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Zusammenfassung 

Polyphosphat wurde in den letzten Jahren zunehmend als wichtiger Bestandteil des 

mikrobiellen Phosphorkreislaufs wahrgenommen, insbesondere bei wechselnden 

Redoxbedingungen. Dies beruht unter anderem auf seinen Phosphor- und energiereichen 

Eigenschaften, welche in verschiedenen Umgebungen und für Mikroorganismen von hoher 

Relevanz sind. Dennoch gibt es bis jetzt eine vergleichsweise geringe Anzahl an 

wissenschaftlichen Studien, welche  sich auf die Rolle von polyP konzentrieren, überwiegend 

begründet in methodischen Schwierigkeiten. Diese Arbeit hat zum Ziel 1.) durch die 

Quantifizierung von polyP Einblicke in die saisonalen und räumlichen Verteilungsmuster in 

Küstengebieten zu erhalten, 2.) den möglichen Beitrag von filamentösen Schwefelbakterien 

zu Phosphatflüssen aus Sedimenten vor Peru zu bestimmen und 3.) eine neue Methode zu 

etablieren, welche die Visualisierung der Aktivität polyP relevanter Enzyme ermöglicht.   

Während unregelmäßiger Probenintervalle im Laufe eines Jahres ergaben sich 

unterschiedliche Verteilungsmuster der polyP Konzentrationen, welche nicht mit 

unterseeischen Grundwasseraustritten des angrenzenden Küstengebietes in Verbindung 

gebracht werden konnte. So konnte lediglich eine geringe Relevanz von polyP auf den 

lokalen Phosphorkreislauf festgestellt werden. Dennoch konnte in allen Proben zu jeder 

Jahreszeit polyP nachgewiesen werden. Dies demonstriert das Vorhandensein eines 

permanenten zellulären polyP Pools, welcher möglicherweise der Aufrechterhaltung 

grundlegender Stoffwechselprozesse dient. Gleichbleibende polyP Konzentrationen wurden 

auch in filamentösen Schwefelbakterien aus Sedimenten vor Peru in unterschiedlichen Tiefen 

nachgewiesen. Es konnte gezeigt werden, dass schmale Filamente die der Gattung Beggiatoa 

zugeordnet wurden, einzelne große polyP Einschlüsse pro Zelle enthielten, die einen 

Durchmesser von bis zu 3 µm erreichten und die größten bisher in Umweltproben gefundenen 

polyP Einschlüsse darstellen. Im Gegensatz dazu enthielten Filamente mit breiterem 

Durchmesser mehrere kleine polyP Einschlüsse, was auf unterschiedliche PolyP 

Akkumulationsmechanismen zwischen verschiedenen Arten innerhalb der Gattung 

Beggiatoa. hindeutet. Das Vorhandensein von PolyP in Beggiatoa spp. unterstützt die 

Möglichkeit eines biologisch induzierten Beitrags zu ehemals beschriebenen 

Phosphatflüssen aus Sedimenten vor Peru. Die Aktivität des intrazellulären polyP Pool 

konnte durch eine neue Methode gezeigt werden, welche mit dem Modellorganismus 

Beggiatoa sp. 35Flor etabliert wurde. Diese basiert auf dem enzymatisch vermittelten 

Austausch von Sauerstoff in Wasser und Sauerstoff in Phosphat nach Zugabe von 18O 



Zusammenfassung  

 

IV 

 

markiertem Wasser. Starke 18O Anreicherungen wurden sowohl nach oxischen und 

anoxischen, sowie sulfidarmen und sulfidreichen Inkubationsbedingungen nachgewiesen. 

Die grundlegende metabolische Aktivität war bei anoxischen und sulfidreichen Bedinungen 

zugunsten der Aktivität von polyP assoziierten Enzymen eingeschränkt, was die zentrale 

Rolle von polyP bei ungünstigen Umweltbedingungen unterstreicht. Darüber hinaus deutet 

die konstante Aktivität polyP assoziierter Enzyme während günstigen 

Wachstumsbedingungen auf ein permanentes intrazelluläres Recycling von polyP hin, was 

die weit verbreitete Sichtweise auf polyP als inaktiver Phosphor und Energieträger während 

vorteilhafter Wachstumsbedingungen in Frage stellt.  

 

  



Summary 

 

1 

  

Summary  

Polyphosphate has been increasingly recognized in recent years to represent an important 

component of the microbial phosphorus cycle, especially when oscillating redox conditions 

prevail. This is, among other things, predominantly based in its potential to serve as an 

additional phosphorus source in various environments and as an energy carrier being relevant 

for microorganisms. However, studies focusing on polyP are still lacking, preliminary 

reasoned in methodological difficulties. This thesis aimed to 1.) quantify polyP in coastal 

environments to get insights on its seasonal and spatial distribution patterns, 2.) asses the 

possible contribution of filamentous sulfur bacteria to sedimentary phosphate fluxes reported 

earlier off Peru and 3.) establish a novel method to visualize enzymatic activity of polyP 

related enzymes.  

PolyP concentrations of bottom waters measured in irregular sampling intervals during one 

year revealed highly variable distribution patterns, which could not be linked to potential 

intrusions of submarine groundwater from the adjacent coast. Thus, a minor relevance of 

polyP to the local P budget was determined but polyP was nevertheless present in all samples 

during all times of the year. This demonstrates a permanent background level of polyP 

possibly for the maintenance of basic metabolic processes like synthesis of ATP. A constant 

level of polyP concentrations were also found in filaments attributed to the genus Beggiatoa 

sampled in sediments off Peru. Single large scaled polyP inclusions were determined in cells 

with small filament diameter, which reached up to 3 µm in diameter representing the biggest 

polyP granules found so far in environmental samples. In contrast to this, filaments with 

bigger filament diameter contained several small polyP inclusions, which argues for different 

polyP accumulation mechanisms between different species within the genus Beggiatoa. The 

presence of polyP in Beggiatoa supports the possibility for a biological mediated contribution 

to sedimentary phosphate fluxes off Peru. This intracellular phosphorous pool was shown to 

be active demonstrated by a new method established in laboratory studies with the model 

organisms Beggiatoa sp. 35Flor. The fast exchange between oxygen phosphate and oxygen 

from water was used to label the intracellular enzymatic activity at polyphosphate. Strong 

18O enrichments were found after both oxic and anoxic and low and high sulfide incubation 

conditions. A focus of enzymatic activity at polyP during unfavorable growth conditions at 

the expense of standard metabolic processes was determined underlining the pivotal role of 

polyP during stressful environmental conditions. Furthermore, a constant activity of polyP 
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related enzymes was also determined during favorable growth conditions, which argues for 

a permanent recycling of polyP challenging the widespread view of polyP as an inactive 

phosphorus and energy carrier during non-stressful growth conditions.  
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1 Introduction 

1.1 Microbial phosphorus cycling   

Phosphorus (P), the 13th element described (Emsley, 2001), is one of the most important 

element for life and P molecules are essential functional and structural components of all 

organisms (Paytan & McLaughlin, 2007). They provide cell structure and cell 

compartmentalization through the formation of phospholipids, phosphoesters form the 

backbone of DNA/RNA, P molecules are indispensable for the storage and expression of 

genetic information and adenosine triphosphate (ATP) provides energy through 

phosphoanhydride bonds.  Furthermore, P has many metabolic regulatory functions, for 

example through phosphorylation and dephosphorylation of proteins. P compounds thus play 

an important role for microbial live and are present in a variety of inorganic and organic 

forms in dissolved and particulate pools, which is referred to as the microbial P cycle (Karl, 

2014). The most prominent and typically used P molecule for microbial cells is inorganic 

phosphate (Pi) and its derivates. The basic processes associated with this molecule are 

depicted in Figure 1 (after Blake et al., 2005).   

 

Figure 1: Phosphate cycling in bacteria in aquatic environments. Dissolved Pi can be taken up by free 

diffusion (1) or via membrane bound transport proteins (2a) after enzymatic mediated extracellular 

hydrolysis of organic P compounds (2). Pi in the cytoplasm is subjected to an array of enzymatic 

processes leading to oxygen isotope exchange between water and phosphate (3), before it is 

incorporated into inorganic (e.g. polyphosphate) or organic (e.g. biomass) compounds (4). Metabolic 

processes or cell dead/ lysis lead to the release of intracellular P compounds (5), which can be taken 

up again (Pi, 6) or recycled through extracellular enzymes (Porg, 7). (Figure and content of description 

after Blake et al., 2005). 
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As noted above, P typically occurs in its fully oxidized form and has long been regarded to 

be constrained in respect to biogeochemical redox cycling, when compared to the cycling of 

C, N or S compounds. However, this has changed in recent years since reduced P compounds 

like phosphite and hypophosphite where found to be used by microbes for energy metabolism 

(Schink & Friedrich, 2000; Stone & White, 2012). In addition, less oxidized varieties of P 

compounds such as phosphonate and phosphite have been found to be present in diverse 

environments (Hanrahan et al., 2005; White & Metcalf, 2007) and it is estimated that around 

10% of all dissolved P in the ocean has a lower redox state than Pi (Pasek et al., 2014). 

Altogether, this hints to the presence of a biologically mediated redox cycle, which is further 

assumed to be a common part of the microbial P cycle (Karl, 2014) and highlight the 

necessity of intensified P research. This is also true for polyphosphate (polyP), another 

inorganic molecule with fully oxidized P atoms, which has been regarded as “a largely 

forgotten molecule" (Kornberg et al., 1995), but went to “prominent again in the marine P-

cycle” (Björkman, 2014)    

 

1.2 Polyphosphate  

Inorganic polyphosphates are linear molecules, which consist of tens to hundreds of 

phosphate residues being linked by high energetic phosphoanhydride bonds (Figure 2, 

Yoshida, 1954; Thilo, 1955; Kornberg & Ault-Riché, 1999). 

 

 

Figure 2: Linear polyP with variable length (n). 

 

The molecule was first isolated from yeast more than 130 years ago as cyclic metaphosphoric 

acid (Liebermann, 1888) and first described as volutin granules by Meyer in 1904. It has been 

argued that polyP was present and produced on a large scale in the prebiotic world (Yamagata 
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et al., 1991), where it is assumed to have played a key role in the origin of life (Brown & 

Kornberg, 2004, Achbergova & Nahalka, 2011). This is supported by the presence of polyP 

in all three domains of life and the often highly conserved enzymes being involved in polyP 

cycling (Rao et al., 2009; Zhang et al., 2002). Two of the most important enzymes related to 

polyP metabolism are polyphosphatekinases (PPK) and exopolyphosphatases (PPX) (Kulaev 

& Kulakovskaya, 2000). The formation of polyP is predominantly mediated by the catalytic 

activity of PPK, which cleaves the terminal γ-Pi from nucleotidtriphopshate (NTP) to prolong 

or synthesize new polyP chains (Kornberg et al., 1956; Reaction 1).  

NTP + (polyP)n  ⇌ NDP + (polyP)n+1      [1] 

A differentiation between PPK1 and PPK2, which differ in their substrate preference 

(reaction 1 + 2), was made 2002 by Zhang et al. PPK1 exclusively uses ATP as a phosphate 

donor for synthesis of polyP (reaction 2) being 4 fold faster than the reverse reaction at 37 °C 

(Ishige et al., 2002), which breaks down polyP and thus reducing polyP chain lengths.   

ATP + (polyP)n  ⇌ ADP + (polyP)n+1      [2] 

In addition, utilization of polyP for phosphorylation of nucleoside diphosphate is not specific, 

but favors adenosine diphosphate (ADP) with a 30 fold preference over guanosine 

diphosphate (GDP) (Ishige et al., 2002), followed by uridine diphosphate (UDP) and cytidine 

diphosphate (CDP) (Kuroda & Kornberg, 1997). PPK2 in contrast favors GDP over ADP for 

the breakdown of polyP and can use both ATP and guanosine triphosphate (GTP) for the 

synthesis of polyP (Ishige et al., 2002).  

GTP + (polyP)n  ⇌ GDP + (polyP)n+1      [3] 

The breakdown of polyP with concomitant phosphorylation of GDP to GTP is 75 fold faster 

than the synthesis of polyP from GTP at 37 °C (Ishige et al., 2002) suggesting that PPK2 is 

predominantly involved in polyP degradation, whereas PPK1 is mainly responsible for polyP 

formation. Another enzymes involved in polyP degradation is the hydrolase PPX with 

concomitant release of Pi from the ends of polyP (Akiyama et al., 1993, reaction 4) 

(polyP)n + H2O ⇌ PO4
3- + (polyP)n-1      [4] 

This enzymatic activity is highly processive (Kornberg et al., 1999) and removes one Pi 

residue after another from the ends of the polyP chain. 
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The ubiquitous presence of polyP together with the highly conserved enzymes are linked to 

an array of cellular functions attributed to this molecule. One example is the substitution of 

ATP as a Pi donor for phosphorylation processes (Kornberg, 1995), which has been observed 

in connection of phosphorylation of glucose (Szymona & Ostrowski, 1964) or proteins 

(Skorko, 1989). Furthermore, polyP provides an osmotic advantage compared to dissolved 

Pi, since the negatively charged polyanion is balanced by counter ions like Mg2+, or Ca2+. It 

is also supposed that it functions in molecular signaling and response to stressful condition 

(Kornberg, 1995).  

 

1.3 Polyphosphate habitats  

In addition to the ubiquitous presence and multitude functions of polyP, some organisms 

have the capability to accumulate extraordinary high amounts of Pi and store it as intracellular 

polyP. This uptake occurs through two proposed mechanisms: Luxury uptake and overplus 

response (Karl & Björkman, 2015). The latter mechanism was first observed in Pi starved 

yeast, which accumulated Pi when transferred from P poor to P rich medium and was later 

described as overplus response (Harold, 1964). It is assumed that this phenomenon is a 

common trait of microorganisms in oligotrophic systems, where Pi is readily depleted. This 

is supported by studies in these areas showing high abundances of genes involved in polyP 

metabolism (Temperton et al., 2011), increased polyP formation in Trichodesmium (Orchard 

et al., 2010) and preferred polyP storage resulting in higher polyP quotas compared to bulk 

P in phytoplankton (Martin et al., 2014). In contrast to this, algae and bacteria were also 

found to accumulate polyP with excess Pi available (Solorzano & Strickland, 1968), being 

referred to as “luxury uptake”, which is widely used in waste water treatment plants (e.g. 

McMahon & Read, 2013). Pi removal in these systems is achieved by oscillating between 

oxic and anoxic conditions, which is also an important environmental factor regulating polyP 

formation and degradation. This is well described for filamentous sulfur bacteria within the 

family Beggiatoaceae. One example are bacteria of the genus Thiomargarita sp., which were 

shown to induce hydroxyapatite formation by releasing Pi from intracellular polyP 

degradation (Schulz & Schulz, 2005). The model organism Beggiatoa sp. 35Flor was shown 

to degrade polyP with subsequent release of Pi into the environment (Brock & 

Schulz-Vogt, 2011), which is relevant in anoxic environments with high sulfate reduction 

rates and consequently pronounced sulfide production.  
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A redox sensitive release of Pi from lake sediments was already described several decades 

ago being implemented into a purely chemical model (Einsele 1936; Mortimer, 1941). In this 

model oxidized iron hydroxides, which have high absorption capacities for Pi, prevent the 

release of Pi to the overlaying water column. When these sediments become anoxic, the iron 

hydroxides are reduced and bound Pi is released. This is enhanced in organic rich sediments 

with high rates of sulfide reduction. Produced sulfide readily reduces iron hydroxides, which 

ultimately leads to the formation of iron sulfide (FeS) having a poor absorption capacity for 

P at neutral pH (Roden & Edmonds, 1997; Azzoni et al., 2005). However, the abiotic model 

was often found to not sufficiently explain the observed sedimentary Pi release leading to the 

assumption that microorganisms are directly involved in sedimentary P cycling (Davelaar 

1993; Gächter and Meyer 1993). This was confirmed by several studies (e.g. Hupfer et al., 

1995, Schulz & Schulz, 2005), but research about polyP lacks behind compared to other 

environmentally important compounds.  

 

1.4 Challenges in (poly)P research  

The in general limited amount of studies dealing with polyP in environmental samples is 

mainly associated with methodological difficulties in measuring polyP.  Historically there 

are only limited attempts to measure polyP in seawater (Solorzano & Strickland, 1968), 

which used hydrochloric acid (HCL) to hydrolyze polyP with subsequent measurements of 

Pi. However, the high stability of phosphoanyhdride bonds in polyP often leads to an 

underestimation of polyP. Hydrolysis by enzymatic action can be achieved by using PPX 

with subsequent measurement of Pi (Rao et al., 1998) or PPK for phosphorylation of ADP to 

ATP with Pi from polyP and subsequent ATP hydrolysis by luciferace with concomitant 

generation of light (Ault-Riché et al, 1998). Another technique is phosphorus-31 nucelar 

magnetic resonance (31P-NMR), which has been used in an array of studies (Hupfer et al., 

1995; Sannigrahi & Ingall, 2005; Diaz et al., 2008). This is particularly suited to make 

conclusions about bonding of P atoms in high molecular weight dissolved organic P, in which 

polyP is rarely present (Dhyrmann et al., 2007).  In addition, a high sample volume is 

necessary for these analyses (Diaz et al., 2016) and is disadvantageous in many environments, 

since NMR does not measure polyP in aggregates or when complexed with metals (Kornberg 

et al., 1999). This insensitivity can lead to underestimations of polyP (Diaz & Ingall, 2010, 

Diaz et al., 2016).  
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More regularly used in recent years is the metachromatic effect of polyP when stained with 

a fluorescent dye shifting the emission to a higher wavelength (stokes shift), which is also 

observed in other polyanions (Figure 3, Kornberg, 1995).  

 

Figure 3: PolyP in bacteria stained with DAPI from an environmental sample (A) and in one 

Beggiatoa sp. 35Flor filament (B) discernible as yellow signals.  

4’,6-diamidino-2-phenylindole (DAPI) binds to both DNA and polyP. It was found that the 

emission spectrum is changed from 456 nm to 526 nm (excitation 360 nm) when DAPI is 

bound to polyP, hand in hand with a fluorescent signal being proportional to the concentration 

of polyP (Tijssen et al., 1982). This enables the quantification of high concentrations of 

polyP, because of the overlap between DAPI-DNA and DAPI-polyP emission spectra 

(Aschar-Sobbi et al., 2008). More sensitivity is achieved when DAPI is excited at 415 nm, 

which leads to an emission at 550 nm and thus to a better separation of DAPI-DNA and 

DAPI-PolyP (Aschar-Sobbi et al., 2008). The development of this fluorometric method has 

led to further insights about polyP in the environment and was used in this thesis.   

The methodological challenges in polyP research are accompanied by general difficulties 

regarding P research, which are reasoned in the presence of only one stable P isotope. This 

limits studies being feasible with other elements with various stable isotopes like N or C, 

which are regularly used to track cellular activity and metabolites (Musat et al., 2012). 

Insights into microbial mediated P metabolism in aquatic and terrestrial environments also 

originates from studies using oxygen isotope ratios in Pi (δ
18Op) (Paytan et al., 2002; Davies 

et al., 2014). The different 18O rations in Pi are caused by an enzyme mediated oxygen isotope 

exchange between oxygen-water and oxygen-phosphate. Pyrophosphatase (PPase) is the 

most dominant enzyme producing an equilibrium oxygen isotope effect within minutes and 
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is always involved during the incorporation of Pi into biomass regardless of the metabolic 

pathway (Cohn 1958; Blake et al., 2005). The application of 18O as an indirect tracer for P 

cycling will allow further insights into P metabolism of bacteria in environmental samples.  

 

1.5 Aims of this thesis 

The environmental role of polyP is often unclear, as methodological difficulties hampers 

insights into polyP metabolism. The focus of this PhD thesis was on achieving a better 

understanding of the relevance and occurrence of polyP in aquatic environments and allowing 

insights into its intracellular cycling. Methodological improvements based on the fluorescent 

method using DAPI were applied to quantify the polyP pool in environmental samples, which 

can potentially increase P loads in the environment. This was addressed in work package 

(WP) 1 with samples from the coastal zone of the Baltic Sea and from the pelagic zone at the 

continental shelf off Peru. The sediments present in the latter area were found to release large 

amounts of Pi exceeding P entering the sediment (Lomnitz et al., 2016). It has been 

hypothesized that filamentous sulfur bacteria of the family Beggiatoaceae, which regularly 

inhabit these sediments, might be responsible for this observation by degrading internally 

stored polyP with subsequent release of Pi. However, it has not been shown whether members 

of this family store polyP in this area and, therefore, have the potential to contribute to the 

sedimentary Pi fluxes. This was addressed in WP 2 aiming to study the abundance of 

filaments being responsible for polyP formation and to quantify the amount of polyP being 

stored. In addition, a new approach established in WP 3 was applied for these field samples 

to directly demonstrate polyP metabolism. For this purpose, a nanoSIMS method was 

established with the model organism Beggiatoa sp. 35Flor to allow a better understanding of 

polyP metabolism on a cellular level. It was hypothesized that incubation with 18O-water in 

combination with enzymatic activity leads to an enrichment of 18O in cellular structures, 

which in turn yields detailed insights also in polyP metabolism.     

 

WP 1: Particulate polyP in a coastal area of the Baltic Sea and in the pelagic zone at the 

continental zone off Peru 
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WP 2 Storage of polyP by marine Beggiatoaceae and their potential contribution to 

sedimentary phosphate fluxes 

 

WP 3 Visualization of enzymatically used polyP by establishing a new nanoSIMS 

approach 
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2 Material and Methods 

2.1 Study areas  

2.1.1 Hütelmoor and Baltic Sea 

The Hütelmoor is located in the nature reserve “Heiligensee and Hütelmoor” being a coastal 

fen peat at the south-western coast of the Baltic Sea, northeast from Rostock. It developed 

between 5400 – 3900 years ago in the cause of the littorina sea transgression (Bohne & 

Bohne, 2008). Rising sea- and groundwater levels led to the formation of a coastal peatland, 

which was strongly connected to the Baltic Sea by regular flooding events. The Hütelmoor 

area was later subjected to an array of anthropogenic impacts starting from the 16th century 

(Bohne & Bohne, 2008). The construction of a dyke in 1903, which was rebuild in 1963 

(Miegel et al., 2016), was reasoned in strong erosions of the coast with up to 20 – 35 cm per 

year (Kolp, 1957) and advanced anthropogenic interests. This protected the village 

Markgrafenheide against water intrusions from the Hütelmoor, but permanently separated 

the peatland from the Baltic Sea, which led to a desalinisation of the area (Voigtländer et al., 

1964, Bohne & Bohne, 2008). The maintenance of the coastal protection dune was stopped 

in the year 2000 in course of restoration measures to re-establish pristine conditions in the 

Hütelmoor area, which are characterized by periodical flooding with brackish water from the 

Baltic Sea. In addition, the area was flooded in 2009 and the development of the restoration 

measures have been monitored with foci on changing hydrological properties (Miegel et al., 

2016) and effects on trace house gas emissions (Hahn et al., 2015).  The connection between 

the Hütelmoor area and the Baltic Sea has been studied in the research project “Baltic 

Transcoast” with special emphasis on land-sea interactions like potential effects of submarine 

groundwater discharge (SGD).   

 

2.1.2 Upwelling and oxygen minimum zone off Peru 

One of the largest oxygen minimum zones (OMZs) in the ocean is present in the eastern 

tropical South Pacific Ocean within the Humboldt current upwelling system. Upwelling of 

nutrient rich waters at the Peruvian margin cause high primary production with up to 1.8 – 

3.6 g C m-2 (Strub & Mesías, 1998; Pennington et al., 2006). Together with bacterial 

respiration and the sinking of particulate organic matter in combination with sluggish 

ventilation, oxygen in this area is depleted and an extensive OMZ is formed (Karstensen et 

al., 2008, Kalvelage et al., 2015). The abundance of large sulfur bacteria of the family 
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Beggiatoaceae on the shelf has been repeatedly reported down to 300 m water depths (Arntz 

et al., 1991; Mosch et al., 2012, Sommer et al., 2016).   

 

2.2 Sampling  

2.2.1 Sampling in the Study site of Baltic Trancoast: Hütelmoor and Baltic Sea   

Sampling spots in in the Hütelmoor area and the adjacent Baltic Sea are indicated in Figure 

4. Samples for polyP quantification originated from groundwater in the Hütelmoor and from 

pore- and bottom water from the adjacent coast of the Baltic Sea. Groundwater from two 

wells was sampled in April, September and December 2016. 12 porewater samples for polyP 

quantification were obtained from six stations in summer 2016 and 20 bottom water samples 

were analyzed from 12 stations from the coastal Baltic Sea throughout the year 2016.  

 

Figure 4: The study area of "Baltic Transcoast" with station numbers used for bottom-, ground-, and 

pore-water sampling for polyP quantification. 

Bottom water samples were obtained in April, June, July, October and December from 12 

stations in the coastal area of the Baltic Sea. Sampling was conducted with a Niskin bottle 

water sampler on board of the research boat “Klaashahn”.  Water was obtained as close to 

the seafloor as possible and filled into 1 L bottles, which were cooled until further processing 
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in the lab. Porewater was obtained with mobile “porewater lances” of 1 m length in summer 

2016 from six different stations (A-F, Figure 4) along the coast of the Baltic Sea. Tips of the 

lances had openings of 500 µm diameter. A stable aluminium pipe was inserted into the 

hollow lance and both were pushed into the maximum possible sediment depth. The inner 

tube was removed and porewater was obtained via a syringe attached to the sampling port 

from various depths while moving up. Groundwater samples were obtained from two 

groundwater wells installed in the Hütelmoor (GW1, GW2, Figure 4). Groundwater wells 

were placed either in peat or in sand layers. Sufficient volume for further analysis was only 

obtained from groundwater extracted from sandy sediments. The aged groundwater in the 

well was removed and fresh groundwater was collected and cooled until further processing 

in the lab. All water samples were filtered as soon as possible back in the lab through 0.22 µm 

polycarbonate (PC) filters. Filters with particulate material were transferred to 2 ml 

Eppendorf cups and immediately frozen at -24 °C until further analysis.  

 

2.2.2 Sampling oxygen minimum zon off Peru 

Water and sediment samples from the Peruvian shelf were obtained during the cruise M137 

on the research vessel Meteor in May 2017 during austral fall in collaboration with the 

SFB754 of the Geomar, Kiel. Water samples for polyP quantification in the pelagic zone 

were sampled with Niskin bottles attached to a CTD from two stations with maximum water 

depths of 128 m (12°16.79’S 77°14.98’W) and 244 m (12°23.30’S 77°24.28’W). Water used 

for analyses originated from 10 m, 40 m, 100 m, 242 m (station 244 m total depth) and from 

15 m, 30 m, 45 m, and 120 m (station 128 m total depth). 1L water was filtered in triplicates 

through 0.22 µm PC filter directly after sampling. Filters were transferred to Eppendorf cups 

after filtration and were stored at -24 °C until further processing back in the lab. Sediment 

cores for the analysis of Beggiatoaceae filaments were obtained with a multiple-corer (MUC) 

at 77 m (12°13.50’ S 77°10.79’ W), 200 m (12°08.00’S 77°35.00’W) and 244 m water depth. 

Subcores with 3.4 cm diameter and 30 cm length were immediately subsampled and stored 

at 4 °C for a maximum of 24 h.  

 



2 Material and Methods 

 

14 

 

2.3 Processing of sediments and filament analysis 

2.3.1 Counting/ picking of filaments  

Sediments of the subcores were extruded within 24 h by gently pushing the sediment from 

the bottom end of the core with a matching cone. The top centimetre of the sediment was 

then transferred to a 50 ml centrifuge tube (Falcon) and filtered seawater was added to a final 

volume of 20 ml. The slurry, which contained ~9.08 cm3 sediment, was gently mixed until a 

homogeneous mixture was achieved. Before filaments were picked and counted, 

0.5 ml slurry, which contained ~0.227 cm3 sediment, was pipetted into glass petri dishes 

containing filtered seawater. This suspension was inspected with a binocular and screened 

for filaments. Single filaments were picked with a self-made glass hook and transferred either 

onto glass slides or on PC filters. Filaments were picked and simultaneously counted from at 

least five 0.5 ml slurrys until no further filaments could be identified. The numbers of 

filaments picked from 0.277 cm3 were used to calculate the total number of filaments per cm3 

sediment.   Triplicate filters with each 100 filaments were prepared from the three sampled 

depths for polyP quantification and frozen until analysis back in the lab.   

 

2.3.2 Light-/ fluorescent microscopy 

Filaments transferred on glass slides were immediately inspected with light microscopy to 

determine diameter and length of at least 150 filaments per depth. Filament diameter was 

measured with 400x magnification and filament length was measured with 100x 

magnifications using a calibrated ocular micrometer. Biovolumes of individual filaments and 

of all filaments per cm3 sediment were calculated assuming a cylindrical shape of the 

filaments. Filaments on PC filters were stained for 30 minutes with 3.61 mM DAPI solution 

to allow fluorescent microscopy for qualitative analysis of polyP granules at emission 

wavelength between 505 – 550 nm. 

   

2.3. Polyphosphate quantification 

Quantification of polyP was conducted based on protocols established by Aschar-Sobbi et 

al., 2008 and Martin & van Mooy, 2013 with modified buffer according to Kulakova et al., 

2011. Filters in 2 ml Eppendorf cups were thawed at room temperature and 500 µl TRIS 

buffer (20 mM, pH 7) was added. Filters were positioned at the inner side surface of the cups 
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if they were folded after adding the buffer. PolyP was extracted and brought into solution by 

adding one spatula glass beats (0.1 mm diameter) in combination with vigorous vortexing 

(Disrupter Genie, Scientific Industries) for 3 minutes with 2500 rpm. This was followed by 

a water bath at 100 °C for 5 min before samples were allowed to cool down on ice for 10 min. 

100 µl subsample was transferred into new Eppendorf cups and 5 µl Mastermix composed 

of DNase (Riche Diagnostics Gmbh) and RNase (Life Technologies) was added to each 

sample to purify the extract. Digestion proceeded for 10 min incubation at 37 °C with 

constant mixing at 300 rpm (Eppendorf Thermomixer Compact). Subsequently, 5 µl 

Proteinase K (Amresco, 100 µg per sample) was added and the previous digestion step was 

repeated.  The cups were centrifuged at 10 000 x g (Eppendorf Mini-Spin-Plus) for 3 minutes 

and 100 µl of the supernatant was transferred into a well of a 96 microtiter plate (Omnilab). 

5 µl of a 3.61 mM DAPI solution was pipetted on the side wall of each well followed by the 

addition of 200 µl buffer using a multi-pipette to assure a parallel start of the DAPI-polyP 

binding reaction.  The plate was placed into a plate reader (TECAN infinite 200 PRO) and 

was mixed for 5 min at 452 rpm before the DAPI stained samples were exited at 415 nm and 

fluorescent emission at 550 nm was measured. Standards containing polyP-45 (chain length 

of 45 +- 5 phosphate residues) (Sigma-Aldrich) between 0.1 µM and 1.2 µM ran in parallel 

and were used to calculate absolute concentration of polyP in the original sample. Absolute 

concentrations of polyP were multiplied by 45 (= Pi residues according to producer) to obtain 

PO4
3-- equivalents in polyP, which represent the maximum amount of substance phosphate 

being stored as polyP. 

  

2.4 Experiments for nanoSIMS 

2.4.1 Lab experiments  

The written parts of the following sections “H2
18O incubation of Beggiatoa sp. 35Flor”, 

“NanoSIMS analyses” and “statistical analysis” were published in the article 

“Simultaneous visualizsation of enzymatic activity in the Cytoplasm and at Polyphosphate 

inclusions in Beggiatoa strain 35Flor incubated with 18O- labeled water” in the journal 

“mSphere” on the 19th December 2018. I performed the experiments, did the data analysis 

and wrote all paragraphs”.  
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2.4.1.1 H2
18O incubation of Beggiatoa sp. 35Flor   

The strain Beggiatoa sp. 35Flor was cultivated in opposing gradients of oxygen and sulfide 

as described elsewhere in detail (Figure 5, Schwedt et al., 2012), with reduced phosphate 

concentrations of 20 µM leading to phosphate depletion within the mat after 7 days of growth 

(Brock & Schulz-Vogt, 2011).  

 

Figure 5: Beggiatoa filaments visible as a white mat situated at the oxic / anoxic interface between 

oxygen fluxes from the top and sulfide fluxes from the bottom. H2
18O was directly inoculated into the 

mat after 7 days of growth.  

Sulfide concentrations in the bottom agar were 4 mM (low sulfide) and 24 mM (high sulfide). 

Seven days after inoculation of the medium, 18O- water (97 atom% 18O, Sigma Aldrich) was 

added to the mat of Beggiatoa filaments at the oxic-/ anoxic interface. Oxic treatments were 

incubated under continued micro-aerobic (oxic) conditions; anoxic incubation conditions 

were established by thoroughly replacing the atmosphere above the agar with N2. Control 

incubations were transferred to 4 °C after addition of 18O-labeled water to reduce metabolic 

activity. Oxic and anoxic incubations were performed with both high and low sulfide 

concentrations in the bottom agar. The control incubation was conducted under oxic 

conditions with low sulfide concentration in the bottom agar. 18O- water incubations 

proceeded for 24h, before single filaments were picked and transferred onto PC filters, which 

were stored at -24 °C until further processing. 
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Table 1: Conditions during 24 h incubation of Beggiatoa filaments with 18O- water. 

 High H2S Low H2S 

Oxic ✔ ✔ 

Anoxic ✔ ✔ 

Control 

 = Oxic; 4 °C 

✔ ✔ 

 

2.4.1.2 NanoSIMS analyses 

PC filters were thawed at room temperature and incubated with DAPI for at least 30 minutes. 

Subsequently cell integrity was visually confirmed by fluorescent microscopy using a LMD 

6500 (Leica, Wetzlar, Germany, filter cube B/G/R). Positions of agar free filaments were 

marked with a laser pulse, which facilitated orientation for nanoSIMS analyses. The samples 

were coated with ca. 30 nm gold with a Cressington 108auto sputter coater (Watford, United 

Kingdom). NanoSIMS analyses were conducted at tagged positions with the simultaneously 

recording of images from the received secondary ions 12C-, 16O-, 18O-, and 31P- as described 

in Braun et al., 2018.  

Data analysis was performed with the Look@NanoSIMS software (Polerecky et al., 2012).  

Previous to plane accumulation and drift correction, a maximum of three erroneous planes 

(with e.g. signal instabilities) were removed. Regions of interest (ROIs) were determined 

based on P counts normalized to C counts (P/C). P rich (redish spots) in contrast to P poor 

(bluish spots) were manually assigned as ROIs (Figure 15). Counts for each individual ROI 

were obtained for 12C-, 31P-, 18O- and 16O-, which were used to calculate C/P ratios and 18O 

enrichments in atom%. 18O enrichments were plotted against C/P (relative phosphorus 

content) to determine the threshold value between ROIs representing polyP and ROIs 

representing cytoplasm (Figure 16). The cutoff was set at a C/P ratio of 18 with ratios below 

18 regarded as polyP (relatively high P content) in contrast to ratios above 18 (relatively low 

P content). This was based on the most pronounced gap in most treatments between adjacent 

ROIs. Significant differences between ROIs assigned as polyP versus ROIs assigned as 

cytoplasm based on C/P ratios were confirmed by statistical analyses (details below). 
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However, it is important to note that 18 is only the best suited value for this particular sample 

set, but not valid as a general cutoff. Since nanoSIMS does not give absolute values, 

individual cutoffs have to be defined for each individual study.      

 

2.4.1.3 Statistical analysis  

The software “R” was used for statistical analyses. ROIs from filaments within the same 

treatment were pooled after confirming no significant differences between ROIs of filaments 

incubated under the same conditions based on counts of P, 16O and 18O. Significant 

differences in C/P ratios (indicative for P content) between ROIs defined as polyP and ROIs 

defined as cytoplasm were confirmed with the Whitney-U-Test. The non- parametric 

Kruskal- Wallis test followed by the Dunn’s test were performed to identify differences in 

18O enrichments between the treatments, and between polyP granules and the cytoplasm. 

 

2.4.2 Ex situ incubations of sediment cores from the Peruvian upwelling area 

2.4.2.1 Description incubation setup 

Sediment cores from 200 m depth with in situ oxygen concentrations were incubated in an 

ex situ setup described in Dale, Roy et al., (unpublished) for 3.5 days. Samples from the 

overlaying water column were obtained on a daily routine for nutrient analysis and ICP-OES. 

The sampled volume was replaced with bottom water from the 200 m site and nitrate and 

sulfide concentrations were monitored. Accumulation of sulfide was prevented by the regular 

addition of nitrate to the bottom water. After 7 days incubation, sulfide was allowed to 

accumulate and 9 ml 18O- water (Sigma Aldrich) was added into the overlaying water leading 

to an isotopic enrichment of ~ 1 atom% 18O. Incubation with 18O continued for 24 h before 

the core was sectioned. Beggiatoaceae filaments were picked from the upper centimeter and 

were transferred on PC filters, which were frozen for later nanoSIMS measurements as 

described in section 2.4.1.2.  

 

2.4.2.2 NanoSIMS analyses ex situ experiments 

Analyses of nanoSIMS results proceeded as described above and ROIs were defined based 

on P content. The threshold value for the differentiation between polyP and cytoplasm was 

set to a P/C ratio of 0.005.  
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3 Results 

3.1 PolyP quantities in different environments  

3.1.1 PolyP in a coastal zone of the Baltic Sea  

PolyP was quantified in 20 bottom water samples, 16 porewater samples and 3 groundwater 

samples originating from the coastal zone of the Balic Sea near the village Markgrafenheide 

and the adjacent nature reserve “Heligensee und Hütelmoor”. Concentrations are presented 

as PO4
3- equivalents (Pi-equiv.) in the measured polyP pool.  Bottom water samples were 

obtained in April, June, July, October, and December and quantities of Pi-equiv. in polyP are 

presented in Figure 6.  

 

Figure 6: Concentrations of Pi-equiv. in polyP in bottom water samples at different stations during 

different months in 2016. 

Highest concentrations with minor differences were measured in samples from July and 

December at station 15 with Pi-equiv. of 0.16 µM and 0.13 µM. 40% lower concentrations 

(0.09 µM Pi-equiv.) were found in April at the same station. Lowest concentrations were 

found in June at stations 1 (0.02 µM) and 23 (0.03 µM), as well as in July at station 35 

(0.02 µM). Concentrations at the latter station were three times higher in October/ December 

(0.06 µM) and five times higher in April (0.1 µM) than the lowest concentration in July. 

PolyP concentrations in porewater samples were obtained from six stations at the beach and 

are shown in Figure 7. Pi-equiv. in polyP from porewaters were similar to bottom water 

samples at stations B, C and E (Figure 7 A). Concentrations at station C at 10 cm depth were 

similar to concentrations at station E at 25 cm and 50 cm depth with ca 0.2 - 0.3 µM Pi-

equivalents. 0.1 µM were measured at station B at 10 cm depth, which decreased to 0.02 µM 
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at 30 cm and 85 cm depth. Samples obtained from station A, D and F showed pronounced 

higher concentrations of Pi-equiv. (Figure 7 B). 0.25 µM and 0.5 µM were present at 30 cm 

depth at station A, 0.5 µM at station F at 42 cm depth and highest concentrations were found 

at station D at 50 cm depth with 1.5 - 2 µM.  

 

Figure 7: Concentrations of Pi-equiv. in polyP in porewater sampled at the beach. 

PolyP concentrations in groundwater samples from station GW2 in the Hütelmoor were 

similar in April and September with ca. 0.3 µM Pi-equiv. and increased to 0.5 µM in 

December. Groundwater from GW1 was measured in December and showed 0.1 µM Pi-

equiv. in polyP (Figure 8).  
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Figure 8: Mean Concentrations of Pi-equiv. in polyP in groundwater from two wells. GW2 was 

sampled in April, September and December (A). B shows concentrations sampled in December from 

both GW1 and GW2. 

3.1.2 PolyP in the pelagic zones at two stations off Peru 

PolyP in the pelagic zone was analyzed from two stations with maximum depths of 128 m 

and 244 m at the continental shelf off Peru. Pi-equiv. in polyP were relatively uniform at the 

shallower station with ca. 10 nM measured in 15 m, 30 m, 45 m and slightly decreased to 

8.5nM Pi-equiv. in 120 m depth (Figure 9 A). Similar concentrations between ~7 - 9 nM 

Pi- quiv. were measured at 40 m (9.2 nM), 100 m (6.8 nM) and 242 m depth at the station 

with a maximum depth of 244 m (Figure 9). Highest concentrations in the pelagic zone were 

present at the shallowest depth in 10 m with 20 nM.  
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Figure 9: Means of Pi-equiv. in polyP in the pelagic zone of the continental shelf off Peru at stations 

situated at water depths of 128 m (A) and 244 m (B). 

 

3.2 PolyP in Beggiatoa off Peru 

3.2.1 Qualitative analyses of polyP (Microscopy)  

On board fluorescence microscopy did not show any evidence for polyP inclusions in DAPI 

stained bundles of Marithioploca and were not considered in the following. In contrast to 

this, polyP inclusions were present in filaments attributed to the family Beggiatoaceae. 

Diameters of polyP inclusions varied in size between 0.5 µm and up to 3 µm (Figure 10). 

The larger inclusions of up to 3 µm were typically found in relatively small filaments with 

an average diameter of 4 - 5 µm (Figure 10 A, C). They were evenly distributed in the 

filament with one big polyP granule per cell. A different pattern was present for smaller 

inclusions with around 0.5 µm diameter, which were typically found in bigger filaments sized 

between 12 - 15 µm (Figure 10 B, D). Here, several small polyP granules were unevenly 

distributed throughout the filaments and numbers of polyP granules differed between 

individual cells.   
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Figure 10: DAPI stained filaments of the family Beggiatoaceae with differently sized polyP 

inclusions. A + C: Big polyP inclusions in relatively small filaments with a diameter between 4 and 

5 µm; B + D: Small polyP inclusions in relatively big filaments with diameters between 12 and 15 µm.  

3.2.2 Number, diameter distribution and biovolume of Beggiatoa filaments from the 

continental shelf off Peru 

Analyzed Beggiatoaceae filaments were sampled from stations with 77 m, 200 m and 244 m 

total water depth to determine the abundance, the distribution of filament diameter and the 

biovolume of filaments present in these sediments. Filament numbers per cm3 showed minor 

differences between the three stations analyzed with means ranging from 316 filaments per 

cm-3 sediment found at 200 m depth to 403 at 77 m depth and 455 at 244 m depth (Figure 

11). The lowest mean with 316 filaments per cm3 at 200 m total depth was also accompanied 

with the highest standard deviation. . 
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Figure 11: Means of filament counts from a minimum of five subsamples per cm3 sediment at stations 

with maximum water depth of 77 m, 200 m and 244 m.  

The filament diameter distribution of Beggiatoaceae filaments is shown in Figure 12.   

Diameters between 7.5 and 12 µm were most abundant at the shallowest station at 77 m depth 

and represented 85% of all filaments. The smallest filaments found at this depth had a 

diameter of 5 µm, whereas largest diameters reached up to 40 µm. A dominance of thin 

filaments with diameters of only 2.5 µm was present at the station with the highest water 

depth of 244 m. These filaments represented 44% of all filaments at this station followed by 

20% filaments with a diameter of 3.8 µm and 17% filaments with a diameter of 5 µm. The 

biggest filaments found at this depth had diameters of 7.5 and 10 µm, which constituted 10% 

and 8% of all filaments, respectively. A broad range of diameter distribution attributed to 

Beggiatoa filaments characterized the station with a maximum depth of 200 m. 30% of all 

filaments had a diameter of 3.8 µm. Together with filaments with 10 µm diameter (23% of 

all filaments) and filaments with a diameter of 12.5 (17%), these three size classes 

represented 70% of all filaments.      
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Figure 12: Relative abundances of filament diameter distribution of Beggiatoa across three sampled 

depth: 77 m (A); 200 m (B); 244 m (C).  

The biovolume of Beggiatoa in sediments was determined by measuring length and widths 

of individual filaments (Material & Methods) and is presented in Figure 13. The biovolume 

of filaments per cm3 sediment was highest at 77 m depth with 0.07 mm3 filaments per cm3 

sediment and sharply dropped to 0.02 and 0.01 mm3 filaments per cm3 sediment in 200 m 

and 244 m water depth.   
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Figure 13: Biovolume of Beggiatoaceae filaments across three stations with water depths of 77 m 

(A), 200 m (B) and 244 m (C). 

3.2.3 Quantitative analyses of polyP in Beggiatoa 

For quantification of polyP in marine Beggiatoa spp., 100 filaments were picked in triplicates 

from three depths in the OMZ upwelling area in front of Peru: 77 m, 200 m and 244 m. 

Pi- equiv. in polyP per cm3 in three samples from 77 m and 244 m depth and two samples 

from 200 m depth are shown in Figure 14. Equivalents per cm3 were lowest at 200 m depth 

with 5 – 6 nM. Higher concentrations were found at 77 m depth ranging between 8 – 10 nM. 

Highest variability between the three individual samples were present at 244 m depth, where 

concentrations of Pi-equiv. ranged between 6 and 15 nM in individual samples.   

 

Figure 14: Concentrations of Pi-equiv. stored as polyP in Beggiatoa filaments present in one cm3 

sediment.  
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3.3 NanoSIMS results  

3.3.1 Phosphorus and 18O distribution in Beggiatoa sp. 35Flor after in situ incubations 

NanoSIMS analyses revealed distinct distribution patterns of 18O enrichments and P counts 

throughout the filaments, which enabled the differentiation between ROIs assigned to polyP 

and ROIs assigned to cytoplasm (Figure 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: “The distributions of 18O and P are shown for the physiological most distinguishable 

incubation conditions. (A) Optimal growth condition (oxic, low sulfide); (B) stressful condition 

(anoxic, high sulfide flux). 18O enrichments in atom% are presented in the top panels, and phosphorus 

content normalized to carbon is presented in the bottom panels with two exemplary ROIs for both 

polyP (yellow regions) and cytoplasm (white regions), defined by manual assignment” (Langer et al., 

2018) 

Relative P content (C/P) plotted against 18O enrichments revealed the threshold value of 18 

for C/P to differentiate between polyP and cytoplasm (Figure 16, Langer et al., 2018).  
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Figure 16: “C/P ratios, indicative of P content, plotted against 18O enrichments for all determined 

ROIs. Decreased C/P ratios (high P content) are apparent in areas defined as polyP compared to 

regions defined as cytoplasm, especially under high sulfide condition” (Langer et al., 2018).  

Elemental distributions of 31P and 18O in Beggiatoa are shown in Figure 17 and Figure 18. 

Filaments were exposed to low (Figure 17) and high (Figure 18) sulfide concentrations during 

“oxic” (17 A), “anoxic” (17 B) and “control” (17 C) treatments (see Material and Methods). 

The presence of distinct P rich areas became apparent in filaments after all incubation 

conditions and signal intensity did not differ between treatments exposed to low or high 

sulfide fluxes (in contrast to sulfur counts, see below). Large spherical P inclusions 

accompanied with some smaller granules were present in every single cell of filaments 

exposed to low sulfide fluxes and incubated under continues micro-aerobic conditions (oxic 
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incubation, Figure 17 A). The distribution of P in filaments grown under identical low sulfide 

fluxes, but incubated with H2
18O during anoxic conditions, revealed several small P 

inclusions, which were uniformly distributed throughout the filament.  

 

Figure 17: P (upper panel) and 18O (lower panel) distribution in filaments which were exposed to low 

sulfide fluxes and incubated under oxic (A), anoxic (B), and cooled (= control, C) conditions.  

P signals appeared to be less regularly distributed between cells of filaments when incubated 

under high sulfide fluxes (Figure 18). In contrast, “aggregated” P signals appeared to be 

present only in some cells of the filaments with barely any P signals in neighboring cells. 

This was especially pronounced during anoxic incubation conditions (Figure 18 B), but was 

also found after oxic incubation (Figure 18 A). P signals in filaments incubated at 4 °C 

(control, Figure 18 C) were generally weak and partly masked by some agar impurities on 

the filter, which interfered with the nanoSIMS measurements.       
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Figure 18: P (upper panel) and 18O (lower panel) distribution in filaments which were exposed to 

high sulfide fluxes and incubated under oxic (A), anoxic (B), and cooled  (= control, C) conditions. 

18O enrichments were above the natural background of 0.2 atom% in most treatments based 

on visual inspection (Figure 17, Figure 18 lower panel), with varying intensities and 

distribution patterns between high and low sulfide treatments. Enrichments in high sulfide 

treatments seemed to be restricted to P rich spots, associated with low enrichments in 

neighboring regions with less intense P signals (Figure 18).  In contrast, 18O enrichments in 

low sulfide treatments were distributed over the whole filament and not restricted to P signals 

after both oxic and anoxic incubation conditions (Figure 17). Clearly, less intense 18O 

enrichments were present in filaments incubated at 4 °C, irrespective of the sulfide fluxes.  

 

3.3.2 Differences between defined regions of interest (ROIs) 

Figure 19 shows boxplots with 18O enrichments in ROIs, defined to differentiate between 

polyP and cytoplasm (see Materials and Methods) for all treatments (oxic, anoxic, control) 

incubated under low (A) and high (B) sulfide fluxes.  
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Figure 19: “Boxplots from ROIs based on P counts for different treatments (oxic, anoxic, control) 

during low sulfide flux (A) and high sulfide flux (B). Different letters indicate boxes that differ 

significantly between treatments exposed to the same sulfide fluxes (P < 0.05). Boxes with same 

letters are not significantly different (P > 0.05). The asterisk indicates the box being significantly 

different between different sulfide concentrations within the same treatment. The horizontal line at 

0.2 atom% presents the natural abundance of 18O” (Langer et al., 2018). 

No significant different 18O enrichments in polyP and the cytoplasm were found between low 

and high sulfide concentrations for anoxic and control treatments. The only significant 

difference between high and low sulfide fluxes within the same treatment was present after 

oxic incubation in ROIs defined as cytoplasm.  

ROIs defined as polyP in the low sulfide oxic incubation were significantly higher enriched 

than polyP and the cytoplasm after anoxic and cooled control incubations with maximum 
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enrichments of 2.7 atom% 18O (Figure 19, Table 2). Enrichments in polyP in the low sulfide 

anoxic treatment were significantly higher than enrichments in ROIs defined as cytoplasm in 

the same treatment (anoxic, low sulfide) and also higher compared to enrichments in polyP 

and the cytoplasm of the control treatment (control, low sulfide).  No significant different 

enrichments were present between ROIs defined as polyP in the anoxic treatment and ROIs 

defined as cytoplasm in the oxic treatment. 18O enrichments were similar between polyP and 

cytoplasm areas in the control treatment. Enrichments in the control incubation were 

significantly lower than in the oxic and anoxic treatments for both ROIs defined as polyP and 

cytoplasm. Enrichments in the control incubation were up to 0.5 atom% 18O in ROIs defined 

as cytoplasm, and up to 1.1. atom% 18O in ROIs defined as PolyP (Table 2, Table 3). 

Table 2: Minimum and maximum 18O enrichments [atom%] for ROIs defined as polyP. 

 PolyP  

 Low sulfide  High sulfide 

 Minimum Maximum  Minimum Maximum 

Oxic 1.2 2.7  0.9 4.5 

Anoxic 0.5 1.7  0.9 1.8 

Control 0.3 1.1  0.4 1.3 

 

Barplots with 18O enrichments in ROIs from filaments exposed to high sulfide fluxes are 

shown in Figure 19 B. Enrichments in ROIs defined as polyP in the oxic treatment showed 

high variability and contained the highest 18O enrichments of all incubations with up to 4.5 

atom% ( 

Table 3). ROIs defined as polyP in oxic and anoxic treatments were significantly higher 

enriched than all ROIs defined as cytoplasm in all other treatments. ROIs in the cytoplasm 

were comparatively low enriched and showed no significant differences between the 

treatments (oxic, anoxic, control). Enrichments in ROIs defined as polyP in the control were 

significantly lower compared to enrichments in polyP after oxic and anoxic treatment, but 

did not differ significantly in the cytoplasm between all treatments.   
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Table 3: Minimum and maximum 18O enrichments [atom%] for ROIs defined as cytoplasm. 

 Cytoplasm  

 Low sulfide  High sulfide 

 Minimum Maximum  Minimum Maximum 

Oxic 0.8 1.7  0.2 1.3 

Anoxic 0.2 1.3  0.2 0.7 

Control 0.2 0.5  0.4 0.8 

 

Ratios between mean enrichments of 18O in ROIs defined as polyP and defined as cytoplasm 

are shown in Table 4. Highest ratios were present in high sulfide treatments after both oxic 

(ratio: 3.9) and anoxic (ratio: 3.0) incubations. Comparable ratios between 1.4 and 1.6 atom% 

18O were found after low sulfide oxic incubation and both control incubations.  

 

Table 4: “Mean values of 18O enrichments in ROIs defined as polyP and as cytoplasm and the ratio 

between the means of enrichments in polyP and cytoplasm. It becomes evident that the ratio is 

distinctively higher in treatments exposed to high sulfide fluxes, both under oxic and under anoxic 

conditions” (Langer et al., 2018).  

 Mean  18O enrichments [atom%] 

   
Oxic 

High H2S 

Oxic 

Low H2S 

Anoxic; 

High H2S 

Anoxic; 

Low H2S 

Control; 

High H2S 

Control; 

Low H2S 

ROIs  

PolyP 

2.2  

SD = 1.0 

 n = 53  

2.0 

SD = 0.3 

 n = 48 

1.4 

SD = 0.2 

 n = 22 

1.1 

SD = 0.3 

 n = 78 

0.8 

SD = 0.2 

 n = 36 

0.5 

SD = 0.2 

 n = 23 

ROIs 

Cytoplasm 

0.6 

SD = 0.2 

n  = 44 

1.3 

SD = 0.2 

 n = 44 

0.4 

SD = 0.2 

 n = 17 

0.7 

SD = 0.2 

 n = 45 

0.5 

SD = 0.2 

 n = 10 

0.3 

SD = 0.1 

 n = 29 

PolyP  / 

Cytopolasm 
3.9 1.5 3.0 1.6 1.6 1.4 

 

3.3.3 Sulfur distribution in Beggiatoa sp. filaments after in situ incubations 

Sulfur signals in filaments grown with low sulfide fluxes are shown in Figure 20. Distribution 

and intensity of sulfur counts obtained from nanoSIMS were similar between oxic, anoxic 
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and control treatments. Ratios of S normalized to 12C14N also showed only minor differences 

between the treatments. Intensity and amount of S counts were distinctly higher in filaments 

grown with high sulfide fluxes after control and oxic treatments than in all treatments exposed 

to low sulfide fluxes (Figure 20). In addition, a much higher density of sulfur globules was 

present in these two treatments compared to treatments grown with low sulfide fluxes, which 

was especially pronounced in the oxic treatment. A much lower S content was present in 

filaments incubated under anoxic conditions (Figure 21 C). Signal intensities of sulfur were 

much less pronounced accompanied by decreased numbers of sulfur globules. S signals in 

the control treatment were similar to counts in the oxic treatment.   

 

Figure 20: Sulfur counts in low sulfide treatments for Control (A), Oxic (B) and Anoxic (C) 

incubations.   
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Figure 21: Sulfur counts in high sulfide treatments for Control (A), Oxic (B) and Anoxic (C) 

incubations. 

 

3.3.4 Ex situ incubations of sediment cores from the Peruvian upwelling  

Visual discernible P content and 18O enrichments in relatively P rich and relatively P poor 

ROIs in filaments incubated under ex situ conditions are presented in Figure 22. P content 

presented as P/C ratios was similar in all four filaments shown. 18O enrichments in ROIs 

defined as polyP were significantly higher than ROIs defined as cytoplasm in filaments A 

and B. No significant difference between polyP and cytoplasm was present in filaments C 

and D.  

 



3 Results 

 

36 

 

 

Figure 22: Upper panels: nanoSIMS counts of P signals in four different filaments after 24 h ex situ 

incubation with 18O-water. Lower panels: 18O enrichments in P rich spots (green) and P poor spots 

(orange). 18O enrichments in ROIs defined as polyP were significantly higher than ROIs defined as 

Cytoplasm in filaments A + B.  

 



4 Discussion 

 

 

37 

  

4 Discussion 

4.1 Quantities and relevance of polyP in coastal and marine environments  

4.1.1 PolyP in a coastal area of the Baltic Sea  

PolyP quantification with DAPI was based on polyP standards with polyP chain lengths 

consisting of 45 Pi residues (see Material and Methods). The following discussion will always 

refer to polyP being synonymous with Pi- eqiv. in polyP. This expresses the number of Pi 

residues being present in quantified polyP found in environmental samples.  

PolyP concentrations showed high spatial and temporal variations in bottom water samples 

of coastal waters in front of the nature reserve Heiligensee and Hütelmoor. High spatial 

differences are evident when comparing concentrations at station 1, located close to the shore 

and station 3 being more offshore but with only several 100 m distance. Despite the close 

spatial proximity, polyP concentrations varied considerably in June. Also at stations 35 and 

15 strong variations are discernible with distinctly higher polyP concentrations at station 15 

in July and December, compared to concentrations at station 35 during the same months. This 

is especially pronounced in samples from July where the overall highest concentration was 

present at station 15 and the overall lowest concentration at station 35 during the same 

sampling month July in 2016. Consequently concentrations were highly variable and did not 

show any regional trend between stations being in direct proximity to the coast and stations 

being slightly more offshore.  

Intracellular polyP formation depends on environmental redox conditions and is thought to 

generally occur via luxury uptake mechanisms (details in 4.2). This requires sufficiently high 

Pi concentrations in the surrounding environment being expected to occur at coastal stations. 

Near shore environments are characterized by high loads of organic matter, which can be the 

consequence of high rates of primary production, riverine input or submarine groundwater 

discharge (SGD) (Kotwicki et al., 2014; Ask et al., 2016). As a consequence, organic matter 

remineralization is increased with concurrent release of inorganic nutrients like Pi, potentially 

supporting formation of polyP. However, stations with close proximity to the coast did not 

show consistently higher polyP concentrations than present at stations more offshore. This 

could be explained by the medium to coarse permeable sands prevailing in the first meter in 

sediments of the study site (Kreuzburg et al., 2018), which are characterized by generally 

lower organic carbon contents (e.g. Hüttel & Rusch, 2000). Therefore, input of reactive 

carbon in these sediments primarily depend on groundwater inputs or circulating seawater 
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driven by advective transport processes. The latter is more dominant in sandy sediments than 

in muddy sediment (Janssen et al., 2005) and would lead to comparable concentrations of 

nutrients in bottom water and pore water.  This is confirmed in pore water samples from three 

stations (Figure 7 A) showing similar concentrations of polyP as generally present in bottom 

water samples.  This could be enabled through a potentially regular flushing of the permeable 

sediments through advection. The suspected high permeability of these sandy sediments 

might explain the uniform polyP concentrations found in these pore waters and the overlaying 

bottom waters. In contrast, distinctly higher polyP concentrations were found in pore waters 

from the other three stations in 30 – 50 cm depth (Figure 7 B). This indicates substantial 

environmental differences prevailing at these sites, especially at station D with more than 1.5 

µM polyP. This could be due to a high abundance of polyP accumulating bacteria through 

favorable polyP formation conditions, which could be reasoned by locally present submerged 

peats (Kreuzburg et al., 2018). These organic rich deposits could potentially be responsible 

for an elevated release of nutrients to overlain waters (Kieckbusch & Schrautzer, 2006) and 

would prevent a deep mixing with water by advection caused by very low permeability of 

peat deposits (Rezanezhad et al., 2016).  

As mentioned before, coastal zones can be impacted by SDG being another contributor to 

locally different nutrient regimes in bottom and pore water, which is supposed to occur in the 

study area (Juransinski & Janssen et al., 2018). SGD input fluxes on a global scale have been 

estimated to be comparable to water masses entering the ocean via rivers (Kwon et al., 2014, 

Cho & Kim, 2016) and could have, therefore, large implications on biogeochemical cycles. 

Since fluxes of dissolved inorganic P and dissolved inorganic N could be 50% higher than 

those entering coastal seas via rivers (Cho et al., 2018), SGD could support phytoplankton 

blooms or formation of intracellular polyP through elevated Pi concentrations in the water 

column. The expected local hotspots could be one factor explaining spatial differences in 

polyP concentrations patterns. SGD water masses may directly come from groundwater 

originating from the Hütelmoor being rich in nutrients, or from recycled Baltic Sea water 

which got enriched in nutrients when pushed through the seabed. Samples from groundwater 

in the Hütelmoor had considerably higher polyP content than present in bottom waters 

(Figure 8) being also accompanied by higher Pi concentrations than found in bottom waters 

of the Baltic Sea (M.Ibenthal, person. communication). This indicates the possibility for a 

luxury uptake mechanism comparable to waste water treatment plants, where varying oxygen 

concentrations lead to an uptake or release of Pi (McMahon & Read, 2013). Similar varying 



4 Discussion 

 

 

39 

  

oxygen regimes can be assumed for these groundwaters. The mixing of seawater and 

groundwater with different oxygen concentrations is often accompanied with the formation 

of redoxclines (Santoro, 2010), which in particular affects polyP metabolism. Since the 

groundwater wells are located close to the dune they are regularly flushed with seawater 

(M.Ibenthal, pers. communication). This leads to a regular supply with oxygen supporting 

polyP formation, followed by stagnation periods leading to oxygen depleted groundwaters 

and polyP degradation. Coastal zones are also influenced by mixing processes occurring in 

shallow waters, which lead to a uniform distribution of dissolved substances with no punctual 

input source present. Rivers generally have high P concentrations from agricultural inputs, 

which are transported to the sea and, therefore, connect the P sources from land with the Sea 

(Ruttenberg 2014). The study area in front of the Hütelmoor is influenced by the Warnow 

river estuary being ca 10 km west from the study area. Water masses entering the Baltic Sea 

are subjected to Coriolis forcing and deflected to the right being supported by mainly westerly 

winds (Jurasinski & Janssen et al., 2018). The increased nutrient loads being present in rivers 

like the Warnow (Freese et al., 2007) do likely influence the study area and also lead to higher 

Pi concentration which would influence polyP metabolism.  

The difficulties in trying to conclude trends concerning spatial distribution patterns is also 

apparent when trying to asses seasonal variations. Samples originated from spring (April), 

summer (June, July), autumn (September, October) and winter (December).  Concentrations 

of polyP varied between the samples, but did not show any solid trend. This is exemplarily 

reflected in samples obtained at station 11 and 15, where concentrations did only differ 

marginally between spring, summer, and winter (Figure 6). Since polyP metabolism is 

suspected to be substantially influenced by ambient Pi concentrations, one could assume to 

find differences in polyP concentrations depending on current statuses of bacteria-/ and 

phytoplankton blooms, which lead to a depletion of nutrients (Bunse et al., 2016). The 

increased presence of phytoplankton during favorable bloom conditions could lead to higher 

polyP values being quantified with the DAPI method, since filtering of the bulk water mass 

includes both bacteria- and phytoplankton. Despite the difficulties in concluding on spatial 

or seasonal tendencies in polyP concentration patterns, the continuous presence of polyP 

argues for a non-negligible potential P source. Ambient Pi concentrations in bottom waters 

ranged from 0.1 – 0.3 µM (J. Westphal, person. communication) indicating non limiting P 

conditions during time of sampling. This points in principle to conditions enabling luxury 

uptake of Pi to synthesize polyP. Considering a polyP pool consisting of up to 0.12 µM Pi 
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residues, stored polyP has the potential to substantially contribute to the local P cycling. 

However, this seems to be unlikely to occur since an intensive degradation with subsequent 

Pi release is normally assumed to occur during anoxic conditions and not in the well mixed 

oxic water column. Rather it indicates that the quantified background polyP concentrations 

of phyto-/ and bacterioplankton are indispensable for standard metabolic processes like ATP 

synthesis and are, therefore, not involved in potential polyP degradation with associated Pi 

release.  

 

4.1.2 PolyP in the pelagic zone off Peru  

Concentrations of polyP were relatively constant at station with 128 m maximum depth 

(Figure 9 A) with around 10 nM Pi-equiv. This is considerably lower than results obtained 

from a coastal zone of the Baltic Sea (4.1), but similar to results obtained from measurements 

at station ALOHA north of Hawaii. Here, polyP concentrations where highest in spring with 

around 8 nM in the first 50 m of the water column, representing about 10% of the total 

particulate phosphorus pool (Diaz et al., 2016). Concentrations were slightly lower in fall, 

but decreased in both seasons down to 2 nM at 15 water depth (Diaz et al., 2016). In contrast 

to the station with a maximum water depth of 128 m, polyP concentrations showed a slight 

decrease at the station with 244 m maximum water depth (Figure 9 B). PolyP was twice as 

high compared to the remaining samples before it decreased to 10 nM. A retention of polyP 

in surface waters was demonstrated in the oligotrophic Sargasso Sea and was assumed to be 

released from sinking particles under environmental stress (Martin et al., 2014). This also 

underlines that polyP metabolism is not restricted to Pi rich environments. However, similar 

mechanisms as present in the Sargasso Sea are unlikely to occur in the surface waters off 

Peru, because a steady supply with nutrient rich upwelling waters prevails (Ehlert et al., 2015; 

Steinfeldt et al., 2015). Instead, polyP cycling is more relevant in the sediments as shown in 

the following.    
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4.2 Contribution of biologically stored polyP to sedimentary P fluxes  

4.2.1 Filamentous Sulfur bacteria in Peruvian upwelling areas 

Filamentous sulfur bacteria have been regularly found in sediments off the south-west 

American coast, predominantly in front of Chile and Peru (Gallardo 1977, Mosch et al., 

2012., Sommer et al., 2016). They have been observed to form dense white mats, which 

varied in densities between different seasons due to oscillating redox conditions controlled 

by the frequency and strength of oxygenation events (Gutièrrez et al., 2008). Studies about 

filamentous sulfur bacteria in the Peruvian/Chilean upwelling area have been primarily 

focused on Marithioploca (e.g. Schulz et al., 1996, 2000; Levin et al., 2002, Holmkvist et al., 

2010) in contrast to only few studies focusing on the abundance of Beggiatoa. Instead, 

conclusions about the presence of Beggiatoa were inferred from visual analyses (Mosch et 

al., 2012, Sommer et al., 2016) which cannot discriminate between Beggiatoa and 

Marithioploca. Biovolumes of Beggiatoa filaments were found to be around 5 mm3*cm-3 in 

the Peruvian upwelling zone in 256 m water depth sampled during a cruise in 2005 (Arning 

et al., 2008). Biovolumes of Beggiatoa analyzed in this study were comparably low with only 

0.06 mm3*cm-3 at 77 m depth to less than 0.01 mm3*cm-3 at 244 m depth. Since the presence 

of Beggiatoa is highly dependent on the prevailing redox conditions, it is likely that the 

dominating low oxygen conditions during the sampling period in May 2017 restricted growth 

of Beggiatoa to similar high densities (Table 6). Especially the oxygen depleted bottom 

waters at 244 m water depth did not support dense bacterial mats formed by Beggiatoa 

filaments. 

Table 5: In situ bottom water oxygen concentrations during sediment sampling (Data: Clemens et al., 

unpublished) 

Depth Oxygen concentration [µM] 

77 m 5.7 

129 m 1.6 

244 m 0 

 

Despite the diverging biovolumes of Beggiatoa at the three analyzed depths, the filament 

numbers varied only marginal with depth (Figure 11). Filament numbers were comparable to 

abundances of Beggiatoa found in arctic sediments, which also varied in their biovolume 
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despite of similar filament numbers between different stations (Jørgensen et al., 2010). The 

huge differences between biovolumes with concurrent stable filament numbers between 

77 – 244 m are reasoned in the varying distribution of filament diameters (Figure 12). The 

varying dominance of different filament diameter indicates different species distribution 

patterns. For example, the filament diameter of the well-studied strain Beggiatoa sp. 35Flor 

is around 6  µm (Kamp et al., 2008) compared to 30 µm and 60 µm diameters present in 

Candidatus Isobeggiatoa sp. and Candidadus Maribeggiatoa sp., respectively (McKay et al., 

2012, Jean et al., 2015). However, deducing phylogenetic relations based on morphological 

criteria is usually misleading and should reliably be determined by phylogenetic analyses 

(Salman et al., 2011).    

 

4.2.2 Presence and size of polyP inclusion in filamentous sulfur bacteria  

Members of the family Beggiatoaceae were reported to have the capability of storing 

extraordinary high amounts of polyP (e.g. Schulz & Schulz, 2005, Brock et al., 2012). This 

trait was also linked to the genus Marithioploca, which is present in sediments of the Peruvian 

upwelling system, reasoned in a correlation of Marithioploca 16SrRNA genes with 

sedimentary Pi release (Lomnitz et al., 2016). However, earlier laboratory studies did not find 

hints on excessive polyP storage by Marithioploca after activity assays with 

microradioautography (MAR) and 33P (Hogslund et al., 2009), which was also supported by 

fluorescent microscopy aimed to identify polyP conducted in scope of this thesis. Therefore, 

Marithioploca were not considered for detailed analyses (Section 3. Results). However, 

fluorescent microscopy revealed the presence of polyP inclusions with up to 3 µm (Figure 

10 A + C) in diameter found in filaments attributed to Beggiatoa. These large inclusions are 

among the biggest bacterial polyP inclusions found in environmental samples. Size and form 

are similar to inclusions being reported from the cultured strain Beggiatoa sp. 35Flor (Brock 

et al., 2012). The presence of these large sized polyP inclusion in the field is particular 

remarkable, since hitherto polyP inclusions reported from field samples of filaments in the 

Beggiatoacea family have typically not exceeded diameters of 2 µm. This was shown for 

example in Beggiatoa spp. analyzed from hypersaline coastal lagoons in Brasil (de 

Albuquerque et al., 2010) or in the marine genus Thiomargarita sp. (Schulz & Schulz, 2005). 

Beggiatoa spp. from the Peruvian sediments with larger diameters were found to have several 

smaller polyP inclusions (Figure 10 B + D), which sizes resemble those found in the type 
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strain Beggiatoa alba (Salman et al., 2011, Havelmeyer, 2013). The P content in polyP was 

demonstrated to be exponentially dependent on polyP diameter making big bacteria much 

more relevant when analyzing microbially stored polyP, even when occurring in lower 

number than small bacteria (Schulz-Vogt et al., 2019).  This underlines the potential 

contribution of the Beggiatoa species with big polyP inclusions to contribute to the observed 

sedimentary Pi fluxes, particularly in 200 m and 244 m depth where the smaller sized 

Beggiatoa filaments with large polyP inclusions dominated (Figure 12). On the other hand, 

bigger sized Beggiatoa species with smaller polyP inclusions contained not only one polyP 

granules as typically present in non- filamentous bacteria like Sulfurimonas sp. (Möller et al., 

2018), but contained several small inclusions distributed over the whole filament (Figure 10 

B + D ). This opens the possibility for an equal contribution to sedimentary Pi fluxes from 

Beggiatoa from different size classes and differently sized polyP inclusions, also at 77 m 

depth, where the diameter sizes with several small polyP inclusions dominated. In general, 

the presence of different sized polyP inclusion in different Beggiatoa species within the same 

environmental area indicates different prevailing polyP accumulating mechanisms between 

different species within the genus Beggiatoa. 

 

4.2.3 Contribution of PolyP storage to sedimentary phosphate release   

Sedimentary polyP has been shown to be abundant in OMZs (Kraal et al., 2015) and elevated 

Pi release rates were repeatedly reported for sediments off Peru (Noffke et al., 2012, Lomnitz 

et al., 2016).  The polyP inclusions found by fluorescent microscopy in large filamentous 

sulfur bacteria supports the possibility for a biologically mediated contribution to 

sedimentary Pi release. This was suggested for Beggiatoa (Noffke et al., 2012) and 

Marthioploca (Lomnitz et al., 2016) even through laboratory experiments did not show polyP 

formation by the latter organisms (Hogslund et al., 2009). A contribution of Beggiatoa or 

other large sulfur bacteria has been considered as a relevant, hitherto overlooked contributor 

to sedimentary Pi release, since up to 50% of the measured Pi fluxes were not explained at 

the Peruvian Shelf by a recently conducted P mass balance based on geochemical parameters 

(Lomnitz et al., 2016). Pi equivalents in polyP stored by Beggiatoa measured in this study 

substantially differed in the three samples from 244 m depth from which one sample 

contained highest concentrations found compared to all other samples (Figure 14). Filaments 

with small sized diameters and large polyP inclusions dominated at this depth, which would 
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support the linkage between large sized polyP inclusions with high P content as demonstrated 

in the Black Sea with the presence of large polyP granules in magnetotactic bacteria (Schulz-

Vogt et al., 2019). However, the remaining two samples contained considerably lower Pi-

equiv. in polyP which were similar to quantities found in filaments from 77 m and 200 m 

dept. Instead, the polyP content across the three sampled depths showed no significant 

differences despite the alternating filament diameter distributions with different types of 

polyP inclusions (Figure 10, Figure 12) and different bottom water oxygen concentrations 

(Table 5). Therefore, the presence of differently sized polyP inclusions has no significant 

impact on the total amount of sedimentary biologically stored polyP. Accordingly, P content 

in single large polyP granules is similar to multiple smaller inclusions in wider filaments. 

However, the presence of polyP stored in Beggiatoa at all depths supports the possibility for 

a biologically mediated sedimentary Pi release at the Peruvian Shelf as reported from other 

areas. A biological contribution to Pi fluxes was demonstrated in sediments near Barbados 

and from the Santa Monica basin by transcriptomic analyses (Jones et al., 2016). It was found 

that the expression of polyP related genes known to catalyze polyP formation and degradation 

was related to a release of Pi under anoxic conditions and an uptake under oxic conditions 

(Jones et al., 2016). Also the sulfur bacterium Thiomargarita nambibiensis was reported to 

degrade internally stored polyP inclusions with subsequent Pi release, which leads to 

extremely high pore water Pi concentrations resulting in the precipitation of hydroxyapatite 

in the Benguela upwelling system off the Namibian coast (Schulz & Schulz, 2005, 

Goldhammer et al., 2010). The formation of such high amounts of intracellular polyP is 

normally attributed to a luxury Pi uptake mechanism when excess Pi is available. This is well 

studied in waste water treatment plants and has been also regularly applied in environmental 

studies explaining Pi release. As mentioned earlier, polyP cycling is thought to be heavily 

influenced by prevailing redox conditions. Especially for Beggiatoa it has been shown that 

extracellular Pi is converted to PolyP under oxic and low sulfide conditions, leading to high 

intracellular P content present as polyP. In contrast, high sulfidic and anoxic conditions lead 

to a degradation of the internal polyP pool and a release of Pi to the extracellular environment 

(Figure 23, Brock & Schulz-Vogt, 2011).  
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Figure 23: Current understanding of polyP cycling in sediments. A: Pi uptake and the formation of 

polyP during oxic conditions; B: polyP degradation and Pi release into the extracellular environment 

during anoxic conditions. 

In light of the redox dependency of polyP formation and the different oxygen concentrations 

present at the respective depths (Table 5), the stable and comparable pool of polyP stored by 

Beggiatoa across the sampled depths is surprising, if expecting high polyP content under oxic 

conditions and low polyP under anoxic conditions. Oxygen concentrations in Beggiatoa mats 

were found to be 10 µM with fully oxidized overlaying bottom water (Jørgensen & Revsbech, 

1983). Since oxygen concentrations in bottom water of the Peruvian shelf were close to zero 

or completely depleted (Table 1), Beggiatoa filaments were likely limited in oxygen, despite 

their need for micro-aerobic growth conditions, which could also explain the low filament 

biovolumes. Rather, according to the current understanding of polyP cycling, the prevailing 

conditions would predominantly support polyP degradation with subsequent sedimentary Pi 

release being reflected in the actual observed Pi release rates and the possible relative 

contribution from Beggiatoa as discussed below.  

The relatively uniform concentrations of Pi-equiv. in polyP are contrasted by the measured 

sedimentary Pi release rates (Figure 24, Lomnitz et al., unpublished). Fluxes showed 

considerable differences across depths and were highest at 77 m depth with a subsequent 

sharp decrease at 200 m and 244 m. In combination with the uniform intracellular polyP 

content of analyzed Beggiatoa filaments, relative contributions of biologically mediated 

sedimentary Pi release substantially differ with depth caused by pronounced differences in 

measured total Pi fluxes. (Figure 24).  
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Figure 24: Phosphate fluxes across the Peruvian shelf (Lomnitz et al., unpublished). 

Fluxes between 3 – 4 mmol*m-2*d-1 (= 300 – 400 nmol*cm*-2*d-1) at 77 m would deplete 

the stored P pool of around 9 nmol*cm-3 in Beggiatoa (Figure 14) within 90 min if not in 

steady state and not permanently regenerated. If constantly regenerated, degradation of stored 

polyP would account for 2 -3% to the total sedimentary Pi flux (Table 6) at 77 m depth. In 

contrast to this, Pi release from polyP degradation from Beggiatoa at 200 m and 244 m depth 

could substantially contribute to the sedimentary Pi fluxes. A contribution of 24% as found 

at 200 m depth, would be twice as high as attributed to bacteria in Effingham Inlet 

(Sannigrahi & Inglall, 2005) and would represent an important source of Pi to bottom waters. 

Therefore, polyP degradation with subsequent Pi release by Beggiatoa would potentially 

contribute a large fraction to the observed Pi fluxes measured, despite to low oxygen 

conditions. This would in particular be a prominent factor if the Beggiatoa mediated fluxes 

could be maintained and thus, the internal polyP pool would continuously be regenerated. 

According to the current understanding of polyP cycling at least transient oxic conditions 

would be required. The capacity to alternate between Pi uptake and Pi release makes these 

filaments “P capacitors” (Dale et al., 2013), which is especially important in systems with 

dynamic redox conditions as for example at the Peruvian upwelling system (Gutièrrez et al., 

2008).  
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Table 6: Maximum relative contribution of Beggiatoa filaments to measured in situ Pi release and 

time until the polyP pool would be depleted if not continuously regenerated. Calculation with Pi fluxes 

from Figure 24 (3500 µmol*m-2*d-1 in 77 m; 250 µmol*m-2*d-1 in 200 m and 244 m). 

Depth Time until depletion [min] 
Potential relative contribution of 

Pi in polyP to Pi fluxes 

77 m 107 3% 

77 m 91 3% 

77 m 85 2% 

200 m 878 24% 

200 m 744 21% 

244 m 894 25% 

244 m 1322 37% 

244 m 2253 63% 

 

The combination of the presence of polyP in large sulfur bacteria together with observed Pi 

release potentially mediated by bacteria, indicates the presence of a background sedimentary 

polyP pool, even under the not optimal very low oxygen conditions. The relative contribution 

reported above should also only be regarded as maximum estimates, since a very fast and 

complete regeneration of the polyP pool would be required. Therefore, it is likely that the Pi 

flux caused by polyP degradation in Beggiatoa contributes only a part to all responsible 

mechanisms.  

Alternative sources of Pi release are particularly important at 77 depth, where the bacterial 

sources can only explain a maximum of 3 – 4%. Reductive dissolution of ironhydroxides 

under anoxic conditions with concomitant Pi release would be one prominent mechanisms, 

however, does not play an important role in Peruvian sediments, predominantly caused by 

the widely distributed anoxic water column preventing accumulation of oxidized 

ironhydroxids (Noffke et al., 2012, Lomintz et al., 2016). Preferential mineralization of P 

from particulate organic matter could be another sedimentary P source, but is also not 

considered to be relevant in the Peruvian upwelling system (Lomnitz et al., 2016). Altogether, 

it is possible that the large gap in the constructed P budget can for the most part be explained 

by Pi release from polyP storing Beggiatoa. However, more detailed analyses about the 



4 Discussion 

 

48 

 

prevailing polyP mechanisms are needed, since a pure dependence on redox conditions 

doesn’t go far enough and does not explain the high biologically mediated contribution to 

sedimentary Pi release.   

As mentioned above, the presence of polyP in Beggiatoa associated with a continuous release 

of Pi during nearly anoxic conditions requires a continuous regeneration of the polyP pool to 

not be depleted within a short time period. PolyP quantification revealed that the polyP pool 

in Beggiatoa was not fully depleted and still may contributed to observed Pi fluxes, even 

under anoxic conditions. Also a study by Hupfer & Rübe in 2004 analyzing an array of lake 

sediments demonstrated the presence of polyP at most stations irrespective if the overlain 

water was oxic or anoxic. In addition, also the determined high Pi fluxes in Namibian 

sediments have to be in steady state for   at least 3 month to explain the observed sedimentary 

precipitated hydroxyapatite (Schulz & Schulz, 2005). Therefore, also in these cases a 

continuous regeneration of polyP has to take place and shows that despite anoxic conditions 

not the complete polyP gets depleted and has to be continuously regenerated. This argues for 

an important role of polyP also under anoxic conditions as shown in the following.  

 

4.3 Visualization of an active intracellular polyP pool  

Phosphorus (P) has more than 23 isotopes with masses ranging from 24 u to 46 u including 

the stable P isotope 31P. The presence of only one stable isotope makes this element 

fundamentally different to N or C with each two (14N, 15N and 12C, 13C) different stable 

isotopes enabling stable isotope studies with nanoSIMS analyses and conclusions on 

microbial activity (Musat et al., 2012). Also the radioactive isotopes 32P and 33P are suited as 

biochemical tracers in isotope studies, in contrary to all other P isotopes caused in their short 

half-life time (Karl, 2014).  In contrast to P, oxygen has three stable isotopes (16O – 18O), of 

which 16O is the most abundant one with > 99.7 atom% followed by 17O (~ 0.03 atom%) and 

18O (0.205 atom%) (Meija et al., 2013). The abundance of more than one stable O isotope 

opens the possibility to conclude on different biogeochemical pathways involving Pi, based 

on analyses of 18O in Pi. The experiments conducted with the cultured strain Beggiatoa sp. 

35Flor were meant as a proof of principle to show that 18O labeled water in combination with 

an enzyme mediated oxygen isotope exchange can be used to trace metabolic activity in 

oxygen rich molecules like polyP. The 18O enrichments present in Figure 15 demonstrate the 

formation of 18O labeled compounds during both oxic and anoxic incubation conditions under 
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both high and low sulfide fluxes. 18O enrichments through oxygen isotope exchange by 

breaking the covalent phosphoanhydride bonds can exclusively be mediated by enzymatic 

activity (Tudge, 1960, Longinelli, 1976), which is synonymous for biological activity (Blake 

et al., 2001, Figure 25).    

 

Figure 25: Hypothesized effect of enzyme mediated oxygen isotopes exchange when incubated with 
18O-labeld water. 18O enrichments in polyP above the natural abundance of 0.2% is attributed to 

enzymatic activity.  

The enzyme mediated oxygen isotope exchange is supported by low 18O enrichments in the 

cooled control (Figure 19) related to the temperature dependency of enzyme activity 

(Peterson et al., 2007). Only enzymatic activity can lead to 18O enrichments in polyP 

demonstrating the metabolic use of the energetic molecule. However, it is questionable which 

enzymes were responsible. One possibility would be the incorporation of 18O labeled Pi 

during polyP synthesis. Since almost fully labeled 18O-water (97 atom%) was directly 

injected to the Beggiatoa sp. mat at the oxic/ anoxic interface (Figure 5), it is likely that the 

metabolic water of the filaments was substantially composed of 18O-water. Oxygen isotope 

exchange between oxygen in water and oxygen in the reactant particularly occurs during 

hydrolysis reactions (Cohn, 1949; Liang & Blake, 2006; von Sperber et al., 2014). One 

example is the hydrolysis reaction mediated by the ubiquitous pyrophosphatase (PPase, 

reaction 5). This leads to a complete exchange of all four oxygen atoms in Pi within several 

hours. Concequently, this enzyme dominates 18O signatures in Pi in most aquatic systems 

(Boyer, 1978; Sperber et al., 2017; Blake et al., 1997; 2005).  

PPi + H2O ⇌ 2 Pi    [5] 

Since all Pi ions present in the cytoplasm are involved into PPase mediated reactions (Blake 

et al., 2005), it is likely that a large fraction of intracellular Pi was at least partly labeled with 

18O after the 24 h incubation time. A prolongation of existing polyP chains with 18O labeled 
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Pi mediated by PPKs would thus lead to the observed 18O enrichments found in polyP after 

nanoSIMS analyses (Figure 26).  

 

Figure 26: Conceptual model showing one possible way for 18O labeling of polyP. A: Oxygen is 

initially present as 16O, both in water and Pi/polyP. B: After the addition of highly labelled 18O water 

to the Beggiatoa mat, labelled water diffuses into the cytoplasm. C: Activity of PPase leads to a 

fully exchange of oxygen atoms in Pi. D: PPK adds 18O labelled Pi to polyP chains leading to 18O 

enrichments in polyP.  

If PPK would be the dominant enzyme, 18O enrichments would increase with time as the 

relative proportion of Pi residues being composed of 18O isotopes increases.  This would 

theoretically lead to an enrichment of up to 100 atom% if new polyP chains would be 

synthesized. Alternatively, polyP labeling with 18O could also occur during the degradation 

of polyP chains, which is considered to be predominantly mediated by PPX (reaction 4, 

Akiyama et al., 1993, Kulaev & Kulakovskaya, 2000) and considered to be related to a 

release of Pi into the extracellular environment (Brock & Schulz-Vogt, 2011).  An oxygen 

isotope exchange during this hydrolysis reaction would thus lead to 18O labeling in the 

terminal phosphate residues of polyP chains. Therefore, 18O enrichments would be higher in 

shorter polyp chains (Table 7).  
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Table 7: Expected 18O enrichment in polyP with PPX as the dominate enzyme leading to 

exclusively 18O enriched terminal Pi residues. 

Pi residues in polyP Enrichment 18O 

3 66.6 atom% 

10 20 atom% 

50 4 atom% 

100 2 atom% 

1000 0.2 atom% 

 

Enrichments reached maximum values between 2 – 4 atom% (Table 2), which would 

correspond to polyP chain lengths of 50 – 100 Pi residues if only the terminal Pi residues 

would contain 18O labeled Pi. Since polyP chain length varies between three orders of 

magnitude (101 – 103 Pi residues, Kornberg et al., 1999), it would be necessary to determine 

the exact chain length of polyP to make final conclusions about the dominant enzymes being 

responsible for 18O enrichments, for example by Raman spectroscopy.  

Substantial 18O enrichments were not only found in P rich areas defined as polyP, but also in 

the cytoplasm, especially during low sulfide incubations (Figure 19). Preparation for 

nanoSIMS analysis includes drying of sample, sputtering with a golden layer and measuring 

in a vacuum, thus strong mechanical forces are applied to the sample. Therefore, liquid 

compounds are not considered during nanoSIMS analysis and results obtained originated 

exclusively from solid compounds. Cellular dry weight is composed to a large fraction of 

55% by proteins (Neidhardt et al., 1990), which can serve as a marker for metabolic activity 

(Hatzenpichler et al., 2014). Since oxygen isotope exchange also occurs at amino acids 

forming proteins (Springson & Rittenberg, 1951, Ye et al., 2009), the observed enrichments 

in the cytoplasm indicate ongoing standard metabolic processes like the synthesis of proteins. 

The pronounced differences in 18O enrichments present in the cytoplasm between filaments 

exposed to low and high sulfide fluxes and incubated under oxic conditions, indicate different 

physiological conditions prevailing in filaments during the respective treatments. Since the 

cytoplasm of filaments exposed to high sulfide fluxes was equally low enriched with 18O than 

the metabolically inactive control, standard metabolic processes, expressed as 18O 

enrichments in the cytoplasm, where drastically reduced during the exposure to high sulfide 
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fluxes. Considering that sulfide serves as the electron donor in the standard metabolism of 

Beggiatoa sp. (Reaction 6, Winogradsky, 1987, Nelson et al., 1983), it is remarkable that the 

general metabolism was impaired during both oxic and anoxic incubation conditions, caused 

by sulfide. It shows that even in the presence of oxygen, sulfide concentrations exceeded the 

oxygen concentrations needed to oxidize all sulfide present, which lead to an accumulation 

of stressfully high sulfide concentrations.  

H2S + 2 O2   SO4
2- + 2 H+   [6] 

These unfavorable conditions are here reflected by low 18O enrichments in the cytoplasm, 

but can also be inferred from the intracellular sulfur content. It was shown that Beggiatoa sp. 

35Flor can switch to sulfur respiration in the absence of oxygen concomitantly with an 

oxidation of intracellularly stored polyhydroxyalkanoates (PHA) (Schwedt et al., 2012). The 

low sulfur counts present in filaments exposed to high sulfide fluxes and incubated under 

anoxic conditions (Figure 21) support that adverse conditions prevailed. However, high 

sulfur content during the oxic incubation demonstrates an improved stress tolerance against 

high sulfide fluxes with oxygen being present. A different picture prevailed in filaments 

exposed to low sulfide concentrations, where sulfur content did not differ between the 

different treatments (Figure 20). It shows that filaments where not limited in oxygen since 

filaments did not switch to sulfur respiration. In addition, 18O enrichments in the cytoplasm 

were significantly higher after oxic and anoxic incubations compared to the inactive control. 

This underlines the presence of a general metabolic activity also during the energetically 

unfavorable anoxic incubation condition. It shows that sulfide levels were not high enough 

to trigger a stress response in the cells, either by sulfur respiration or a reduction of metabolic 

processes. This demonstrates that a general metabolism was active, which was able to be 

maintained also under these energetically unfavorable conditions (Langer et al., 2018).  

Despite filaments exposed to high sulfide fluxes were impaired in their standard metabolic 

processes, polyP was highest enriched in the oxic incubation under these conditions (Table 

2).  This suggests a fundamental physiological role of polyP under these stressful conditions. 

The relative importance of polyP is also underlined when comparing the ratio between the 

means of enrichments in polyP and the cytoplasm (Table 4). This shows that elevated sulfide 

concentrations lead to a restriction of metabolic activity at polyP, which is supported when 

comparing filaments exposed to low sulfide concentrations where the relative importance of 

polyP is less pronounced. The increased importance of polyP during unfavorable conditions 
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presumably goes hand in hand with an increased activity of enzymes related to polyP 

metabolisms. An upregulation of PPK was for example shown in P stressed cultures of the 

marine diatom Thalissiosira pseudonana. (Dyhrman et al., 2012). Thus, polyP seems to have 

a pivotal role against stressfully environmental conditions which, besides form P limitation, 

can potentially be induced by several factors. One example is the exposure to high sulfide 

concentrations resulting in a release of Pi from polyP degradation. This was shown for 

Beggiatoa sp. 35Flor as a response mechanism to tolerate high sulfide concentrations when 

no suitable electron acceptor was present (Brock & Schulz-Vogt, 2011). Another stimulus 

could be energy-limited environments, in which polyP was proposed to function as an energy 

reservoir to maintain cellular integrity, as proposed for Sulfurimonas spp., which is a 

dominant microorganisms at pelagic redox clines (Möller et al., 2018). However, the often 

proposed function of PolyP as a substitute for ATP under energetically unfavorable 

conditions is arguable, since a comparable turnover time of the two energy carriers would be 

needed. Since the turnover time of ATP is substantially faster than the turnover time of polyP 

it could be only replaced for a maximum of two minutes, which was shown for E.coli in 

stationary phase (Chapman & Atkinson, 1977; Kornberg et al., 1999). Thus, polyP has most 

likely a more regularly role (Docampo et al., 2005), which can be vital during environmental 

stress.  

The general metabolic importance of polyP, not only during stressful condition, are supported 

by the presence of significant 18O enrichments above the natural background in polyP 

irrespective of the treatment. This indicates a pivotal role of polyP also during favorable 

growth conditions, which is connected to a vital intracellularly recycling of polyP. 

NanoSIMS analyses were conducted after filaments were grown for seven days (see H2O 

incubation of Beggiatoa strain 35 Flor M&M), which lead to a depletion of Pi in the external 

medium (Brock & Schulz-Vogt, 2011). Since labelled water was added after seven days, 

enrichments in polyP, which are synonymous with enzymatic activity of polyP related 

enzymes, do not originate from polyP chain length prolongation with Pi from the external 

medium being fully labelled with 18O established by PPase (section 4.1.1). According to the 

hitherto understanding of polyP cycling, one would expect a more inactive polyP pool, which 

cannot be increased due to a lack of available external Pi. However, polyP was significantly 

enriched, possibly at the end residue of polyP (section 4.1.1) showing a continuous 

involvement of polyP enzymes in metabolic processes, also during favorable oxic growth 

conditions. Thus, the enrichments in polyP indicating enzymatic activity originate from an 
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intense intracellular recycling of Pi. This is presumably mediated by PPK connecting the 

energetic P pools of ATP and polyP (Langer et al., 2018).  Consequently, polyP utilization is 

not only strengthened during unfavorable environmental conditions, but is highly relevant 

also under oxic conditions. Therefore, polyP does not necessarily represent a “silent” P pool 

or serves only as an auxiliary metabolism as assumed for polyP metabolism for 

Thiomargarita namibiensis (Schulz & Schulz, 2005), or assumed from widely accepted 

polyP cycling models. Furthermore, the equivalent importance of polyP under oxic and 

anoxic conditions is underlined by similar intense P counts by nanoSIMS under both 

conditions (Figure 15). This is in contrast to sulfur, which intensities depend on 

environmental conditions (see above). The constant levels of polyP inferred from nanoSIMS 

counts in combination with indications on a highly mobile and enzymatically used polyP 

pool inferred from 18O enrichments argues for a stable level of polyP related enzymes. 

Laboratory experiments conducted with E.coli showed a constant level of polyP enzymes 

during the cell cycle which involved accumulation of large amounts of polyP (Rao et al., 

1998). Interestingly, high accumulation of polyP was observed during Pi starvation, similar 

to results obtained by Dyhrman et al., 2012, where P was reallocated to polyP in the absence 

of Pi. Since external Pi was not available for filaments during 18O incubation, the observed 

enrichments under oxic incubation could hint to similar P limited conditions.  
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5 Conclusion and Outlook  

The relevance of polyP for global and local P cycling has been often neglected, which lead 

to the perception of polyP as a “forgotten molecule” (Kornberg et al., 1995). The lack of 

studies dealing with polyP is mainly grounded in overall challenges in polyP research. This 

ranges from inadequate quantification methods to limited possibilities for getting insights 

into cellular P cycling, because of the presence of only one stable P isotope. Within this thesis 

I aimed to add insights about the quantity of polyP in coastal and marine environments and 

established a method enabling the visualization of O rich compounds like polyP to get insight 

about cellular activity of polyP.   

PolyP quantification revealed a permanent presence of a background cellular polyP content 

in all analysed samples, irrespective if from pelagic bacteria from waters of the coastal Baltic 

Sea, from waters originating from the upwelling area off Peru, or in large sulfur bacteria 

attributed to the genus Beggiatoa spp. in sediments off Peru. Analysis of polyP in the latter 

confirms that these bacteria might contribute to the observed sedimentary Pi fluxes repeatedly 

observed in these sediments (Noffke et al., 2012, Lomnitz et al., 2016). The overall low 

oxygen content in these bottom waters has most likely supported the degradation of polyP 

with subsequent Pi release as reported from other marine anoxic sediments inferred from Pi 

flux measurements (Schulz & Schulz, 2005) or metatransciptomic analyses (Jones  et al., 

2015). The high potential contribution of these filaments to observed Pi fluxes is also 

reflected in very big sized intracellular polyP inclusions. These were found in filaments with 

relatively small filament diameter representing the largest polyP granules found in the 

environment similar to those reported from the cultured strain Beggiatoa sp. 35Flor (Brock 

et al., 2012). The results obtained from quantification of polyP in bacteria from a coastal area 

of the Baltic Sea do not support a relevant role of polyP for the local P cycle as for example 

reported from the Sargasso Sea (Martin et al., 2014). Nevertheless, the continuous presence 

of polyP in all samples strongly argues for a permanent need of this inorganic molecule for 

basic metabolic processes. This can be inferred from results obtained after incubation of 

Beggiatoa sp. 35Flor with 18O water and subsequent nanoSIMS analysis. A permanent 

activity of polyP related enzymes was found, both during favourable and stressful growth 

conditions. Therefore, polyP is also heavily recycled and actively used also during favourable 

growth conditions and not an inactive P reservoir in oxygenated environments as often 

assumed. Enzyme activity was restricted to polyP related enzymes during anoxic high sulfide 
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conditions. This is in line with findings of extensive polyP utilization during exposure to high 

sulfide (Brock & Schulz-Vogt et al., 2011) and underlining the importance of polyP for 

cellular processes. 

The newly established nanoSIMS method opens great possibilities to assess the activity of 

polyP related enzymes in different environments. Ex situ incubations of Beggiatoa spp. 

filaments showed the applicability for field samples, but also the need for preliminary 

experiments to find the correct tracer concentration for meaningful results. A simultaneously 

analysis of samples by Raman spectroscopy to determine polyP chain length would provide 

valuable information about the prevailing polyP enzymes being involved. The large polyP 

granules determined in Beggiatoa spp., and the permanent presence of polyP in bacteria also 

from coastal waters of the Baltic Sea shows the large potential for bacterial mediated Pi 

release in environments with changing redox conditions. The new insights about polyP 

quantities in different environments together with the now feasible visualization of the 

activity of polyP related enzymes expands the understanding of polyP and opens new 

possibilities for future research.   
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