

For the Master’s Degree in

Industrial Economics and Technology Management

Challenges with Agile in a

System Development

Department: A Case Study

MARIUS ANDERSEN BJØRNI

SIMEN HAUGEN

SUPERVISOR

Knut Erik Bonnier

University of Agder, 2019

Faculty of Engineering and Science

School of Business and Law

UiA
University of Agder
Master’s thesis

Faculty of Engineering and Science
School of Business and Law
c© 2019 Marius Andersen Bjørni & Simen Haugen. All rights reserved

Abstract

Even though agile approaches are renowned for rapid and efficient adaption
to market changes, decreased time for solving client demands, and more
value for the customer, they may also introduce unfortunate challenges that
can hinder the productivity of organizations. It is challenging to implement
and use agile approaches in organizations successfully, and while well-known
challenges are well understood, new ones are emerging. This master thesis
aims to uncover the potential challenges with agile in a system development
department through a qualitative, descriptive case study, where interviews
of key personnel and observations were conducted. Nine challenges with
associated causes and consequences were uncovered, most of them already
prevalent in existing theory. The case study did, however, uncover a chal-
lenge related to the estimation of maintenance work in upcoming Sprints.
This challenge is not covered in the Scrum framework and is therefore sug-
gested as a subject for future research.

iii

Table of Contents

Abstract iii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.2.1 Research Questions . 2

1.3 Delimitations . 2

1.4 Thesis Outline . 3

2 Theory 5

2.1 Project Management . 5

2.2 Traditional Software Development 6

2.3 Agile Software Development 6

2.4 Scrum . 8

2.4.1 The Scrum Team . 9

2.4.2 Scrum Events . 10

2.4.3 Scrum Artifacts . 15

2.5 Challenges of Agile Implementation 16

3 Method 19

3.1 Research Design . 19

3.2 Literature Review . 20

3.3 Case Study . 20

3.4 Data Collection . 21

3.4.1 Interviews . 21

3.4.2 Observations . 23

vii

3.5 Validity and Reliability . 24

4 Case Study 27
4.1 Case Company . 27
4.2 Department Structure . 28
4.3 Agile Transformation . 29
4.4 Roles and Responsibilities . 30
4.5 Work Methods . 32

5 Discussion 35
5.1 Findings . 35
5.2 Challenges . 36

5.2.1 Sprint Workload . 36
5.2.2 Testing in the Next Sprint 38
5.2.3 PBI Descriptions . 39
5.2.4 Business Agility . 42
5.2.5 Documentation . 43
5.2.6 PBI Grooming . 45
5.2.7 Team Improvement . 46
5.2.8 Release Processes . 48
5.2.9 Sprint Review . 49

5.3 Summary of Findings . 50

6 Conclusion 53
6.1 Limitations . 54
6.2 Future Work . 55

References 57

Appendices 61
A Interview Protocol . 62

viii

List of Figures

2.1 The Scrum framework (Adapted from Scrum.org (n.d.)). . . . 8

4.1 Structure of the System Development Department, and overview
of the interviewed employees. 28

ix

List of Tables

2.1 Overview of challenges uncovered in the strategic literature
review, which category they belong to, as well as the number
of papers that mention each challenge (Adapted from López-
Mart́ınez et al. (2016)). 17

5.1 Overview of challenges uncovered during the interviews, and
which participant that mentioned them. 36

5.2 Summary of findings from the discussion. 51

xi

Chapter 1

Introduction

1.1 Background

Agile has, since its formulation in the agile manifesto back in 2001, lead to
unprecedented changes in the software development field, introducing sev-
eral different methods and practices (Dingsøyr, Nerur, Balijepally, & Moe,
2012). It has also spread to a wide range of other fields and functions and is
now used in everything from human resources to marketing to production of
fighter jets (Rigby, Sutherland, & Takeuchi, 2016). Furthermore, according
to the Annual Report by World Economic Forum (2018), their team of over
700 collaborators around the world has remained conscious towards their
long-term mission “to create lasting yet agile structures that can respond to
the ever-changing and challenging environment that affects all stakeholders
in the quest for a positive future.”.

Even though agile approaches are renowned for rapid and efficient adaption
to market changes, decreased time for solving client demands, and more
value for the customer (Stoica, Mircea, & Ghilic-Micu, 2013), they may
also introduce unfortunate challenges that can hinder the productivity of
organizations. It is challenging to implement and use agile approaches in
organizations successfully, and while certain challenges are well understood,
new ones are emerging (Gregory, Barroca, Sharp, Deshpande, & Taylor,
2016). To get a better understanding and overall implementation of agile,
emerging challenges need to be identified and analyzed.

1

1.2 Problem Statement

This master thesis aims to uncover challenges that may arise when im-
plementing agile development approaches. The problem statement of this
thesis is as follows:

• What are the potential challenges with agile in a system development
department?

1.2.1 Research Questions

The problem statement has been divided into two research questions to spec-
ify further what the focus of this thesis is, and how the problem statement
will be answered.

• RQ: 1 What challenges related to agile and its implementation exist
in the system development department at the case company?

• RQ: 2 What are the underlying reasons and consequences for these
challenges?

In addition to answering the two research questions, potential solutions or
mitigation advice is given for each challenge.

1.3 Delimitations

Given the size and structure of the system development department of the
case company (which is more thoroughly explained and described in section
4.2), the case study of this thesis will only focus on the internal subdivisions
of the system development department. The reason for this is because the
external subdivisions do not necessarily follow the same agile approaches as
the internal subdivision.

While the system development department is an integrated part of a larger
company, this thesis only focuses on the challenges they experience. There

2

might be more challenges in the other parts of the organizations that relate
to the agile implementation, but they are out of scope for this thesis.

Challenges not related to agile or its implementation in the system devel-
opment department are out of the scope of this thesis. These challenges
are, therefore, excluded. The criteria for excluding challenges are that the
challenges were present before the agile transformation in the system de-
velopment department and that they have not been affected by the agile
transformation or the current agile work methods.

1.4 Thesis Outline

This master thesis is divided into six chapters. The first chapter gives an
introduction to the topic and problem statement of the thesis. The second
chapter outlines the theory used to analyze the data gathered from the
case study. Chapter three explains the research methods used. The fourth
chapter gives a brief description of the case company, including how the
system development department of the organization is structured, its work
methods, and the different roles of its employees. Chapter five presents the
findings from the data gathering and discusses them in relation to existing
theory. Finally, chapter six concludes the thesis and highlight how this
study contributes to theory and practice and indicate directions for future
research.

3

Chapter 2

Theory

This chapter gives an introduction to the primary fields of research for this
thesis. It contains project management, two subcategories: traditional and
agile software development, the agile framework Scrum, and lastly chal-
lenges of agile implementation.

2.1 Project Management

Project management can be defined as “The application of knowledge, skills,
tools, and techniques to project activities to meet the project requirements.”
(Larson & Gray, 2010, p. 647). IT projects can pose a serious threat to com-
panies, as they more often than other projects end up far exceeding their
schedules and budgets (Flyvbjerg & Budzier, 2011). A study by Bloch,
Blumberg, and Laartz (2012) found that large IT projects on average run
45 % over budget, 7 % over schedule and underdeliver value by 56 %. High
uncertainty, constantly changing business and user requirements, and evolv-
ing business environment are among the reasons why managing IT projects
is a complex and difficult task (Rahmanian, 2014).

5

2.2 Traditional Software Development

Traditional software development is, amongst more, characterized as be-
ing: process-centric, command and control managed, guided by tasks or
activities, following life cycle models (like Waterfall), requiring substantial
documentation and conducting all planning up-front (Conboy, Coyle, Wang,
& Pikkarainen, 2011). The fundamental assumption it is based upon is ac-
cording to Dyb̊a and Dingsøyr (2008) that systems can be fully predicted
and specified, and that meticulous and extensive planning is part of building
them. The traditional approach to software development which “aim to ad-
dress the whole software project lifecycle, e.g., by providing comprehensive
guidelines, standardized procedures, project planning templates, and inter-
faces to further organization processes” (Theocharis, Kuhrmann, Münch, &
Diebold, 2015, p. 150), has been found to result in excessive rework, inflex-
ibility, customer dissatisfaction, and sometimes to be outdated by time of
completion (Serrador & Pinto, 2015).

2.3 Agile Software Development

According to Agile Alliance, agile software development is “an umbrella
term for a set of frameworks and practices based on the values and prin-
ciples expressed in the Manifesto for Agile Software Development and the
12 principles behind it.” (Agile Alliance, n.d.-b). Agile software develop-
ment highly emphasizes the importance of having self-organizing and cross-
functional teams that work closely with the customer and end users, as well
as continuously delivering functioning and valuable software (Agile Alliance,
n.d.-b). The term “agile software development” dates back to 2001 when a
group of 17 people, each with their way of practicing software development,
got together at a ski resort in Snowbird, Utah to figure out the commonal-
ities between their way of developing software. The result of this meeting
was the Manifesto for Agile Software development, a collection of a set of
four values and 12 principles (Agile Alliance, n.d.-b).

6

The Manifesto for Agile Software Development contains the following four
values (Beck et al., 2001):

• Individuals and interactions over processes and tools

• Working Software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

The Manifesto for Agile Software Development also states that the items
on the left are valued more than the ones on the right (Beck et al., 2001).
Furthermore, the Manifesto for Agile Software Development has also defined
12 principles (Beck et al., 2001):

1. Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout
the project.

5. Build projects around motivated individuals. Give them the environ-
ment and the support they need and trust them to get the job done.

6. The most efficient and effective method of conveying information to
and within a development team is face-to-face conversations.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, de-
velopers, and users should be able to maintain a constant pace indef-
initely.

9. Continuous attention to technical excellence and good design enhances
agility.

7

10. Simplicity - the art of maximizing the amount of work done - is essen-
tial.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. At regular intervals, the team reflects on how they become more ef-
fective, then tunes and adjusts its behavior accordingly.

2.4 Scrum

Schwaber and Sutherland (2017)1 defines Scrum as “A framework within
which people can address complex adaptive problems, while productively
and creatively delivering products of the highest possible value.”. The
framework was developed by Ken Schwaber and Jeff Sutherland in the early
1990s (Schwaber & Sutherland, 2017) and has since been widely adopted in
software development. The Scrum framework is illustrated in figure 2.1.

Figure 2.1: The Scrum framework (Adapted from Scrum.org
(n.d.)).

The Scrum framework is made up of Scrum Teams and their affiliated roles,
events, artifacts, and rules. These various components within the framework
each serve a specific purpose and are fundamental to achieve an optimal
Scrum implementation (Schwaber & Sutherland, 2017).

1The majority of the Scrum theory used in this thesis is derived from one source,
Schwaber and Sutherland (2017), as it is written by the founders of the Scrum framework.

8

2.4.1 The Scrum Team

The Scrum framework highly emphasizes the importance of having self-
organizing and cross-functional Scrum Teams. Self-organizing teams decide
on their own how their work should be carried out and accomplished, as
opposed to being instructed by people outside the team. Cross-functional
teams have the advantage of possessing a variety of knowledge required to
complete the given work and not being dependent on other parties outside
the team. The Scrum Team includes a Product Owner, the Development
Team, and a Scrum Master (Schwaber & Sutherland, 2017).

Product Owner

The Scrum Guide states that the overall objective and responsibility of
the Product Owner is to maximize the value of the product resulting from
the work of the Development Team (Schwaber & Sutherland, 2017). How-
ever, how this is implemented may vary between organizations and Scrum
Teams. The Product Owner accomplishes this work through what is often
referred to as Product Backlog management. Product Backlog management
entails arranging the items in the Product Backlog (see section 2.4.3) in a
prioritized order, making sure the Product Backlog is visible, transparent
and understood by everyone on the Development Team, as well as showing
what the Scrum Team will be working on the following Sprint (Schwaber &
Sutherland, 2017).

Development Team

The Development Team consists of the dedicated professionals within the
Scrum Team who executes the prioritized items in the Product Backlog
(Schwaber & Sutherland, 2017). As mentioned above, the Development
Team is both self-organizing and cross-functional, which enhances the De-
velopment Team’s overall efficiency and effectiveness. Furthermore, the
Scrum framework does not recognize titles for members of the Develop-
ment Team, nor does it recognize subteams within the Development Team.
Even though individual members of the Development Team possess special-
ized skills or have areas of focus, accountability for work done still belongs

9

to the Development Team as a whole. The number of people to be in the
Development Team varies across different organizations and Scrum Teams,
but the optimal number is considered to be between three and nine people.
Having more than nine team members often lead to difficulties related to
coordination, and having less than three team members may lead to skill
constraints and reduced interaction during the Sprint, which may lead to
smaller productivity gains (Schwaber & Sutherland, 2017).

Scrum Master

The Scrum Master’s primary responsibility is to ensure that all the various
parts of the Scrum process and theory are followed throughout the Scrum
Team and work as a whole (Schwaber, 2000, p. 36). This responsibility
entails teaching other members of the Scrum Team how to use the Scrum
process to handle problems that arise during the project, as well as to help
other people of the organization better understand how to interact with the
Scrum Team to maximize the value they create (Schwaber & Sutherland,
2017). The Scrum Master’s responsibility towards the Development Team is
among other things to remove any impediments that may negatively affect
their progress, to facilitate creativity and empowerment (Schwaber, 2000, p.
36), and to arrange Scrum Events when necessary or requested (Schwaber &
Sutherland, 2017). The Scrum Master’s service to the Product Owner is to
advise how he or she can maximize return on investment to meet the goals of
the organization or project through Scrum (Schwaber & Sutherland, 2017).

2.4.2 Scrum Events

The Scrum framework consists of several different events in order to sustain
regularity and to reduce the need for meetings that are not part of Scrum
(Schwaber & Sutherland, 2017). Although the various events serve different
purposes, they all share a common rule. All events within the framework are
time-box events, meaning that every type of event has a maximum duration
(Schwaber & Sutherland, 2017). The various events are more thoroughly
explained in the following paragraphs.

10

Sprint

Schwaber and Sutherland (2017) defines a Sprint as “A time-box of one
month or less during which a ‘Done’2, usable, and potentially releasable
product Increment is created.”. An Increment within the Scrum framework
is defined as the total amount of all the Product Backlog Items (PBIs) that
have been completed during a given Sprint (Schwaber & Sutherland, 2017).

Each Sprint may be described as a project that spans for maximum one
month. Like a project, each Sprint has a goal of what is to be achieved
or developed, a design and flexible plan that describes how this will be
achieved, as well as the finished product at the end. A new Sprint cannot
start until the previous has been concluded (Schwaber & Sutherland, 2017).

The reason why Sprints are limited to one month is related to the potential
challenges that may arise in Sprints with longer time-boxes, such as changes
to the definition of what is being developed or an increase in complexity
or risk. By limiting a Sprint’s time-box, one can enable predictability by
ensuring inspection and adjustment of progress toward the Sprint Goal3 at
least every 30 days (Schwaber & Sutherland, 2017).

A Sprint is made up of the Sprint Planning, Daily Scrums, the work re-
lated to development, Sprint Review, and Sprint Retrospective (Schwaber
& Sutherland, 2017).

Sprint Planning

The work to be accomplished during the upcoming Sprint is planned at
the Sprint Planning meeting. The length of a Sprint Planning may vary,
however, Schwaber and Sutherland (2017) state that the meeting should
not exceed eight hours for a one-month Sprint. It is the Scrum Master’s
responsibility to make sure the event takes place. Sprint Planning aims to
answer the following two questions (Schwaber & Sutherland, 2017):

2According to Schwaber and Sutherland (2017), the definition of ‘Done’ is a shared
understanding between members of the Scrum Team of what it means for work to be
characterized as complete.

3The Sprint Goal is according to Schwaber and Sutherland (2017) “an objective set
for the Sprint that can be met through the implementation of the Product Backlog”.

11

• What functionality can be delivered in the upcoming Sprint?

• How will the work required to develop this functionality be executed?

It is the Development Team who works to estimate the functionality that will
be delivered in the upcoming Sprint, while the Product Owner discusses the
objective that the Sprint should achieve and the PBIs required to accomplish
the Sprint Goal. However, it is only the Development Team that selects
the number of items from the Product Backlog, as they are best suited to
estimate what they can accomplish during the upcoming Sprint (Schwaber
& Sutherland, 2017).

After defining the Sprint Goal and the PBIs for the next Sprint, the De-
velopment Team needs to figure out how this work will be executed. The
Development Team often starts by designing the system, which at the end of
the Sprint will be the product increment. Given that work may be of varying
size or estimated effort, an essential aspect of the Sprint Planning involves
decomposing the work into more manageable tasks, for example into units
of one day or less. During this process, the Product Owner may assist the
Development Team to clarify the selected PBIs and make trade-offs. Within
the end of the Sprint Planning, the Development Team should be able to
describe how they have planned to achieve the Sprint Goal and develop
the product Increment as a self-organizing team (Schwaber & Sutherland,
2017).

Daily Scrum

According to Schwaber and Sutherland (2017), the Daily Scrum is a 15-
minute time-boxed meeting where the entire Development Team gathers to
plan work for the next 24 hours. This event is held daily and strives to
optimize team collaboration and performance by inspecting the work done
since the previous Daily Scrum and then estimating upcoming Sprint work
(Schwaber & Sutherland, 2017).

12

It is the Development Team itself who decides the structure of the Daily
Scrum. However, many Scrum implementations use at least the following
three questions (Schwaber & Sutherland, 2017):

• What did I do yesterday that contributed towards achieving the Sprint
Goal?

• What will I do today to contribute towards achieving the Sprint Goal?

• Do I see any impediments that may prevent the Development Team
or me from meeting the Sprint Goal?

Daily Scrums serve various purposes. They seek to improve communication,
identify impediments to development, monitor progress towards the Sprint
Goal, eliminate the need for other meetings, foster quick decision-making, as
well as to improve the overall knowledge of the Development Team. Mem-
bers of the Development Team often meet after the Daily Scrum to further
discuss topics brought up during the meeting or to adapt or replan the
remaining work of the Sprint (Schwaber & Sutherland, 2017).

Sprint Review

The Sprint Review is an event held at the end of the Sprint to inspect the
new product Increment and adapt the Product Backlog if required. This
meeting is where the Scrum Team and stakeholders collaborate about what
was achieved during the Sprint, as well as discuss the next actions that
could be taken to optimize value. The length of a Sprint Review may vary,
but it should not exceed four hours for one-month Sprints. As this is an
informal meeting, as opposed to for instance a status meeting, the Sprint
Review is primarily intended to elicit feedback and encourage collaboration
(Schwaber & Sutherland, 2017).

13

The Sprint Review may include various elements, and some of them are
(Schwaber & Sutherland, 2017):

• The Product Owner explains the work that was accomplished, includ-
ing which PBIs that were “Done” and which were not.

• The Development Team demonstrates the new product Increment, as
well as answers questions regarding it from the other attendees.

• The Development Team reviews their thoughts and experiences from
the Sprint, including what went well, what problems arose, and how
those were handled.

• Review of budget, timeline, potential capabilities, and the situation
of the marketplace.

Sprint Retrospective

The Sprint Retrospective is a meeting where the Scrum Team inspects itself
to discover potentials for improvement that can be implemented in the new,
upcoming Sprint. The meeting takes place after the Sprint Review and be-
fore the Sprint Planning. Similar to the Sprint Planning and Sprint Review,
the length of the Sprint Retrospective may vary. However, Schwaber and
Sutherland (2017) suggests that the meeting should not exceed three hours
for one-month Sprints.

The Sprint Retrospective serves various purposes (Schwaber & Sutherland,
2017):

• Examine the previous Sprint in relation to people, relationships, pro-
cess, and tools.

• Uncover and order the things that went well and the potential im-
provements.

• Develop a plan for how these improvements should be implemented.

14

Product Backlog Grooming

Even though it is not an official Scrum meeting, Product Backlog Grooming
(or Refinement) is something that many have discovered as valuable as it
may lead to a more productive Sprint Planning (Cohn, 2015). Product
Backlog Grooming is a meeting that is held near the end of one Sprint to
make sure the Product Backlog is ready for the next Sprint. The meeting
allows for the Development Team and the Product Owner to discuss the top
items on the Product Backlog, and also allows the Development Team to
ask questions that would typically arise during a Sprint Planning. Doing so
enables the Product Owner to arrive at answers to questions that the person
cannot answer immediately before the actual Sprint Planning (Cohn, 2015).

2.4.3 Scrum Artifacts

The Scrum framework also consists of some artifacts that illustrate work or
value to provide transparency and possibilities for inspection and adaption
(Schwaber & Sutherland, 2017).

Product Backlog

The Product Backlog is an ordered list of project requirements with associ-
ated time estimates for how long it will take to turn the requirements into
working product functionality (Schwaber, 2000, p. 142). This list is dy-
namic, meaning that changes to it may occur during development to make
the final product more suitable and valuable for the Product Owner. As
the Product Backlog is never to be considered a complete list, it can only
indicate the functionality and work defined up to that given point, and the
final product may have several deviations compared to what was initially
planned (Schwaber, 2000, p. 10).

15

Sprint Backlog

The Sprint Backlog is a selection of PBIs chosen for the given Sprint, as
well as a plan for producing the Product Increment and achieving the Sprint
Goal. The Sprint is an estimation by the Development Team of what func-
tionality the upcoming Increment will contain, and the amount of work
needed to achieve this. To monitor the progress of a Sprint, one can sum-
marize the remaining work in the Sprint Backlog. This progress is tracked
every Daily Scrum to estimate the likeliness of achieving the Sprint Goal
(Schwaber & Sutherland, 2017).

The Sprint Backlog is characterized by being dynamic. This implies that the
Development Team can modify the Sprint Backlog throughout the Sprint
and that it emerges during the Sprint. It is only the Development Team
that can change the Sprint Backlog during a Sprint. When additional work
is needed, the Development Team adds it to the Sprint Backlog, and when
work is performed or completed, the estimated remaining work is updated.
Tasks that are deemed unnecessary are removed. The Sprint Backlog also
includes one or more process improvements which were identified in the
previous Sprint Retrospective meeting to foster continuous improvement
(Schwaber & Sutherland, 2017).

2.5 Challenges of Agile Implementation

A systematic literature review conducted by López-Mart́ınez, Juárez-Ramı́rez,
Huertas, Jiménez, and Guerra-Garćıa (2016) uncovered 22 challenges related
to the adoption of agile methodologies and Scrum. The study is based on
27 papers from 2012 to 2015 found on different scientific research libraries:
IEEE Xplore, Science Direct, ACM DL, and Springer Link (López-Mart́ınez
et al., 2016). The findings of this systematic literature review are presented
in table 2.1. The findings are organized into four different categories: orga-
nization, people, project, and process. Each challenge is also given an ID,
which is used for reference in chapter 5.

16

Table 2.1: Overview of challenges uncovered in the strategic
literature review, which category they belong to, as well as the
number of papers that mention each challenge (Adapted from
López-Mart́ınez et al. (2016)).

According to López-Mart́ınez et al. (2016), organizational culture is a cru-
cial factor in order to achieve successful implementations of agile method-
ologies. Challenges such as organizational problems, lack of support from
management, an organizational culture that does not support agile ways
of working, absence of capacity to change the organizational culture, or
pressure to use traditional practices from external parties may lead to sub-
optimal agile implementations. In order to achieve the most advantageous
agile work process, the agile methodologies must be implemented within
an agile culture that supports and embraces the agile values and principles
(López-Mart́ınez et al., 2016).

17

The systematic literature review also uncovered several challenges related to
people. These challenges are: poor collaboration and communication with
the customer, insufficient training of the Product Owner and the customer,
the size of the teams, unaligned teams, equipment capacity4, the rotation
of team members, lack of experience with agile methods, availability of
trained employees, lack of effective communication and understanding of
agile values, insufficient and dysfunctional training, overall resistance to
change, lack of commitment to decisions, and lack of continued involvement
with the client (López-Mart́ınez et al., 2016).

Although the majority of the studies included in this systematic literature
review are focused on organizational aspects and people, a few also high-
lighted challenges with projects. A challenge mentioned within this category
is the difficulty to scale in large projects (López-Mart́ınez et al., 2016).

The systematic literature review also referenced two papers that discussed
challenges of agile implementation related to the work process of agile teams.
Lorber and Mish (2013) mention some challenges often found in early stages
of agile adoptions, such as lack of deliveries of user stories5, lack of confi-
dence, as well as Sprint Planning meetings, Daily Scrums and Sprint Retro-
spectives lasting longer than intended with minimal value to the attendees.
The study also highlights some more specific situations, for instance, that
writing concrete user stories can be challenging due to the high degree of un-
certainty (Lorber & Mish, 2013). In the other paper, Eloranta, Koskimies,
Mikkonen, and Vuorinen (2013) uncover two types of deviations that repre-
sent unfavorable consequences for projects related to agile adoption, where
the deviations are referred to as Anti-patterns. These two types of un-
favorable deviations are (1) harmful deviations from recommended Scrum
practices and (2) recommended Scrum practices that are for some reason
unsuitable in a particular context. The study also states that both these
types of deviations are undesirable since even though a Scrum deviation
is well-motivated in a particular context, the deviation has harmful con-
sequences in most cases. Examples of such deviations mentioned are that
Sprint durations are too long, testing is done in the next Sprint, and poor
documentation of specifications (Eloranta et al., 2013).

4The literature review calls this “Equipment capacity”, but the article it cites only
discusses team capacity.

5Mike Cohn, co-founder of Scrum Alliance, defines user stories as “short, simple de-
scriptions of a feature told from the perspective of the person who desires the new capa-
bility, usually a user or customer of the system.” (Cohn, n.d.)

18

Chapter 3

Method

This chapter presents and describes the methodological approaches used
in the thesis. Also, the reasoning behind these approaches, as well as their
strengths and weaknesses, are discussed. The chapter covers research design,
literature review, case study, data collection, interviews, observations, and
validity and reliability.

3.1 Research Design

A good research design is according to Easterby-Smith, Thorpe, and Jackson
(2015, p. 8) fundamental for trying to achieve high-quality research, and
they define research design as a written statement “which explains and
justifies what data is to be gathered, how and where from.” (Easterby-
Smith et al., 2015, p. 68). The research design in this thesis is based on a
qualitative, descriptive case study where primary data is gathered through
semi-structured interviews and observations. Secondary data, gathered from
a literature review, is used to compare the findings from the case study to
what others have found before.

19

3.2 Literature Review

Due to the scope of this thesis and the limited time available to complete it,
a separate literature review was not conducted. Instead, the findings from
the systematic literature review conducted by López-Mart́ınez et al. (2016)
were used for comparison with the findings from the case study. This par-
ticular review was chosen because it is relatively new, and it selected papers
from 2012 to 2015. The systematic literature review found 269 papers and
evaluated 27 of them, and it focused on challenges with adopting agile. Ad-
ditionally, some other single studies were used in the discussion to support
the findings from the case study.

3.3 Case Study

A case study is a research method that according to Easterby-Smith et al.
(2015, p. 89) “looks in depth at one, or a small number of, organizations,
events or individuals, generally over time.”. There can be either single case
studies or multiple-case studies (Easterby-Smith et al., 2015, p. 89). While
case studies are typically used when the research questions are of the ”how”
and ”why” type, they can still be relevant for ”what” type of questions
(Yin, 2017). The method is preferred when it is not, or to a small degree,
possible to control the behavior of participants in the study, and when the
study focuses on a contemporary phenomenon (Yin, 2017).

Different types of case studies exist for different purposes, among them de-
scribing or exploring a case, or comparing cases (Baxter & Jack, 2008).
While these types can cater to a range of different purposes, there are ac-
cording to Yin (2017) still some traditional concerns regarding case study
research: whether it is rigorous enough, confusion with non-research case
studies, inability to generalize, advantages compared to other methods and
level of effort. Level of effort refers to the tendency of researchers to answer
too broad questions or to have too many objectives in their study, and as
such Baxter and Jack (2008) specifies the need to keep the study in scope
by placing boundaries for the case.

This thesis uses a single-case study that examines a company that has im-
plemented agile in their system development department. It is a descriptive

20

type of case that relies on empirical data, and the case is bound by the
department of the case company and the present time. The case study tries
to find challenges that the department is experiencing, and then compares
them to challenges found in similar situations in other studies. The com-
pany was chosen because it has been operating for a good number of years,
and are at a stage where they have just completed a four-year journey of
implementing and experimenting with agile software development.

3.4 Data Collection

The case study utilizes qualitative methods to gather information and data.
Qualitative methods generate words instead of quantitative numbers as they
try to understand some given phenomenon (McCusker & Gunaydin, 2015),
and they, therefore, go well with case studies. When collecting qualitative
data, the researchers are, according to Jacobsen (2015, p. 128), not ac-
tively guiding what kind of answers the respondents give, and the data is
not categorized until they are collected. The different qualitative methods
include, but are not limited to interviews, observations, documentation, and
archives (Baxter & Jack, 2008). The methods used in this thesis is mainly
interviews, with some supporting observations.

This thesis tries to uncover challenges that a system development depart-
ment experiences; as such, the employees that work in the department are
essential data sources. There was no available documentation related to
challenges that the department experiences, so this method was not used.
There was not enough time to conduct new interviews with the respon-
dents, so some clarification questions were sent and answered by email by
the Application Development Manager at the case company.

3.4.1 Interviews

Interviews are, according to Yin (2017), one of the most important sources
of data for case studies. “Qualitative interviews are directed conversations
evolving around questions and answers about a certain topic” (Easterby-
Smith et al., 2015, p. 133), and what separates them from normal conver-
sations is that they follow a series of questions to explore an event or topic

21

in-depth (Easterby-Smith et al., 2015, pp. 133-134). The advantage of using
qualitative interviews is that they let the researchers gain an understanding
of the respondents’ perspectives and viewpoints. Interviews also make it
possible to discover data that is neither documented, archived, nor possible
to observe (Easterby-Smith et al., 2015, p. 135). Drawbacks of qualitative
interviews are their complexity in terms of time commitment and fitness
to purpose (Easterby-Smith et al., 2015, p. 139), and that they can suffer
from subjective problems such as bias, poor recall, lies and poor articulation
(Yin, 2017).

Yin (2017) talks about three different types of case study interviews: pro-
longed, shorter, and survey interviews. The prolonged interviews last two
or more hours in single or multiple sittings and are open-ended. The shorter
interviews typically last around an hour and can be open-ended while still
following an interview protocol more closely. Survey interviews follow a
structured questionnaire where the result may be quantitative data (Yin,
2017). Easterby-Smith et al. (2015, p. 139) also mentions three different
types of interviews based on how structured they are. Highly structured
interviews have detailed and structured interview protocols with some nar-
row answer selections, semi-structured interviews have an interview proto-
col that contains topics to talk about, and unstructured interviews only has
some questions to stimulate conversations (Easterby-Smith et al., 2015, p.
139).

Interviews were conducted, individually, in this case study to gather as
much data as possible about the challenges the system development depart-
ment experiences. This was accomplished by interviewing employees with
different roles in the department. One interview was conducted with each
respondent, and the roles interviewed were (see section 4.4 for an explana-
tion of their responsibilities):

• Application Development Manager

• Technical Product Owner

• Software Developer x2

• Test Team Manager

• Technical Test Manager

22

All the roles in the department, except for tester, were interviewed. The
reason for why a tester was not interviewed was because the Technical Test
Manager also works as a tester. It was therefore assumed that the Technical
Test Manager had the same knowledge and experiences as the other testers.
Furthermore, only software developers from one of the development teams
of the software development department were interviewed due to time limi-
tation and available employees. The structure of the Software Development
Department is explained in section 4.2. Corroborating the interview data
with other sources neglects some of the drawbacks of interviews (Yin, 2017).
This was, however, only partly done with observations as it is not so rel-
evant to corroborate when the interviewees’ personal views are of interest
(Yin, 2017). Most of the challenges uncovered were also identified by two
or more of the interviewees.

The interviews conducted were semi-structured. The reason behind this
was that there were some questions given that had to be answered, but
the interviewees were free to talk open-ended. The interview protocol was
mostly equal for each respondent, but some questions were adjusted or not
asked based on the respondent’s role in the department. Certain formu-
lations and follow-up questions were added based on answers given to the
other questions. An interview protocol with all questions can be seen in
appendix A. Depending on how much the respondents answered and what
they said, follow-up and new questions were asked to clarify or to gather
more information. The interviews can be classified as short, as they lasted
between 15 and 85 minutes. All the interviews were audio recorded and
later transcribed, resulting in just over 30 000 words in total.

3.4.2 Observations

Observations are according to Jacobsen (2015, p. 165) about registering
what people do, and not just what they say they do. He also says that
observations can avoid some of the subjective problems interviews may suffer
from, but they give no insight into what people think or mean (Jacobsen,
2015, p. 165). Easterby-Smith et al. (2015, p. 162) mentions four types
of stances observers can take: complete observer, observer-as-participant,
participant-as-observer, and complete participant, and they differ in how
involved the observer is in what they observe. All observations should be
recorded in some way, ranging from video recordings to notes (Easterby-

23

Smith et al., 2015, p. 162). Observations can be used for evidence in case
studies, and to corroborate findings from other sources (Yin, 2017).

This case study employed observer-as-participant observations to corrobo-
rate on findings from the interviews. Two different Scrum meetings, Sprint
Planning and Daily Scrum, were observed, and notes were used to document
the findings. The participants of the meetings were aware of the case study
and its purpose, and the only questions asked from the observers were for
clarification purposes during one of the meetings.

3.5 Validity and Reliability

There is no doubt that quality and rigor play an integral role in all research,
qualitative research included, but there are variations in how the quality
should be judged (Ali & Yusof, 2011). The stances on quality range from
(Ali & Yusof, 2011): “There is only one way to judge the quality of qualita-
tive studies which is the same for any type of scientific inquiry: the criteria
of reliability, internal and external validity and objectivity.” to “There is
no way to judge the quality of qualitative studies.”. The three prominent
case study methodologists Robert Yin, Sharan Merriam, and Robert Stake
all differ in their views on validity, and their differences are based on their
viewpoints of research (Yazan, 2015).

Validity has often been split into internal and external validity by primarily
quantitative researches, where internal refers to “the degree to which the
results can be attributed to treatment” and external to “the generalizability
of the results” (Ali & Yusof, 2011). Yin (2017) does, however, state that
internal validity is not relevant for descriptive case studies. Another view
of validity is according to Easterby-Smith et al. (2015, p. 103) concerned
with answering the question: “Have a sufficient number of perspectives been
included?”, while generalization is concerned with answering “Is the sample
sufficiently diverse to allow inferences to other contexts?”.

For this case study, it might be possible to generalize the challenges that
were only observed in the case company. However, there might also be too
much specific context in the case to make such claims. The underlying rea-
sons and consequences might, however, be more suitable for generalization,
as they are not bound as much to the context of the case company as they

24

are to the challenges themselves. Regarding the number of perspectives,
there has been conducted interviews with almost all roles in the system de-
velopment department to receive the widest array of challenges facing the
department. Interviews have, however, been the primary data gathering
method, with some observations. More challenges could potentially have
been uncovered by using other data gathering methods such as documen-
tation. While not part of the thesis, interviewing the business side of the
case company could have uncovered challenges in the department that the
employees there have not noticed.

There is less discussion on the meaning of reliability, as most definitions
are quite similar: “a matter of degree of consistency of observed objects
agreed upon by one observer on different occasions or by different observers”
(Hsieh, 2004), “the extent to which the findings can be replicated” (Ali
& Yusof, 2011), “demonstrating that the operations of a study—such as
its data collection procedures—can be repeated, with the same results”
(Yin, 2017), and “Will similar observations be reached by other observers?”
(Easterby-Smith et al., 2015, p. 103). It is clear that reliability is focused on
whether the results of a case study can be replicated or not, and this can be
influenced by data gathering methods, the trustworthiness of the gathered
data, current contexts, the interpretation of data and documentation of
research method.

The research method in this thesis is described, and the interview proto-
col is added in appendix A. The protocol does not contain all follow-up
questions, and some context and answers might, therefore, be hard to repli-
cate. Replicating interviews is also hard, as conversations can be affected
by mood, voice, body language, and trust level. Using other data gathering
methods such as anonymous surveys or documentation might also lead to
uncovering other challenges, and using more method triangulation would
lead to more trustworthy data. While all the data used in the discussion
chapter is based on information from the transcribed interviews, there has
been interpretation involved when structuring and merging challenges. As
two researchers have interpreted the data, it is reasonable to expect that
the reliability following the interpretation is high. It is, however not possi-
ble to know whether the interviewees told the truth or not, but there were
no conflicting statements made regarding their challenges, and there is no
apparent reason for why they should lie.

25

Chapter 4

Case Study

This chapter presents the company used in the case study (hereafter Case
Company) and serves as an explanation of all relevant information used later
on in this thesis. First, some general information about the Case Company
is presented. Secondly, the structure of the system development department
is explained. Thirdly, their agile transformation is described. Fourthly, a
list of roles and their responsibilities in the system development department
is given. Then lastly, the work methods and approaches used by the Case
Company are described. The information in this chapter is based on data
gathered through interviews and conversations with the employees at the
Case Company.

4.1 Case Company

The Case Company operates in the Norwegian financial sector, has over
1500 employees, and in 2018, its profit before tax was over 3000 million
NOK. The company is a subsidiary of a multinational organization but
operates rather individually from their parent company. They are free to
choose their internal organizational structure and work methods, however,
they must follow certain security and financial policies given by the parent
company. The company provides a wide range of services and products to
both end consumers and other businesses.

27

4.2 Department Structure

The Case Company has a system development department that consists
of three subdivisions, one internal and two external. The external subdi-
visions consist of multiple consultant teams containing developers, testers,
and technical product owners. They are, within the framework given by
the Case Company regarding methodology and programs, self-organized.
They have their own experiences with agile approaches, and may, therefore,
follow their variation of agile. The two external subdivisions are excluded
from this thesis (as previously explained in section 1.3). For the rest of this
thesis, the “System Development Department” will, unless specified, only
refer to the internal subdivision of the system development department of
the Case Company. The System Development Department consists of two
development teams, .NET and database, and one team consisting of testers
and a Technical Test Manager. The employees in the department are a
mix of full-time employees and consultants. The System Development De-
partment has responsibility for a critical back-end system that is used by a
large part of the Case Company’s services and products. The structure of
the System Development Department is shown in figure 4.1, and the roles
that were interviewed are shown in white boxes in the same figure.

Figure 4.1: Structure of the System Development Department,
and overview of the interviewed employees.

28

4.3 Agile Transformation

Due to unsatisfying results, long development times, poorly described tasks,
discontent from the company about not receiving what they asked for and
burndown charts1 that did not show the desired results, the System Devel-
opment Department started to experiment with new development methods
a few years ago. Most of the methods were taken from agile approaches, and
the most notable elements were shorter development periods and breaking
down tasks into smaller, more manageable tasks. As such, they were slowly
moving to an agile approach. However, they still had challenges completing
the tasks that they were committed to in each Sprint, and their burndown
charts were still not showing the desired results.

About four years ago, the department hired an external, agile coach to eval-
uate their development approach. The coach conducted interviews, acted
as a kind of Scrum Master, and gave feedback on how they could change
their development methods. This lead to more down-scoping of tasks and a
change in mindset, resulting in improved development times and improved
burndown charts. Since then, the System Development Department has
considered themselves as agile. They now claim they follow a version of the
agile development framework Scrum, even though they do not do it rigor-
ously. The coach also split the single Development Team into two separate
development teams. This was due to the developers working on two separate
aspects of the system that the department is responsible for managing.

The System Development Department started to hire Scrum Masters after
the agile coach left. They have so far had two different Scrum Masters.
As the department was and still is, free to choose how they work, they
give much power to their Scrum Masters when it comes to what they are
allowed to do and change. This freedom lets the Scrum Masters experiment
with what works best, and as such, the department optimizes how they
work. The first Scrum Master followed Scrum somewhat rigorously, while
the second Scrum Master only followed what he deemed to be essential and
beneficial.

While the System Development Department is working agile with their cus-
tomized version of Scrum, the rest of the company still operates more tra-

1A visual tool that shows completed work per day compared to the projected comple-
tion rate (Scrum Institute, n.d.).

29

ditionally. The top management of a foreign branch office has taken agile
to heart, and this has affected the top management in Norway who are now
trying to implement agile in a larger part of the Case Company. Currently,
the company has some non-development teams that are trying to work agile,
and the goal is to transform their company into being business agile2.

4.4 Roles and Responsibilities

The System Development Department consists of various roles that each
have its own set of responsibilities. The following paragraphs will describe
the different roles in the System Development Department, as well as other
relevant positions that are connected to the department.

Applications Development Manager

The Applications Development Manager is the head of the System Devel-
opment Department and is responsible for all the system and application
development within the Norwegian business unit of the company. This per-
son works closely with the various Technical Product Owners to make sure
the different development teams deliver functioning software in accordance
with project plans. The Applications Development Manager is also respon-
sible for bringing in new employees and consultants when needed, as well as
making sure this does not exceed the budgets of the different projects the
department works on.

Technical Product Owners

The Technical Product Owners are persons that function as the connecting
link between the development teams and business. Each Development Team
has its own Technical Product Owner who is responsible for translating the
orders and requests the team receives from the Product Owner from business
into PBIs that better describe what is to be developed on a more technical
level. The Technical Product Owners are often senior developers with a

2The aim of business agility is to maintain a competitive advantage in uncertain times
by responding quickly and adapting to the environment (Mathiassen & Pries-Heje, 2006).

30

type of architectural role in the sense that they possess knowledge on how
the entire system landscape of the Case Company is built up and thereby
know how their system behaves and functions in relation to other systems.
The Technical Product Owner in the System Development Department is
also responsible for planning each Sprint, as well as ordering the PBIs they
receive from different projects in accordance with the prioritization set by
the project management office.

Product Owner

Since most projects the System Development Department participates in
come from other departments in the Case Company, these departments
become the project owners of the various projects. The Product Owners are
the responsible person for a project that the department can communicate
with, and they are also the people responsible for bringing PBIs to the
Technical Product Owner.

Software Developers and Testers

There are primarily three types of tasks that the software developers and
testers are responsible for doing. Firstly they develop new solutions and
functionality for different projects. Secondly, they maintain their system
and fix problems and bugs that affect it. Thirdly the testers check all
new features and changes done to the system. Moreover, the testers also
do testing and quality assurance on other projects not related to the two
development teams. The size and scope of the projects the teams participate
in vary, and the tasks can range from developing new features to making
small configuration changes to comprehensive end-to-end testing. There are
five developers in the database team, four in the .NET team and four testers
in the test team.

Test Team Manager

The Test Team Manager is the head of the testing department. All Technical
Test Managers report to the Test Team Manager, who is responsible for
coordinating the test environments.

31

Technical Test Managers

There are four Technical Test Managers in the Case Company. One of
them works in the System Development Department, while the three other
Technical Test Managers are responsible for testing within their systems.
The Technical Test Manager for the System Development Department is
responsible for distributing the various PBIs for a given Sprint among the
testers, as well as coordinating which project each tester is working on
during the Sprint. As the group of testers are few in total and mostly
consists of consultants, they have to be shared between the various projects
that are happening in parallel.

Scrum Master

The System Development Department also has a dedicated person who
serves the role as Scrum Master. This person is responsible for facilitat-
ing the different Scrum meetings, removing impediments that may have an
adverse effect on the development teams’ progress and help the teams to
work according to Scrum theory.

The System Development Department is at the moment without a dedicated
Scrum Master since the contract of the previous one expired. Not having
a dedicated Scrum Master has led to the Technical Product Owner taking
over these responsibilities in addition to those he already has. This situation
is, however, only temporary as the department is already looking for a
replacement.

4.5 Work Methods

As mentioned in section 4.3, the System Development Department has over
time adopted their own version of Scrum. The development teams and the
Scrum Master are together given the freedom to decide how strictly they
follow the framework. The development teams optimally try to stick to
Sprint intervals of two weeks. However, the teams sometimes have to ex-
tend the Sprint by an extra week during periods with a high workload. The
reason for this is that the development teams, in addition to developing new

32

product functionality on its platform, also is responsible for fixing poten-
tial bugs discovered in the production environment. Before each Sprint, a
Sprint Planning meeting is held where everything that is to be done in the
upcoming Sprint is planned in detail. The Technical Product Owner invites
members of the team to define and describe the tasks within each PBI, so
they are easily understandable and clear. The Technical Product Owner has
prior to the Sprint Planning meeting had another meeting with the Prod-
uct Owner from business to ensure the focus of the next Sprint is aligned
with the prioritization of the Product Owner and the overall strategy of the
organization.

During a Sprint, Daily Scrums are organized. They are, however, not always
held daily. After the last Scrum Master finished their contract, the regu-
larity of the Daily Scrums reduced over time, mostly because only some of
the team members took the initiative to organize these meetings. The same
also applies to the Sprint Reviews and Sprint Retrospectives. The Sprint
Reviews are sometimes held if the Product Owner wants it, and the Sprint
Retrospectives are just deprioritized and not held. As such, the department
is not rigorously following Scrum, but they do instead use the elements they
feel give them the most benefit.

As the testers in the System Development Department are not part of the
two development teams, they are doing PBIs and tasks from both teams’
Sprint Backlogs.

33

Chapter 5

Discussion

This chapter analyses and discusses the findings from the interviews con-
ducted in the case study. The findings of this study have been combined
with the discussion to provide a cohesive presentation of them, as it might
be difficult to make sense of the findings alone without accompanying in-
terpretation. The following section gives an overview of the findings, while
the subsequent section presents the challenges uncovered at the Case Com-
pany, as well as discusses them in relation to existing theory, their causes,
and consequences and how to possibly mitigate them. In the end, a section
summarizes the discussion.

5.1 Findings

After conducting and transcribing the interviews, all the uncovered chal-
lenges were listed individually. Similar challenges were combined, and those
that were direct consequences or causes to others were merged. This process
reduced the number of challenges found from 37 to nine. As mentioned in
section 1.3, challenges not related to agile or its implementation were dis-
carded. Figure 5.1 shows the merged list of challenges, as well as how many
of the interviewees that mentioned them.

35

Table 5.1: Overview of challenges uncovered during the inter-
views, and which participant that mentioned them.

5.2 Challenges

This section goes through the challenges that were uncovered and explains
how they are challenging. Every challenge is described, their potential
causes and consequences are discussed, as well as possible solutions are
presented. Related challenges found in the systematic literature review are
labeled with their ID, as defined in table 2.1.

5.2.1 Sprint Workload

A challenge mentioned by three of the interviewees is that the two develop-
ment teams have too much work to do in each Sprint. The challenge does
not happen every Sprint, but frequently enough to be challenging for the
department.

A common reason for why there is too much to do in a Sprint is that
development teams are imprecise when estimating the length of PBIs and
tasks (Popli & Chauhan, 2013). The agile coach that the Case Company
had previously taught the development teams to estimate by complexity
instead of time. By learning from previous mistakes, this has become a skill
that the teams are good at, and as such, the reason for why the teams have
too much work in their Sprints lies elsewhere. Another possible reason,
which is also prevalent in existing theory (C10), might be that the team

36

capacity is lower than what is needed.

One cause is that each Sprint allocates a set amount of time to mainte-
nance work. The maintenance work that shows up has to be completed
immediately. Seeing as it is impossible to estimate how much maintenance
work will appear in a Sprint, there is a possibility that there will be more
than estimated. This results in other tasks having to be moved to the next
Sprint, which is more thoroughly discussed in section 5.2.2.

Having too high workload can lead to different consequences such as certain
PBIs being moved to the next Sprint, extended Sprints, and unsatisfactory
burndown charts. All these consequences can lead to further potential chal-
lenges like delays in projects, the next Sprint being interrupted by bugs
discovered too late, poor quality and exceeding budgets (Popli & Chauhan,
2013). A large consequence that can happen is that testing is moved to
the next Sprint, see section 5.2.2 for further details. Kniberg (2015) men-
tions that too large PBIs ends up being partially complete, which does not
produce value for the company and leads to more administration.

To solve the challenge of having too high workload in a Sprint, the develop-
ment teams sometimes extend their Sprint duration from two to three weeks.
While this is a reactive measure that does not fix the causes of the chal-
lenges, it makes sure that the Sprint is completed. It does, however, have
the consequences of delaying the next Sprints, which impacts the projects
that have development work planned for those Sprints. A preventive so-
lution to the challenge is to break down PBIs even more so that they fit
inside the scope of a single Sprint. Another possible solution is to adjust the
allocated amount of time given to maintenance tasks. This solution may,
however, have the opposite effect on the challenge, meaning the teams end
up with too little work to do in each Sprint. Analyzing when and why there
is much maintenance work might lead to better allocations of maintenance
work for each Sprint. Estimation of maintenance work is also something not
accounted for in the Scrum framework, and can, therefore, be challenging
to manage.

37

5.2.2 Testing in the Next Sprint

A challenge mentioned by the Test Team Manager is that testing is not
always done in the same Sprint as development. This situation was also
explained by the Application Development Manager, but was, however, not
labeled as a problem. According to Scrum theory, on the other hand, every
Sprint should produce a “Done”, usable, and potentially releasable Product
Increment (Schwaber & Sutherland, 2017), which implies that testing has
to be done within the same Sprint as development. This practice is also
mentioned by West, Gilpin, Grant, and Anderson (2011), who states that
testing is often moved outside the given Sprint and also often to another
separate team, which contradicts with agile principles.

One reason for why testing and development is not done in the same Sprint
is that there might not be enough time in the Sprint to do both. Sometimes
this is known in advance, and in such cases, there are often separate PBIs
for development and testing. The PBI for testing is then placed in the next
Sprint. Other times this is not known in advance as the time constraint
is discovered at the end of a Sprint, resulting in the test task having to
be moved to the next Sprint. Some other causes of this problem, like an
unpredictable amount of maintenance work, has already been covered in
section 5.2.1.

Not having development and testing in the same Sprint means that when
testing starts in the following Sprint, the developers might already be work-
ing on new PBIs. So if a bug or unwanted behavior is discovered during
testing, the developers might have to stop what they are doing so they can
fix the issue. Having to fix issues that appear disrupts what they are cur-
rently working on, which in turn may lead to the current task being delayed.
Delays in the development during a Sprint can result in not enough time
to do testing, meaning testing again is moved to the next Sprint. These
delays can form a vicious circle which might be hard to break out from, and
it might be a sign that the department does not fully understand the agile
values (C15). Having testing and development in the same PBI, but dif-
ferent Sprints also negatively affects the burndown chart, as it only counts
completed PBIs in a Sprint.

Another similar consequence mentioned by Eloranta et al. (2013) of having
testing in the next Sprint, which is referenced in the systematic literature

38

review (C22) in section 2.5, is that new functionality might already be writ-
ten on top of old code which is still in the testing phase. Changing untested
code may again result in additional time and resources being wasted to fix
potential bugs in the old code. In the worst case scenario, the new code
might be left useless and obsolete. A third consequence of splitting devel-
opment and testing from the same PBI into different Sprints is that it can
lead to a varying definition of “Done”, which may cause confusion within
the development teams.

A way to avoid having to split development and testing due to a PBI being
too large for a single Sprint is to break down the PBI into smaller PBIs. By
breaking down the PBI into smaller PBIs, it is easier to do both development
and testing in the same Sprint, and then do the same to the other PBI in
the next Sprint. A preventive measure for the cases where it is not apparent
until the end of the Sprint that there will not be enough time for testing,
is to be better at estimating the complexity of the PBIs. Estimating better
can either be done by adding more complexity if there is uncertainty about
a PBI, or by continuously learning from previous Sprints and PBIs so that
the accuracy of estimates increases. A reactive measure for the same case
is to extend the duration of the Sprint. Extending the Sprint can, however,
lead to other problems such as delays, re-prioritization of projects and PBIs
and the need for re-planning. Even though this might lead to negative
consequences, extending the Sprint duration is sometimes done by the Case
Company.

5.2.3 PBI Descriptions

The largest challenge that was emphasized during all the different interviews
was how the PBIs from the Product Owners at the business side often are
poorly described and detailed. The Applications Development Manager
mentioned a challenge that they sometimes see is that business is experi-
encing that they do not get software, meanwhile, the System Development
Department might say that things are too poorly described and are there-
fore having challenges committing to the given tasks. Software Developer
2 stated that there are some Product Owners from business that deliver
orders that often lack adequate detailing. Software Developer 2 also said
that the Product Owners from business only vaguely describe what they
want, and leave out additional and often useful information, such as why it

39

is needed and how it should function. The Technical Product Owner also
mentioned that the PBIs from business are often poorly defined and lack
detail. PBIs without a sufficient level of detailing make it more difficult for
the Technical Product Owner to break them down into more manageable
PBIs due to the high level of ambiguity.

There might be several underlying reasons for why the PBIs from business
are poorly described and detailed. One of the reasons might be that the
organization does not have a company-wide standard on how PBIs should
be described and formulated. This opens up for a lot of diversity from the
various Product Owners when it comes to describing their feature requests.
Lack of training, and trained personnel are repeating challenges in the liter-
ature (C7, C13, C16), and may also be a reason for why the Case Company
has poorly described PBIs.

Another reason might be that it exists a lot of uncertainty when it comes
to what is to be the final product, and where the solution to the business
requirements can be difficult to define. A high degree of uncertainty makes
it difficult to thoroughly describe what is to be developed, thus making the
PBIs less concrete. This challenge is also mentioned by Lorber and Mish
(2013), and is also included in the systematic literature review. They say the
inherent uncertainty makes it hard to define concrete user stories, opening
up for ambiguity of what is to be done and the acceptance criteria (Lorber
& Mish, 2013). Lack of understanding of agile values (C15) might be an
additional underlying reason.

Other reasons might be that the employees in business lack the required level
of technical knowledge regarding the Case Company’s systems to properly
describe what the current problem is and what needs to be done in order to
fix it. It might be that the System Development Department does not make
strict enough demands of what is an accepted level of detailing regarding
orders from business. It might also be that the project descriptions are
being poorly described due to suboptimal communication and collaboration
between business and the System Development Department (C6).

Poorly defined and detailed PBIs may lead to several unfortunate conse-
quences. The Technical Product Owner mentioned that it often results in
prolonged development times as additional meetings and questions back and
forth between the development teams and business is required for them to
clarify ambiguities and have a similar idea of what the finished product will

40

be. This may also lead to finished products that have large deviations com-
pared to what business initially intended, which again can result in budget
and time overruns.

A direct consequence of this challenge, mentioned by the Test Team Man-
ager, is that testers do not exactly know what to test when they receive
a task. While they can test what the developers made, they are not nec-
essarily sure if that is what the Product Owner wants. It also makes it
harder to see how other systems are affected by the changes. This can on
its own lead to critical system bugs which can cause damage to the profits
and reputation of the Case Company. This consequence may also be caused
by inadequate PBI grooming, which is covered in section 5.2.6.

To avoid or minimize the risk of dealing with poorly defined PBIs, the
organization could introduce a company-wide standard for how software
feature requests or PBIs should be described and detailed. A company-
wide standard could, for instance, be user stories or similar methods and
tools that better lay out what the requested software should do and how this
could be validated. Having a standard will also define a minimum of what is
to be considered as an acceptable level of detail, thereby making better use
of the software developers’ time. However, this will also require sufficient
training and education of Product Owners, so that they can write more
extensive software development requests. It is also important that business
is organized in such a way that they have the right type of people with the
required knowledge and expertise to write good enough specifications.

Another important aspect mentioned by Cockburn (2002), one of the founders
of the Manifesto for Agile Software Development, is the advantages of com-
municating face-to-face. As this type of communication is the most efficient,
the development teams and the customer are encouraged to have face-to-face
discussions when defining the specifications. Communicating requirements
using User Stories only makes the communication one-directional, which can
be inefficient and make it hard for the development teams to ask questions
back (Cockburn, 2002).

41

5.2.4 Business Agility

Another challenge that was uncovered during the interviews was how the
rest of the Case Company still operates in accordance with traditional
project management approaches, and how this affects the System Devel-
opment Department. The Technical Product Owner mentioned that there
still exist many people within the organization that rather prefers the Wa-
terfall approach to project management and software development. The
Technical Product Owner also stated that one could not fully take advan-
tage of the various benefits of working agile if the organization as a whole
does not adopt the agile values and principles. The Applications Devel-
opment Manager, as well as the Technical Product Owner, also mentioned
that the organization is now in an ongoing process of making business think
and work more according to the agile principles and values. This challenge
of still operating after traditional approaches may be an indication that
business lacks experience with agile methods (C12), and that they might
not yet have an extensive understanding of agile values (C15).

A potential reason for this challenge may be related to the organizational
culture of the Case Company. Struggling to think agile is often evidence
that there still exist old culture within the organization. Meaning that some
people within the organization are skeptical of changes (C17) that may affect
how they execute their daily work. Organizational culture is also empha-
sized as a challenge (C1) in a study conducted by VersionOne (2012) on
agile methods. The study, which is mentioned in a paper in the systematic
literature review, gathered data from over 4000 survey participants. Of the
respondents with failed agile projects, 12 % said that the main reason was
due to company philosophy or culture being at odds with core agile values
(VersionOne, 2012). Furthermore, the study also lists barriers to further
adoption of agile practices, where 52 % of the total respondents stated that
the “ability to change organizational culture” was a significant barrier. In-
troducing changes that will affect a company’s organizational culture is a
comprehensive process that requires that the majority of the organization
contributes in order for the changes to take effect.

As the Technical Product Owner stated during the interviews, a potential
consequence of not adopting the agile values throughout the organization, is
that one cannot fully take advantage of the benefits that agile may offer. Not
doing so may result in some departments within the organization becoming

42

bottlenecks to the progress of various projects, for instance, by prolonging
the time before each new Increment is available to the customer or end
consumer.

A possible way to avoid or mitigate this challenge is to change the em-
ployees’ daily work routines to promote agile principles and values better.
However, making business agile is not something that is done overnight. It
requires continuous work and a constant focus on agile principles and values.
A transformation like this also requires the participation of the majority of
people within the organization. It is, therefore, crucial that this information
is distributed across the entire organization. The information should em-
phasize the potential benefits of working according to the agile philosophy.
It might also be relevant for the organization to introduce different types
of incentives that promote working in accordance with agile principles and
values.

5.2.5 Documentation

Another challenge that was uncovered during the interviews was how doc-
umentation often was deprioritized. The Technical Product Owner men-
tioned that writing documentation was often left out during periods with
high workload and several projects going on in parallel. Software Developer
2 stated that the documentation that already exists is often outdated and,
therefore, serves little use.

The root cause of this challenge may be traced back to the Manifesto for
Agile Software Development and a lack of understanding for one of its values
(C15). One of the four values states that working software is valued more
than comprehensive documentation (Beck et al., 2001). The Manifesto does,
however, not say that writing documentation is unimportant, only that
functioning software should be prioritized higher. This formulation opens
up for interpretation, and the amount of documentation may, therefore,
vary significantly between various organizations.

Agile’s view on documentation has, therefore, been a concern for organi-
zations that consider adopting agile methods. This is evident in the study
conducted by VersionOne (2012) (also mentioned in section 5.2.4), where 26
% of the respondents said that “lack of documentation” was a big concern
when they were considering deploying agile. Another study by Prause and

43

Durdik (2012), which interviewed 37 software engineering experts from in-
dustry and academia about architectural design and documentation in agile
development, concludes that there is indeed a problem with both.

There might be several reasons why documentation is being deprioritized
and outdated. One of these reasons might be connected to the pressure some
businesses put on their system development departments when it comes to
delivering functioning software. Management wants to have functioning
software as soon as possible in order to sell the product to its customers
and might, therefore, push the development teams to deliver it faster than
they usually would. As writing documentation only contributes a tiny part
towards the progress of a project, the result may be that it becomes depri-
oritized.

Another reason may be that the time it takes to write documentation is not
taken into account, or at best strongly underestimated, when it comes to
calculating the workload for a Sprint. Two final reasons may be related to
the culture of the organization (C1). The process of writing and updating
documentation may have been something that always had low prioritization
within the organization. And the people responsible for documentation
might not see the value in it, or might not care about it.

Several of the findings discussed above are also prevalent in existing theory
on the topic. For instance, Prause and Durdik (2012) uncovered in their
study that the most likely reasons for challenges with documentation were
due to the fact that developers might not care about it, do not know how
to do it properly, lack time, do not explicitly consider documentation and
design, have limited personal benefit, and miss defined quality goals.

One of the most severe consequences of inadequate and outdated docu-
mentation is the amount of extra work required when changes are needed.
One example is trying to change old code that no one longer knows or un-
derstands. Another example is when an employee, who possesses expert
knowledge about a given system, leaves the company. This lack of knowl-
edge may also lead to lack of control and money wasted when trying to
figure out how the system functions.

Deprioritized and outdated documentation can be avoided by setting aside
enough time for documentation during the development process. Going
through all the relevant documentation regularly can also help avoid out-

44

dated documentation. It is also essential to have good communication be-
tween the System Development Department and business to ensure that
documentation is not deprioritized at the expense of faster delivery of func-
tional software.

5.2.6 PBI Grooming

Mentioned by all but the Application Development Manager and the Tech-
nical Test Manager is the challenge of inadequately groomed PBIs. As both
the developers and the testers use PBIs, this challenge affects both of the
development teams and the testers assigned to these PBIs. Currently, the
development teams are doing minimal grooming during their Sprint Plan-
ning meetings. Cohn (2015), co-founder of the Scrum Alliance, says a good
rule of thumb is to spend between 5 to 10 % of an entire Sprint effort on
grooming.

One reason behind the inadequately groomed PBIs is the lack of PBI groom-
ing meetings. While these meetings could be held before a Sprint ends, they
very rarely are. None of the development teams want to sit in long meet-
ings, and as such grooming of PBIs is not something that is prioritized.
A temporary lack of a dedicated Scrum Master might also be a reason for
why the grooming meetings are not held (C13). Cohn (2015) mentions
that long meetings with unprepared and unneeded participants reduce the
value of grooming meetings. He also mentions the importance of having
the Product Owner participate in the grooming meetings (Cohn, 2015), be-
cause there is a need for collaboration and communication with the customer
(C6). What often happens in the System Development Department is that
the PBI is only ”groomed” until one team member understands what he or
she is most likely supposed to do. Some team members may not see the
point of grooming PBIs more than necessary, as the developer that knows
the type of task best does the PBIs. That developer does not need much
detailing on their PBI. Not adequately grooming PBIs may also contradict
one of the agile values, which states that “Agile processes promote sustain-
able development. The sponsors, developers, and users should be able to
maintain a constant pace indefinitely.” (see section 2.3). Since maybe only
one of the developers understands the PBI, this may lead to variable pace.
As previously mentioned, this may be due to a lack of understanding of
agile values (C15).

45

Increased specialization is a negative consequence of inadequately groomed
PBIs. The PBIs are often only groomed until one of the developers in the
team knows what is to be done. If the single person who understands the
PBI is not available, then no one else can do it as they do not know what
they are supposed to do. Increased specialization leads to the department
becoming person dependent. Developers are not the only ones affected
by the inadequately groomed PBIs, as testers will also have a hard time
knowing what to test based on the PBIs. The challenge the testers face due
to poor PBI grooming, and its consequences, is discussed in section 5.2.3.

There are at least two possible solutions for inadequately groomed PBIs.
One is to ensure that the PBIs are better detailed when they arrive, or do
more grooming of them either during Sprint Planning meeting or separate
PBI grooming meetings. While the second solution can be implemented
by the development teams, the first solution requires better requirements
from the rest of the company, which may not be easy to accomplish (as
discussed in section 5.2.3). There have been earlier attempts at improving
the quality of the PBI grooming. However, the quality improvements were
only temporary.

5.2.7 Team Improvement

Both of the software developers said the teams are not working enough with
improvement. The challenge is twofold as earlier improvement practices
have died out, and new attempts die out after a while. Earlier the teams did
pair programming1, which contributed to spread knowledge and the creation
of better solutions. This practice is, however, no longer given as much time
and priority. Other attempts at improvement such as better grooming of
PBIs only work for a short while, before the teams fall back to earlier habits.
According to Software Developer 2, the teams are not conducting Sprint
Retrospectives anymore, even though they are an integral part of Scrum
that is meant for discussing and implementing improvements (Schwaber &
Sutherland, 2017). Not conducting these meetings is a deviation from Scrum
(C22) and may suggest a lack of understanding of agile values (C15).

1Pair programming is a technique within agile software development where two devel-
opers share a single workstation. One of the programmers sits behind the keyboard and
does the actual typing, while the other is more focused on the overall direction. The roles
are swapped between the two when required (Agile Alliance, n.d.-a)

46

While the interviewees did not point to any specific reason for why they fail
to improve, it was, however, mentioned that they were better before. The
fact that they have become worse at improving may imply that a lack off a
dedicated Scrum Master (C13) is a reason for why the team improvement is
stagnant. A lack of dedicated Scrum Master may also be linked to a lack of
Sprint Retrospectives, which in itself is a challenge. Sprint Retrospectives
let the team members reflect on what they do well and bad, what they should
improve, as well as how to improve on it. Dikert, Paasivaara, and Lassenius
(2016) found Sprint Retrospectives to be used by many organizations for
improvement in their literature review. Other possible reasons might be that
the teams are complacent and not believe that they need improvement, or
that they do not feel they have the time for improvement practices.

Specialization may be a consequence of having poor team improvement.
This is because a part of team improvement is to spread knowledge within
the Scrum Team. Specialization was found by Moe and Dingsøyr (2008)
to have a negative impact on team orientation. If there is only one person
that knows how a particular system, language, or piece of code works, there
will be challenges if the person quits or is absent. A lack of improvement
is also unfortunate for the Case Company as it will not achieve the full
potential of its System Development Department. If improvement practices
keep dying out after a while, the result might be that the employees stop
trying to improve entirely, as they know that whatever they are trying will
be abandoned in the future.

Similar to other challenges, one of the possible solutions to poor team im-
provement is to hire a dedicated Scrum Master. That will in itself not fix
the challenge, as the Scrum Master must be able and willing to make them
do and continue doing improvement practices. However, having a Scrum
Master increases the chance of Sprint Retrospectives being held. Teach-
ing the employees why they must improve and how different practices af-
fect their improvement can also help to keep improvement initiatives alive.
Forcing the employees to do improvement practices may also work, but it
is important that the improvement is greater than the possible negative
consequences that can follow when employees are forced to do something
they rather not do. Setting aside more time for improvement might be a
possible solution, but it requires sacrificing some amount of work between
each Sprint. The improvement can, however, make this worth the time as
it may result in more efficient work and better handling of situations where
persons are absent or quit.

47

5.2.8 Release Processes

In the early stages of the organization’s agile adoption, the Case Company
still operated with a more traditional release process. The process was
characterized by long testing periods, big and infrequent release phases,
and extensive release notes consisting of various reports and approvals from
people all over the organization. However, this process did not fit well with
the new agile approach to software development, where finished software
was produced on a more regular basis and therefore ended up waiting to be
released. It is worth mentioning that the organization now operates with a
release process that better accommodates this way of developing software.
For example, the System Development Department has implemented func-
tionality in their software development system which automatically gener-
ates a release note when a new release is done. This enables the department
to rapidly release new code into production when necessary, while simulta-
neously making sure the required level of documentation is in place.

The Application Developer Manager mentioned during the interviews that
these changes to the organization’s release process also brought along some
challenges related to controllability and accountability regarding the release
of new software. What types of changes should now be approved by man-
agement, and which could be directly released into production? Also, who
is now accountable for potential problems caused by the release of new soft-
ware? On the one hand, management wants to have full insight into all
changes made to the production systems, while the development teams do
not want to be crippled by unnecessary meetings and formalities that hinder
their productivity.

These challenges are often closely related to the organizational culture of the
company (C1). The organization has had these processes and routines since
they began developing and releasing their software, and might, therefore,
be hesitant to change them (C17). It is also possible that they had not
considered how this might affect the System Development Department when
they started using agile development processes. Organizational culture may
also force the System Development Department to interact with business
through more traditional practices (C5). The presence of organizational
culture as a challenge for agile implementations is also discussed in section
5.2.5.

48

A consequence of having this type of release process with agile software
development teams is that the organization will never take full advantage
of the various benefits of agile software development. Agile software de-
velopment makes it possible to more quickly adapt to changes and develop
software that creates value for the customer, but a traditional release pro-
cess may result in more time before changes are deployed to production and
less value for the customer. Another consequence is that some people in the
organization may have to spend time on things they probably did not have
to, for instance approving releases.

The consequences of traditional release processes may be reduced by trans-
ferring some of the responsibility and accountability of releases to the soft-
ware developers. As it is the System Development Department that has the
best knowledge and understanding of which changes that potentially can af-
fect other systems in production, they should be able and allowed to make
these decisions on their own. They should not be required to get permission
from someone further up in the organization that may have minimal knowl-
edge of what the outcome of the decision will be. Letting the development
teams make decisions is also emphasized in the Scrum framework, where
they are encouraged to be self-organizing (see section 2.4.1).

5.2.9 Sprint Review

Sprint Review is an important part of Scrum, and even though the System
Development Department held them regularly before, they are no longer
facilitating these meetings. For certain projects or changes, they have Sprint
Reviews, but this is mostly just because some individuals are invested in
their systems. It might not always be useful to hold Sprint Reviews, but the
consequences of not holding them are present in the Case Company. Some
projects have status meetings, but these meetings may not have the same
purposes as Sprint Reviews.

One reason for not holding Sprint Reviews might be that there are no com-
mon standard or any guidelines for how the System Development Depart-
ment should operate. As such, there is nothing that says they have to hold
Sprint Reviews. Furthermore, there is also currently no dedicated Scrum
Master (C13) that can facilitate the Sprint Reviews, which may often lead
to no one taking the initiative to hold them. Another reason may be that

49

the people responsible for projects or changes do not want to, or maybe
do not care enough, to be a part of Sprint Reviews. A possible reason is
that the department does not see the value in holding Sprint Reviews, and
as such think of them as time wasters. This mentality may suggest that
the department lack sufficient knowledge of agile values (C15), or that the
contents of these types of meetings are covered through other interactions.
This can also be characterized as an anti-pattern (C22, see section 2.5), as
it is a deviation from Scrum theory.

There might be several potential consequences of not holding Sprint Reviews
regularly. As Sprint Reviews are an opportunity for development teams
and the stakeholders to meet and collaborate on how to optimize value and
plan for future Sprints, choosing not to arrange these types of meetings
may result in the Scrum Team not utilizing each others knowledge to the
fullest in order to maximize value. Sprint Review meetings are also a place
for all the involved parties of the project to jointly evaluate and review
how potential use of the product, as well as the marketplace, might have
changed during the current Sprint (Schwaber & Sutherland, 2017). Those
potential changes could make adjustments to the product or project as a
whole necessary. Not organizing Sprint Reviews may, therefore, result in
the final product not following the various trends in the market, and in
worst case scenario not being competitive compared to other products in
the market.

Possible solutions to the challenge may be to teach and show the people
responsible for projects or changes, and the development teams, the value
of Sprint Reviews. This can help as both parties will be interested in the
meetings and their outcome. Hiring a new Scrum Master that is strict when
it comes to following Scrum will also make sure the Sprint Reviews are held,
but like the first solution, this one may also turn out negative.

5.3 Summary of Findings

This section contains a summary of the challenges discussed in the previous
section, as well as their associated causes and consequences. Similar chal-
lenges found in the systematic literature review, as presented in table 2.1,
are also included. The summary is presented in table 5.2.

50

Table 5.2: Summary of findings from the discussion.

As shown in table 5.2, a total of nine challenges related to agile and its
implementation in the System Development Department at the Case Com-
pany were uncovered. A wide range of different causes to the challenges was
discussed, and some of them are repeating and part of broader challenges.
Organizational culture is one of these causes that can be linked to multiple
challenges, and it is also one of the related challenges (C1) that has been
found in the literature. Several different consequences of these challenges
and how they might impact both the System Development Department and

51

the Case Company were also discussed. Specialization and delays are two
important ones.

Even though the challenges uncovered in this thesis have different formula-
tions compared to those found in the strategic literature review by López-
Mart́ınez et al. (2016), many of them are, however, closely related. For
instance, some of the challenges from the literature review are often related
to several of those found in this case study, as they are more overarching
and general challenges. These overarching challenges are C13 (availability
of trained personnel) and C15 (lack of understanding of agile values). Due
to the temporary situation of the Case Company not having a dedicated
Scrum Master, one can conclude that C13 is an overarching challenge which
can result in poor PBI descriptions, poor PBI grooming, minimal team im-
provement and lack of Sprint Review. C15 might also be characterized as an
overarching challenge since several of the challenges uncovered in the case
study are related to deviations from the Scrum framework and agile prin-
ciples, which hinders the System Development Department from reaching
its full potential. Conducting Sprint Reviews and Retrospectives regularly,
as well as prioritizing sufficient grooming of PBIs may yield benefits to the
System Development Department.

The majority of the challenges and causes uncovered in this thesis are al-
ready prevalent in existing theory. However, there was one finding that has
not yet been given much attention. This finding was related to how the de-
velopment teams integrate the responsibility of maintaining their existing
system into their Sprints. Due to a high level of uncertainty regarding the
amount of maintenance work for a given Sprint, the development teams allo-
cates a set amount of time for this type of work, which sometimes is less than
what is needed. Not allocating enough time for maintenance work may lead
to several unfortunate consequences, such as lower-prioritized PBIs being
pushed to the next Sprint, slower progress on ongoing projects, and un-
satisfactory burndown charts. Even though work estimation is a relatively
known challenge, it has yet not been given much attention in this situation
with varying amount of maintenance work. This type of estimation is also
something not accounted for in the Scrum framework, and might, therefore,
be a subject for future research.

52

Chapter 6

Conclusion

As agile approaches to software development have been widely adopted by
organizations over the last decades, they have also brought along various
challenges. To enrich existing literature on the given topic, this thesis has
addressed challenges with agile and its implementation in a System Develop-
ment Department. This has been done through a qualitative and descriptive
case study, were six interviews with employees of different roles within the
System Development Department at Case Company were conducted. These
interviews were also partly bolstered up by observations from different types
of status and planning meetings. During the interviews and observations,
nine challenges were uncovered. A discussion and analysis of the potential
causes and consequences of these challenges have been provided. The chal-
lenges were compared to findings from a strategic literature review, as well
as other studies related to challenges with agile implementation.

One of the main findings of the case study is that the System Development
Department has not been 100 % true to the Scrum framework, and as
such, it is advised that they do a more thorough implementation of the
framework. Conducting Sprint Reviews and Retrospectives regularly, as
well as prioritizing sufficient grooming of PBIs may yield benefits to the
department. Furthermore, the temporary situation of the department not
having a dedicated Scrum Master also supports this finding. Another main
finding is that organizational culture is one of the causes behind multiple
challenges, and these challenges are mostly related to situations where the
department and the rest of the Case Company interact.

53

A contribution of this thesis is that it further supports the findings of other
studies related to challenges with agile and its implementation. However,
this thesis also discusses a challenge that has not yet been given much atten-
tion in existing theory. Given that the development teams are responsible
for maintaining their existing system, estimating the amount of mainte-
nance work during the Sprint Planning meeting may be challenging due to
inherent uncertainty. An estimation that is too low may lead to several
unfortunate consequences, such as lower-prioritized PBIs being pushed to
the next Sprint, slower progress on ongoing projects, and unsatisfactory
burndown charts. Even though estimation is a relatively known challenge,
it has yet not been given much attention in this given situation. It is also
something that is not accounted for in the Scrum framework.

6.1 Limitations

A limitation of this thesis is the research method used. It is hard to make
generalizations from a single case study, so doing a multi-case study with
system development departments from other companies might lead to more
generalizable findings. Interviews were the primary method for collecting
data, and the usage of more methods might have led to better triangulation
and more trustworthy data. Time itself has also been a limitation. More
challenges might have been uncovered if there was more time to also in-
terview the business side of the Case Company. Furthermore, conducting
a new round of interviews with some of the interviewees might also have
revealed additional challenges.

Another limitation is caused by the lack of a dedicated Scrum Master, which
might have created challenges that otherwise would not exist. So the results
could have been different if the same case study was conducted once a new
Scrum Master was in place. The thesis is, therefore, limited by the fact that
it also includes challenges that might be temporary.

Since there was no opportunity to interview software developers from the
.NET developer team, one can argue that this is a limitation, as additional
challenges might have been uncovered.

54

The last limitation regards the challenges that were discarded due to not
being related to agile or its implementation. It is not possible to say for
certain if the discarded challenges were related or not, and as such challenges
that potentially were related might have been discarded.

6.2 Future Work

A subject that might be applicable for future research is related to the
challenge of estimating the amount of maintenance work that may appear
during an upcoming Sprint. As this is not accounted for in the Scrum
framework, we suggest future research on how this can be managed in a
more structured and predictable manner.

55

References

Agile Alliance. (n.d.-a). Pair programming. Retrieved from https://www

.agilealliance.org/glossary/pairing/

Agile Alliance. (n.d.-b). What is Agile Software Development. Retrieved 3
April 2019, from https://www.agilealliance.org/agile101/

Ali, A. M., & Yusof, H. (2011). Quality in qualitative studies: The case of
validity, reliability and generalizability. Issues in Social and Environ-
mental Accounting , 5 (1/2), 25–64.

Baxter, P., & Jack, S. (2008). Qualitative case study methodology: Study
design and implementation for novice researchers. The qualitative re-
port , 13 (4), 544–559.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., . . . Thomas, D. (2001). Manifesto for Agile Software
Development. Retrieved 3 April 2019, from http://agilemanifesto

.org/iso/en/manifesto.html

Bloch, M., Blumberg, S., & Laartz, J. (2012). Delivering large-scale it
projects on time, on budget, and on value. Harvard Business Review ,
2–7.

Cockburn, A. (2002). Agile software development. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.

Cohn, M. (n.d.). User stories. Retrieved from https://www

.mountaingoatsoftware.com/agile/user-stories

Cohn, M. (2015). Product backlog refinement (grooming).
Conboy, K., Coyle, S., Wang, X., & Pikkarainen, M. (2011, July). People

over process: Key challenges in agile development. IEEE Software,
28 (4), 48–57. Retrieved from http://dx.doi.org/10.1109/MS.2010

.132 doi: 10.1109/MS.2010.132
Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and

success factors for large-scale agile transformations: A system-
atic literature review. Journal of Systems and Software, 119 , 87

57

https://www.agilealliance.org/glossary/pairing/
https://www.agilealliance.org/glossary/pairing/
https://www.agilealliance.org/agile101/
http://agilemanifesto.org/iso/en/manifesto.html
http://agilemanifesto.org/iso/en/manifesto.html
https://www.mountaingoatsoftware.com/agile/user-stories
https://www.mountaingoatsoftware.com/agile/user-stories
http://dx.doi.org/10.1109/MS.2010.132
http://dx.doi.org/10.1109/MS.2010.132

- 108. Retrieved from http://www.sciencedirect.com/science/

article/pii/S0164121216300826 doi: https://doi.org/10.1016/
j.jss.2016.06.013

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of
agile methodologies: Towards explaining agile software development.
Elsevier.

Dyb̊a, T., & Dingsøyr, T. (2008). Empirical studies of agile software devel-
opment: A systematic review. Information and Software Technology ,
50 (9), 833 - 859. Retrieved from http://www.sciencedirect.com/

science/article/pii/S0950584908000256 doi: https://doi.org/
10.1016/j.infsof.2008.01.006

Easterby-Smith, M., Thorpe, R., & Jackson, P. R. (2015). Management
and business research - 5th edition (Paperback ed.). Sage Publications
Ltd.

Eloranta, V.-P., Koskimies, K., Mikkonen, T., & Vuorinen, J. (2013). Scrum
anti-patterns – an empirical study. In 2013 20th asia-pacific software
engineering conference (apsec) (Vol. 1, pp. 503–510).

Flyvbjerg, B., & Budzier, A. (2011). Why your it project may be riskier
than you think. Harvard business review , 89 (11).

Gregory, P., Barroca, L., Sharp, H., Deshpande, A., & Taylor, K. (2016).
The challenges that challenge: Engaging with agile practitioners’ con-
cerns. Information and Software Technology , 77 , 92–104.

Hsieh, C.-e. (2004). Strengths and weaknesses of qualitative case study
research. University of Leicester Publishing .

Jacobsen, D. I. (2015). Hvordan gjennomføre undersøkelser?: innføring i
samfunnsvitenskapelig metode. Oslo: Cappelen Damm Akademisk.

Kniberg, H. (2015). Scrum and xp from the trenches. Lulu.com.
Larson, E. W., & Gray, C. F. (2010). Project Management: The Managerial

Process (5th ed.). McGraw-Hill Irwin.
López-Mart́ınez, J., Juárez-Ramı́rez, R., Huertas, C., Jiménez, S., &

Guerra-Garćıa, C. (2016). Problems in the adoption of agile-scrum
methodologies: A systematic literature review. In 2016 4th inter-
national conference in software engineering research and innovation
(conisoft) (pp. 141–148).

Lorber, A. A., & Mish, K. D. (2013). How we successfully adapted agile for
a research-heavy engineering software team. In 2013 agile conference
(pp. 156–163).

Mathiassen, L., & Pries-Heje, J. (2006). Business agility and diffusion
of information technology. European Journal of Information Sys-

58

http://www.sciencedirect.com/science/article/pii/S0164121216300826
http://www.sciencedirect.com/science/article/pii/S0164121216300826
http://www.sciencedirect.com/science/article/pii/S0950584908000256
http://www.sciencedirect.com/science/article/pii/S0950584908000256

tems, 15 (2), 116-119. Retrieved from https://doi.org/10.1057/

palgrave.ejis.3000610 doi: 10.1057/palgrave.ejis.3000610
McCusker, K., & Gunaydin, S. (2015). Research using qualitative,

quantitative or mixed methods and choice based on the research.
Perfusion, 30 (7), 537-542. Retrieved from https://doi.org/10

.1177/0267659114559116 (PMID: 25378417) doi: 10.1177/
0267659114559116

Moe, N. B., & Dingsøyr, T. (2008). Scrum and team effectiveness: The-
ory and practice. In International conference on agile processes and
extreme programming in software engineering (pp. 11–20).

Popli, R., & Chauhan, N. (2013, March). A sprint-point based estimation
technique in scrum. In 2013 international conference on information
systems and computer networks (p. 98-103). doi: 10.1109/ICISCON
.2013.6524182

Prause, C. R., & Durdik, Z. (2012). Architectural design and documenta-
tion: Waste in agile development? In 2012 international conference
on software and system process (icssp) (pp. 130–134).

Rahmanian, M. (2014). A comparative study on hybrid it project manage-
ment. International Journal of Computer and Information Technol-
ogy , 3 (05), 1096–1099.

Rigby, D. K., Sutherland, J., & Takeuchi, H. (2016). Embracing agile.
Harvard Business Review , 94 (5), 40–50.

Schwaber, K. (2000). Agile project management with scrum. Pearson Edu-
cation.

Schwaber, K., & Sutherland, J. (2017). The scrum guide. Scrum Alliance.
Scrum Institute. (n.d.). Scrum burndown chart. Retrieved from https://

www.scrum-institute.org/Burndown Chart.php

Scrum.org. (n.d.). The scrum framework poster. Retrieved from https://

www.scrum.org/resources/scrum-framework-poster

Serrador, P., & Pinto, J. K. (2015). Does agile work? —
a quantitative analysis of agile project success. International
Journal of Project Management , 33 (5), 1040 - 1051. Re-
trieved from http://www.sciencedirect.com/science/article/

pii/S0263786315000071 doi: https://doi.org/10.1016/j.ijproman
.2015.01.006

Stoica, M., Mircea, M., & Ghilic-Micu, B. (2013). Software development:
Agile vs. traditional. Informatica Economica, 17 (4).

Theocharis, G., Kuhrmann, M., Münch, J., & Diebold, P. (2015). Is water-
scrum-fall reality? on the use of agile and traditional development

59

https://doi.org/10.1057/palgrave.ejis.3000610
https://doi.org/10.1057/palgrave.ejis.3000610
https://doi.org/10.1177/0267659114559116
https://doi.org/10.1177/0267659114559116
https://www.scrum-institute.org/Burndown_Chart.php
https://www.scrum-institute.org/Burndown_Chart.php
https://www.scrum.org/resources/scrum-framework-poster
https://www.scrum.org/resources/scrum-framework-poster
http://www.sciencedirect.com/science/article/pii/S0263786315000071
http://www.sciencedirect.com/science/article/pii/S0263786315000071

practices. In International conference on product-focused software pro-
cess improvement (pp. 149–166).

VersionOne. (2012). 7th annual state of agile survey. Re-
trieved from https://www.versionone.com/pdf/7th-Annual-State

-of-Agile-Development-Survey.pdf

West, D., Gilpin, M., Grant, T., & Anderson, A. (2011). Water-scrum-fall is
the reality of Agile for most Organizations today. Forrester Research,
26 .

World Economic Forum. (2018). Annual report 2017-2018. Retrieved from
https://www.weforum.org/reports/annual-report-2016-2017

Yazan, B. (2015). Three approaches to case study methods in education:
Yin, Merriam, and Stake. The qualitative report , 20 (2), 134–152.

Yin, R. (2017). Case study research and applications: Design and methods.
SAGE Publications. (E-BOOK)

60

https://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
https://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
https://www.weforum.org/reports/annual-report-2016-2017

Appendices

61

Intervjuguide

Oppgave: Se på hvilke problemer som fremdeles eksisterer i en bedrift som har gått fra tradisjonell til

smidig utvikling.

• Hvilken funksjon / rolle / ansvar har du I Santander?

• Hvor lenge har du jobbet I Santander?

• Hvordan opplever du samspillet med den øvrige delen av bedriften?

• Hvordan jobber utviklingsavdelingen? Prosessflyt?

o Hvorfor har dere valgt dette?

o Har dere alltid jobbet sånn?

o Hvordan er rolleansvarsfordelingen?

• Hvorfor gikk dere over til å jobbe smidig? (Hvorfor har dere endret måten dere jobber på?)

o Hvordan opplever du dette?

• Hvordan er prosessen når et nytt “prosjekt” settes I gang?

o Hvem kommer med requirements?

o Er de som kommer med requirements med videre I prosessen?

o Hvem blir Product Owner?

o Jobber de med scrum-teamet?

• Hvordan er oppfølgingen underveis fra de som kom med “prosjektet”?

• Er testing en integrert del av hver sprint, eller foregår det I etterkant?

o Hva synes du om denne måten å gjøre det på?

• Hvor fort kommer ferdig utviklet kode ut I produksjon?

• Hvor ofte har dere release av kode?

o Hva er den største bottleneck / hva bestemmer når dette skjer?

• Dere jobber etter smidig-prinsipper, I hvor stor grad gjør resten av bedriften det?

o Følger de dere forholder dere til også disse prinsippene?

o Er det et mål / meningen at de dere jobber med (eller hele bedriften) skal jobbe etter

Agile-prinsippene, eller er kun hovedsakelig begrenset til systemutvikling?

• Er det noe du føler som gjenstår for at utviklingsavdelingen skal være fullstendig smidig?

• Hva vil du si er de største utfordringene knyttet til måten dere jobber på?

o Hvordan jobber dere for å bli bedre på dette?

A Interview Protocol

62

UiA University of Agder
Master’s thesis
Faculty of Engineering and Science
School of Business and Law

c© 2019 Marius Andersen Bjørni & Simen Haugen. All rights reserved

64

	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Problem Statement
	Research Questions

	Delimitations
	Thesis Outline

	Theory
	Project Management
	Traditional Software Development
	Agile Software Development
	Scrum
	The Scrum Team
	Scrum Events
	Scrum Artifacts

	Challenges of Agile Implementation

	Method
	Research Design
	Literature Review
	Case Study
	Data Collection
	Interviews
	Observations

	Validity and Reliability

	Case Study
	Case Company
	Department Structure
	Agile Transformation
	Roles and Responsibilities
	Work Methods

	Discussion
	Findings
	Challenges
	Sprint Workload
	Testing in the Next Sprint
	PBI Descriptions
	Business Agility
	Documentation
	PBI Grooming
	Team Improvement
	Release Processes
	Sprint Review

	Summary of Findings

	Conclusion
	Limitations
	Future Work

	References
	Appendices
	Interview Protocol

