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Abstract 

Modern, multi-modular plasma modeling requires accurate and versatile methods for the 

determination of the electron velocity distribution function from which rate coefficients of electron 

impact processes as well as electron transport quantities are determined. In this paper we propose 

as a solution a modified version of a strongly overlooked method developed in the early 90’s, 

namely, Monte Carlo Flux (MCF). The improvement lies in a criterion for the otherwise somewhat 

empirical selection of the time-step used in the method. We show that an MCF based code 

highlights and overcomes the limitations of two-terms codes such as BOLSIG+ and it is much 

faster than a conventional Monte Carlo. Moreover, MCF is in excellent agreement with the multi-

term method for a wide range of reduced electric fields, being at the same time much simpler to 

implement and to extend to more general cases than the latter. Explicit illustrations of the Markov 

matrices representing short-time kinetics are presented to gain insight into the method. The two-

dimensional velocity distribution and its expansion into Legendre polynomials are discussed for 

electrons in argon. 

Keywords: Electron Boltzmann equation, Monte Carlo Flux, electron energy distribution 

function, Legendre polynomials coefficients. 
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1. Introduction 

In the past decades, great progress has been made in the field of technological applications of low-

temperature plasma physics and chemistry. An example is information technology, with the 

miniaturization of integrated circuits and functionalization of materials [1, 2]. Nowadays, plasma 

technologies are exploited in bio-medical [3] and environmental [4] applications and became 

indispensable in many other fields. A detailed overview on the status and challenges of the field 

can be found in recent reviews [5, 6]. 

An important feature of low-temperature plasmas is that they can be often far from thermodynamic 

equilibrium, that is the average energy of the electron population is much larger than the one for 

heavy particles [7]. The dynamics of non-equilibrium plasmas is dominated by electrons that are 

fundamental to sustain the discharge through collisional processes. For example, ionization by free 

electrons is a key mechanism for sustaining the discharge. Moreover, excitation and de-excitation 

processes give an important contribution to the production or loss of chemically active species. To 

this end, a detailed understanding and knowledge of the complex plasma physics and chemistry 

mechanisms is desirable for the control and optimization of plasma-based technologies. This 

complexity requires numerical models for the description of the main reaction channels, as 

discussed in details in [7, 8]. In plasma regimes dominated by short range interactions, knowledge 

of the electron distribution function is essential to calculate chemical rate coefficients, as well as 

electron transport parameters. A comprehensive review of established techniques and recent 

progresses in electron distributions descriptions can be found in [9]. 

Distribution functions for electrons are generally obtained by numerically solving the 

corresponding Boltzmann equation. In this context, two different methods are mostly used to 

investigate electron dynamics: deterministic solution of the Boltzmann equation and Monte Carlo 

(MC) method. On the one hand, the former is based on different implicit and explicit 

approximations for the solution of the Boltzmann equation, for example, the two-term 

approximation, that is typically valid under the hypothesis of small anisotropy of the electron 

distribution function in velocity space. A widely employed code, based on the two-term approach, 

is BOLSIG+ [10, 11], that is also used in the PLASIMO [12, 13] and ZDPlasKin [14] codes. Other 

research groups employing codes based on the two-term approximation are the Lisbon group [15-

18], the Bari group [19] and Dyatko and co-authors [20], to study electron kinetics in atomic and 
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molecular plasmas. In this respect, it is worth to mention the LoKI-B code that has recently been 

released as open source and can be used to solve a space and time independent form of the two-

term Boltzmann equation [21, 22]. Other examples of two-term solvers are EEDF [23] and BOLOS 

[24]. Extension to multi-term solution techniques is widely established for the calculation of 

accurate distribution functions and transport parameters. In this respect, great advances have been 

made by Robson and co-authors [25-27], Pitchford and co-authors [28], Dujko and co-authors [29] 

and the Greifswald group [30]. Recently, the multi-term solver MultiBolt has been developed and 

distributed as an open source code [31]. 

On the other hand, MC methods are propagation methods based on statistical laws of probabilities. 

In MC simulations, individual particles are traced and collisions are simulated as stochastic 

processes using random numbers. A description of MC methods for charged particles and their 

derivation from the transport equation can be found in [32-34]. Moreover, applications of MC to 

simulations of electrons can be found in [35-37]. An example of open source MC code for electron 

transport is METHES [38, 39]. Vast literature can be found on the comparison of different methods 

based on the deterministic analysis and MC in terms of accuracy and calculation of swarm 

transport parameters (e.g. [40-42]). The advantage of the MC method is that it can be easily applied 

to different conditions, even when the deterministic analysis becomes cumbersome, but it may 

require large computational times. 

Variance reduction techniques are usually employed to reduce the computational load [43]. An 

example is Monte Carlo Flux (MCF). This method was originally proposed by Schaefer and Hui 

for solving the electron transport problem [44] and applied in few other works mainly by Longo 

and Capitelli [45]. An extension of the method called generalized MCF was also proposed by Wu 

and co-authors [46]. Despite the little attention this method received with respect to other 

techniques, MCF offers the possibility of computing electron velocity distribution functions 

ranging over several orders of magnitude, a feature that can be matched in MC only employing 

variance reduction techniques. At the same time, as it will be seen later, MCF allows to treat 

optimally the much different timescales of collision and relaxation using MC only for the former, 

where it performs best. In this respect, the base idea of MCF is the reduction of the number of 

simulated collisions, as it will be explained in Section 2. This makes this method computationally 

efficient. 
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In this work, an implementation of MCF optimized for fast and accurate calculations of electron 

dynamics is presented. The emphasis is on the influence of numerical parameters on the accuracy 

of results. This is an important step for a future possible integration of an MCF solver in a more 

sophisticated chemistry model. Furthermore, results are validated against an analytical solution 

and against solutions based on two-term and ten-term expansion in Legendre polynomials. The 

paper is structured in the following way: in section 2, theoretical bases of the MCF method are 

illustrated. In section 3, details about code implementation are presented. In section 4.1, 

optimization of numerical parameters and validation against an analytical solution are discussed. 

In particular, an improved criterion for the calculation of the MC time step is presented and it is 

shown that, in this way, the method can be exploited for simulations in several conditions. In 

section 4.2, a benchmark of the MCF code against the two-term solver BOLSIG+ and the multi-

term solver MultiBolt is presented, in particular as far as the calculation of Legendre polynomial 

coefficients is concerned. Calculations are performed for the case of argon chemistry for a wide 

range of values for the reduced electric field. An example of steady-state solution of the electron 

velocity distribution function in 2D velocity space is shown at the end of section 4, together with 

the time evolution of the EEDF, in order to illustrate additional capabilities of MCF simulations. 

 

2. Numerical methods to solve the electron Boltzmann equation 

Non-equilibrium plasmas modelling requires the knowledge of the distribution function for free 

electrons that can be obtained as a numerical solution of the corresponding Boltzmann equation: 

� 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒗𝒗 ∙ ∇𝒓𝒓 + 𝒂𝒂 ∙ ∇𝒗𝒗� 𝑓𝑓(𝒓𝒓,𝒗𝒗, 𝑡𝑡) =  �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

.   (1) 

Eq. (1) describes the time evolution of the electron distribution function 𝑓𝑓(𝒓𝒓,𝒗𝒗, 𝑡𝑡) in phase space 

under the effect of space and velocity gradients, the acceleration 𝒂𝒂, due to external forces and 

collisions, described by the term on the right hand side. From the distribution function, it is possible 

to calculate macroscopic quantities useful to characterize the discharge properties [47]. 

In what follows, a particular form of Eq. (1), the so called linear Boltzmann equation [48], is solved 

numerically. In this equation, the gas is diluted enough, so that only binary interactions between 

electrons and heavy particles are taken into account. Collisions are also assumed to be 

instantaneous, therefore the effect of any external force is negligible during a collision event. A 
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homogenous and constant electric field is considered, acting along the �̂�𝑧-direction on the electrons 

ensemble. Moreover, an infinite gas where all quantities in Eq. (1) are independent on space 

variables (homogenous problem) is assumed. In those conditions, the electron distribution function 

is dependent only on time and 2D velocity-space coordinates (i.e. axial and radial velocity 

component), or alternatively on energy and direction of the velocity vector with respect to the 

electric field. This is the so called Electron Velocity Distribution Function (EVDF). Under 

conditions of axial symmetry in velocity space around the direction of the electric field, the EVDF 

𝑓𝑓(𝜀𝜀, cos 𝜃𝜃 , 𝑡𝑡) is usually expanded in series of Legendre polynomials 𝑃𝑃𝑐𝑐(cos𝜃𝜃): 

  𝑓𝑓(𝜀𝜀, cos 𝜃𝜃 , 𝑡𝑡) = ∑ 𝑓𝑓𝑐𝑐(𝜀𝜀, 𝑡𝑡)𝑃𝑃𝑐𝑐(cos𝜃𝜃)∞
𝑐𝑐=0 ,    (2) 

where 𝜃𝜃 is the angle between the direction of the velocity vector and of the electric field, 𝜀𝜀 is the 

electron energy and 𝑓𝑓𝑐𝑐(𝜀𝜀) is the 𝑙𝑙-th order Legendre polynomial coefficient in the expansion. This 

procedure is limited to spatially-homogenous conditions driven by an electric field. More 

generally, an expansion in spherical harmonics in velocity space is used in case of spatial 

inhomogeneity or in absence of axial symmetry [42]. 

A set of ordinary differential equations is then solved, one for each term in the Legendre expansion. 

Usually only two terms (𝑓𝑓0(𝜀𝜀) and 𝑓𝑓1(𝜀𝜀)) are taken into account, where 𝑓𝑓0(𝜀𝜀) is usually referred 

as the isotropic component or Electron Energy Distribution Function (EEDF) and it is used in the 

calculation of chemical rate coefficients and flux transport parameters [47]. This is referred in 

literature as two-term approximation. This approximation is satisfied for relatively small energy 

variations in elementary processes, for example in cases of large diffusion by elastic collisions. 

The truncation of the expansion in two terms is possible because of the small electron to heavy 

particles mass ratio 𝑚𝑚 𝑀𝑀⁄  [49]. In general, for values of electric fields that enhance the role of 

inelastic collisions, higher orders in the Legendre polynomial expansion must be taken into 

account [50]. Another limitation of a two-term approach concerns the distribution of scattered 

electrons, where inelastic collisions are treated as isotropic [51]. Those limitations are overcome 

in multi-term solvers, at the cost of numerical complexity [28]. Multi-term solvers are also widely 

used to obtain accurate calculations of swarm transport parameters, in conditions where the two-

term approximation breaks down [29]. 

An alternative under such conditions is the MC method [32, 34] in which the electrons motion is 

simulated in phase space under the effect of external forces and binary interactions. Usually, the 

null-collision method is employed to calculate the time between two successive collisions as a 
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Poisson stochastic process [52]. Accuracy and versatility are other advantages of MC, that is also 

useful when space-dependent quantities are sought and the local field approximation cannot be 

applied due to non-local effects of electron kinetics [47]. Despite its advantages, a drawback of 

MC is the high computational cost needed to obtain a solution with a reduced level of statistical 

error. In fact, stochastic fluctuations scale slowly with the number of particles 𝑛𝑛 as 𝑛𝑛−1/2. 

Additionally, being equivalent to a direct, time dependent solution of the Boltzmann equation, it 

suffers the very different time scales of collision and relaxation, which are in the same ratio as 

𝑚𝑚 𝑀𝑀⁄ . In fact, while the typical collision time is mostly determined by the momentum relaxation 

frequency, the relaxation time of the distribution function depends on the energy relaxation 

frequency, that is typically much lower [53]. This mass mismatch is usually not a problem due to 

the different way electron kinetics is treated in a Fokker-Planck formulation of the Boltzmann 

equation and in a Monte Carlo model. However, it can be a real problem under conditions where 

the 𝑚𝑚 𝑀𝑀⁄  ratio is the bottleneck of the time evolution: for example, in a post-discharge situation, 

the energy drift downwards in the region of elastic collisions is due to a term proportional to 𝑚𝑚 𝑀𝑀⁄  

and this applies also to any single collision in MC. 

Variance reduction techniques [43] are employed to reduce statistical noise due to stochastic 

fluctuations in the distribution function. These techniques are based on using variable 

mathematical weights for particles in various ways, while increasing the number of particles in 

regions of phase space, or increasing the number of useful calculations performed during the 

particle simulation. These techniques, however, cannot address the fundamental problem of the 

very large ratio, amounting to several orders of magnitude, between the relaxation time of the 

distribution and the inter-collision time. In fact, MC methods are intrinsically time-dependent and 

describe the electron history from collision to collision and because of this large ratio they are 

highly computationally expensive even when the problem of phase space coverage is optimally 

dealt with. A very efficient alternative to traditional variance reduction techniques is the Monte 

Carlo Flux (MCF) [44]. The MCF procedure consists of three steps. The first step is the subdivision 

of the velocity domain in cells. For instance, for the 2D axisymmetric case, each cell is uniquely 

identified by a couple of indexes (𝑖𝑖, 𝑗𝑗) corresponding to different energy (𝜀𝜀) and cos 𝜃𝜃 bins, 

determined by: 

(𝑖𝑖 − 1)∆𝜀𝜀 ≤ 𝜀𝜀 < 𝑖𝑖∆𝜀𝜀 ,   𝑖𝑖 = 1, … , 𝑛𝑛𝜀𝜀     (3) 
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(𝑗𝑗 − 1)∆(cos𝜃𝜃) ≤ cos 𝜃𝜃 < 𝑗𝑗∆(cos𝜃𝜃), 𝑗𝑗 = 1, … ,𝑛𝑛cos𝜃𝜃 , 

where 𝑛𝑛𝜀𝜀 and 𝑛𝑛cos𝜃𝜃 are the number of bins in the energy and angular domain, with size ∆𝜀𝜀 and 

∆(cos𝜃𝜃), respectively. The simulation is initiated by placing a distribution of electrons at time 𝑡𝑡 =

0 in each cell of the velocity space, such that, for example, 𝑁𝑁(1,1)(𝑡𝑡 = 0) represents the number of 

electrons initially inserted in the (𝑖𝑖 = 1, 𝑗𝑗 = 1)-cell. In the second step, the initial electron 

distribution is evolved in time through an MC simulation. In particular, during a time interval ∆𝑡𝑡, 

electrons move between velocity space cells due to the presence of the electric field and undergo 

stochastic collision processes. The information about electron transport between cells can be 

captured by defining the conditional transition probabilities between velocity space cells: 

𝑝𝑝𝐼𝐼→𝐽𝐽(∆𝑡𝑡) = 𝑁𝑁𝐼𝐼→𝐽𝐽(∆𝑡𝑡)/𝑁𝑁𝐼𝐼(𝑡𝑡 = 0).         (4) 

Where 𝐼𝐼 and 𝐽𝐽 are indexes identifying two different bidimensional cells associated, for example, 

with the (𝑖𝑖, 𝑗𝑗)-th and (𝑘𝑘, 𝑙𝑙)-th cell respectively. In this way, 𝑝𝑝𝐼𝐼→𝐽𝐽(∆𝑡𝑡) is the transition probability 

for electrons moving from cell 𝐼𝐼 to cell 𝐽𝐽 in the time interval ∆𝑡𝑡 and it is calculated as the ratio 

between the number 𝑁𝑁𝐼𝐼→𝐽𝐽 of electrons moving from cell 𝐼𝐼 to cell 𝐽𝐽 and the total number of electrons 

inserted in cell 𝐼𝐼 at time 𝑡𝑡 = 0. Transition probabilities between velocity space cells can be 

conveniently represented in terms of a matrix, also known as Markov matrix, that can be used for 

computations of time evolutions and steady-state solutions. In the third step, a Master Equation 

(ME) which describes the deterministic time evolution of the EVDF, is generated by subsequent 

applications of the Markov matrix to the initial electron distribution. In fact, a ME can be written 

for each velocity space cell as: 

    ∆𝑁𝑁𝐼𝐼(𝑡𝑡) = ∑ 𝑝𝑝𝐽𝐽→𝐼𝐼(∆𝑡𝑡)𝑁𝑁𝐽𝐽(𝑡𝑡) − 𝑁𝑁𝐼𝐼(𝑡𝑡)∑ 𝑝𝑝𝐼𝐼→𝐽𝐽(∆𝑡𝑡)𝐽𝐽𝐽𝐽 .  (5) 

The time evolution of the electron distribution with time step ∆𝑡𝑡 is obtained by an iterative 

application of Eq. (5). As an alternative, the steady-state solution can also be calculated as the 

eigenvector associated to the unitary eigenvalue of the Markov matrix [44]. 

An important consequence of Eq. (5) is that the evolution of the system after ∆𝑡𝑡 is determined only 

by the state of the system at a time 𝑡𝑡 and it is not affected by the previous history. This is known 

as Markov property and allows one to rewrite the linear Boltzmann equation as a simple Markov 

chain consisting of the system of linear equations in Eq. (5) [5354]. This property is typically 

satisfied if  
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𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≪ ∆𝑡𝑡 ≪ 𝜏𝜏𝑆𝑆𝑆𝑆,     (6) 

that is ∆𝑡𝑡 should be much longer than the collision time 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, but typically orders of magnitude 

shorter than the time 𝜏𝜏𝑆𝑆𝑆𝑆 for the distribution function to reach steady-state [47]. In fact, collisions 

are essential for the randomization of the particle velocities and trajectories. Through this 

randomization, electron history is erased and the evolution of the system depends only on the 

current state, not on past states. To summarize, the MCF method has three main advantages. First 

of all, electrons trajectories are followed only for a limited time interval ∆𝑡𝑡, typically orders of 

magnitude shorter than the relaxation time of the distribution. In this way, while the capability of 

reducing computational cost can be matched by more complex variance reduction techniques, 

MCF differs from any other MC solution in the possibility of avoiding the calculation of a 

sometimes huge number of collisions. This introduces a great simplification in the electron 

transport problem in which the time evolution of the electron distribution function is simulated as 

a discrete Markov process described by the transition probabilities. In addition, transition 

probabilities can be determined even in high energy regions. This leads to a significant reduction 

of stochastic fluctuations in the calculation of the electron velocity distribution function, that 

cannot be obtained by conventional MC approaches without simulating a large sample of electrons. 

This aspect is highly beneficial, for example, in the calculation of chemical rate coefficients of 

inelastic processes with a threshold in the energy range of the tail of the distribution. The third 

advantage lies in the fact that MCF does not make any assumption on the type of transport and, in 

particular, it is not limited to small energy variations that are typically assumed in a two-term 

approach.  

Of course, MCF also presents limitations, and these must be taken into account when choosing an 

appropriate method between MCF and traditional alternatives for a specific application. The main 

limitation of MCF is the necessity of constant reduced electric field E/N during time evolution, 

because any recalculation of transition probabilities requires a new MC calculation. Of course, this 

limitation can be solved in some cases, such as for example in periodic variations of E/N or a single 

switch-on or switch-off of the field, but, in cases where variations are fast (that is E/N is changing 

significantly during the EVDF relaxation time), the straightforward MC method could be a 

preferred method. Additionally, the code development and management for MCF is undoubtedly 

more complex than those of alternatives like plain MC and two-term Boltzmann solvers. 
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Therefore, the gain in efficiency and the additional information must be relevant in the considered 

application, to compensate for this cost. 

In perspective, MCF can be integrated in codes describing chemical kinetics, such as global 

models. In this framework, recalculations of transition probabilities are necessary if the gas 

composition is changing in the time scales under examination. 

 

3. Code implementation 

An MCF implementation was carried out together with a criterion for the calculation of the time 

step which was not present in the original paper by Schaefer and Hui [44]. The code is written in 

Fortran 95/2003 with the use of modern features like derived data types and modules. The core of 

the code consists of three parts: a discretization module to partition the velocity space by means of 

a mesh; a Monte Carlo module to calculate transition probabilities; a Markov chain module to 

solve the discretized transport equation (Eq. (5)). 

Discretization module 

The choice of a mesh in velocity space is fundamental in MCF for defining the discretized transport 

equation (Eq. (5)). By means of the mesh, the electron distribution function is rewritten as a 

discrete set of states, each representing the number of electrons in each cell. Moreover, transition 

probabilities between velocity space cells can be calculated. For simplicity, here equally spaced 

cells are considered, each having size ∆𝒗𝒗 in the 𝒗𝒗-direction. However, the use of adaptive mesh 

refinements and/or different discretization schemes may have advantages for studies of electron 

transport at high E/N and for a possible future extension of the present method to the configuration 

space. In practice, a one dimensional grid in energy (𝜀𝜀) is sufficient if the only interest is the 

computation of the EEDF, neglecting angular dependencies of the distribution function. In the 

more general case of axial symmetry around the direction of the electric field, a 2D grid in 

(𝜀𝜀, cos 𝜃𝜃) can be considered. A given number of electrons at time 𝑡𝑡 = 0 is inserted in each cell. 

This is an important feature of MCF: transition probabilities can be calculated even between high 

energy cells by inserting electrons in the whole velocity space. Typically, in the simulations 

presented here, 1000 velocity space cells are used, with a uniform distribution of 104 or 105 

electrons per cell. This leads to the calculation of 1000×1000 conditional transition probabilities 

between cells, that are computed with the Monte Carlo module described in the next paragraph. 
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Monte Carlo module 

The aim of this module is the calculation of conditional transition probabilities of electrons moving 

in velocity space cells (Eq. (4)). Each electron, initially located in a specific velocity space cell, 

moves under the effect of the electric field and undergoes collisions with the background gas. This 

motion is described by MC simulations. However, as opposed to conventional MC approaches, 

the stochastic part is limited to a time step ∆𝑡𝑡 [44]. After ∆𝑡𝑡, the time evolution is calculated 

deterministically by a Markov chain. As previously stated, this time interval is usually orders of 

magnitude lower than the MC steady-state time (Eq. (6)). 

In the MC module, the modified time step technique is implemented as propagation method [34, 

55]. Binary collisions between electrons and neutrals are simulated as Poisson stochastic 

processes, where the time between two successive collisions is computed using the null collision 

method introduced by Skullerud [52]. A Fortran translation of the 64-bit version of the Mersenne 

Twister pseudorandom number generator is used [56-58].Explicit effects of non-conservative 

collision processes are taken into account. In particular, in case of ionization collisions, formation 

of secondary electrons is included until reaching a given maximum number of particles. In that 

case, a random electron is removed from a dynamic list of simulated particles. This method has 

been proposed and tested in previous works, such as [62]. 

Transition probabilities are stored in a matrix, where row indexes represent initial states of 

electrons inserted in velocity space at time 𝑡𝑡 = 0 and column indexes represent final states 

calculated after a time ∆𝑡𝑡. If the number of electrons is conserved, the sum of elements in each 

row of the matrix is equal to 1. In this specific case, a Markov matrix is obtained which has always 

an eigenvalue equal to 1, whose eigenvector represents the stationary solution of the problem. The 

Markov matrix contains transition probabilities calculated considering the contribution of each 

electron initially placed in velocity space. For this reason, it is clear that this module is the most 

computationally expensive part of the MCF code. However, the real power of the method is the 

possibility of storing transition probabilities and using a deterministic approach to calculate time 

evolution and, eventually, a steady-state solution. This is obtained by means of the Markov chain 

module. 

Markov chain module 
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The use of a grid in velocity space allows us to rewrite the transport problem of Eq. (1) as a system 

of linear equations used to calculate the discretized velocity distribution function. Calculations of 

steady-state distributions are performed in this module with an eigenvalue method using the 

DGEEV subroutine of the LAPACK 3.8.0 library [59]. The typical computational time of this 

routine spans from milliseconds for a 102×102 matrix to a few seconds for a 103×103 matrix, with 

the Fortran compiler Intel(R) Xeon(R) CPU E5-2637 v3 @ 2.50 GHz. Alternatively, the time 

evolution could be obtained by iteratively solving the system of equations in Eq. (5) with the use 

of a sparse matrix solver (e.g. [60]). 

A schematic of the MCF implementation is shown in Fig. 1. The simulation is initiated by defining 

physical parameters, that is cross sections, gas composition and reduced electric field E/N. In 

addition, numerical parameters are defined, that is energy and angular bin size (∆𝜀𝜀 and ∆(cos𝜃𝜃) 

respectively), initial number of electrons in each cell (𝑛𝑛𝑐𝑐) and maximum energy range (𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚). The 

discretization module takes care of the definition of the mesh and coordinates of each cell that are 

important for the subsequent computation of the Markov matrix. The modified time step technique 

is used in the MC for the simulation of the motion of each electron for a time ∆𝑡𝑡. Criteria for the 

calculation of ∆𝑡𝑡 are illustrated in detail in the next section. This calculation is done adaptively 

within the current code implementation, depending on simulation conditions. Within the MC 

module, the Markov matrix is computed and stored. This matrix is then used in the iterative 

application of the Markov chain to obtain steady-state or time-dependent distribution functions. 
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Fig. 1. MCF schematic including input/output and the different modules involved in the calculations. See 

text for a detailed description of modules and functionalities. 

 

4. Results 

4.1 Optimization of numerical parameters 

A fundamental advantage of MCF is the possibility to obtain fast and accurate calculations of 

transition probabilities that can be used iteratively in the Markov chain. These last depend on the 

choice of the MC time step (∆𝑡𝑡), therefore it is important to study the effect of ∆t on the distribution 

of transition probabilities in velocity space and to identify a general criterion for the choice of the 

optimal value of ∆𝑡𝑡. 

In order to address this problem, simulations were initially performed for the case of an ideal 

atomic gas with mass 𝐴𝐴 = 4 amu. Isotropic elastic scattering is assumed with a constant elastic 

momentum transfer cross section equal to 2 × 10−20 m2. A reduced electric field of 2 Td is applied 

along the �̂�𝑧-direction. With these assumptions, the Druyvesteyn distribution is obtained at steady-

state. In terms of numerical parameters, a one dimensional grid in energy with 100 equally spaced 
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bins of size 0.3 eV is considered. This leads to a 102×102 transition probabilities matrix. A uniform 

initial distribution of 104 electrons per bin is assumed, for a total of 106 electrons in the whole 

domain. The choice of those numerical parameters is based on the requirement to obtain a relative 

error for the average properties of the distribution function (i.e. mean energy and rate coefficient) 

with respect to the analytical solution that does not exceed 10-3. 

In Fig. 2, the distribution of transition probabilities in the Markov matrix with different time steps 

is shown. Starting from a diagonal matrix at time 𝑡𝑡 = 0, electrons ‘jump’ between energy space 

cells within the time step ∆𝑡𝑡. This temporal evolution spreads the initial distribution of transition 

probabilities to the adjacent cells. In Fig. 2(a), it is shown that for ∆𝑡𝑡 = 10−7s, electrons have time 

to perform only a few collisions, therefore they move towards adjacent cells only. This preserves 

an overall diagonal-banded structure. When the time step is increased to ∆𝑡𝑡 = 10−6 s, electrons 

undergo more collisions, causing a diffusion of transition probabilities towards lower energies that 

are represented by the first few columns of the matrix in Fig. 2(b). The effect of this collisional 

diffusion is enhanced for longer values of ∆𝑡𝑡. In fact, at ∆𝑡𝑡 = 10−5s (Fig. 2(c)), all transition 

probabilities are located in the first few columns of the matrix. This leads to the conclusion that 

higher values of time steps lead to a poor estimation of transition probabilities between high energy 

cells. A discussion about the optimal value of ∆𝑡𝑡 and the average number of collisions needed for 

an accurate estimation of transition probabilities is presented in the next subsection, together with 

a criterion for the choice of an optimal MC time step. 
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Fig. 2. Transition probabilities in the Markov matrix for three different values of time step ∆𝑡𝑡 ((a) 10−7 s, 

(b) 10−6 s and (c) 10−5 s) for isotropic elastic scattering at 2 Td and a constant cross section of 

2 × 10−20m2, an energy bin size of 0.3 eV and 100 energy bins. 

In addition, in Fig. 3, it is shown that the choice of ∆𝑡𝑡 has an impact on the calculation of the 

EEDF. In fact, it can be noted how, in the tail of the distribution, accuracy decreases and stochastic 

fluctuations increase with time step. In this case, the optimal value of ∆𝑡𝑡 is estimated to be around 

10−7s (with an accuracy for the distribution that spans over 15 orders of magnitude), whereas an 

increase of the optimal value by one or two orders of magnitude leads to EEDFs that are limited 

in the tail estimation by the total number of electrons simulated. 
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Fig. 3. Steady-state EEDFs obtained with MCF for different values of time step. Same conditions as Fig. 

2. The analytical Druyvesteyn distribution is also shown (green dots). 

In summary, the aim of MCF is to reduce the number of simulated collisions by choosing a value 

of ∆𝑡𝑡 low enough to obtain accurate transition probabilities even between high energy cells. 

However, in the next paragraphs, it is shown that ∆𝑡𝑡 cannot be arbitrarily low. In this framework, 

there is an optimal value for ∆𝑡𝑡 that should be estimated with a robust criterion. This is illustrated 

in the next part, where the definition of time step is framed in the more general context of a Markov 

chain. 

Criteria for the choice of the time step 

As previously shown, the distribution of transition probabilities reflects the transport of electrons 

in velocity space. This transport is, in turn, affected by the presence of the external electric field 

and by collisional processes. However, the two contributions have an opposite effect on the overall 

electron motion. While collisions tend to randomize the magnitude and direction of velocity 

vectors, the presence of the electric field tends to create an ordered flow of particles. Such flow 

can give rise to a “memory effect” and alter the transition probabilities calculated at later times. 

This violates the Markovian assumption implicit in the MCF method [54]. However, this effect is 

small provided enough diffusion through collisions takes place within the time step ∆𝑡𝑡. The 

problem with MCF is then to find an optimal value of ∆𝑡𝑡, short enough to allow a reduction of 

computational cost, but at the same time long enough to ensure that a reasonable number of 

collisions occur. 
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In [44], it is suggested that a possible criterion for the optimal ∆𝑡𝑡 is that the velocity component in 

the electric field direction changes at least by an amount corresponding to the width of the cell in 

energy space in that direction. In what follows, this condition is called ‘Criterion 1’ to differentiate 

it from another one introduced later. In order to compute ∆𝑡𝑡 according to Criterion 1, electrons are 

initially placed in the first energy bin and are evolved in time until the following condition is met: 

|𝑣𝑣𝑧𝑧| ≥ �2∆𝜀𝜀 𝑚𝑚,⁄       (7) 

where |𝑣𝑣𝑧𝑧| is the magnitude of the velocity component along the direction of the electric field and 

𝑚𝑚 is electron mass. The average time interval calculated from the contribution of each electron is 

used as time step ∆𝑡𝑡 for the Monte Carlo module. It was found that at least 103 electrons are needed 

to have a significant statistical sample for the average calculation. This is an empirical criterion 

that can be applied in most cases. In fact, such a criterion captures the dynamics well, but not in 

conditions where drift due to the electric field is dominant over diffusion due to collisions. In that 

case, Criterion 1 may lead to values of ∆𝑡𝑡 lower than the typical collision time, thus preventing 

any randomization of the velocity vectors. This is a problem for MCF, since the Markovian 

assumption breaks down. In a drift regime dominated by the presence of electric field, it was found 

that the energy bin size is limited by the following relation: 

∆𝜀𝜀 ≥ 𝑒𝑒 𝐸𝐸 𝑁𝑁⁄
√2𝜎𝜎

,      (8) 

where 𝐸𝐸/𝑁𝑁 is the reduced electric field in V·m2, 𝑒𝑒 is the elementary charge and 𝜎𝜎 is the total 

collisional cross section (in m2) for electrons in the first energy bin. Relation (8) is an empirical 

formula with a straightforward meaning: the energy bin size should be large enough for at least 

one collisional process to occur within the time it takes an electron (on average) to drift towards 

adjacent energy cells. When condition (8) is not fulfilled, the Markovian assumption does not hold, 

since not enough collisions are simulated. In order to avoid the use of a coarse mesh, even at high 

values of E/N, a second criterion is introduced and applied only in cases where relation (8) is not 

valid: this is called Criterion 2. In this new criterion, together with relation (7), it is required that 

each of the 103 sample electrons inserted in the first energy bin undergoes at least a few collisions 

within the time step. It was found that a minimum of 50 collisions performed by each electron is a 

good compromise between accuracy and computational cost. 
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In order to check Criterion 2 and comparing it with Criterion 1, the ideal gas with isotropic elastic 

scattering and 𝜎𝜎 = 2 × 10−20m2, 𝐸𝐸 𝑁𝑁⁄ = 50 Td previously examined, was modeled again. In this 

case, condition (8) is verified by using an energy bin size larger or equal than 1.8 eV. For ∆𝜀𝜀 =

1.8 eV, Criterion 1 holds and a value of ∆𝑡𝑡 = 1.4 × 10−7s is obtained. Results with those 

numerical parameters, were in excellent agreement with the theoretical Druyvesteyn distribution 

(not shown). On the other hand, for ∆𝜀𝜀 = 1.0 eV, condition (8) is not fulfilled, thus Criterion 2 is 

more appropriate than Criterion 1 to describe the system under investigation. A value of ∆𝑡𝑡 =

6.5 × 10−7s is calculated with Criterion 2, whereas a value of ∆𝑡𝑡 = 1.1 × 10−7 is derived from 

Criterion 1. As expected, in this case, the EEDF calculated with Criterion 1 deviates from the 

analytical solution, instead the calculation with Criterion 2 gives a distribution in agreement with 

the analytical solution in the whole energy range (Fig. 4(a)). Deviations from the analytical 

solution can be better evaluated by estimating the percent error of MCF results with respect to the 

Druyvesteyn distribution. This is calculated as 

∆𝑓𝑓0(𝜀𝜀) 𝑓𝑓0,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.(𝜀𝜀) = �𝑓𝑓0(𝜀𝜀) − 𝑓𝑓0,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.(𝜀𝜀)� 𝑓𝑓0,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.(𝜀𝜀)�� , where 𝑓𝑓0 is the EEDF calculated from 

MCF and 𝑓𝑓0,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. is the analytical Druyvesteyn distribution, and it is shown in Fig. 4(b). A 

maximum energy of 400 eV was considered, where the distribution function reaches values below 

10-7 eV-3/2. It is evident that Criterion 1 gives rise to a systematic deviation from the analytical 

distribution. Moreover, even if with a small statistical noise in the tail, Criterion 2 outperforms the 

first one by keeping the relative error within 3% in the whole energy range. 



18 
 

 

Fig. 4. (a) EEDFs calculated with MCF for a reduced electric field of 50 Td, elastic momentum transfer 

cross section 𝜎𝜎 = 2 × 10−20 m2 and ∆𝜀𝜀 = 1 eV. Criteria 1 (black solid line) and 2 (red solid line) are used 

for time step calculations. The analytical Druyvesteyn distribution (green dashed line) is also shown. (b) 

Percent error for MCF calculations with Criterion 1 and 2, with respect to the analytical Druyvesteyn 

distribution. 

 

The algorithm for the adaptive estimation of ∆𝑡𝑡 is a good compromise between computational 

efficiency and accuracy even in arbitrary complex chemistries, as it is shown in the next sections. 

More generally, this empirical criterion could be improved to make it applicable even to non-

equally spaced meshes or with a more general consideration of energy and momentum relaxation 

frequencies [53]. The procedure is typically very fast (around milliseconds of CPU time) and 

performed just once, before the MC module is executed. 

 

4.2 Code benchmarking 
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Legendre polynomial coefficients 

MCF calculations of Legendre polynomial coefficients were compared with results from the two-

term solver BOLSIG+ [10] and the multi-term MultiBolt [31], with ten terms in the expansion. 

Simulations were performed in argon. Electron impact cross sections from the Biagi database 

(from MagBoltz code version 8.9 and higher) of LXCat [61] were used. Collisions include: elastic 

momentum transfer, ionization and 44 excitations by electron impact. The external reduced electric 

field along �̂�𝑧-direction ranges from 50 to 1500 Td. Isotropic inelastic scattering is considered. 

Elastic scattering is also treated isotropically with the use of the elastic momentum transfer cross 

section. After an ionization event, equal energy sharing between primary and secondary electrons 

is enforced. However, it should be taken into account that, for high electric fields, anisotropic 

scattering of elastic and inelastic scattering, as well as different energy sharing models for 

ionization should be considered. An example is proposed in [45] and [63] for treatment of 

anisotropic elastic scattering or in [64] where doubly differential cross sections are presented for 

the description of energy sharing in ionization events. Those techniques are implemented in the 

MCF code, but not in the current versions of the other two solvers used for benchmarking. For this 

reason, those treatments were not considered in MCF calculations presented here. After the 

calculation of transition probabilities with a short MC simulation, steady-state distribution 

functions are calculated with the eigenvalue method previously mentioned. MCF numerical 

parameters are reported in Table 1, where an initial uniform distribution of 104 electrons per cell 

is assumed. The MC time step ∆𝑡𝑡 is calculated internally with the criteria illustrated in Section 4.1. 

Moreover, the CPU time of MCF simulations, reported in the last column, will be discussed later 

in this section. 

 

Table 1. Numerical parameters and CPU time of MCF simulations for different reduced electric fields. 

E/N (Td) 𝜺𝜺𝒎𝒎𝒂𝒂𝒎𝒎 (eV) 𝒏𝒏𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ∆𝜺𝜺 (eV) 𝒏𝒏𝒄𝒄 CPU time (s) 

50 30.0 50 1.0 104 96.5 

100 50.0 50 1.0 104 133.2 

200 100.0 50 1.0 104 361.2 

500 200.0 50 1.0 104 533.4 
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1500 500.0 50 1.0 104 636.9 

 

In BOLSIG+ the default numerical parameters (precision: 10-10, convergence: 10-5 and number of 

iterations: 2000) are used with equal energy sharing and temporal growth rate in the electron 

production and 100 energy intervals. Self-collisions of electrons (i.e. electron-electron collisions) 

are neglected in the present treatment, in order to analyze the linear Boltzmann problem. MultiBolt 

was run with a ten-term expansion in Legendre polynomials in hydrodynamic regime (see [31]). 

Numerical parameters are: Energy points: 1000, number of maximum iterations: 1000, 

convergence error in mean energy: 5 × 10−6. In all simulations, the thermal motion of the 

background gas is neglected (i.e. zero temperature background). This is a reasonable assumption, 

due to the large difference between electron and heavy particle mass. However, the addition of this 

effect may have an impact at values of the reduced electric fields so low that the mean energy 

compares with thermal energy of the neutral gas, mainly due to the electron-neutral energy transfer 

involved in elastic collisions. 

The first three Legendre polynomial coefficients (𝑓𝑓0, 𝑓𝑓1 and 𝑓𝑓2) were considered. Because of the 

symmetry of the system, only these coefficients are used in the calculation of flux transport 

parameters like reduced mobility and components of the diffusion tensor [40]. Results for lower 

values of E/N (between 1 and 50 Td) were in excellent agreement with solutions of two-term and 

multi-term solvers (not shown), since the two-term approximation does not break down in such 

conditions. 

In Fig. 5, results for the zeroth order Legendre polynomial coefficient (𝑓𝑓0) are shown. As 

previously mentioned, this is the isotropic component or EEDF. For reduced electric fields greater 

than 200 Td, deviations from two-term calculations by BOLSIG+ can be observed. In fact, in those 

conditions, the small anisotropy approximation breaks down and the motion of electrons is 

strongly driven by the externally applied electric field. The presence of a strong electric field, in 

fact, has a double effect: it increases the contribution of inelastic collisions and sets a preferential 

direction in the motion of the electrons. Therefore, the small anisotropy assumption implicit in the 

two-term description is no longer valid and calculations with a multi-term solver or MC or MCF 

are necessary. 
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Fig. 5. Zeroth order Legendre polynomial coefficients calculated with MCF, BOLSIG+ (2-term solver) and 

MultiBolt (10-term solver) for argon at different constant reduced electric fields. 

A comparison of the first order (𝑓𝑓1) and second order (𝑓𝑓2) Legendre polynomial coefficients is 

shown in Figs. 6 and 7. Analogously to the previous case, deviations from BOLSIG+ can be 

observed in 𝑓𝑓1, due to the dependence of 𝑓𝑓1 on the isotropic component (𝑓𝑓0) in the two-term 

formulation [65]. This implies that, in a two-term solver, approximations in the calculation of 𝑓𝑓0 

propagate into the calculation of 𝑓𝑓1. It is worth noting that, by increasing the reduced electric field 

to 1500 Td, the profile of 𝑓𝑓1 has a maximum around 15 eV and decreases with decreasing energy 

in the low energy region. This effect is due to the equal energy sharing assumed in ionization 

collisions. Different energy sharing models may result in different profiles more peaked at low 

energy. Moreover, an effect on the tail of the distribution is expected at high values for the reduced 

electric field when choosing a different energy partition model in ionization collisions [66]. MCF 

calculations of 𝑓𝑓2 can only be compared with results of MultiBolt, since this coefficient is not 

considered in the two-term description. The agreement of MCF with MultiBolt results is very good 

for 𝑓𝑓0, but not for 𝑓𝑓1 and 𝑓𝑓2 at low energies, because of the different energy resolution assumed in 

the models. This problem can be overcome by decreasing the energy bin size used in MultiBolt at 

the cost of computational time. In this way, excellent agreement between MCF and MultiBolt 

results even in low energy region can be obtained (not shown). 
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Fig. 6. First order Legendre polynomial coefficients calculated with MCF, BOLSIG+ (2-term solver) and 

MultiBolt (10-term solver) for argon at different constant reduced electric fields. 

 

Fig. 7. Second order Legendre polynomial coefficients calculated with MCF and MultiBolt (10-term solver) 

for argon at different constant reduced electric fields. 

The CPU time of MCF simulations (reported in Table 1) is determined mostly by the contribution 

of the MC and Markov chain modules. In the simulations, it was found that a number of 104 

electrons per cell is a good compromise between accuracy and computational cost. Moreover, the 

eigenvalue solver of the LAPACK library used in the code becomes more computationally 

expensive by increasing the reduced electric field, due to the corresponding increase of the 

dimension of the Markov matrix. This is expected, since the solver makes no use of sparse matrices 

routines. Future improvements may involve a parallelization of the MC module and the use of a 

sparse matrix solver (e.g. ARPACK [67]). In this way, the CPU time could be decreased. 
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Furthermore, even though at this stage calculations with the other two solvers are much faster 

(within about 1 s with BOLSIG+ and about 30 s with MultiBolt), MCF provides an important 

reduction of CPU time when compared with MC simulations. This is shown later in this section 

for the case of time dependent calculations of the EEDF. 

For completeness, a synoptic view of results for the first four Legendre polynomial coefficients is 

presented in Fig. 8 for a reduced electric field of 150 Td. MCF calculations are performed with 

105 electrons per cell, energy bin size 0.5 eV, 100 bins in energy and 50 bins in cos𝜃𝜃. As mentioned 

before, deviations of results of BOLSIG+ in the isotropic and first anisotropic component of the 

distribution function show that higher order Legendre polynomial coefficients have an impact in 

regimes of strong anisotropy driven by the presence of the electric field. Furthermore, results for 

f2 and f3 show a good agreement between MCF and MultiBolt that is based on an expansion beyond 

the first harmonics. However, as opposed to a multi-term code, the MCF approach can be easily 

improved from the numerical point of view by exploiting straightforward parallel programming 

techniques and moreover, from the physical description point of view, it can be used to carry out 

studies of anisotropic effects on the distribution not feasible with deterministic solutions of the 

Boltzmann equation. In addition, the real power of MCF can be exploited when studying molecular 

gases, where an accurate description of electron kinetics beyond a two-term expansion is expected 

to be important for the calculation of chemical rate coefficients and transport parameters [28] or 

in cases where solutions are not well represented by an expansion in Legendre polynomials [68]. 

 

Fig. 8. First four Legendre polynomial expansion coefficients calculated in argon at 150 Td. MCF 

calculations are compared with BOLSIG+ (2-term solver) and MultiBolt (10-term solver) results. Note that 
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f2 and f3 can only be obtained from MCF or a multi-term expansion. Results for f1, f2 and f3 are shifted 

downwards for readability. 

 

Effect of superelastic collisions  

Superelastic collisions, that is collisions between electrons and a molecule/atom in an excited state 

leading to de-excitation with electrons gaining the energy lost in the transitions between excitation 

states, can affect electrons description depending on the applied reduced electric field and the 

number density of excited species. Since, at the moment, MCF is not coupled with a system of 

particle balance equations for the calculation of the population of excited states, the fraction of the 

number density of atoms in excited state and ground state 𝑁𝑁𝑚𝑚 𝑁𝑁0⁄  is used as a parameter and 

assumed as time independent. For simplicity, only superelastic collisions with the 3P2 metastable 

state (with an excitation energy of 11.55 eV) leading to a de-excitation to the ground state are 

considered. The cross section for this process is derived from the principle of micro-reversibility 

with the Klein-Rosseland formula [47], using the corresponding electronic excitation cross section. 

Cross sections for other electron impact scattering processes are the same as in the previous case. 

EEDFs calculated with MCF and BOLSIG+ are compared in Fig. 9 at 10 Td, for different number 

densities of atoms in the metastable excited state. In these conditions, BOLSIG+ results are 

assumed to be accurate for the description of chemistry in an atomic system. Moreover, a 

benchmarking with MultiBolt is not possible for this case, since the latter does not include a 

treatment of superelastic collisions. In MCF, 105 electrons were initially placed in each cell. Only 

a discretization in energy was considered with 100 energy bins with size 0.3 eV. BOLSIG+ 

simulations were run with default numerical parameters (precision: 10-10, convergence: 10-5, 

number of iterations: 2000 and 100 energy cells); Superelastic collision is enabled in the input file 

and number densities of atoms in the 3P2 and ground state are specified as input parameters. 

Excellent agreement between results from the two codes is obtained when superelastic collisions 

are neglected (i.e. 𝑁𝑁𝑚𝑚 𝑁𝑁0⁄ = 0 in the figure) and included. The increase of the number density of 

atoms in the 3P2 state affects the shape of the EEDF by enhancing the tail of the distribution. In 

this case, it was found that at least 105 electrons per cell are necessary in MCF simulations in order 

to properly describe the shape of the EEDF within 8 orders of magnitude. This is due to the large 

difference between the number of elastic and superelastic collisions electrons undergo, that can 



25 
 

reach several orders of magnitude in the energy range considered. Future improvements may 

include variance reduction techniques for the treatment of superelastic collisions, that could allow 

one to reduce the total number of simulated electrons. 

 

Fig. 9. EEDFs calculated in argon at 10 Td for different ratios of number densities of atoms in the 3P2 and 

in the ground state. MCF results (dashed line) are benchmarked against BOLSIG+ calculations (solid line). 

 

Electron velocity distribution function 

In addition to Legendre polynomials expansion coefficients, MCF allows one to calculate full 

electron velocity distribution functions in (2). Given the symmetry of the system under 

examination, a two-dimensional velocity space with axial and radial velocity components with 

respect to the direction of the electric field was considered. An example of EVDF at 500 Td is 

shown in Fig. 10. Results have been calculated for 104 electrons distributed within an energy grid 

of 500 bins with size 1.0 eV and 50 angular bins. Results were smoothed out with the Dgrid 

function of gnuplot [69] in a grid of 50 rows and 50 columns corresponding to the radial and axial 

component respectively. In the corresponding contour plot in Fig. 11, it can be observed that the 

distribution is slightly asymmetric with a peak shifted in the direction opposite to the electric field. 

This effect is enhanced when increasing the reduced electric field (not shown), that provides a net 

drift of electrons. Drift and diffusion in velocity space can be inferred from this description, 

together with isotropic and anisotropic components of the Legendre expansion. 
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Fig. 10. Electron velocity distribution function as a function of axial and radial velocity components. Argon 

is used as background gas at a constant reduced electric field of 500 Td. 

 

Fig. 11. Electron velocity distribution function calculated with MCF in argon at 500 Td, as a function of 

axial and radial velocity components (same conditions as Fig. 10). 

 

Time evolution 

Results shown so far were related to steady-state solutions, however MCF is intrinsically time-

dependent. As opposed to conventional MC simulations, where the time evolution is simulated 
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with a succession of several collisions for several physical times until steady-state is reached, in 

MCF simulations the EEDF can be evaluated with a time step ∆𝑡𝑡 by the use of a Markov chain. In 

this way, transition probabilities are stored in the Markov matrix and iteratively applied to the 

initial distribution of electrons. A comparison between a MC and MCF results is shown in Fig. 12, 

for argon and a constant reduced electric field of 5 Td. In particular, it is shown how an initial 

distribution of electrons, placed in the first energy bin at 𝑡𝑡 = 0 s, evolves in time until it reaches 

steady-state. In conventional MC simulations, 5 × 106 electrons were considered and, in this case, 

the accuracy of the EEDF is strongly affected by stochastic fluctuations below 10-4 eV-3/2. This 

problem is overcome by MCF simulations with an initial distribution of 104 electrons per bin 

placed in 150 energy bins of size 0.1 eV for the calculation of transition probabilities. A time step 

∆𝑡𝑡 = 0.037 μs is used in the simulation, evaluated using criteria discussed in Section 2. Once 

transition probabilities are calculated and stored, the EEDF time evolution can be calculated 

deterministically with a time step ∆𝑡𝑡. In particular, the electron distribution is affected mainly by 

the contribution of the electric field and elastic collisions at 0.07 μs, that is around 2∆𝑡𝑡. The EEDF 

is further populated at high energies as time elapses, until reaching steady-state, at around 18 μs. 

This corresponds to approximatively 500 times ∆𝑡𝑡. Since ∆𝑡𝑡 is at least 2 orders of magnitude lower 

that the steady-state time, MCF is particularly effective in this case in reducing the number of 

simulated collisions with respect to a conventional MC. This reduction of simulated collisions is 

reflected in a direct decrease of CPU time, as reported in Fig. 13. While higher CPU times are 

associated with longer evolution times in MC simulations, due to the increasing number of 

collisions that has to be processed, CPU time in MCF simulations is around 30 s for all simulated 

physical times. This is due to the fact that transition probabilities are calculated just once and MC 

simulations are performed for the very short time ∆𝑡𝑡.  
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Fig. 12. EEDF evolution in argon at 5 Td from an initial distribution of electrons in the first energy bin. A 

time step of 0.037 μs is used in MCF simulations for the calculation of transition probabilities. 

 

 

Fig. 13. MC and MCF CPU times for EEDFs calculation in argon for different evolution times and a 

constant reduced electric field of 5 Td (same conditions as Fig. 12). 

 

5. Conclusions 

In this work, the MCF method was reconsidered by means of an implementation carried out by the 

present authors. This reconsideration is in the perspective of a possible future integration of the 

method in more sophisticated chemical models describing plasma kinetics. In fact, nowadays those 

models require greater accuracy in the calculation of electron transport properties and chemical 
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rate coefficients, that are essential for a complete characterization of the discharge. In some cases, 

for example for applications to molecular gases or for high anisotropies in phase space, this 

requirement is not met by the widely used two-term approximation. At the same time, conventional 

MC approaches have a notoriously high computational cost. MCF is based on a straightforward 

idea, easy to implement, that keeps the essence of an MC simulation, but reduces drastically the 

number of simulated collisions. The price to pay is the assumption of a Markov property for the 

calculation of transition probabilities, that are strongly dependent on the choice of the MC time 

step. For this reason, it was shown that the method is more suitable for applications to complex 

chemistries with an improvement of the criterion for the calculation of the MC time step present 

in the original paper by Schaefer and Hui [44]. Results of the current implementation were also 

benchmarked against results from codes employing the two-term and multi-term approach. In 

particular, MCF provides more details than a two- and multi-term approach with the calculation 

of full electron velocity distribution functions; it is generally faster than a conventional MC and 

MCF results are in excellent agreement with results from a multi-term solver. Calculations were 

carried out in regimes of low and high reduced electric fields. In the latter case, ionization becomes 

important and would require, in principle, a more refined treatment than the one used here. In 

addition, representations of the Markov matrix were shown in order to give insight into the MCF 

method. In perspective, the current implementation of MCF is suitable for integration with 

complex chemistry modules that describe the time evolution of the kinetics of excited species. This 

is the focus of future works. Furthermore, the MCF method can be embedded in fluid and hybrid 

models for the calculation of electron rate coefficients and transport parameters. In this respect, it 

is worth to note that current approaches for fluid models solve the Boltzmann equation with the 

local field approximation. Non-local effects may be important in the case of a discharge confined 

in space where electrons diffuse from regions with different electric field. With future 

developments and extension of the method, MCF can become a powerful alternative to widely 

used MC codes to describe non-local effects in electron kinetics. 
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