for clarity, we focus on two of the clauses
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FIGURE 4. Step-by-step example of Tsetlin Machine-based learning, demonstrating how clauses are composed and refined.

associated with the target concept, C1(X) and C2(X), both
with positive polarity. Each clause may potentially include
any of the propositional variables, as well as their negation.
Thus, we have two Tsetlin Automata for each term, for every
clause. The first Tsetlin Automaton in the pair (referred to as
TA) decides whether to exclude or include the propositional
variable as is. The second one (referred to as TA’) decides
whether to exclude or include the negation of the variable.
Starting from the left, the columns TA and TA’ list the state

of each of the associated automata controlling C1(X), before
they have been updated. As seen, the term ‘‘reacts’’ is already
included in C1(X) because the state of the corresponding
automaton is greater than or equal to N + 1 (i.e., 101). It is
further included with confidence because the state is almost
at the extreme end, i.e., 2N. The other two terms, ‘‘to’’ and
‘‘Voltaren,’’ are excluded: ‘‘to’’ is excluded with confidence
(state 1), and ‘‘Voltaren’’ is excluded with uncertainty (state
100). Altogether, this means that the clause takes the form
C1(X ) = x29123 initially.
With y = 1, document d1 has been flagged as an example

of the target category. Accordingly, the Feedback Type I
Table, described previously, is activated as depicted in the
figure. The new updated states of the Tsetlin Automata are
listed next. As seen, after the update, ‘‘Voltaren’’ is now also
included in the clause, increasing categorization precision:
C1(X ) = x29123 ∧ x37372.
Processing of Document 3: Further on in the processing,

another document, d3, with target y = 1 comes along. This
time C1(X) evaluates to 0, because ‘‘Voltaren’’ is absent from
d3. However, another clause C2(X ) = x29123 happens to
only include ‘‘reacts’’ and, thus, evaluates to 1. This in turn,
triggers Feedback Type I for clauseC2(X), again leading to an
update of the Tsetlin Automata states. As seen, the ‘‘Apoc-
illin’’ is now included in the clause because the associated

Tsetlin Automaton changed action by going from state 100
to 101: C2(X ) = x29123 ∧ x1057.
Processing of Document 7: Document d7 is an example of

a document not belonging to the category, with y = 0. This
example highlights the difficulty of the text categorization
task at hand. Indeed, C1(X) evaluates to 1 because the terms
‘‘reacts’’ and ‘‘Voltaren’’ are present, leading to a false posi-
tive categorization. However, this activates Feedback Type II.
This time, clause C1(X) is updated by attempting to modify
the clause so that it evaluates to 0 instead. This is done by
penalizing those exclude actions that would make the clause
evaluate to 0 had they been replaced by an include action.
In our example, the most uncertain of those being penalized
is the literal that negates ‘‘not.’’ After receiving Feedback
Type II, this literal is now being included in the clause:
C1(X ) = x29123 ∧ x37372 ∧ ¬x25789. In this case, the false
positive categorization was eliminated by this simple change.
In general, however, the game needs to be played for several
epochs before all of the clauses find their final form.

III. EXPERIMENTS
In this section, we describe the experimental setup, including
construction of the datasets and NLP preprocessing tech-
niques, and the experimental setup. We further evaluate our
Tsetlin Machine-based text categorization approach empir-
ically, in comparison with other techniques. To this end,
we use two public datasets and a proprietary one, accompa-
nying this paper: 1) The 20 Newsgroups dataset [23], [24];
2) The IMDb dataset [25]; and 3) A clinical dataset with
authentic EHRs from a hospital [4]. The first two datasets
facilitate comparisons with previous research, while the third
focuses on real-life performance on a challenging medical
application. We also conduct experiments to investigate the
learning behavior and the execution speed of the Tsetlin
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Machine, including performance statistics per epoch. We fur-
ther discuss examples of clauses formulated by the Tsetlin
Machine, and finally examine how parameter selection influ-
ences classification results.

A. DATASET CONSTRUCTION
1) THE 20 NEWSGROUPS DATASET
This publicly available dataset is a collection of 20000 news-
group documents, partitioned (nearly) evenly across six cate-
gories (i.e., computers, recreation, science, politics, religion,
and forsale) and 20 subcategories [23], [24]. The dataset has
been widely used to evaluate text classification algorithms.
We use the ‘‘bydate’’ version of the dataset containing 18
846 documents, recommended by the data provider as being
more realistic. This specific version of the dataset has docu-
ment duplicates and newsgroup-identifying headers removed.
It is further split into a training set containing 11 314 docu-
ments and a test set containing 7532 documents, separated in
time.

2) THE IMDb DATASET
The IMDb dataset was originally created by Maas et al. [25]
for learning word vectors targeting sentiment analysis. The
balanced dataset contains 100 000 reviews of movies, where
half of them are labeled (negative and positive sentiment) and
the other half are unlabeled. We refer to Maas et al. [25] for
further details on the dataset.

3) THE CLINICALLY DERIVED DATASET
This dataset contains complete authentic EHRs and is derived
from the Sørlandet Hospital Trust’s enterprise-wide inte-
grated EHR system in Norway. The dataset has been manu-
ally curated by health professionals to create a gold-standard
for allergy-relevant information. It contains approximately 20
000 clinical notes belonging to patients who were admitted
to the hospital for orthopedic surgical procedures performed
between January 1, 2014 and December 31, 2015. Based on
the annotated allergy information, each of the patient cases
was manually assigned either the category Allergy or the
category No Allergy. The dataset was also randomly reduced
in size to 431 patient EHRs (76 319 documents, ∼15 951 K
words, and ∼104 M tokens in total) to achieve a sufficiently
balanced dataset. Finally, classification of whether a patient
has allergies or not is performed by processing the collective
content of each patient’s EHR. To facilitate reconstruction of
our experiments with the Tsetlin Machine, an anonymized
bit vector representation of the dataset is available at
https://github.com/cair/TextUnderstandingTsetlinMachine.

B. NLP PREPROCESSING
The datasets were converted into a sparse matrix binary
format for the Tsetlin Machine to process further. This also
included building a dictionary of all the dataset-specific
terms. NLP preprocessing was an iterative process where we
experimented with different techniques and configurations

to understand how it affected the Tsetlin Machine. NLP
preprocessing for the final results included lowering case,
removal of noninformative punctuation, and tokenization.
We did not remove stop words in our classification exper-
iments, and we considered a token to be any sequence of
symbols, separated by white space. For the IMDb dataset,
we calculated term frequency–inverse document frequency
(tf–idf) for all features first, computed threshold values [26],
and finally applied chi-squared statistics to determine the
7500 most significant features. A chi-squared test statistic
was used to determine the 15 000 most significant features
for the 20 Newsgroups dataset, while mutual information was
employed to identify the top 38876 features for the clinical
dataset [27]. NumPy [28], Scikit-learn [29], and the Natural
Language Toolkit (NLTK) [30] Python libraries were used for
programming the data transformation steps.

For the Weka processed datasets, the StringToWordVector
filter was used to perform cleaning and tokenization of the
input data into unigrams, and tf–idf together with the Info-
GainAttributeEval method (used to calculate mutual infor-
mation) were employed to determine the most significant
attributes.

C. EXPERIMENTAL SETUP AND EVALUATION METRICS
The experiments were conducted on server A (NVIDIA
DGX-2 with dual Intel Xeon Platinum 8168, 2.7 GHz,
24-cores, 30 TB SSD, 1.5 TB memory, 16X NVIDIA Tesla
V100 512 GB, and Ubuntu 18.04 LTS x64) and B (Intel
i7-8700K 6-cores CPU, 64GB of memory, GeForce GTX
1080 Ti, and Ubuntu 18.04 LTS x64).

We adopted the Python (with Cython C/C++ extensions)
or CUDA/GPU capable C++ version of the Multiclass
Tsetlin Machine to run the experiments.

We further used Weka (v3.9) [31], StarSpace [32], Scikit-
learn, Keras [33], and TensorFlow [33] to produce the results
of the other evaluated methods. This included the Naïve
Bayes classifier (multinomial Naïve Bayes), logistic regres-
sion, decision tree, random forest, linear SVM, kNN, multi-
layer perceptron (MLP), LSTM, LSTM CNN, bidirectional
LSTM (Bi-LSTM), and Bi-LSTM CNN.

The classifiers we employed in Weka were the Naïve
Bayes classifier, decision tree (J48/C4.5), logistic regres-
sion (multinomial logistic regression), random forest, kNN,
linear SVM (sequential minimal optimization), and MLP
(DL4jMlp) [34].

Note that we used both CPU and GPU implementations of
the Tsetlin Machine for the classification experiments. The
fast GPU version of the Tsetlin Machine employs bitwise
operators and executes up to 37 times faster than the CPU
implementation, depending on the dataset. Our CUDA source
code for text classification with the Tsetlin Machine can be
found at https://github.com/cair/TextUnderstanding Tsetlin-
Machine.

Although we conducted extensive hyperparameter opti-
mization for the Tsetlin Machine (manual grid search) and
the other evaluated algorithms (e.g., automatic tuning by
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use of the CVParameterSelection metafilter in Weka, Grid-
SearchCV in Keras, and Hyperas/Hyperopt in Python) [35],
even better configurations may potentially exist. We have,
however, strived to put an equal effort into optimizing each
approach to facilitate a fair comparison. Concerning the neu-
ral network methods specifically, parameters such as embed-
ding size, optimization algorithm, learning rate, dropout,
batch size, sequence length, the number of LSTM cells, and
CNN filter and kernel sizes, were tuned for each dataset.
The neural networks were further configured to train for a
maximum of 200 epochs. Ten percent of the training data was
randomly selected as validation data, and early stopping was
implemented as a strategy to stop the training if the validation
loss did not increase for 15 consecutive epochs.

We used the authors’ published training/test data split for
the experiments on the 20 Newsgroups (60/40) and IMDb
(50/50) datasets [23], [25], and performed 100 independent
runs to facilitate statistically robust comparisons of the dif-
ferent techniques. For the clinical dataset we performed a
10-fold cross-validation, repeated 10 times to produce repre-
sentative averages with small variance. The clinical dataset is
characterized by its complexity and relatively few samples.
We experimented with how to best partition the available
data into a test and training set, before finally settling on
a 90/10 split, which in our tests delivered the best overall
results.

The evaluation metrics we employed in the experi-
ments were macro-averaged accuracy, recall, precision, and
F-measure. The results are presented as the mean percent-
ages, with 95% confidence intervals.

D. RESULTS
1) THE 20 NEWSGROUPS DATASET
The results for the 20 Newsgroups dataset with 20 classes
are reported in Table 3. The Tsetlin Machine we employed
here was configured using 15 000 selected features,
15 000 clauses, and 100 states. Furthermore, we used an
s-value of 50 and a summation target T of 60. We report
a conservative estimate of performance – performance after
the 200th epoch. This performance estimate is conserva-
tive because, as seen in Fig. 5, the Tsetlin Machine is
continuously exploring the configuration space, and the
best performing configuration is not always manifested in
the final epoch. However, the estimate reflects the aver-
age behavior of the steady state of the underlying learning
process.

As Table 3 shows, except for the SVM and the logis-
tic regression, the Tsetlin Machine outperformed the other
baselines. The recall scores of the SVM and the logistic
regression are higher than the Tsetlin Machine’s recall score,
while their precision scores are almost equal. Considering the
three methods’ F-measure scores in light of the confidence
intervals, they perform quite similarly.

The macro-averaged accuracy of the Tsetlin Machine in
this experiment was 81.5% ± 0.1%, with 82.7% being the
highest accuracy over all the epochs and experiments.

TABLE 3. Average classification results (in percent) for the 20 newsgroup
dataset.

FIGURE 5. The learning behavior (y-axis is score) of the Tsetlin Machine
on the 20 newsgroups dataset across 200 epochs (x-axis is epochs).

FIGURE 6. The execution time in seconds (y-axis) for the fast GPU version
of the Tsetlin Machine on the 20 newsgroups dataset across 200 epochs
(x-axis) on server A.

Fig. 5 depicts the learning behavior of the Tsetlin Machine
on the dataset over 200 epochs in a single run. As seen, the
accuracy increases consistently across the epochs, without
any indication of overfitting. As further observed, the preci-
sion and recall scores are quite similar, with the difference of
the two mostly falling below 3% over the epochs. The time
spent per epoch to train and evaluate the fast GPU version of
the Tsetlin Machine is plotted in Fig. 6.

As observed, when compared to Fig. 5, the training time
drops when the Tsetlin Machine is close to convergence.
While spending approximately 260 seconds for the initial
epoch, the training time gradually falls to 243 seconds in
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epoch 42, after which it suddenly drops to approximately
233 seconds and remains around 230 seconds for the remain-
ing epochs.

To our knowledge, the best accuracy score (86.1%) on
this particular dataset (the ‘‘bydate’’ version) was recently
reported by Papagassi et al. using an end-to-end multiscale
CNN framework [36]. Zheng et al. [37] employed a bidirec-
tional hierarchical skip-gram (BHSG) model for text topic
embedding and recorded an accuracy score of 85.4%. They
also included a baseline result for SVM (82.8%) that is similar
to our linear SVM result (82.2%). Using a regularized least
squares classifier (optimal regularization chosen post hoc on
test set), Rennie [38] achieved an accuracy score of 84.9%,
while Feng et al. reported an accuracy score of 82% with
AdaBELM [39]. In a comparative study on term weight-
ing schemes for text classification, Mazyad et al. recorded
macro-averaged F-measure of 69% for SVM, 68.9% for
stochastic gradient descent (SGD), and 49.1% for a deci-
sion tree [40]. By implementing error-correcting output cod-
ing (ECOC) together with multinomial Naïve Bayes, Li and
Vogel [41] reported average macro-accuracy of 81.8%. Using
discriminative restricted Boltzmann machines to classify the
20 Newsgroups dataset, Larochelle and Bengio recorded an
accuracy score of 76.2% [42].

Note that the highest performing scores on this
dataset were achieved by including more features (e.g.,
Papagassi et al. used a vocabulary of 53 160 words) than what
we used in our experiments [36]. Our results also indicate
that the accuracy of the Tsetlin Machine increases with the
number of features. However, a sparse version of the Tsetlin
Machine, or alternatively more memory, is needed to go
significantly beyond the 15 000 features we used for this
dataset.

2) THE IMDB DATASET
Table 4 shows the results for the IMDb dataset. The Tsetlin
Machine was here configured to use 7500 selected features,
20 000 clauses, and 256 states. Furthermore, we used an
s-value of 27.0, a target T of 80, and ran the Tsetlin Machine
for 200 epochs. For each run, we select the Tsetlin Machine
configuration that obtains the highest accuracy on the training
data, and report the corresponding performance on the test
data.

As observed in Table 4, the Tsetlin Machine outperformed
the other methods on this dataset. The macro-averaged accu-
racy of the Tsetlin Machine in this experiment was 89.2%
± 0.2%, with 89.7% being the highest accuracy over all the
epochs and folds.

Utilizing a CNN and a LSTM network to classify the same
data, Yenter and Verma [43] achieved maximum accuracy
scores of between 89.22% and 89.5% on five different mod-
els, and thus concluded that their proposed model outper-
formed prior relevant research [25], [44], [45].

Recently, several authors have also reported even
better results by using ensemble methods or by introduc-
ing combinations of techniques such as entropy minimiza-

TABLE 4. Average classification results (in percent) for the IMDb dataset.

tion loss, as well as adversarial and virtual adversarial
training [46]–[55]. For example, Wang and Manning
reported an accuracy of 91.22% by implementing SVM
with NB features (NBSVM-bi) [46]. Using deep learning,
Miyato et al. [51] were able to achieve 94.09% accuracy by
using adversarial training methods. Finally, by implementing
a mixed objective function (L-mixed) and word embedding,
Singh Sachan et al. obtained an accuracy of 95.68% and
concluded that the good performance of their model mostly
comes from fine-tuning the pretrained embedding layer and
by adjusting the gradient norm clipping threshold value [52].
In our forthcoming work, we therefore intend to investigate
how we can enhance our relatively plain modeling of text
(presence and absence of terms) to further increase accuracy,
for example by introducing pretrained word embedding.
Example Clauses: Table 5 shows five examples of typical

clauses formulated by the Tsetlin Machine on the IMDb
dataset (grouped according to type as A, B, and C). Clauses
in group A are examples of positive and negative single
phrase clauses. Group B gives examples of clauses where
two phrases interact to form more intricate meanings. For
example, the phrase ‘‘Wonderful movie’’ is modified by the
phrase ‘‘but then,’’ which in combination have a negative
meaning in this case. Finally, the groupC clause is an example
of a positive clause containing the phrase ‘‘a unique,’’ further
modified or restricted by a range of negations that effectively
serve to eliminate different textual contexts.

3) THE CLINICAL DATASET
Table 6 displays results for the clinical dataset. To produce
the final results presented here, the Tsetlin Machine was
configured to use 38 876 features, 500 clauses, 100 states,
an s-value of 3.0, a summation target T of 25, and to run
2 epochs per fold. When considering the F-measure results,
the Tsetlin Machine beats the Naïve Bayes classifier by a
small margin, with logistic regression in third place. Given the
confidence intervals, however, the difference in performance
of the three top contenders becomes statistically insignifi-
cant. Interestingly, the two linear algorithms outperformed
all the other methods, including linear SVM and the usually
more capable nonlinear algorithms (i.e., the neural networks).
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TABLE 5. Examples of clauses formulated by the Tsetlin Machine on the
IMDb dataset.

TABLE 6. Average classification results (in percent) for the clinical
dataset.

A peak accuracy of 79.1% was achieved in epoch 294 when
running the Tsetlin Machine for an extended total of 2000
epochs, possibly reflecting temporary overfitting on the test
set (in later epochs, the accuracy results stabilized at approx-
imately 68–69%). It is reasonable to believe that the Naïve
Bayes and logistic regression classifiers in this experiment
gained from their simple (linear) structure, preventing them
from fitting the training data too closely [56]. Similar to
Naïve Bayes, the TsetlinMachine has also previously demon-
strated accuracy advantages when data is sparse, which may
possibly explain why the Tsetlin Machine is able to out-
perform the other nonlinear capable algorithms employed in
this experiment [19].

The results reported in Table 7 reflect how selected con-
figurations of clauses, target T , and s parameters impact
the F-measure (the other parameters are kept unchanged).
On this particular dataset, an s-value from 1.5–9.5 gives the
best results. Increasing the number of clauses to 2000 also
seems to favor lower s-values. Additionally, note that wewere
able to achieve a second-best F-measure of 68.9% by using
a configuration of 1000 clauses, a summation target T of 50,

TABLE 7. Average classification results (in percent) for the Tsetlin
Machine using selected configurations of clauses, summation target T,
and s parameters.

TABLE 8. Comparison of a J48/C4.5 decision tree (right column) with
example clauses formulated by the Tsetlin Machine (left column) on the
clinical dataset.

and an s-value of 2. In general, most of the configurations
provide competitive results, indicating robust learning with
the Tsetlin Machine across a variety of configurations. How-
ever, the results in Table 7 also indicate that the proposed
method is sensitive to parameter selection. In our experience,
tuning of the number of clauses, s, and T did not require
more effort thanmanually configuring different deep learning
techniques. However, because the Tsetlin Machine currently
lacks the automatic hyperparameter optimization methods
that are available for deep learning algorithms (e.g., Hyper-
opt), manual grid search has to be conducted. This means that
it may take more time to tune the Tsetlin Machine models in
practice. We also note that the clinical dataset is complex and
has relatively few samples.

This makes the results on this dataset particularly prone to
fluctuations.

As observed in Table 8, there are similarities between the
explanatory power of the Tsetlin Machine-produced clauses
and a decision tree. Both are produced in human-readable
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form, making them easy to interpret. The results they produce
here are informative from a medical domain perspective.
For example, the drugs Zyrtec, Ventoline, Cortisone, and
Cetirizin are all drugs that are relevant in the context of
patient allergy. They also identify allergens (e.g., grass and
pollen) and signs/symptoms/words (e.g., urticaria, compli-
cated, and itchy skin) consistent with patient allergy. Both
decision trees and clauses may further naturally be translated
into an equivalent set of rules for incorporation into clinical
decision support systems (CDSS). As shown in Table 5 and
Table 8 (see also Fig. 4), the clauses already contain operator
structures that may easily be included in e.g., if-then rules.
Unlike decision trees, though, the Tsetlin Machine is able to
combine interpretability with high accuracy performance (see
Table 6), both of which are important to healthcare.

Similar to decision trees, phrases may falsely be included,
such as the word ‘‘stiansand’’ in Table 8 (part of a city’s
name). Another example is the name of a hospital doctor
that showed up as a phrase in some of the Tsetlin Machine
produced clauses. Because of the approaches’ transparency,
falsely included phases can be manually pruned in a postpro-
cessing step before inclusion into medical applications.

IV. CONCLUSION AND FUTURE WORK
This paper proposed a text categorization approach based on
the recently introduced Tsetlin Machine. In brief, we rep-
resent the terms of a text as propositional variables. From
these, we capture categories using simple propositional for-
mulae that are easy to interpret for humans. The Tsetlin
Machine learns these formulae from a labeled text, utilizing
conjunctive clauses to represent the particular facets of each
category. Our empirical results were quite conclusive. The
Tsetlin Machine outperformed all of the evaluated methods
on the IMDb dataset, while performing approximately on par
with the best evaluated methods on the 20 Newsgroups and
a clinical dataset containing authentic EHRs. On average,
the Tsetlin Machine delivered the best recall and precision
scores across the datasets. Furthermore, we observed that the
explanatory power of the Tsetlin Machine-produced clauses
seems to equal that of decision trees.

In our further work, we plan to examine how to use the
Tsetlin Machine for unsupervised learning of word embed-
dings. Furthermore, we will investigate how the sparse struc-
ture of documents can be taken advantage of to speed up
learning. We further plan to leverage local context win-
dows to learn structure in paragraphs and sentences for
more precise text representation. We are currently also con-
ducting research into developing a convolutional version
of the Tsetlin Machine to further increase accuracy per-
formance [57]. Finally, based on our promising results we
envision implementing the Tsetlin Machine in a CDSS [4].
In particular, we are interested in how structured medical
data can be combined with the medical narrative to support
precision medicine.

Some of the linear based algorithms (i.e., SVM, logistic
regression, and Naïve Bayes) considered in this paper showed

strong accuracy performance on all three included datasets.
The experiments may therefore not have revealed the full
power of the Tsetlin Machine, which also has the capability
to address nonlinear patterns [19]. However, we note that the
experiments conducted here show that the Tsetlin Machine
is competitive also on simpler linear patterns, typical for text
analysis tasks. Further experiments with the Tsetlin Machine
should also be conducted on datasets that are unsolvable for
linear algorithms.

In conclusion, we believe that our novel Tsetlin Machine-
based approach can have a significant impact on a wide
range of text analysis applications. Furthermore, we believe
that the approach and results presented in this paper can
provide a promising starting point for deeper natural language
understanding.
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