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I

Abstract
In this thesis we provide an overview of formal duality with an emphasis on the
authors contributions. Formal duality has been introduced during the study of

energy minimization problems. Every formally dual set can be obtained from a
primitive formally dual set or, more generally from an irreducible formally dual
set. By interpreting formally dual sets as even sets, we obtain results about the

structure of its multiset of differences. Using several methods, including even set
theory and the field-descent method, it is possible to obtain examples of

primitive/irreducible formally dual sets as well as non-existence results. In the
cases where no result is known, a graph search algorithm can be used for further
investigation. Overall, primitive formally dual sets seem rare in cyclic groups,

but occasionally exist in finite abelian groups.

Zusammenfassung
In dieser Dissertation geben wir einen Überblick über formale Dualität wobei die
Beiträgen des Autors den Schwerpunkt bilden. Formale Dualität wurde bei der

Untersuchung von Energieminimierungsproblemen eingeführt. Jede formal duale
Menge kann von einer primitiven, oder allgemeiner von einer irreduziblen,

formal dualen Menge, konstruiert werden. Wenn formal duale Mengen als ’even
sets’ interpretiert werden erhält man Resultate über die Multimenge aller ihrer

Differenzen. Mehrere Methoden, wie die ’even set’ Theorie oder die
’field-descent’ Methode, können genutzt werden um Beispiele für

primitive/irreduzible formal duale Mengen sowie nicht-Existenz Resultate zu
erhalten. In Fällen in denen kein anderes Resultat bekannt ist kann ein

graphentheoretischer Suchalgorithmus genutzt werden. Insgesamt scheinen
primitive formal duale Mengen in zyklischen Gruppen selten zu sein, kommen

aber gelegentlich in endlichen abelschen Gruppen vor.
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1 Introduction

The concept of duality is wide spread in mathematics. Roughly said, it guarantees
for certain given mathematical objects a dual object of the same type such that
some properties of the original can be easily derived from the dual and vice versa.
This concept has been established for polytopes, lattices, groups, vector spaces,
optimization problems and many more. In this thesis we study the concept of
formal duality which is a generalization of duality. In general we might say that
from the formal dual of an object some properties of the original object can be
easily derived an vice versa. But unlike duality, there does not need to exists a
formal dual for every given object. Therefore, the question of the characterization
of all objects that permit a formal dual seems natural. The concept of formal duality
has only been introduced for periodic sets and subsets of finite abelian groups so
far. It is an interesting topic due to its connections to energy minimization, which
is studied in physics, as well as difference sets and relative difference sets, which
are studied in combinatorics.

Formal duality is an active field of research. During the study of energy mini-
mization problems Cohn, Kumar and Schürmann introduced in 2009 the concept of
formal duality of periodic lattices and displayed its relation to energy minimization
problems (see [CKS09]). In 2014, Cohn, Kumar, Reiher and Schürmann added a
detailed mathematical foundation and presented a way to reduce the study of for-
mal duality of periodic sets to the study of formal duality in finite abelian groups
(see [CKRS14]). In 2017 the author used elementary number theory to charac-
terize formally dual sets in cyclic groups of odd prime power order (see [Sch17]).
The characterization of formal duality in cyclic groups of even prime power order
as well as the study of further examples has then been added by Xia in 2016 as an
unpublished preprint1 (see [Xia16]). In the year 20181, Malikiosis, inspired by a
talk of Schürmann, used the field descent method and the polynomial method to

1Since some of the cited sources are only published as preprints which are based on preprints
of the preceding papers, the dates in the overview do not appear chronological.
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2 CHAPTER 1. INTRODUCTION

give numerous non-existent results in the cyclic case, especially for cyclic groups
whose order is divisible by exactly two distinct primes (see [Mal18]). Later on in
2019 Li and Pott in collaboration with the author introduced the concept of even
sets to study formal duality and gave various new examples and non-existence re-
sults (see [LPS19]). They also detected a strong connection of formal duality to
difference sets and relative difference sets. Inspired by this, Li and Pott also pro-
posed in 20181 a construction framework yielding a family of formally dual sets
of unequal size (see [LP18]). In 20191 the same authors provided an alternative
direct construction of this example (see [LP19]).

In this thesis we give a summary of the study of formal duality with an em-
phasis on the authors contributions, especially the even set theory. The thesis is
structured in eight chapters. In Chapter 2 we give the necessary mathematical
background, in particular on linear characters and group algebras. Next, we pro-
vide an overview of the energy minimization problem in Chapter 3 and define
formal duality in this context. In the same chapter we discuss the relation of for-
mal duality of periodic sets and formal duality in finite abelian groups. In Chapter
4 we introduce the even set theory and its results, which are used on several occa-
sions in the rest of the thesis. The results are formulated in a new visual language
based on Hasse-diagrams, introduced in Section 4.2. That chapter also contains
some yet unpublished results, for example Proposition 4.23 as well as several about
formally dual sets of small rank in Section 4.4. Then we discuss non-existence re-
sults in Chapter 5. This includes unpublished results of the author (for example
Theorems 5.7 and 5.11) as well as alternative proofs (for example Corollary 5.12).
Within that chapter we see that formal duality in cyclic groups seems rare. On the
contrary we state in Chapter 6 several infinite families of examples in non-cyclic
groups. This includes an unpublished discussion of irreducibility in Section 6.2.
In Chapter 7, we discuss an algorithmic framework which is useful to produce
complete lists of formally dual sets in cases where no theoretical result is known.
This algorithm has been applied to small groups to find the complete list of for-
mally dual sets of small size (see Table A.1 in the appendix). A comparison of the
resulting heuristics is also contained. In the last Chapter, we conclude the thesis
with several open questions for future investigation.



2 Background

In this chapter we present the mathematical background needed to understand this
thesis. The discussion includes cyclotomic fields, (linear) characters of groups (see
Section 2.1) as well as rational group algebras (see Section 2.2) and a discussion
of the subalgebra (𝐺) defined in Section 2.2 which plays a special role during
the rest of the thesis. We require basic knowledge about finite abelian groups and
number theory.

2.1 Cyclotomic fields and linear characters
First we give some background about cyclotomic fields which are subfields of the
complex plane. Further information on cyclotomic fields can be found, for exam-
ple, in [Bou03] or [Edw84]. We start with the definition of roots of unity: An 𝑛-th
root of unity 𝜁 is a root of the polynomial 𝑧𝑛 = 1 in the complex planeℂ. It is called
primitive 𝑛-th root of unity if 𝜁𝑘 ≠ 1 for all 𝑘 < 𝑛. We define 𝜁𝑛 = 𝑒2𝜋𝑖∕𝑛 and note
that the 𝑛-th roots of unity are exactly the powers of 𝜁 , i.e. 𝜁𝑘𝑛 for 𝑘 = 0,… , 𝑛− 1.
Furthermore, 𝜁𝑘𝑛 is primitive if and only if gcd(𝑛, 𝑘) = 1.

The 𝑛-th cyclotomic field is obtained by adjoining a primitive 𝑛-th root of unity
to the field of rational numbers, i.e. ℚ(𝜁𝑛). We define the set Gal(ℚ(𝜁𝑛) ∶ ℚ) to
contain all automorphism of ℚ(𝜁𝑛) that fix ℚ pointwise. An element of
Gal(ℚ(𝜁𝑛) ∶ ℚ) is called a Galois automorphism of ℚ(𝜁𝑛) over ℚ. In fact, the
Galois automorphism of ℚ(𝜁𝑛) over ℚ are exactly the linear extensions of 𝜁𝑛 ↦ 𝜁𝑘𝑛
for any 𝑘 relative prime to 𝑛.

Another important tool is the concept of algebraic integers which is a gener-
alization of integer numbers. An algebraic integer is a complex root of a monic
polynomial in ℤ[𝑋]. The sum and the product of two algebraic integers are again
algebraic integers and the rational algebraic integers are exactly the integer num-
bers.

3



4 CHAPTER 2. BACKGROUND

Now we give the needed background about group theory (see also [Hum96])
and linear characters (see also [Ste12]). During this thesis,𝐺will always be a finite
abelian group which can be written additively or multiplicatively (which way is
used should be obvious in the respective context). For any integer 𝑛 we denote the
group of integers modulo 𝑛, by ℤ𝑛 = ℤ∕𝑛ℤ. Similiar, we denote the multiplicative
cyclic group of order 𝑛 by 𝐶𝑛. Recall, that for any finite abelian group 𝐺 there are
integers 𝑛1|… |𝑛𝑚 such that

𝐺 ≃ ℤ𝑛1 ×⋯ × ℤ𝑛𝑚 .

Furthermore, ℤ𝑛1 × ℤ𝑛2 ≃ ℤ𝑛1⋅𝑛2 if and only if gcd(𝑛1, 𝑛2) = 1. For a prime 𝑝 a
𝑝-group is a group such that each element has an order which is a power of 𝑝. The
𝑝-Sylow group 𝐺𝑝 ≤ 𝐺 is the unique maximal 𝑝-subgroup of 𝐺. The exponent
of 𝐺, i.e. exp(𝐺) is the size of the largest cyclic subgroup of 𝐺. The differences
of a set 𝑆 ⊂ 𝐺 are elements that can be written as 𝑎 − 𝑏 (if the group is written
additively) or as 𝑎𝑏−1 (if the group is written multiplicatively) for any 𝑎, 𝑏 ∈ 𝑆.

In the following we define the group of linear characters of 𝐺, also called the
dual group as

�̂� = {𝜒 ∶ 𝐺 → ℂ∗ ∶ 𝜒 is a homomorphism}.

We have ̂̂𝐺 ≃ 𝐺 by setting 𝑎(𝜒) = 𝜒(𝑎). Moreover, we define the annihilator of
𝐻 ≤ 𝐺 as

𝐻⟂ = {𝜒 ∈ �̂� ∶ 𝜒(ℎ) = 1 for all ℎ ∈ 𝐻}

and for every subgroup 𝐿 ≤ �̂� as

𝐿⟂ = {𝑔 ∈ 𝐺 ∶ 𝜒(𝑔) = 1 for all 𝜒 ∈ 𝐿}.

Note that 𝐻⟂⟂ = 𝐻 . The groups �̂�∕𝐻⟂ and �̂� are isomorphic by the identifica-
tion

[𝜒 ⋅𝐻⟂](ℎ) = 𝜒(ℎ)

for all ℎ ∈ 𝐻 . For any set 𝑆, we say a character 𝜒 is principal on 𝑆 if 𝜒(𝑔) = 1
for all 𝑔 ∈ 𝑆. Or equivalently, 𝜒 is principal on 𝑆 if 𝜒 ∈ ⟨𝑆⟩⟂. Furthermore, we
have

𝐻⟂
1 ∩⋯ ∩𝐻⟂

𝑟 = ⟨𝐻1,… ,𝐻𝑟⟩
⟂ .

The discrete Fourier transform of a function 𝜈 ∶ 𝐺 ↦ ℂ is defined as

[DFT(𝜈)](𝜒) =
∑

𝑔∈𝐺
𝜒(𝑔)𝜈(𝑔).
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Note, if 𝜈(𝑔) = 𝜈(𝑔−1) for all 𝑔, then also

[DFT(𝜈)](𝜒) =
∑

𝑔∈𝐺
𝜒(𝑔)𝜈(𝑔).

The dual group �̂� is non-canonically isomorphic to 𝐺. So we have several
choices of isomorphism Δ ∶ 𝐺 → �̂�. For every isomorphism Δ there is an adjoint
isomorphism Δ∗ given by [Δ∗𝑎](𝑏) = [Δ𝑏](𝑎) for all 𝑎, 𝑏 ∈ 𝐺.

A similar approach is to take a bi-linear function ⟨⋅, ⋅⟩ ∶ 𝐺 × 𝐺 → ℂ∗ which
we call a pairing. We define the standard pairing of ℤ𝑛1 ×⋯ × ℤ𝑛𝑚 as

⟨(𝑎1,… , 𝑎𝑚), (𝑏1,… , 𝑏𝑚)⟩ = 𝜁𝑎1𝑏1𝑛1
⋅ ⋯ ⋅ 𝜁𝑎𝑚𝑏𝑚𝑛𝑚

.

Note that the standard pairing depends on the representation of 𝐺 as a product
of cyclic subgroups. The isomorphisms from 𝐺 to �̂� and the bi-linear functions
correspond to each other by setting ⟨𝑎, 𝑏⟩Δ = [Δ𝑎](𝑏) for a given isomorphism Δ
and vice versa. Observe that ⟨𝑎, 𝑏⟩Δ = ⟨𝑏, 𝑎⟩Δ∗

. Furthermore, note that:

Lemma 2.1. We have Δ∗𝐻 = (Δ−1𝐻⟂)⟂.

Proof. The assertion follows by

Δ∗𝐻 = Δ∗{𝑔 ∶ 𝜓(𝑔) = 1 for all 𝜓 ∈ 𝐻⟂}
= {Δ∗𝑔 ∶ [Δ∗𝑔](Δ(−1)𝜓) = 1 for all 𝜓 ∈ 𝐻⟂}
= {𝜒 ∶ 𝜒(𝑎) = 1 for all 𝑎 ∈ Δ(−1)𝐻⟂} = (Δ(−1)𝐻⟂)⟂.

2.2 The rational group algebra
In the following we give some background about the rational group algebra which
is essential for the even set approach in Chapter 4 and other results of this thesis.
More information can be found in [Lan02, page 104]. Here, for a finite abelian
group (𝐺, ⋅), the group algebra ℚ𝐺 is the set of formal sums 𝐴 =

∑

𝑔∈𝐺 𝑎𝑔𝑔 with
coefficients 𝑎𝑔 ∈ ℚ.

We define addition in ℚ𝐺 by
(

∑

𝑔∈𝐺
𝑎𝑔𝑔

)

+

(

∑

𝑔∈𝐺
𝑏𝑔𝑔

)

=
∑

𝑔∈𝐺
(𝑎𝑔 + 𝑏𝑔)𝑔
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and multiplication by
(

∑

𝑔∈𝐺
𝑎𝑔𝑔

)

⋅

(

∑

𝑔∈𝐺
𝑏𝑔𝑔

)

=
∑

𝑔∈𝐺

∑

ℎ∈𝐺
(𝑎𝑔𝑎ℎ)𝑔 ⋅ ℎ =

∑

𝑔∈𝐺

(

∑

ℎ∈𝐺
𝑎ℎ𝑎ℎ−1𝑔

)

𝑔.

Under this addition and multiplication ℚ𝐺 is indeed an algebra.
We write [𝐴]𝑔 = 𝑎𝑔 to refer to the coefficient of 𝑔 in𝐴. The support supp(𝐴) of

a group algebra element is defined as the set of elements with nonzero coefficients,
i.e.

supp(𝐴) = {𝑔 ∈ 𝐺 ∶ [𝐴]𝑔 ≠ 0}.

For any 𝑆 ⊂ 𝐺 there is an element of the group algebra associated with 𝑆, i.e.
∑

𝑔∈𝑆 𝑔. During this thesis we use various group algebra equations where almost
all elements involved are of type

∑

𝑔∈𝑆 𝑔. To avoid overcomplicated formulas, we
abuse notation by identifying

𝑆 =
∑

𝑔∈𝑆
𝑔 ∈ ℚ𝐺.

In this sense, a linear combination of subgroups refers to
∑𝑟

𝑖=1 𝜆𝑖𝐻𝑖 ∈ ℚ𝐺 for
some subgroups 𝐻𝑖 ≤ 𝐺 and coefficients 𝜆𝑖 ∈ ℚ. We define (𝐺) ≤ ℚ𝐺 to be
the set spanned by the subgroups of 𝐺.

The multiplication of two subsets 𝑆 ⋅ 𝑇 always refers to the multiplications
(
∑

𝑔∈𝑆 𝑔) ⋅ (
∑

𝑔∈𝑇 𝑔) ∈ ℚ𝐺. For subgroups spanned by the elements of sets we use
the notation

⟨𝑆1,… , 𝑆𝑘⟩ = {
∏

𝑔∈𝑆1∪⋯∪𝑆𝑘

𝑔𝑘𝑔 ∶ 𝑘𝑔 ∈ ℤ}.

If we use any set operation like ∪,∩ or ⧵ that do not involve any form of addition
or multiplication, we treat the present variables as sets.

For example 𝑆 ∩ 𝑇 =
∑

𝑔∈𝑆∩𝑇 𝑔. Whenever group algebra operations and
group operations might be confused we use [… ] to indicate a group operation.
For example [𝑆 ⋅ 𝑇 ] = {𝑎 ⋅ 𝑏 ∶ 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑇 }.

For any homomorphism 𝜙 ∶ 𝐺 ↦ 𝐻 we define 𝐴(𝜙) =
∑

𝑔∈𝐺 𝑎𝑔𝜙(𝑔) ∈ ℚ𝐻
and for any integer 𝑘 we define 𝐴(𝑘) =

∑

𝑔∈𝐺 𝑎𝑔𝑔𝑘. Note if gcd(𝑘, |𝐺|) = 1, then
𝑔 ↦ 𝑔𝑘 is an automorphism. For further simplification of the notation, we set
𝑞 = 𝑞 ⋅ 1𝐺 ∈ ℚ𝐺 for any 𝑞 ∈ ℚ.

Remark 2.2. For a set 𝑆 ⊂ 𝐺 and an element 𝑣 ∈ 𝐺 we have

1. 𝑣𝑆 = [𝑣𝑆],
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2. 𝑆𝑆 (−1) is the multiset of differences of 𝑆, that means supp(𝑆𝑆 (−1)) contains
all differences of 𝑆 and [𝑆𝑆 (−1)]𝑔 = #{(𝑥, 𝑦) ∈ 𝑆 × 𝑆 ∶ 𝑥𝑦−1 = 𝑔}.

Note that any character 𝜒 ∈ �̂� can be applied to 𝐴 =
∑

𝑔∈𝐺 𝑎𝑔𝑔 ∈ ℚ𝐺 as
𝜒(𝐴) =

∑

𝑔∈𝐺 𝑎𝑔𝜒(𝑔).
An element 𝐴 =

∑

𝑔∈𝐺 𝑎𝑔𝑔 can be interpreted as a function 𝑔 ↦ 𝑎𝑔 and the
discrete fourier transform can be applied to group algebra elements.

Thus, the coefficients of 𝐴 can be recovered given all character values:

Theorem 2.3 (Fourier inversion formula, [Ste12, Theorem 5.3.6]1). If𝐴 =
∑

𝑔∈𝐺 𝑎𝑔𝑔
then

𝑎𝑔 =
1
|𝐺|

∑

𝜒∈�̂�

𝜒(𝐴)𝜒(𝑔).

Also, the moebius inversion formula can be used in the group algebra:

Theorem 2.4 (Moebius inversion formula, [Sta12, Proposition 3.7.1]). For any
partially ordered set (𝑉 ,≤) we define the Moebius function 𝜇 ∶ 𝑉 × 𝑉 ↦ ℤ re-
cursively by: 𝜇(𝑠, 𝑠) = 1 and 𝜇(𝑠, 𝑢) = −

∑

𝑠≤𝑡<𝑢 𝜇(𝑠, 𝑡) for 𝑠 ≠ 𝑢. Let 𝑓 ∶ 𝑉 → ℚ
be a function and 𝑔 ∶ 𝑉 → ℚ be defined by

𝑔(𝑡) =
∑

𝑠≤𝑡
𝑓 (𝑠).

Then we have
𝑓 (𝑡) =

∑

𝑠≤𝑡
𝑔(𝑠)𝜇(𝑠, 𝑡).

Note that the moebius inversion is still valid for 𝑓 ∶ 𝑉 → ℚ𝐺 and 𝑔 ∶ 𝑉 → ℚ𝐺
since group algebra addition is evaluated component wise.

In the set of integers partially ordered by divisibility we simplify the formula
using number theoretic functions: The Moebius function of an integer 𝑛 with 𝑘
distinct prime factors is defined as

𝜇(𝑛) =

{

(−1)𝑘 if 𝑛 is squarefree
0 otherwise

.

For any 𝑓 ∶ ℕ ↦ ℚ and 𝑔 ∶ ℕ ↦ ℚ given by 𝑔(𝑡) =
∑

𝑠|𝑡 𝑓 (𝑠) we have

𝑔(𝑡) =
∑

𝑠|𝑡

𝑔(𝑠)𝜇(𝑠∕𝑡) =
∑

𝑠|𝑡

𝑔(𝑠∕𝑡)𝜇(𝑠).

1Note, that this version can be easily derived from the cited version by setting 𝑓 ∶ 𝑔 ↦ 𝑎𝑔 and
the simple fact that then [DFT 𝑓 ](𝜒−1)] = 𝜒(𝐴)
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Subgroups of 𝐺 have additional properties in the group algebra. The product
of subgroups is easily evaluated:

Lemma 2.5. Let 𝐻,𝐿 ≤ 𝐺 and 𝐴 ∈ ℚ𝐺, then

𝐻 ⋅ 𝐴 =
∑

𝑣𝐻∈𝐺∕𝐻

(

∑

𝑔∈𝑣𝐻
[𝐴]𝑔

)

⋅ 𝑣𝐻.

In particular
𝐻 ⋅ 𝐿 = |𝐻 ∩ 𝐿| ⟨𝐻,𝐿⟩ .

Multiplying by a subgroup is related to natural projections in the following
way:

Lemma 2.6. Let 𝐿 ≤ 𝐺, 𝐴 ∈ ℚ𝐺 and 𝜑 ∶ 𝐺 ↦ 𝐺∕𝐿 the natural projection map.
We have

1. (𝐿 ⋅ 𝐴)(𝜑) = |𝐿| ⋅ 𝐴(𝜑),

2. 𝐻 (𝜑) = |𝐿| ⋅𝐻∕𝐿 for every group 𝐻 with 𝐿 ≤ 𝐻 ,

3. 𝑆 (𝜑) = 𝑘 ⋅ 𝜑(𝑆) for every 𝑆 ⊂ 𝐺 such that |𝑆 ∩ 𝑎𝐿| ∈ {0, 𝑘} for all 𝑎 ∈ 𝐺
and some integer 𝑘.

Proof. We have
𝐿(𝜑) =

∑

𝑔∈𝐿
𝜑(𝑔) =

∑

𝑔∈𝐿
1𝐺∕𝐿 = |𝐿|.

Therefore,
(𝐿 ⋅ 𝐴)(𝜑) = 𝐿(𝜑)𝐴(𝜑) = |𝐿| ⋅ 𝐴(𝜑).

Moreover,

𝐻 (𝜑) =
∑

𝑔∈𝐻
𝜑(𝑔) =

∑

[𝑣𝐿]∈𝐻∕𝐿

∑

𝑔∈𝑣𝐿
𝜑(𝑔) = |𝐿| ⋅𝐻∕𝐿

and
𝑆 (𝜑) =

∑

[𝑎𝐿]∈𝐺∕𝐿
|𝑆 ∩ 𝑎𝐿|[𝑎𝐿] = 𝑘 ⋅

∑

[𝑎𝐿]∈𝐺∕𝐿
|𝑆∩𝑎𝐿|≠0

[𝑎𝐿] = 𝑘𝜑(𝑆).

When applying characters to subgroups the following result easily follows from
the fact that the sum of all 𝑛-th roots of unity is zero:
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Lemma 2.7. For any 𝜒 ∈ �̂� and any group 𝐻 ≤ 𝐺 we have

𝜒(𝐻) =

{

|𝐻| if 𝜒 ∈ 𝐻⟂

0 otherwise
.

On the other hand, for any 𝑔 ∈ 𝐺 and any group 𝐿 ≤ �̂� we have

𝑔(𝐿) =
∑

𝜒∈𝐿
𝜒(𝑔) =

{

|𝐿| if 𝑔 ∈ 𝐿⟂

0 otherwise
.

Moreover, we have
DFT(𝐻) = |𝐻| ⋅𝐻⟂

2.3 The sub-algebra (𝐺)
The subalgebra (𝐺) is an important tool for the study of even sets in Chapter 4.
We introduce some related results:

Lemma 2.8. For any cyclic group 𝐶 ≤ 𝐺 define 𝜏(𝐶) = {ℎ ∈ 𝐺 ∶ ⟨ℎ⟩ = 𝐶}.
We have

1. the set  = {𝜏(𝐶) ∶ 𝐶 ≤ 𝐺, 𝐶 cyclic} is a basis of (𝐺),

2. the cyclic groups form a basis of (𝐺),

3. the set 𝒞 = {𝐶 ∶ 𝐶 ≤ 𝐺,𝐶 cyclic} is a basis of (𝐺) (for fixed isomor-
phism Δ).

Especially, if [𝐴]𝑔 = [𝐴]ℎ for all 𝑔, ℎ such that ⟨𝑔⟩ = ⟨ℎ⟩ then 𝐴 ∈ (𝐺).

Proof. Clearly 𝐺 is a disjoint union of the sets in  . Thus, the elements of 
are indeed linear independent in ℚ𝐺. Furthermore, for any cyclic group 𝐶 ≤ 𝐺
we have 𝐶 =

∑

𝐷≤𝐶 𝜏(𝐷). Note, that the set of cyclic subgroups of 𝐺 is partially
ordered by inclusion. By Moebius inversion (Theorem 2.4) we therefore have

𝜏(𝐶) =
∑

𝐷≤𝐶
𝜇(𝐷,𝐶)𝐷.

Thus,  and the cyclic groups span the same sub-algebra 𝑀 ≤ ℚ𝐺. Since the
cardinalities are identical and  contains linear independent elements, both sets
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are bases of 𝑀 . Note that cyclic groups are contained in (𝐺) and therefore
𝑀 ≤ (𝐺). Furthermore,

𝐻 =
∑

𝐶≤𝐻 ∶ 𝐶 cyclic
𝜏(𝐶)

for any subgroup 𝐻 ≤ 𝐺 which shows that (𝐺) ≤𝑀 .
The last fact follows by using the discrete fourier transform. Suppose 𝐻 ≤ 𝐺

is an arbitrary subgroup. Then (Δ𝐻)⟂ is also a subgroup of 𝐺 and can thus be
written as linear combination of cyclic groups, say

(Δ𝐻)⟂ =
∑

𝑖∈𝐼
𝜆𝑖𝐶𝑖.

Now we use the discrete fourier transform on both sides and get by Lemma 2.7

|(Δ𝐻)⟂|Δ𝐻 =
∑

𝑖∈𝐼
𝜆𝑖|𝐶𝑖|𝐶

⟂
𝑖 .

Applying the isomorphism Δ−1 we then have

𝐻 =
∑

𝑖∈𝐼
𝜆𝑖|𝐶𝑖|∕|(Δ𝐻)⟂|𝐶𝑖 =

∑

𝑖∈𝐼
𝜆𝑖|𝐶𝑖| ⋅ |𝐻|∕|𝐺| ⋅ 𝐶𝑖.

Thus 𝒞 generates (𝐺). Due to the cardinality of 𝒞 it is also a basis. By sum-
marizing everything, the assertion follows.

By considering the transformation rules given in the proof above we get the
following:

Corollary 2.9. If 𝐴 ∈ (𝐺) has integer coefficients then

1. there are cyclic groups 𝐶1,… , 𝐶𝑟 such that 𝐴 =
∑𝑟

𝑖=1 𝜆𝑖𝐶𝑖 with 𝜆𝑖 ∈ ℤ,

2. there are cyclic groups 𝐶1,…𝐶𝑟 such that 𝐴 =
∑𝑟

𝑖=1
𝜆𝑖|𝐶𝑖|
|𝐺|

𝐶𝑖 with 𝜆𝑖 ∈ ℤ.

Proof. The first fact follows directly from the proof of Lemma 2.8. For the second
fact consider 𝐴 =

∑𝑟
𝑗=1 𝜇𝑗𝐶𝑗 for cyclic groups 𝐶𝑗 and 𝜇𝑗 ∈ ℤ. Also, there are

integer coefficients 𝜇𝑖,𝑗 such that (Δ𝐶𝑗)⟂ =
∑𝑟

𝑖=1 𝜇𝑖,𝑗𝐶𝑖. Analog to the proof of
Lemma 2.8 we then have

𝐶𝑗 =
𝑟

∑

𝑖=1
𝜇𝑖,𝑗

|𝐶𝑖| ⋅ |𝐶𝑗|
|𝐺|

𝐶𝑖.
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Altogether,

𝐴 =
𝑟

∑

𝑖=1

(

𝑟
∑

𝑗=1
𝜇𝑗𝜇𝑖,𝑗|𝐶𝑗|

)

|𝐶𝑖|
|𝐺|

𝐶𝑖

and by choosing 𝜆𝑖 =
∑𝑟

𝑗=1 𝜇𝑗𝜇𝑖,𝑗|𝐶𝑗| the assertion follows.

Another way to characterize the sub algebra (𝐺) is the following:

Lemma 2.10. Let 𝐴 =
∑

𝑔∈𝐺 𝑎𝑔𝑔 ∈ ℚ𝐺 be a group algebra element. We have
𝐴 ∈ (𝐺) if and only if 𝜒(𝐴) ∈ ℚ for all 𝜒 ∈ �̂�.

Proof. Suppose 𝐴 =
∑𝑟

𝑖=1 𝜆𝑖𝐻𝑖 is a linear combination of subgroups in ℚ𝐺. By
Lemma 2.7 we have

𝜒(𝐴) =
𝑟

∑

𝑖=1
𝜆𝑖𝜒(𝐻𝑖) ∈ ℚ

for all 𝜒 ∈ �̂�. On the other hand, assume 𝜒(𝐴) ∈ ℚ for every 𝜒 ∈ �̂�. Fix an
element 𝑔 ∈ 𝐺 and an integer 𝑘 with gcd(𝑘, ord(𝑔)) = 1 where 𝑛 = |𝐺|. There
is an integer 𝑘′ ≡ 𝑘 mod ord(𝑔) such that gcd(𝑘′, 𝑛) = 1. Then 𝜎𝑘′ ∶ 𝜁𝑛 ↦ 𝜁𝑘′𝑛
is a Galois automorphism in Gal(ℚ(𝜁𝑛) ∶ ℚ). By the Fourier inversion formula
(Theorem 2.3) we have

𝑎𝑔 = 𝜎𝑘′(𝑎𝑔) =
1
|𝐺|

∑

𝜒∈�̂�

𝜎𝑘′(𝜒(𝐴)) ⋅ 𝜎𝑘′(𝜒(𝑔)) =
1
|𝐺|

∑

𝜒∈�̂�

𝜒(𝐴) ⋅ 𝜒(𝑔𝑘) = 𝑎𝑔𝑘 .

If 𝑔 and ℎ span the same subgroup, then there is a 𝑘 relative prime to the order of
𝑔 such that ℎ = 𝑔𝑘. By Lemma 2.8 this shows the assertion.
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3 Motivation and Definition

There are various multi-particle systems in the physical world. Such systems tend
to loose energy, until they reach a state of minimal possible energy (a so called
ground state). A description of these ground states is of great interest among
physicists. Related mathematical models are the Thomson problem and the en-
ergy minimization problem. While studying the Energy Minimization Problem,
Cohn, Kumar and Schürmann introduced the concept of formal duality. Later on,
they translated it in a combinatorial setting. This chapter gives a detailed motiva-
tion of the formal duality concept. Furthermore, it states the main definitions of
the thesis.

In Section 3.1 we give a brief overview of energy minimization of periodic
sets. In Section 3.2 we define formal duality and discuss the relation between
formal duality of periodic sets and formal duality in finite abelian groups. To con-
clude this chapter, we derive the combinatorial counterpart of energy minimizers
in Section 3.3.

3.1 Energy minimization
In 1904 J.J. Thomson, the inventor of a famous atom model, considered the prob-
lem of minimizing potential energy of point configurations (see [Tho04]). He stud-
ied in which configuration electrons will appear if they minimize the Coulomb
potential.

From a mathematical point of view this is a question about point configurations
on the unit sphere that minimize some notion of energy. Say for some pair potential
function 𝑓 ∶ (0, 2] → ℝ (depending only on distances between distinct points) we
ask to find a set 𝐶 ⊂ 𝑆𝑑 of given size 𝑘 such that

∑

𝑥,𝑦∈𝐶
𝑥≠𝑦

𝑓 (|𝑥 − 𝑦|)

13
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is minimal. This is called the Thomson problem.
Many authors discussed this question for different functions 𝑓 and different

values of 𝑘, for example Yudin, Kolushov and Andreev (see [Yud93],[KY97],
[KY94], [And96], [And97]). They related energy minimization to interesting con-
figurations, such as the 𝐸8 root lattice or the Leech lattice. Cohn and Kumar
showed in [CK07] that these configurations are optimal for a much wider class
of functions, continuing the work of Leech (see [Lee57]) about configurations that
are optimal for any ’law of force’.

The Thomson problem can be altered in several ways. One way is to mini-
mize potential energy among periodic sets. A significant example is the Gaussian
Core Model described, for example, in [Sti76]. In the following, we give a short
summary of these minimization problems.

A periodic set is defined as follows:

Definition 3.1. A periodic set is a set 𝑃 ⊂ ℝ𝑑 which can be written as

𝑃 =
𝑚
⋃

𝑖=1
(𝑡𝑖 + Λ),

where Λ is a full dimensional lattice (called the period lattice) in ℝ𝑑 and
𝑡1,… , 𝑡𝑚 ∈ ℝ𝑑 are arbitrary translation vectors.

The energy minimization problem can be stated as follows: For a given ’pair
potential’ function 𝑓 ∶ ℝ>0 ↦ ℝ and a given period 𝑚, find the periodic set
𝑃 =

⋃𝑚
𝑖=1(𝑡𝑖 + Λ) such that

𝐸𝑓 (𝑃 ) ∶=
1
𝑚

𝑚
∑

𝑗,𝑘=1

∑

𝑥∈Λ
𝑥+𝑡𝑗−𝑡𝑘≠0

𝑓 (|𝑥 + 𝑡𝑗 − 𝑡𝑘|)

is minimal.
The value of𝐸𝑓 (𝑃 ) can be seen as the average potential energy among any pair

of points in 𝑃 .
A huge numerical computation to find Energy minimizing configurations for

Gaussian core functions has been described by Cohn, Kumar, Reiher and Schür-
mann in [CKS09]. Table 3.1 displays a summary of their results (compare with
[CKS09, Table I]).

For the lattices 𝐴2, 𝐷4, 𝐸8 and the Leech lattice it has been proven, that these
are, at least locally, optimal structures for a wide range of pair potentials (see
[CS12], [CKM+19]).
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Dimension (probable) Optimal Structure
1 ℤ
2 𝐴2
3 𝐷3 or 𝐷∗

3
4 𝐷4
5 𝐷+

5 (1.99750… ) or 𝐷+
5 (0.50062… )

6 6(1.0525… )
7 𝐷+

7
8 𝐸8

Table 3.1: energy minimizers in small dimensions

Here

𝐷𝑑 = {(𝑥1,… , 𝑥𝑑) ∈ ℤ𝑑 ∶ 𝑥1 +⋯ + 𝑥𝑑 ≡ 0 mod 2}

is a root lattice, known as the 𝑑-dimensional checkerboard lattice. Furthermore
𝐷+
𝑑 is a periodic set with period lattice 𝐷𝑑 , namely

𝐷+
𝑑 = 𝐷𝑑 ∪ (1∕2,… , 1∕2) +𝐷𝑑

and 𝐷+
𝑑 (𝛼) can be obtained from the periodic set 𝐷𝑑 by scaling the last coordinate

by 𝛼, i.e.
𝐷+
𝑑 (𝛼) = {(𝑥1,… , 𝑥𝑑−1, 𝛼𝑥𝑑) ∶ (𝑥1,… , 𝑥𝑑) ∈ 𝐷+

𝑑 }.

Furthermore 𝑃6 is the periodic set given by the period lattice 𝐷3 ×𝐷3 and the
translation vectors

(0, 0, 0, 0, 0, 0), (1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
), (1, 1, 1,−1

2
,−1

2
,−1

2
), (−1

2
,−1

2
,−1

2
, 1, 1, 1).

From this periodic set we obtain the structure 𝑃6(𝛼) by taking

𝑃6(𝛼) = {(𝛼𝑥1, 𝛼𝑥2, 𝛼𝑥3, 𝛼−1𝑥4, 𝛼−1𝑥5, 𝛼−1𝑥6) ∶ (𝑥1,… , 𝑥6) ∈ 𝑃6}.

Surprisingly, all structures listed in Table 3.1 share the property of formal du-
ality (see Definition 3.3). In Section 3.3 we will come back to these examples and
see their relation to formal duality in finite abelian groups.

Due to these results, a better understanding of formal duality is desirable.
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3.2 Definition of formal duality
In this section we introduce the notion of formal duality for periodic sets and derive
the (somehow comparable) notion of formal duality in abelian groups. The shown
results are a short overview of the work of Cohn, Kumar, Reiher and Schürmann
[CKRS14] supplemented with further results, mostly from [LPS19].

Formal duality of periodic sets can be considered as a generalization of the
duality among lattices. In particular, a lattice and its dual provide a formally dual
pair. However, duality can not be easily generalized from the common definition
of the dual lattice of a lattice Λ:

Λ∗ = {𝑦 ∈ ℝ𝑑 ∶ ⟨𝑥, 𝑦⟩ ∈ ℤ for all 𝑥 ∈ Λ}.

Instead, the definition of formal duality of periodic sets has been given in [CKS09]
and is a generalization of the Poisson summation formula introduced by Stein and
Weiß in [SW71, VII. Corollary 2.6]. We state a version, that can be easily derived
and was used before by various authors (for example see [CKRS14, Beginning of
Chapter 2]).

Theorem 3.2 (Poisson summation formula, [SW71, VII. Corollary 2.6]). Let 𝑓 ∶
ℝ𝑑 → ℝ be any function such that the Fourier-transform

𝑓 (𝑦) = ∫ℝ𝑑
𝑓 (𝑥)𝑒−2𝜋𝑖⟨𝑥,𝑦⟩𝑑𝑥

exists and there is a constant 𝐶 such that |𝑓 (𝑥)|, |𝑓 (𝑥)| ≤ 𝐶(1 + |𝑥|)−𝑑−𝛿 holds
for all choices of 𝑥 ∈ ℝ and 𝛿 > 0. Then we have the following identity for any
full dimensional lattice Λ ⊂ ℝ𝑑 and any vector 𝑡 ∈ ℝ𝑑:

∑

𝑥∈Λ
𝑓 (𝑥 + 𝑡) = 1

|Λ|
∑

𝑦∈Λ∗

𝑓 (𝑦)𝑒2𝜋𝑖𝑦𝑡. (3.1)

Especially, by setting 𝑡 = 0 and restricting the choice of 𝑓 to Schwartz func-
tions we have

∑

𝑥∈Λ
𝑓 (𝑥) = 1

|Λ|
∑

𝑦∈Λ∗

𝑓 (𝑦) (3.2)

for all Schwartz-Functions 𝑓 .
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Here, a Schwartz-Function is a function such that all derivatives decrease
faster than any polynomial, i.e.

∀𝛼, 𝛽 ∈ ℕ𝑑 ∶ sup
𝑥∈ℝ𝑛

𝑥𝛼𝐷𝛽𝑓 (𝑥) <∞.

In order to generalize this formula we define the average pair sum of a periodic
set 𝑃 =

⋃𝑚
𝑖=1(𝑡𝑖 + Λ) to be

Σ𝑓 (𝑃 ) =
1
𝑚

𝑚
∑

𝑖,𝑗=1

∑

𝑥∈Λ
𝑓 (𝑥 + 𝑡𝑖 − 𝑡𝑗).

The average pair sum of a lattice can be evaluated as Σ𝑓 (Λ) =
∑

𝑥∈Λ 𝑓 (𝑦), so that
Equation (3.2) can be rewritten as

Σ𝑓 (Λ) = 𝛿(Λ)Σ𝑓 (Λ∗),

where 𝛿(Λ) = 1
det Λ

is the point density of Λ. Thus, the following definition of
formal duality might be seen as a generalization thereof:

Definition 3.3 ([CKRS14, Definition 2.1]). Two periodic sets
𝑃 =

⋃𝑚
𝑖=1 𝑡𝑖 + Λ, 𝑄 ⊂ ℝ𝑑 are called a formally dual pair if

Σ𝑓 (𝑃 ) = 𝛿(𝑃 )Σ𝑓 (𝑄)

for all Schwartz functions f. Here 𝛿(𝑃 ) = 𝑚
det(Λ)

is the point density of 𝑃 .

For a given formally dual pair, we can construct others using a linear transfor-
mation:

Lemma 3.4 ([CKS09, Lemma 2]). Let 𝑃 ,𝑄 ⊂ ℝ𝑑 form a formally dual pair and
𝐴 be an invertible linear transformation. Then𝐴𝑃 and𝐴−𝑇𝑄 also form a formally
dual pair.

One prominent example of formal duality is the periodic set TITO. In Sec-
tion 3.3 we will see its relation to the energy minimizing configurations in Table
3.1 and in Chapter 5 we will explain its special role in the study of formally dual
sets.
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0 2 4 6 8

Figure 3.1: The periodic set TITO

Example 3.5. The set TITO = 2ℤ ∪ ( 1
2
+ 2ℤ) (two in - two out) is formally dual

to itself.
To see this we make exhaustive use of Equation (3.1):

2 ⋅ Σ𝑓 (TITO) = 2
∑

𝑥∈2ℤ
𝑓 (𝑥) +

∑

𝑥∈2ℤ
𝑓 (𝑥 + 1

2
) +

∑

𝑥∈2ℤ
𝑓 (𝑥 − 1

2
)

=
∑

𝑦∈ 1
2ℤ

𝑓 (𝑦) + 1
2
∑

𝑦∈ 1
2ℤ

𝑓 (𝑦)𝑒2𝜋𝑖𝑦⋅
1
2 + 1

2
∑

𝑦∈ 1
2ℤ

𝑓 (𝑦)𝑒2𝜋𝑖𝑦⋅(−
1
2 )

=
∑

𝑦∈ 1
2ℤ

𝑓 (𝑦)(1 + 1
2
𝜁 𝑦2 +

1
2
𝜁−𝑦2 )

= 2
∑

𝑦∈2ℤ
𝑓 (𝑦) +

∑

𝑦∈2ℤ
𝑓 (𝑦 + 1

2
) +

∑

𝑦∈2ℤ
𝑓 (𝑦 − 1

2
)

= 2 ⋅ Σ𝑓 (TITO)

since (1 + 1
2
𝜁 𝑦2 +

1
2
𝜁−𝑦2 ) =

⎧

⎪

⎨

⎪

⎩

2 if 𝑦 ∈ 2ℤ
0 if 𝑦 ∈ ℤ ⧵ 2ℤ
1 if 𝑦 ∈ 1

2
ℤ ⧵ ℤ

.

Furthermore, Cohn, Kumar, Reiher and Schürmann noticed that the property
of formal duality only depends on some ’underlying group’. Therefore it can be
reduced to the study of formal duality in finite abelian groups:

Theorem 3.6 ([CKRS14, Corollary 2.6, Theorem 2.8]). Let 𝑃 ,𝑄 ⊂ ℝ𝑑 be peri-
odic sets with period lattice Λ and Γ respectively. If 𝑃 and𝑄 form a formally dual
pair, then without loss of generality we may assume Λ ⊂ 𝑃 ⊂ Γ∗ and Γ ⊂ 𝑄 ⊂ Λ∗.
Thus 𝑃 is characterized by the underlying lattice Λ and a system of representa-
tives 𝑆 ⊂ 𝐺 ∶= Γ∗∕Λ. Analogously 𝑄 is given by Γ and some 𝑇 ⊂ �̂� ≃ Λ∗∕Γ
(Note that Λ∗∕Γ is isomorphic to the dual group of Γ∗∕Λ by the natural pairing
⟨𝜒 + Γ, 𝑥 + Λ⟩ = 𝑒2𝜋𝑖⟨𝑥,𝜒⟩ ). Then 𝑃 and 𝑄 form a formally dual pair, if and only
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if for every 𝜒 ∈ �̂� we have

|

|

|

|

|

1
|𝑆|

∑

𝑣∈𝑆
𝜒(𝑣)

|

|

|

|

|

2

= 1
|𝑇 |

𝜈𝑇 (𝜒) (3.3)

where 𝜈𝑇 (𝜒) = #{(𝜙 + Γ, 𝜓 + Γ) ∈ 𝑇 × 𝑇 ∶ (𝜙 − 𝜓) + Γ = 𝜒 + Γ}.
Or equivalently, by recalling that 𝜒(𝑆) =

∑

𝑣∈𝑆 𝜒(𝑣), 𝑃 and𝑄 form a formally
dual pair if and only if

|𝑆|2

|𝑇 |
𝜈𝑇 (𝜒) = |𝜒(𝑆)|2. (3.4)

Note that the groups that may occur in Theorem 3.6 are exactly the finite abelian
groups, thus it is sufficient to study subsets of finite abelian groups if we are inter-
ested in the formal duality property:

Definition 3.7 ([CKRS14, Definition 2.9]). Let 𝐺 be some (multiplicative) finite
abelian group and �̂� be its dual group. Two sets𝑆 ⊂ 𝐺 and 𝑇 ⊂ �̂� form a formally
dual pair if for all 𝜒 ∈ �̂� we have

|𝜒(𝑆)|2 =
|𝑆|2

|𝑇 |
𝜈𝑇 (𝜒), (3.5)

where
𝜈𝑇 (𝜒) = #{(𝜙, 𝜓) ∈ 𝑇 × 𝑇 ∶ 𝜙 ⋅ 𝜓−1 = 𝜒} = [𝑇𝑇 (−1)]𝜒

is called the weight enumerator of 𝑇 . A set 𝑆 is called a formally dual set if there
is a set 𝑇 such that 𝑆 and 𝑇 form a formally dual pair.

This definition is symmetric under the identification of ̂̂𝐺 and𝐺. We give some
remarks regarding this definition:

Remark 3.8. Equation (3.5) is equivalent to

|𝑆|2

|𝑇 |
𝜈𝑇 = DFT(𝜈𝑆)

(see [Sch17, Lemma 2.1]).

Remark 3.9. The left hand side of Equation (3.5) is an algebraic integer while the
right hand side is rational. Thus both sides are in fact integer numbers.

An elementary observation about the respective sizes of formally dual sets is:
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Lemma 3.10 ([CKRS14, End of Proof 2.8]). Let 𝑆 ⊂ 𝐺, 𝑇 ⊂ �̂� form a formally
dual set. Then |𝐺| = |𝑆| ⋅ |𝑇 |.

We continue by describing the combinatorial equivalent of the TITO example:

Example 3.11 ([CKRS14, Section 3.1] [Sch17, Example 2.1]). Recall the set
TITO from Example 3.5. Then Λ = Γ = 2ℤ and Λ∗ = Γ∗ = 1

2
ℤ ⊂ 2ℤ. Thus

Γ∗∕Λ = 1
2
ℤ∕2ℤ ≃ ℤ4 and TITO can be interpreted as TITO = {0, 1} mod 4.

Therefore we might compute the weight enumerator as:

𝑣 0 1 2 3
{(𝑥, 𝑦) ∶ 𝑥 − 𝑦 = 𝑣} {(0, 0), (1, 1)} {(1, 0)} ∅ {(0, 1)}

𝜈TITO(𝑣) 2 1 0 1
.

Now we can check formal duality as defined in Definition 3.7. For example take
𝜒 ∶ 𝑣 ↦ 𝜁𝑣4 = 𝑖𝑣. It is easy to compute

|

|

|

|

1
2
(

𝜁 04 + 𝜁
1
4

)|

|

|

|

2

= 1
4
|1 + 𝑖|2 = 1

2
.

On the other hand we might interpret 𝜒 as an element of the group 𝐺 by the iso-
morphism Δ ∶ 𝜒 ↦ 1. According to the table above we know

1
|TITO |

𝜈TITO(Δ𝜒) =
1
2
⋅ 1 = 1

2
.

Note that there are a lot of possibilities to lift a formally dual pair in an abelian
group to a formally dual pair of periodic sets as can be seen in the following ex-
ample:

Example 3.12. Suppose 𝑆 and 𝑇 form a formally dual pair in a finite abelian
group𝐺 ≡ ℤ𝑛1×⋯×ℤ𝑛𝑙 . Take the lattices Λ = ℤ𝑑 and Γ = 𝑛1ℤ×⋯×𝑛𝑙ℤ×ℤ𝑑−𝑙.
Furthermore define

𝑃 =
⋃

(𝑥1,…,𝑥𝑙)∈𝑆

(

𝑥1
𝑛1
,… ,

𝑥𝑙
𝑛𝑙
, 0,… , 0

)

+ Λ

and
𝑄 =

⋃

(𝑦1,…,𝑦𝑛)∈𝑇

(

𝑦1,… , 𝑦𝑛, 0,… , 0
)

+ Γ.
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By Theorem 3.6 𝑃 and 𝑄 indeed form a formally dual pair. By Lemma 3.4 same
is true for 𝐴𝑃 and 𝐴−𝑇𝑄 for any invertible matrix 𝐴. Since 𝐴𝑃 is a periodic set
with period lattice 𝐴ℤ𝑑 the example can be concluded as: A formally dual pair in
an abelian group can be realized as a formally dual pair of periodic sets for any
period lattice with sufficiently high dimension.

The translation of formally dual pairs of periodic sets into the abelian group
setting involves an implicit isomorphism Λ∗∕Γ → (̂Γ∗∕Λ). Therefore, it is not
surprising that the formal duality property is invariant under automorphisms:

Lemma 3.13 ([LPS19, Proposition 2.16]). If 𝑆 ⊂ 𝐺 and 𝑇 ⊂ �̂� form a formally
dual pair and 𝜙 is an automorphism of �̂�. Then �̂� ∶ �̂� → �̂�, 𝜒 ↦ 𝜒◦𝜙 is
an automorphism of �̂� (called the adjoint of 𝜙) and 𝜙(𝑆) and �̂�(−1)(𝑇 ) form a
formally dual pair.

Proof. Observe

𝜈�̂�(−1)(𝑇 )(𝜒) = #{(𝜓, 𝜌) ∈ 𝑇 × 𝑇 ∶ (𝜓 ⋅ 𝜌−1)◦𝜙−1 = 𝜒} = 𝜈𝑇 (𝜒◦𝜙)

Thus
|𝜙(𝑆)|2

|�̂�(−1)(𝑇 )|
𝜈�̂�(−1)(𝑇 )(𝜒) =

|𝑆|2

|𝑇 |
𝜈𝑇 (𝜒◦𝜙) = |(𝜒◦𝜙)(𝑆)|2 = |𝜒(𝜙(𝑆))|2.

And thus 𝜙(𝑆) and �̂�(𝑇 ) form a formally dual pair.

This might be seen as the combinatorial equivalent to Lemma 3.4.
During this work, we denote two sets 𝑆1 ⊂ 𝐺1 and 𝑆2 ⊂ 𝐺2 as equivalent,

if there is an isomorphism 𝜙 ∶ 𝐺1 → 𝐺2 and an element 𝑣 ∈ 𝐺2 such that
𝑆2 = 𝑣 ⋅ 𝜙(𝑆1). The advantage of this notion of equivalence is given in the fol-
lowing corollary, which follows directly from Lemma 3.13

Corollary 3.14. Let 𝑆1, 𝑆2 ⊂ 𝐺 such that 𝑆1 is equivalent to 𝑆2. Then 𝑆1 is a
formally dual set if and only if 𝑆2 is a formally dual set.

It is natural to ask for a characterization of formally dual sets. One step towards
an answer to this question is the following result:

Theorem 3.15 ([CKRS14, Lemma 4.2]). Let 𝑆 ⊂ 𝐺 and 𝑇 ⊂ �̂� form a formally
dual pair. The set 𝑆 is contained in a proper coset 𝑎 ⋅𝐻 of 𝐺 if and only if 𝑇 is
invariant under translations by𝐻⟂. If 𝑆 ⊂ 𝑎 ⋅𝐻 then 𝑆 under the canonical map
𝑎 ⋅𝐻 → 𝐻 and 𝑇 under the natural reduction map �̂� → �̂�∕𝐻⟂ ≃ �̂� also form
a formally dual pair.
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Proof. In the proof of [CKRS14, Lemma 4.2] the main part of this Theorem al-
ready has been proven. However, the implication from ’𝑇 is a union of cosets’ to
’𝑆 is contained in a coset’ is missing. A proof thereof is given below.

Let 𝑇 =
⋃

(𝑥 ⋅𝐻⟂). Thus

𝜈𝑇 (𝜒) = |𝑇 | for all 𝜒 ∈ 𝐻⟂.

But then
|𝑆|2 =

|𝑆|2

|𝑇 |
𝜈𝑇 (𝜒) = |𝜒(𝑆)|2 for all 𝜒 ∈ 𝐻⟂.

This is only possible if 𝜒 is principal on the set of distances of 𝑆, namely all
distances are contained in 𝐻⟂⟂ = 𝐻 and thus 𝑆 is contained in a proper coset of
𝐻 .

Consequently, it is easy to find formally dual pairs in an arbitrary group:

Example 3.16 ([LPS19, Example 2.3]). Let 𝐺 be a group and 𝐻 ≤ 𝐺 be a sub-
group. Then 𝐻 and 𝐻⟂ ≤ �̂� form a formally dual pair.

As seen above it is sufficient to study formal duality for such sets on which
Theorem 3.15 can not be applied:

Definition 3.17 ([LPS19, Definition 2.5]). A set 𝑆 ⊂ 𝐺 is called primitive if none
of the following is true:

1. 𝑆 is contained in a proper coset of 𝐺,

2. 𝑆 is a union of cosets of some proper subgroup of 𝐺

A pair of subsets 𝑆 and 𝑇 form a primitive formally dual pair if they are prim-
itive sets that form a formally dual pair.

If 𝑆 and 𝑇 form a formally dual pair, then it is clear by Theorem 3.15 that 𝑆
is primitive if and only if 𝑇 is primitive. Thus, this definition is equivalent to the
definition given in [CKRS14, Below Lemma 4.2].

The following lemma gives a simple technique to construct primitive formally
dual sets out of smaller ones.

Lemma 3.18 (Cross product construction, [LPS19, Proposition 3.2]). Let𝑆1 ⊂ 𝐺1
and 𝑇1 ⊂ �̂�1 as well as 𝑆2 ⊂ 𝐺2 and 𝑇2 ⊂ �̂�2 form primitive formally dual pairs.
Then 𝑆 = 𝑆1 × 𝑆2 and 𝑇 = 𝑇1 × 𝑇2 also form a primitive formally dual pair.
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Proof. Observe 𝜈𝑇1×𝑇2(𝜒, 𝜓) = 𝜈𝑇1(𝜒) ⋅ 𝜈𝑇2(𝜓) and

|(𝜒, 𝜓)(𝑆1 × 𝑆2)|2 = |

∑

𝑥∈𝑆1
𝑦∈𝑆2

𝜒(𝑥) ⋅ 𝜓(𝑦)|2 = |𝜒(𝑆1)|2 ⋅ |𝜓(𝑆2)|2.

Therefore, using Definition 3.7 we have

|𝑆|2

|𝑇 |
𝜈𝑇1×𝑇2(𝜒, 𝜓) =

|𝑆1|
2

|𝑇1|
𝜈𝑇1(𝜒) ⋅

|𝑆2|
2

|𝑇2|
𝜈𝑇1(𝜓) = |(𝜒, 𝜓)(𝑆1 × 𝑆2)|2

and thus 𝑆 and 𝑇 form indeed a formally dual pair. We claim that 𝑆 is primi-
tive. Indeed, if 𝑆 would be contained in a proper coset, then at least one of 𝑆1 or
𝑆2 also would, contradicting their primitivity. On the other hand, if 𝑆 would be a
union of cosets then, using Theorem 3.15, 𝑇 would be contained in a proper coset.
This is a contradiction as seen before.

In perspective of Lemma 3.13 and Lemma 3.18 the ’building block’ formally
dual pairs are the following:

Definition 3.19. A formally dual pair𝑆 and 𝑇 is called irreducible if it is primitive
and not equivalent to a cross product of non-trivial formally dual sets.

The characterization of irreducible formally dual pairs is an interesting open
problem.

In the following we will further simplify the notion of formally dual pairs by
omitting the group �̂�. It is possible to ’get rid’ of the dual group in the definition
of formal duality by choosing an isomorphism from 𝐺 to �̂�:

Definition 3.20 ([LPS19, Definition 2.7]). Let Δ ∶ 𝐺 → �̂� be a group isomor-
phism. Then 𝑆 ⊂ 𝐺 and 𝑇 ⊂ 𝐺 form a formally dual pair under isomorphism Δ
if 𝑆 and Δ(𝑇 ) form a formally dual pair (in𝐺 and �̂�). Alternatively, we say 𝑆 and
𝑇 form a formally dual pair under the pairing ⟨⋅, ⋅⟩Δ. We call a set 𝑆 formally self
dual, when it is formally dual to itself under some isomorphism.

For fixed Δ, we set �̃� = Δ−1(𝐻⟂) for any 𝐻 ≤ 𝐺.

By choosing a different isomorphism, it is easy to see that 𝑆 and 𝑇 form a
formally dual pair under isomorphism Δ1 if and only if 𝑆 and Δ−1

2 Δ1(𝑇 ) form a
formally dual pair under isomorphism Δ2 (see [LPS19, Proposition 2.9]).

Note that this notion is not symmetric. I.e. if 𝑆 and 𝑇 form a formally dual
pair under an isomorphism Δ then 𝑇 and 𝑆 do not necessarily form a formally dual
pair under Δ. Instead we have the following:
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Lemma 3.21. Let 𝐺 be a finite abelian group and Δ ∶ 𝐺 → �̂� an isomorphism.
Then 𝑆 ⊂ 𝐺 and 𝑇 ⊂ 𝐺 form a formally dual pair under Δ if and only if 𝑇 and 𝑆
form a formally dual pair under Δ∗.

Proof. We have 𝜈Δ𝑇 (𝜒) = 𝜈𝑇 (Δ−1𝜒) as well as

[Δ−1𝜒](Δ∗𝑆) =
⟨

𝑆,Δ−1𝜒
⟩

Δ∗
=
⟨

Δ−1𝜒, 𝑆
⟩

Δ = 𝜒(𝑆).

By substituting 𝑔 = Δ−1𝜒 we therefore have

|𝑆|2

|Δ𝑇 |
𝜈Δ𝑇 (𝜒) = |𝜒(𝑆)|2 for all 𝜒 ∈ �̂�

if and only if
|Δ∗𝑆|2

|𝑇 |
𝜈𝑇 (𝑔) = |

|

𝑔(Δ∗𝑆)||
2 for all 𝑔 ∈ 𝐺.

This is equivalent to the assertion.

The introduced notion of formal self duality differs from the notion introduced
in [Xia16, Section 6] where they only consider formal duality under the standard
pairing. Since the choice of isomorphism is arbitrary, Definition 3.20 seems more
natural.

We examine formal self duality further:

Proposition 3.22. Suppose 𝑆 ⊂ 𝐺 is a formally self dual set under an isomor-
phism Δ. Furthermore, assume 𝑆 is contained in some coset of 𝐻 ≤ 𝐺 such that
(�̃�)⟂ = Δ𝐻 .

Then �̃� ≤ 𝐻 and

𝑆 ′ = {𝑣�̃� ∶ 𝑣 ∈ 𝑆} ⊂ 𝐻∕�̃�

is formally self dual under the isomorphism Δ′ given by
⟨

𝑎�̃�, 𝑏�̃�
⟩

Δ′
= ⟨𝑎, 𝑏⟩Δ .

Proof. By Theorem 3.15 we know that Δ𝑆 is invariant under translations by 𝐻⟂.
Equivalently 𝑆 =

⋃

𝑣∈𝑉 𝑣�̃� ⊂ 𝑥𝐻 for some 𝑉 ⊂ 𝐻 , 𝑥 ∈ 𝐺 and therefore
�̃� ≤ 𝐻 . Note, that Δ′ is well defined since for all ℎ ∈ �̃� and 𝑏 ∈ 𝐻 we have
⟨ℎ, 𝑏⟩Δ = 1 since Δℎ ∈ 𝐻⟂ and ⟨𝑏, ℎ⟩Δ = 1 since Δ𝑏 ∈ Δ𝐻 = �̃�⟂. Then we
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have for all 𝑎�̃� ∈ 𝐻∕�̃� that 𝜈𝑆′(𝑎�̃�) = 𝜈𝑆(𝑎)∕|�̃�| as well as |𝑆 ′
| = |𝑆|∕|�̃�|

and

⟨𝑎, 𝑆⟩Δ =
∑

𝑣∈𝑆
⟨𝑎, 𝑣⟩Δ = |�̃�| ⋅

∑

𝑣�̃�∈𝑆′

⟨

𝑎�̃�, 𝑣�̃�
⟩

Δ′
= |�̃�| ⋅

⟨

𝑎�̃�, 𝑆 ′
⟩

Δ′
.

Altogether, we have

|𝑆 ′
|

2

|𝑆 ′
|

𝜈𝑆′(𝑎�̃�) = 1
|�̃�|

2

|𝑆|2

|𝑆|
𝜈𝑆(𝑎) =

1
|�̃�|

2
|

|

⟨𝑎, 𝑆⟩Δ||
2 =

|

|

|

|

⟨

𝑎�̃�, 𝑆 ′
⟩

Δ′

|

|

|

|

2

.

Thus, 𝑆 ′ is formally dual to itself under Δ′.

Note that this result could also be proven by using Theorem 3.15. We conjec-
ture that this result could be extended to arbitrary isomorphisms:

Conjecture 3.23. If 𝑆 ⊂ 𝐻 ≤ 𝐺 is formally self dual under an isomorphism Δ,
then 𝑆 ′ as defined in Proposition 3.22 is also formally self dual.

If this conjecture is true, then we would only need to characterize the primitive
formally self dual sets in order to characterize all formally self dual sets.

In [Xia16, Theorems 6.1, 6.3] Xia described 1 the following examples of formal
self duality:

Example 3.24. The set𝑆 = {𝑛⋅𝑘 ∶ 𝑘 ∈ ℤ𝑛2} is formally self dual inℤ𝑛2 under the
standard pairing. By using Proposition 3.22 and observing that 𝐻 = �̃� = 𝑛ℤ𝑛2 ,
this example can be reduced to the trivial primitive formally self dual set.

For any prime 𝑝 and any 𝛼 with 𝛼2 ≡ −1 mod 𝑝 the set

𝑆 = {(𝑘, 𝑘 ⋅ 𝛼) ∶ 𝑘 ∈ ℤ𝑝}

is formally self dual in (ℤ𝑝)2 under the standard pairing (by the choice of 𝛼,
we might only consider 𝑝 with 𝑝 ≡ 3 mod 4). Note that 𝑆 = 𝐻 = �̃� when
𝐻 = ⟨(1, 𝛼)⟩, since

�̃� = ⟨(−𝛼, 1)⟩ = ⟨𝛼(−𝛼, 1)⟩ = ⟨(1, 𝛼)⟩ = 𝐻.

Thus by using Proposition 3.22 this example also reduces to the trivial primitive
formally self dual set.

1with a minor typo
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3.3 Formal duality of energy minimizers
In this Section we link the examples of Table 3.1 to their counterpart in finite
abelian groups. The formal duality property of these examples has already been
studied in [CKS09, Chapter VI], but not by explicitly translating them into subsets
of groups.
Example 3.25 ([CKS09]). We will study the energy minimizer𝐷+

𝑛 (𝛼) for odd 𝑛 and
see that it is formally dual to 𝐷+

𝑛 (𝛼
−1). In this example we will use the notation

𝑃 (𝛼) = {(𝑥1,… , 𝑥𝑛−1, 𝛼𝑥𝑛) ∶ (𝑥1,… , 𝑥𝑛) ∈ 𝑃 }

for all sets 𝑃 ⊂ ℝ𝑛. The underlying lattices are 𝐷𝑛(𝛼) and 𝐷𝑛(𝛼−1) respectively.
Note that

𝐷∗
𝑛 =

1
2
{(𝑥1,… , 𝑥𝑛) ∶ 𝑥1 ≡ ⋯ ≡ 𝑥𝑛 mod 2}

and thus (𝐷𝑛(𝛼))∗ = 𝐷∗
𝑛(𝛼

−1) and (𝐷𝑛(𝛼−1))∗ = 𝐷∗
𝑛(𝛼). It is easy to validate that

𝐷𝑛(𝛼) ⊂ ℤ𝑛(𝛼) ⊂ 𝐷∗
𝑛(𝛼) and 𝐷𝑛(𝛼−1) ⊂ ℤ𝑛(𝛼) ⊂ 𝐷∗

𝑛(𝛼
−1). Furthermore, the

factor groups are

𝐷𝑛(𝛼)∕𝐷∗
𝑛(𝛼) ≃ 𝐷𝑛(𝛼−1)∕𝐷∗

𝑛(𝛼
−1) ≃ ℤ4.

It is easy to see that 𝐷+
𝑛 (𝛼)∕𝐷

∗
𝑛(𝛼) ≃ TITO . Same is true when we interchange 𝛼

with 𝛼−1. Therefore, the 𝐷+
𝑛 (𝛼) example is equivalent to Example 3.11.

Example 3.26. Next we observe 6(𝛼) which is formally dual to 6(𝛼−1). In this
example we will use the notation

𝑃 (𝛼) = {(𝛼𝑥1, 𝛼𝑥2, 𝛼𝑥3, 𝛼−1𝑥4, 𝛼−1𝑥5, 𝛼−1𝑥6) ∶ (𝑥1,… , 𝑥6) ∈ 𝑃 }.

The underlying lattice of 6(𝛼) is (𝐷3 ×𝐷3)(𝛼) which has dual lattice
((𝐷3 ×𝐷3)(𝛼))∗ = (𝐷∗

3 ×𝐷
∗
3)(𝛼

−1). Same is true when interchanging 𝛼 and 𝛼−1.
It is easy to see that (𝐷3×𝐷3)(𝛼) ⊂ (𝐷∗

3 ×𝐷
∗
3)(𝛼). Furthermore, the factor groups

are

(𝐷3 ×𝐷3)(𝛼)∕(𝐷∗
3 ×𝐷

∗
3)(𝛼) ≃ (𝐷3 ×𝐷3)(𝛼−1)∕(𝐷∗

3 ×𝐷
∗
3)(𝛼

−1) ≃ ℤ4 × ℤ4.

By taking the translation vectors into account, the 6(𝛼) example is equivalent to
{(0, 0), (1, 1), (2, 3), (3, 2)} ⊂ ℤ4 × ℤ4. By taking the group automorphism gener-
ated by (2, 3) ↦ (1, 0), (3, 2) ↦ (0, 1) we see that it is equivalent to TITO2 which
is formally self dual by Lemma 3.18.

So the energy minimizer of Table 3.1 are either lattices or related to the TITO
example.



4 The even set approach

In this chapter we introduce the concept of even sets which includes formally dual
sets. This approach provides a new perspective on formal duality and allows gen-
eralizations of known results. In Section 4.1 we define even sets using a group
algebra equation and explain the relation to formally dual sets (see Theorem 4.5).
We emphasize on the fact that an even set representation of a formally dual set is
easily obtained given an even set representation of its formal dual. In Section 4.2
we introduce Hasse-type diagrams: a visual language which helps to distinguish
between different kinds of even sets. In Section 4.3 we use this language to dis-
cuss restrictions for primitive formally dual sets of certain types. Furthermore, we
emphasize on the relation among formally dual sets and relative difference sets.
These results will be used in Section 4.4 to discuss formally dual sets with small
rank and to give a complete characterization of formally dual sets of rank up to
three, i.e. these are either trivial or certain relative difference sets. Here, rank is a
measure of complexity introduced below Lemma 4.2.

4.1 Introduction to even sets
In this section we define the concept of even sets. We observe that any formally
dual set is an even set (see Theorem 4.4). Therefore, the study of even sets provides
new insights for the study of formally dual sets. Even sets are defined by a group
algebra equation:
Definition 4.1. An even set is a subset 𝑆 ⊂ 𝐺 with respect to some subgroups
𝐻1,… ,𝐻𝑟 ≤ 𝐺 if

𝑆𝑆 (−1) =
𝑟

∑

𝑖=1
𝜆𝑖𝐻𝑖

for 0 ≠ 𝜆𝑖 ∈ ℚ. The right hand side is called an even set representation with
parameters 𝜆𝑖 and respective subgroups 𝐻𝑖.

27
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Thus, a set 𝑆 ⊂ 𝐺 is an even set if and only if 𝑆𝑆 (−1) ∈ (𝐺). Note, that by
Remark 2.2 𝜈𝑆(𝑔) = [𝑆𝑆 (−1)]𝑔 and 𝑆𝑆 (−1) might be seen as the multiset of differ-
ences of 𝑆. Significant examples of even sets which have been studied extensively
are difference sets and relative difference sets:

Example 4.2. A (𝑣, 𝑘, 𝜆)-difference set (DS) is a set𝑆 ⊂ 𝐺where |𝐺| = 𝑣, |𝑆| = 𝑘
and

𝑆𝑆 (−1) = 𝜆𝐺 + (𝑘 − 𝜆).

So each non-trivial difference appears exactly 𝜆 times.
An (𝑚, 𝑛, 𝑘, 𝜆)-relative difference set (RDS) with respect to some subgroup𝑁 ≤ 𝐺

is a set 𝑆 ⊂ 𝐺 with |𝐺| = 𝑚 ⋅ 𝑛, |𝑁| = 𝑛, |𝑆| = 𝑘 and

𝑆𝑆 (−1) = 𝜆𝐺 − 𝜆𝑁 + 𝑘.

So any difference in 𝐺 ⧵𝑁 appears exactly 𝜆 times, while differences in 𝑁 ⧵ {1}
don’t appear at all. The group 𝑁 is referred to as the forbidden subgroup. Note
that TITO is an (2, 2, 2, 1)-RDS.

Any even set might also be written in terms of cyclic groups. If done so, the
corresponding representation is unique as can be seen from Lemma 2.8.

Another way to simplify a linear combination of subgroups in the group algebra
is obtained by using as few groups as possible. Such a representation is called
minimal representation. The number of subgroups involved is called the rank.
The concept of rank can easily be adapted to even sets.

The following corollary follows directly from Lemma 2.8 and summarizes
some different notions of even sets.

Corollary 4.3 ([LPS19, Propositions 4.5, 4.7]). The following are equivalent

1. 𝑆 is an even set,

2. 𝑆 is an even set with respect to cyclic subgroups,

3. 𝜈𝑆(𝑔) = 𝜈𝑆(𝑔𝑘) for any 𝑔 ∈ 𝐺 and 𝑘 that is relative prime to the order of 𝑔.

With these facts we can prove the connection between formally dual sets and
even sets. For cyclic groups this has essentially been done in [Sch17, Theorem 3.1]
and has been generalized in [LPS19, Corollary 4.8].

Theorem 4.4 ([LPS19, Corollary 4.8]). Every formally dual set is an even set.
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Proof. Let 𝑆 and 𝑇 form a formally dual pair with respect to some isomorphism
𝑔 ↦ 𝜒𝑔. By Remark 3.9 |𝜒𝑔(𝑆)|2 = 𝜒𝑔(𝑆𝑆 (−1)) are in fact integer numbers.
Therefore the assertion follows from Lemma 2.10.

In the following, we fix the isomorphism Δ ∶ 𝑔 ↦ 𝜒𝑔. Recall that

�̃� = {𝑔 ∈ 𝐺 ∶ 𝜒𝑔(𝑣) = 1 for all 𝑣 ∈ 𝐻} = Δ−1𝐻⟂.

Many results of Section 3.2 can easily be reformulated using �̃� instead of𝐻⟂ and
will be used in the following.

Given an even set representation of a formally dual set, we easily can compute
an even set representation of the formal dual:

Theorem 4.5 ([LPS19, Theorem 4.9]). Let 𝑆, 𝑇 ⊂ 𝐺. Then the following is equiv-
alent:

1. 𝑆 and 𝑇 form a formally dual pair in 𝐺

2. 𝑆 and 𝑇 are even sets, and for any even set representation𝑆𝑆 (−1) =
∑𝑟

𝑖=1 𝜆𝑖𝐻𝑖

of 𝑆 we have 𝑇𝑇 (−1) =
∑𝑟

𝑖=1 𝜆𝑖�̃�𝑖 with parameters 𝜆𝑖 =
|𝐺|
|𝑆|3
𝜆𝑖|𝐻𝑖|.

Proof. Suppose 𝑆 and 𝑇 form a formally dual pair. Then by Theorem 4.4 we can
choose a vrepresentation 𝑆𝑆 (−1) =

∑𝑟
𝑖=1 𝜆𝑖𝐻𝑖. Similar to Lemma 2.7 we have

𝜒𝑔(𝐻𝑖) =

{

|𝐻𝑖| if 𝑔 ∈ �̃�𝑖

0 otherwise
.

Therefore,

𝜈𝑇 (𝑔) =
|𝑇 |
|𝑆|2

|𝜒𝑔(𝑆)|2 =
|𝐺|
|𝑆|3

𝑟
∑

𝑖=1
𝜆𝑖𝜒𝑔(𝐻𝑖) =

|𝐺|
|𝑆|3

∑

𝑖 ∶ 𝑔∈�̃�𝑖

𝜆𝑖|𝐻𝑖|. (4.1)

This yields 𝑇𝑇 (−1) =
∑𝑟

𝑖=1 𝜆𝑖�̃�𝑖.
On the other hand let 𝑆𝑆 (−1) =

∑𝑟
𝑖=1 𝜆𝑖𝐻𝑖 and 𝑇𝑇 (−1) =

∑𝑟
𝑖=1 𝜆𝑖�̃�𝑖. Then

𝜈𝑇 (𝑔) =
∑

𝑖 ∶ 𝑔∈�̃�𝑖

𝜆𝑖 =
𝑟

∑

𝑖=1
𝜆𝑖𝜒𝑔(𝐻𝑖)∕|𝐻𝑖| =

|𝐺|
|𝑆|3

𝑟
∑

𝑖=1
𝜆𝑖𝜒𝑔(𝐻𝑖) =

|𝑇 |
|𝑆|2

|𝜒𝑔(𝑆)|2.

This implies that 𝑆 and 𝑇 form a formally dual pair.
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Given this insight, we can deduce the following result:

Corollary 4.6. Let 𝑆 and 𝑇 form a formally dual pair, then the ranks of 𝑆 and 𝑇
are equal.

Proof. Choose a minimal even set representation 𝑆𝑆 (−1) =
∑𝑟

𝑖=1 𝜆𝑖𝐻𝑖 for 𝑆 by
Theorem 4.4. By Theorem 4.5 we have 𝑇𝑇 (−1) =

∑𝑟
𝑖=1 𝜆𝑖�̃�𝑖. Therefore, the rank

of 𝑇 is not bigger than the rank of 𝑆. The dual argument shows that the rank of 𝑆
is also not bigger than the rank of 𝑇 , yielding the assertion.

Also, this approach can be used to prove formal duality as illustrated by the
following result.

Corollary 4.7 ([LPS19, Theorem 3.7]). Let𝑆 be an (𝑛, 𝑛, 𝑛, 1)-RDS with forbidden
subgroup 𝑁 ≤ 𝐺. The sets 𝑆 and 𝑇 form a formally dual pair if and only if 𝑇 is
an (𝑛, 𝑛, 𝑛, 1)-RDS with respect to �̃� .

Proof. We have 𝑆𝑆 (−1) = 𝐺 −𝑁 + 𝑛. Observe that |𝑆| = 𝑛, |𝐺| = 𝑛2. Thus, by
Theorem 4.5 we know that 𝑆 and 𝑇 form a formally dual pair if and only if

𝑇𝑇 (−1) =
|𝐺|
|𝑆|3

(

𝑛 ⋅ 𝐺 − |𝑁|�̃� + 1 ⋅ |𝐺|
)

= 𝐺 − �̃� + 𝑛.

Equivalently 𝑇 is an (𝑛, 𝑛, 𝑛, 1)-relative difference set with respect to �̃� .

Note that all known relative difference sets share the property𝑁 ≃ �̃� . In these
cases 𝑆 is formally self dual under any isomorphism such that �̃� = 𝑁 .

As seen above, the even set approach gives a nice tool to prove formal duality
of given sets. Furthermore it can be used to display the connection of formally dual
sets and relative difference sets (see Theorem 4.30 and Proposition 4.23). This is
examined in the following sections.

4.2 Hasse-type diagrams
Recall that a representation of a formally dual set 𝑆 has the form

∑𝑟
𝑖=1 𝜆𝑖𝐻𝑖 with

respective subgroups 𝐻1,… ,𝐻𝑟. Apparently, the relations among the respective
subgroups influence the level sets of the weight enumerator. Therefore, it is vital
to consider such relations when using the even set approach on formally dual sets.

In this section, we develop a diagram, related to the Hasse-diagram, to visualize
types of such relations.
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Definition 4.8. A Hasse-diagram is a visualization of a partially ordered set
(𝑉 ,≤) with nodes identified with 𝑉 and edges connecting the nodes as follows:
The direction of an edge is given by the relative arrangements of the nodes. The
edge always starts at the lower node and ends in the higher. There is an edge from
𝑎 to 𝑏 if and only if 𝑎 < 𝑏 and there is no 𝑐 ∈ 𝑉 with 𝑎 < 𝑐 < 𝑏. Therefore, the
resulting diagram is an antitransitive directed graph (i.e. 𝑎𝑏, 𝑏𝑐 ∈ 𝐸 → 𝑎𝑐 ∉ 𝐸)
with the following property: Two nodes 𝑎 and 𝑏 are connected via a directed path
𝑝 if and only if 𝑎 < 𝑏.

In particular, the set of subgroups of𝐺 is partially ordered by the subgroup rela-
tion and thus induces a Hasse-diagram. When considering even sets, it is useful to
examine the Hasse-diagrams of the subgroups of 𝐺 with a focus on the respective
subgroups. We aim for a graphical language capable to express common condi-
tions on Hasse-diagrams in a way that is quickly applicable. In the following, we
define Hasse-type diagrams which enhance Hasse-diagrams with further elements.

Definition 4.9. A Hasse-type diagram (𝐷, 𝑐) consists of two components. The
first component 𝐷 = 𝐷(𝑉 ,𝐸) is a visualization of an antitransitive directed graph
where the direction of the edges is indicated by the relative position of the nodes
similar to the edges of the Hasse-diagram. The nodes are chosen from three types
(namely real nodes , appended nodes and subgraph nodes ) and the edges are

chosen from two types (namely regular edges and ’less-or-equal’ edges ). We set
𝑉 ( ) = {𝑣 ∈ 𝑉 ∶ 𝑣 is of type } and 𝑉 ( ), 𝑉 ( ), 𝐸(), 𝐸( ) respectively.

The second component 𝑐 refers to a set of equations with variables in 𝑉 , where
nodes of type or are treated as subgroups and nodes of type are treated as
sets of subgroups.

These diagrams have the property that they distinguish between respective sub-
groups and other subgroups ( and nodes), they can unify subgraphs in single
nodes ( nodes) and can visualize a ≤ condition among the nodes (by the addi-

tional type of edge ). Since we emphasize on the respective subgroups, we only
require those to be present in the diagram while other subgroups can be added
to provide additional information. For further simplification we might visualize
equations of the form𝐻 = Expression within𝐷 by writing the Expression next to

the node 𝐻 (for example we condense 𝐷 =
𝐻1 𝐻2

𝐻3 , 𝑐 = {𝐻3 = 𝐻1 ∩𝐻2} to
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𝐻1 𝐻2

𝐻1 ∩𝐻2 ). Thus, a Hasse-type diagram helps to distinguish between different
types of respective subgroups . To be precise:

Definition 4.10. Let Λ = ∪̇ be the set of subgroups of 𝐺 and (𝐷(𝑉 ,𝐸), 𝑐) a
Hasse-type diagram. We say  fits (𝐷(𝑉 ,𝐸), 𝑐) if we can identify the nodes in 𝑉
with sets of subgroups by an admissible identification map 𝜙 ∶ 𝑉 ↦ 2Λ satisfying

1. any node ℎ of type is identified by exactly one subgroup in ,
i.e. 𝜙(ℎ) = {𝐻} ⊆ ,

2. any node 𝑙 of type is identified with exactly one subgroup,
i.e. 𝜙(𝑙) = {𝐿} ⊆ Λ = ∪̇,

3. any node 𝐾 of type is identified with a subset of  of arbitrary size,
i.e. 𝜙(𝐾) ⊆  (Note that 𝜙(𝐾) is possibly empty),

4. all subgroups in  are represented by a or node,
i.e. 𝜙(𝑉 ( ) ∪ 𝑉 ( )) =  (subgroups in  need to be represented in the
diagram while subgroups in  don’t),

5. the edges among nodes which are not identified with the empty set are inher-
ited from the Hasse-diagram of Λ, where an edge indicates the possibility
to be identified with the same subgroup;
i.e. two nodes ℎ1, ℎ2 ∈ 𝑉 with𝜙(ℎ1), 𝜙(ℎ2) ≠ ∅ are connected via a directed
path 𝑝 (where the direction is given by the relative positions of the nodes)
if and only if 𝐻1 ≤ 𝐻2 for all 𝐻1 ∈ 𝜙(ℎ1),𝐻2 ∈ 𝜙(ℎ2); Furthermore, if
𝜙(ℎ1) ∩ 𝜙(ℎ2) ≠ ∅ (𝐻1 = 𝐻2 for some 𝐻1 ∈ 𝜙(ℎ1),𝐻2 ∈ 𝜙(ℎ2)) then all
edges of 𝑝 are of type ,

6. a node 𝐾 (of type ) which is identified with the empty set might be con-
tained in arbitrary edges ( nodes can be ignored by identifying them with
the empty set),

7. all equations in 𝑐 are satisfied under the identification (after substituting
all nodes ℎ ∈ 𝑉 ( ) ∪ 𝑉 ( ) by 𝐻 , where 𝜙(ℎ) = {𝐻} and all nodes
𝐾 by 𝜙(𝐾)).
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Note, that the structure of  is represented by the and nodes. The
nodes give additional information. It follows from Definition 4.10 that a node
will be identified with a subgroup in  unless there is a connection which allows
otherwise. We provide an example to comprehend the capabilities of Hasse-type
diagrams:

Example 4.11. Let 𝐺 = 𝐶6 and  = {𝐶2, 𝐶3}. The group 𝐺 has the following

Hasse-diagram:

𝐶6

𝐶3𝐶2

𝐶1 .
Observe, that  fits all of the following Hasse-type diagrams:

, , , ,
𝐻1 𝐻2

𝐻1 ∩𝐻2 , .
This can be easily verified by using the following identifications:

𝐶6

𝐶3𝐶2

𝐶1 ,
𝐶6

𝐶2,𝐶3 ,

∅ ∅ ∅

𝐶2 𝐶3

∅ ∅ ∅ ,

𝐶2

∅

𝐶1

𝐶3

,
𝐶2 𝐶3

𝐶1 = 𝐶2 ∩ 𝐶3 ,

𝐶2

𝐶2

𝐶2

𝐶3

.

Note that the admissible identifications are not unique, for example the identifica-

tion

𝐶3

𝐶3

𝐶3

𝐶2

is also admissible for the last example.
On the other hand  does not fit the following Hasse-type diagrams:

, , , ,
𝐻1 ∪𝐻2

𝐻1 𝐻2 .
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We give some reasoning for that using the properties of an admissible identifi-
cation map as in Definition 4.10:

1. doesn’t contain enough nodes (see Properties (1), (4)),

2. has to be identified with five distinct subgroups, but there are only four (see
Properties (1), (2), (5)),

3. has to be identified with four distinct subgroups in  but || = 2 (see
Properties (1), (5)),

4. there is no subgroup of 𝐶2 which is not a subgroup of 𝐶3 and vice versa,
therefore there is no admissible identification to justify this example (see
Properties (1), (2), (5)),

5. we need to identify 𝐻1,𝐻2 with 𝐶2, 𝐶3 (in any order) and the upper node
with 𝐶6, but 𝐶6 ≠ 𝐶2 ∪ 𝐶3 (see Properties (1), (2), (5), (7))

For an easy applicable way to use Hasse-type diagrams in theorems we use the
following notation:

Let (𝐷, 𝑐) be a Hasse-type diagram. A statement in the nodes of𝐷 is supposed
to be true if and only if it is true under every admissible identification map for
every set  fitting (𝐷, 𝑐).

For example, in the diagram
𝐻2

𝐻1 the statement 𝐻1 ≤ 𝐻2 is true and the
statement 𝐻1 < 𝐻2 is false (since it is false for  = {𝐶2} and the identification

given by
𝐶2

𝐶2 ).
We conclude this section with a notion that allows to apply Hasse-type dia-

grams to even sets and in particular to formally dual sets.

Definition 4.12. Let 𝑆 be an even set and (𝐷, 𝑐) be a Hasse-type diagram. We say
that 𝑆 is of type (𝐷, 𝑐) if there is a representation 𝑆𝑆 (−1) =

∑𝑟
𝑖=1 𝜆𝑖𝐻𝑖 of 𝑆 such

that the set of respective subgroups  = {𝐻1,… ,𝐻𝑟} fits (𝐷, 𝑐).

In account to study formally dual pairs, it is useful to use the dual Hasse-type
diagram:
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Definition 4.13. Let (𝐷(𝑉 ,𝐸), 𝑐) be a Hasse-type diagram. The dual Hasse-type
diagram is defined to be (𝐷(𝑉 ′, 𝐸′), 𝑐′) where

𝑉 ′ = {ℎ̃ ∶ ℎ ∈ 𝑉 }, 𝐸′ = {(ℎ̃, �̃�) ∶ (𝑙, ℎ) ∈ 𝐸}

and 𝑐′ is obtained by substituting all equations 𝐸 = 𝐹 from 𝑐 by 𝐸 = 𝐹 .

The benefit of this notion is shown by the following result:

Lemma 4.14. If 𝑆 and 𝑇 form a formally dual pair and 𝑆 is of type (𝐷, 𝑐), then
𝑇 is of type (𝐷′, 𝑐′) where (𝐷′, 𝑐′) is the dual Hasse-type diagram of (𝐷, 𝑐).

Proof. Let 𝐷 = 𝐷(𝑉 ,𝐸) and  be a set of respective subgroups of 𝑆 fitting
(𝐷, 𝑐) by the admissible identification 𝜙. Denote ̃ = {�̃� ∶ 𝐻 ∈ } and
𝜙 ∶ 𝑉 ′ → 2Λ, ℎ̃ ↦ 𝜙(ℎ). It is easy to show that 𝜙 is an admissible identification
for ̃ and (𝐷′, 𝑐′) by the observation that 𝐻1 ≤ 𝐻2 if and only if �̃�1 ≥ �̃�2 and
Definition 4.10.

In the following sections we use this formulation to simplify various results.

4.3 Even set approach on formally dual sets
In this section we examine several additional conditions of formally dual sets when
written in terms of even sets. Especially, we will examine formally dual sets of
certain types, thereby formulating many alternative proofs of known results. For
the rest of this chapter we consider 𝑆, 𝑇 ⊂ 𝐺 with 𝑆𝑆 (−1) =

∑𝑟
𝑖=1 𝜆𝑖𝐻𝑖 and

𝑇𝑇 (−1) =
∑𝑟

𝑖=1 𝜆𝑖�̃�𝑖 where 𝜆𝑖 =
|𝐺|
|𝑆|3

|𝐻𝑖|𝜆𝑖 and  = {𝐻1,… ,𝐻𝑟}.
First we study the even set representations of primitive formally dual sets.

Lemma 4.15 ([LPS19, Lemma 4.11]). If 𝑆 is a primitive formally dual set, then:

1. ⟨⟩ = ⟨𝐻1,… ,𝐻𝑟⟩ = 𝐺,

2.
⋂

 = 𝐻1 ∩⋯ ∩𝐻𝑟 = {1}.

Proof. Suppose 𝑆 is not contained in a proper coset. Then the nonzero addends
of 𝑆𝑆 (−1) =

∑𝑟
𝑖=1 𝜆𝑖𝐻𝑖 are not contained in a proper subgroup. Thus the 𝐻𝑖 span

𝐺. By Lemma 3.21 we know that 𝑇 and 𝑆 form a formally dual pair under Δ∗ and
by Lemma 2.1

̃̃𝐻𝑖 = Δ−1
∗ (�̃�𝑖)⟂ = Δ−1

∗ Δ∗𝐻𝑖 = 𝐻𝑖.
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Therefore �̃�1,… , �̃�𝑟 also span 𝐺 and

𝐻1 ∩⋯ ∩𝐻𝑟 =
̃̃𝐻1 ∩⋯ ∩ ̃̃𝐻𝑟 = 𝐺 = {1}.

Of course, the representation as an even set is strongly connected to the weight
enumerator. The following lemma inherits inequalities of the weight enumerator
to the even set representation:

Lemma 4.16. If 𝑆 is a formally dual set, then we have

1.
∑𝑟

𝑖=1 𝜆𝑖 = |𝑆|,

2.
∑𝑟

𝑖=1 𝜆𝑖|𝐻𝑖| = |𝑆|2.

Furthermore, for all 𝑔 ∈ 𝐺 with 𝑔 ≠ 1 we have

3. 𝜈𝑆(𝑔) =
∑

𝑖 ∶ 𝑔∈𝐻𝑖
𝜆𝑖 ∈ ℤ, 0 ≤

∑

𝑖 ∶ 𝑔∈𝐻𝑖
𝜆𝑖 ≤ |𝑆|,

4. |𝑆|3

|𝐺|
𝜈𝑇 (𝑔) =

∑

𝑖 ∶ 𝑔∈�̃�𝑖
𝜆𝑖|𝐻𝑖| ∈ ℤ, 0 ≤

∑

𝑖 ∶ 𝑔∈�̃�𝑖
𝜆𝑖|𝐻𝑖| ≤ |𝑆|2.

Moreover, 𝑆 is primitive if and only if the inequalities (3) and (4) are strict.

Proof. It is easy to see that 𝜈𝑆(𝑔) = [𝑆𝑆−1]𝑔 =
∑

𝑖 ∶ 𝑔∈𝐻𝑖
𝜆𝑖. Furthermore,

|𝑆|3

|𝐺|
𝜈𝑇 (𝑔) =

∑

𝑖 ∶ 𝑔∈�̃�𝑖

|𝑆|3

|𝐺|
𝜆𝑖 =

∑

𝑖 ∶ 𝑔∈�̃�𝑖

𝜆𝑖|𝐻𝑖|.

The assertion follows by applying

𝜈𝑆(1) = |𝑆|, 𝜈𝑇 (1) = |𝑇 |, 0 ≤ 𝜈𝑆(𝑔) ≤ |𝑆|, 0 ≤ 𝜈𝑇 (𝑔) ≤ |𝑇 | =
|𝐺|
|𝑆|

.

Note that 𝑆 is a union of cosets of 𝐻 if and only if 𝜈𝑆(𝑔) = |𝑆| for every
𝑔 ∈ 𝐻 .

On the other hand, by Theorem 3.15 𝑆 is contained in a coset of𝐻 if and only
if 𝑇 is a union of cosets of �̃� if and only if 𝜈𝑇 (𝑔) = |𝑇 | for all 𝑔 ∈ �̃� . This is
equivalent to

∑

𝑖 ∶ 𝑔∈�̃�𝑖

𝜆𝑖|𝐻𝑖| =
|𝑆|3

|𝐺|
𝜈𝑇 (𝑔) =

|𝑆|2

|𝑇 |
⋅ |𝑇 | = |𝑆|2.

Thus, if 𝑆 is primitive, then the inequalities (3) and (4) are strict.
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It is possible to have a formally dual set which is an even set with integer param-
eters, but the parameters of its formal dual given by Theorem 4.5 are non-integral.
For example for 𝐺 = 𝐶2 × 𝐶2 = ⟨𝑔⟩ × ⟨ℎ⟩ it is possible to write

𝐺 = ⟨𝑔⟩ + ⟨ℎ⟩ + ⟨𝑔ℎ⟩ − 2.

We know that 𝑆 = 𝐺 and 𝑇 = {1} form a formally dual pair. Theorem 4.5 gives
a non-integral even set representation for 𝑇

𝑆𝑆 (−1) = |𝐺|𝐺 = 4𝐺 = 4 ⟨𝑔⟩ + 4 ⟨ℎ⟩ + 4 ⟨𝑔ℎ⟩ − 8

and thus
𝑇𝑇 (−1) = 1

2
⟨̃𝑔⟩ + 1

2
⟨̃ℎ⟩ + 1

2
⟨̃𝑔ℎ⟩ − 1

2
𝐺 = {1}{1}(−1).

Note, that in contrary to above the minimal representations of 𝑆 and 𝑇 given
by Theorem 4.5 are both integral.

Thus we conjecture the following:

Conjecture 4.17. A minimal representation of an even set has integral parameters.
Thereby, the even set representation obtained by Theorem 4.5 of the formal dual
has also integral parameters.

A sufficient condition for the integrality of the even set parameters is given by
the following notion:

Definition 4.18. Let  be a family of subgroups of𝐺. An element𝐿 ∈  is called
impartible in  if

𝐿 ⊄
⋃

𝐿′∈ ∶ 𝐿≰𝐿′

𝐿′.

A set 𝑆 ⊂  is called impartible in  if every element is impartible.

We shed light on this definition by the following Lemma:

Lemma 4.19. Let 𝑆𝑆 (−1) =
∑𝑟

𝑖=1 𝜆𝑖𝐻𝑖 be an even set representation. If 𝐻𝑖 is
impartible in  and 𝜆𝑗 ∈ ℤ for all 𝑗 such that 𝐻𝑖 < 𝐻𝑗 , then 𝜆𝑖 ∈ ℤ. Especially,
if {𝐻 ∈  ∶ 𝐻𝑖 ≤ 𝐻} is impartible in  then 𝜆𝑖 ∈ ℤ.

Proof. Since 𝐻𝑖 is impartible, we can choose 𝑔 ∈ 𝐻𝑖 ⧵
⋃

𝐻∈ ∶ 𝐻𝑖≰𝐻
𝐻 . Then

𝜈𝑆(𝑔) =
∑

𝑗 ∶ 𝑔∈𝐻𝑗

𝜆𝑗 = 𝜆𝑖 +
∑

𝑗 ∶ 𝐻𝑖<𝐻𝑗

𝜆𝑗
⏟⏟⏟

∈ℤ

∈ ℤ

and thus 𝜆𝑖 ∈ ℤ.
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The impartible property might be tedious to check. However, the following
lemma describes a weaker criterion:

Lemma 4.20. Let  be a family of subgroups of 𝐺 and 𝐿 ∈ . Define

𝐼(𝐿) = {𝐿′ ∈  ∶ 𝐿 ≰ 𝐿′}.

Furthermore, denote by 𝑖(𝐿) the size of a smallest set 𝐽 ⊂ 𝐼(𝐿) such that
⋃

𝐽 =
⋃

𝐼(𝐿). If 𝑖(𝐿) ≤ 2 then 𝐿 is impartible in .

Proof. Suppose 𝐿 ∈  is not impartible and therefore 𝐿 ⊂
⋃

𝐼(𝐿) but 𝑖(𝐿) ≤ 2.
If 𝑖(𝐿) = 0 then 𝐿 ⊂ ∅ which is a contradiction.

If 𝑖(𝐿) = 1 then there is a 𝐾 ∈ 𝐼(𝐿) such that 𝐿 ⊂ 𝐾 which is a contradiction
to the definition of 𝐼(𝐿).

If 𝑖(𝐿) = 2 then there are 𝐾,𝐾 ′ ∈ 𝐼(𝐿) such that 𝐿 ⊂ 𝐾 ∪ 𝐾 ′. The set
(𝐿 ∩ 𝐾) ⧵ 𝐾 ′ is nonempty since otherwise 𝐿 ∩ 𝐾 ⊂ 𝐾 ′ and therefore 𝐿 ⊂ 𝐾 ′

and 𝑖(𝐿) ≤ 1. Same is true for (𝐿 ∩ 𝐾 ′) ⧵ 𝐾 . But if 𝑥 ∈ (𝐿 ∩ 𝐾) ⧵ 𝐾 ′ and
𝑦 ∈ (𝐿 ∩𝐾 ′) ⧵𝐾 then 𝑥𝑦 ∈ 𝐿 ⧵ (𝐾 ∪𝐾 ′) which is a contradiction.

Furthermore, we notice that a primitive formally dual set cannot have two max-
imal or minimal subgroups in the following sense:

Lemma 4.21 ([LPS19, Lemma 4.15]). Let𝑆 be a primitive formally dual set. Then
𝑆 is not of type

𝐻1 𝐻2

or 𝐻1 𝐻2 .

Proof. First suppose that 𝑆 is of the first type. Fix 𝑣 ∈ 𝑆.
We claim that there are some 𝑥, 𝑦 ∈ 𝑆 such that 𝑣 ⋅ 𝑥−1 ∈ 𝐻1 ⧵ 𝐻2 and

𝑣 ⋅ 𝑦−1 ∈ 𝐻2 ⧵ 𝐻1. Indeed, if for all 𝑤 ∈ 𝑆 we would have 𝑣 ⋅ 𝑤−1 ∈ 𝐻1 this
would contradict the primitivity of 𝑆.

But then
𝑥 ⋅ 𝑦−1 = (𝑥 ⋅ 𝑣−1) ⋅ (𝑣 ⋅ 𝑦−1) ∉ 𝐻1 ∪𝐻2

which is a contradiction.
Now suppose 𝑆 is of the second type, then its formal dual 𝑇 is of the first type

by Lemma 4.14. This contradicts the fact shown above.
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The following Lemma examines a special case that leads to further structural
properties of 𝑆 and is a generalization of [LPS19, Proposition 4.12]. We em-
phasize that in this case it follows that |𝑆| = |𝑇 | which is true for many known
examples.

Proposition 4.22. If 𝑆 is a primitive formally dual set of type

𝐻𝑟

𝐻1

or

𝐻𝑟

⟨𝐾,𝐻1⟩

𝐾
⋂

𝐾 ∩𝐻𝑟

𝐻1

then |𝐺| is a square number and |𝑇 | = |𝑆| =
√

|𝐺|. Furthermore, 𝐻𝑟 = 𝐺,
𝐻1 = {1}, 𝜆1 = 𝜆𝑟 = |𝑆| and 𝜆1 = 𝜆𝑟 = 1.

Proof. By Lemma 4.15 it is obvious that 𝐻1 = {1} and 𝐻𝑟 = 𝐺.
Let 𝑔 ∈ 𝐻2 ∩⋯ ∩𝐻𝑟 ⧵𝐻1. Then we have

𝜆1 =
𝑟

∑

𝑖=1
𝜆𝑖

⏟⏟⏟
=|𝑆|

−
𝑟

∑

𝑖=2
𝜆𝑖

⏟⏟⏟
=𝜈𝑆 (𝑔)

.

Applying Lemma 4.16 we thus have 0 < 𝜆1 ≤ |𝑆| and 𝜆1 ∈ ℤ. In a similar
manner, taking ℎ ∈ �̃�1 ⧵ ̃(

⋂

𝐾 ∩𝐻𝑟) we have 𝜆1 = 𝜈𝑇 (ℎ) and thus 𝜆1 is a positive
integer. So by Theorem 4.5 we have

1 ≤ 𝜆1 =
|𝐺|
|𝑆|3

𝜆1|𝐻1| ≤
|𝐺|
|𝑆|2

.

An analog argument in 𝑇 using Lemma 4.14 can be used to show 1 ≤ |𝐺|
|𝑇 |2

= |𝑆|2

|𝐺|
.

Altogether, |𝑆|2 = |𝐺| and equivalently |𝑆| = |𝑇 | =
√

|𝐺| ∈ ℤ. Using the above
inequalities, we thus have 𝜆1 = 𝜆𝑟 = 1, 𝜆1 = 𝜆𝑟 = |𝑆|.

The following result shows a strong connection among formally dual sets of a
certain type and relative difference sets. The proof uses ideas from [Sch17, Lemma 4.1]
and [Xia16, Section 3.2] in a new context.
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Proposition 4.23. Let 𝑆 be a primitive formally dual set of type

𝐻𝑟

𝐻𝑟−1

𝐿 = 𝐻1 or

𝐻𝑟

𝐻𝑟−1

𝐿 = ⟨𝐾⟩

𝐾
⋂

𝐾

𝐻1

and𝜙 ∶ 𝐺 → 𝐺∕𝐿 be the natural reduction map. Then |𝑆∩𝑎⋅𝐻𝑟−1| =
|𝐻𝑟−1|

|𝑆|
for all

𝑎 ∈ 𝐺 and 𝜙(𝑆) is an
(

|𝑆|2

|𝐻𝑟−1|
, |𝐻𝑟−1|

|𝐿|
, |𝑆|2

|𝐻𝑟−1|
, |𝐿|⋅|𝑆|

2

|𝐻𝑟−1|
2

)

-RDS. In particular 𝜆𝑟−1 = −1.

Proof. By applying Proposition 4.22 we have

𝐻𝑟 = 𝐺,𝐻1 = {1}, 𝜆𝑟 = 1, 𝜆1 = |𝑆| and |𝑆|2 = |𝐺|.

Furthermore, we take 𝑔 ∈ �̃� ⧵ �̃�𝑟−1 and get
𝑟−2
∑

𝑖=1
𝜆𝑖|𝐻𝑖| =

∑

𝑖 ∶ 𝑔∈�̃�𝑖

𝜆𝑖|𝐻𝑖| ≥ 0

by Lemma 4.16. The same Lemma also yields
𝑟−1
∑

𝑖=1
𝜆𝑖|𝐻𝑖| + |𝑆|2 =

𝑟
∑

𝑖=1
𝜆𝑖|𝐻𝑖| = |𝑆|2

which is equivalent to
∑𝑟−1

𝑖=1 𝜆𝑖|𝐻𝑖| = 0. Altogether,

−𝜆𝑟−1|𝐻𝑟−1| =
𝑟−2
∑

𝑖=1
𝜆𝑖|𝐻𝑖| ≥ 0

which yields 𝜆𝑟−1 < 0. For any 𝑔 ∈ 𝐻𝑟−1 ⧵ 𝐿 we apply Lemma 4.16 again to get
𝜈𝑆(𝑔) = 𝜆𝑟−1 + 1 = 𝜆𝑟−1 + 𝜆𝑟 ≥ 0 and thus 𝜈𝑆(𝑔) = 0, 𝜆𝑟−1 = −1.

Furthermore, we have

𝐻𝑟−1 ⋅ 𝑆𝑆
(−1) =

𝑟
∑

𝑖=1
𝜆𝑖𝐻𝑖𝐻𝑟−1 = (

𝑟−1
∑

𝑖=1
𝜆𝑖|𝐻𝑖|)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=0

𝐻𝑟−1 + |𝐻𝑟−1|𝐺 = |𝐻𝑟−1|𝐺.
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Therefore by Lemma 2.5 the differences of 𝑆 in 𝑎𝐻𝑟−1 are exactly
∑

𝑔∈𝑎𝐻𝑟−1

𝜈𝑆(𝑔) =
∑

𝑔∈𝑎𝐻𝑟−1

[𝑆𝑆 (−1)]𝑔 = |𝐻𝑟−1|

for all 𝑎 ∈ 𝐺. In particular for 𝑎 = 1.
Let  be a system of representatives of 𝐺∕𝐻𝑟−1 in 𝐺. Clearly any sum of

squares
∑𝑚

𝑖=1 𝜇
2
𝑖 is minimized under the conditions

∑𝑚
𝑖=1 𝜇𝑖 = 𝑐 and 𝜇𝑖 ≥ 0 if and

only if 𝜇𝑖 =
𝑐
𝑚

. Thus, we can bound the number of differences in 𝐻𝑟−1 as

|𝐻𝑟−1| =
∑

𝑎∈
|𝑆 ∩ 𝑎 ⋅𝐻𝑟−1|

2 ≥
∑

𝑎∈

(

|𝑆|
[𝐺 ∶ 𝐻𝑟−1]

)2

=
|𝑆|2

[𝐺 ∶ 𝐻𝑟−1]
= |𝐻𝑟−1|.

Therefore we get |𝑆 ∩ 𝑎 ⋅𝐻𝑟−1| =
|𝑆|

[𝐺 ∶ 𝐻𝑟−1]
= |𝐻𝑟−1|

|𝑆|
for all 𝑎 ∈ .

Now let 𝑎⋅𝐻𝑟−1 be an arbitrary coset. We claim that the elements of𝑆 ∩ 𝑎 ⋅𝐻𝑟−1
are all contained in the same coset of𝐿. Indeed, suppose there are 𝑥, 𝑦 ∈ 𝑆 ∩ 𝑎 ⋅𝐻𝑟−1,
and 𝑥 ∉ 𝑦𝐿. Clearly 𝑥𝑦−1 ∈ 𝐻𝑟−1 ⧵ 𝐿 and 𝑥𝑦−1 ∈ supp(𝑆𝑆 (−1)) which is a con-
tradiction since 𝜈𝑆(𝑥𝑦−1) = 𝜆𝑟 + 𝜆𝑟−1 = 0.

Therefore |𝑆 ∩ 𝑎𝐿| ∈ {0, |𝐻𝑟−1|

|𝑆|
} for all 𝑎 ∈ 𝐺 and by Lemma 2.6 we have

𝜙(𝑆) ⋅ (𝜙(𝑆))(−1) =
|𝑆|2

|𝐻𝑟−1|
2
(𝑆𝑆 (−1))(𝜙) =

|𝑆|2

|𝐻𝑟−1|
2

(

𝑟
∑

𝑖=1
𝜆𝑖𝐻

(𝜙)
𝑖

)

=
|𝑆|2

|𝐻𝑟−1|
2
(
𝑟−2
∑

𝑖=1
𝜆𝑖|𝐻𝑖|

⏟⏞⏞⏟⏞⏞⏟
=|𝐻𝑟−1|

−|𝐿| ⋅𝐻𝑟−1∕𝐿 + |𝐿| ⋅ 𝐺∕𝐿)

=
|𝑆|2 ⋅ |𝐿|
|𝐻𝑟−1|

2
(𝐺∕𝐿 −𝐻𝑟−1∕𝐿) +

|𝑆|2

|𝐻𝑟−1|

Thus, we have that 𝜙(𝑆) is a relative difference set of size |𝑆|2

|𝐻𝑟−1|
with forbidden

subgroup 𝐻𝑟−1∕𝐿 and parameter |𝐿|⋅|𝑆|2

|𝐻𝑟−1|
2 in a group of size |𝐺|

|𝐿|
= |𝑆|2

|𝐻𝑟−1|
⋅ |𝐻𝑟−1|

|𝐿|
and

thus an ( |𝑆|2

|𝐻𝑟−1|
, |𝐻𝑟−1|

|𝐿|
, |𝑆|2

|𝐻𝑟−1|
, |𝐿|⋅|𝑆|

2

|𝐻𝑟−1|
2 )-RDS as asserted.

Remark 4.24. The results of Proposition 4.22 and Proposition 4.23 are in partic-
ular true if 𝑆 is an even set with respect to a sufficiently long chain of subgroups.



42 CHAPTER 4. THE EVEN SET APPROACH

In the following we present a lemma which generalizes [LPS19, Lemma 4.18]
and is preperatory for Lemma 4.26.

Lemma 4.25. Let 𝑆 be a primitive formally dual set of type

𝐻1 𝐻2 𝐻3

𝐾1 𝐾2 𝐾3

⋂

𝐾1 ∩𝐻1
⋂

𝐾2 ∩𝐻2
⋂

𝐾3 ∩𝐻3

with 1 ∈ 𝑆.
Let 𝑆1 = {𝑥 ∈ 𝑆 ∶ 𝑥 ∈ 𝐻1, 𝑥 ∉ 𝐻2, 𝑥 ∉ 𝐻3} and 𝑆2, 𝑆3 analogously.

Furthermore, let 𝑆12 = {𝑥 ∈ 𝑆 ∶ 𝑥 ∈ 𝐻1, 𝑥 ∈ 𝐻2, 𝑥 ∉ 𝐻3} and 𝑆13, 𝑆23
analogously.

Then the following is true:

1. either 𝑆1 = ∅ or 𝑆23 = ∅,

2. if 𝑆1 ≠ ∅, 𝑆2 ≠ ∅ then supp(𝑆1𝑆
(−1)
1 ) ⊂ 𝐻1 ∩𝐻3 and

3. supp(𝑆1𝑆−1
2 ) ⊂ 𝐻3 ⧵ (𝐻1 ∪𝐻2).

Note that these statements also hold for any permutation of the indices {1, 2, 3}.

Proof. 1. Suppose 𝑥 ∈ 𝑆1 and 𝑦 ∈ 𝑆23. Observe that 𝑥𝑦−1 ∉ 𝐻1 ∪𝐻2 ∪𝐻3
which contradicts the type of 𝑆.

2. Let 𝑥, 𝑦 ∈ 𝑆1. Furthermore let 𝑧 ∈ 𝑆2, thus 𝑥𝑧−1, 𝑦𝑧−1 ∉ 𝐻1 ∪𝐻2. Since
𝑥𝑧−1, 𝑦𝑧−1 ∈ supp(𝑆𝑆 (−1))we can see by the type of𝑆 that 𝑥𝑧−1, 𝑦𝑧−1 ∈ 𝐻3.
Therefore, 𝐻1 ∋ 𝑥𝑦−1 = (𝑥𝑧−1)(𝑦𝑧−1) ∈ 𝐻3.

3. The assertion is apparent noticing that 𝑥𝑦−1 ∉ (𝐻1 ∪ 𝐻2) for all 𝑥 ∈ 𝑆1,
𝑦 ∈ 𝑆2 and the type of 𝑆.

With these insights we are able to prove an upper bound of primitive formally
dual sets of a certain type.

Lemma 4.26. Let 𝑆 be a primitive formally dual set of type

𝐻1 𝐻2 𝐻3

𝐾1 𝐾2 𝐾3

⋂

𝐾1 ∩𝐻1
⋂

𝐾2 ∩𝐻2
⋂

𝐾3 ∩𝐻3 ,
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such that {𝐻1,𝐻2,𝐻3} is impartible in . Then |𝑆| ≤ 6|𝐻1 ∩𝐻2 ∩𝐻3|.

Proof. We use the same notation as in the condition of Lemma 4.26. By Lemma
4.19 𝜆1, 𝜆2, 𝜆3 ∈ ℤ and we can choose 𝑔 ∈ 𝐻1 ⧵ (𝐻2 ∪ 𝐻3) such that 𝑔 is not
contained in any other subgroup of 𝐾1. We have 𝜈𝑆(𝑔) = 𝜆1 > 0. Therefore there
is a pair 𝑥, 𝑦 ∈ 𝑆 such that 𝑥𝑦−1 ∈ 𝐻1 ⧵ (𝐻2 ∪𝐻3). Thus the set 𝑦−1𝑆 contains
1 = 𝑦−1𝑦 and 𝑦−1𝑆∩𝐻1 ≠ ∅ since 𝑦−1𝑥 ∈ 𝑦−1𝑆∩𝐻1. So without loss of generality
(after translation of 𝑆) we might assume 1 ∈ 𝑆 and 𝑆1 ≠ ∅

Next, we discuss three cases:

𝑆2, 𝑆3 ≠ ∅:

Then 𝑆12, 𝑆13, 𝑆23 = ∅ by Lemma 4.26. Furthermore, we have

supp(𝑆𝑖𝑆
(−1)
𝑖 ) ⊂ 𝐻1 ∩𝐻2 ∩𝐻3 for every 𝑖 = 1, 2, 3.

Therefore𝑆𝑖 is contained in a coset of𝐻1∩𝐻2∩𝐻3 and thus |𝑆𝑖| ≤ |𝐻1∩𝐻2∩𝐻3|.
Altogether |𝑆| = 1 + |𝑆1| + |𝑆2| + |𝑆3| ≤ 1 + 3|𝐻1 ∩𝐻2 ∩𝐻3|.

One of 𝑆2,𝑆3 is empty, the other is nonempty:

Without loss of generality we might assume that 𝑆2 ≠ ∅ and 𝑆3 = ∅. By
Lemma 4.26 we have 𝑆13, 𝑆23 = ∅. Furthermore, we have for any
𝑣 ∈ 𝐻3 ∩

⋂

𝐾3 ⧵ (𝐻1 ∪ 𝐻2):

𝜈𝑆(𝑣) = [𝑆𝑆 (−1)]𝑣 = [𝑆1𝑆
(−1)
2 ]𝑣 + [𝑆2𝑆

(−1)
1 ]𝑣.

Let 𝑥, 𝑦 ∈ 𝑆1 such that 𝑥𝑣, 𝑦𝑣 ∈ 𝑆2. Then, by Lemma 4.26

𝐻1 ∩𝐻3 ∋ 𝑥𝑦(−1) = (𝑥𝑣)(𝑦𝑣)(−1) ∈ 𝐻2 ∩𝐻3.

Therefore 𝑥 and 𝑦 are in the same coset of 𝐻1 ∩𝐻2 ∩𝐻3 yielding

𝜆1 +
∑

𝑖 ∶ 𝐻𝑖∈𝐾1

𝜆𝑖 = 𝜈𝑆(𝑣) ≤ 2 ⋅ |𝐻1 ∩𝐻2 ∩𝐻3|.

Like seen above, we can translate 𝑆 such that 1 ∈ 𝑆 and 𝑆2 = ∅. An analog
argument shows that 𝜆2 +

∑

𝑖 ∶ 𝐻𝑖∈𝐾2
𝜆𝑖 ≤ 2 ⋅ |𝐻1 ∩𝐻2 ∩𝐻3|. In a similar manner

we also show 𝜆3 +
∑

𝑖 ∶ 𝐻𝑖∈𝐾3
𝜆𝑖 ≤ 2 ⋅ |𝐻1 ∩𝐻2 ∩𝐻3|.
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Altogether

|𝑆| =
𝑟

∑

𝑖=1
𝜆𝑖 =

3
∑

𝑗=1

(

𝜆𝑗 +
∑

𝑖 ∶ 𝐻𝑖∈𝐾𝑗

𝜆𝑖

)

≤ 6|𝐻1 ∩𝐻2 ∩𝐻3|.

𝑆2 = 𝑆3 = ∅:

This case is a contradiction to the primitivity of 𝑆 since then 𝑆 ⊂ 𝐻1.

If we are in a situation where we can apply above result on both sets of a for-
mally dual pair, we obtain the following:

Corollary 4.27. Let 𝑆 be a primitive formally dual set of type

𝐻1 𝐻2 𝐻3

𝐾1 𝐾2 𝐾3

𝐿1 𝐿2 𝐿3 ,

such that {𝐻1,𝐻2,𝐻3} is impartible in  and {�̃�1, �̃�2, �̃�3} is impartible in ̃.
Then | ⟨𝐿1, 𝐿2, 𝐿3⟩ | ≤ 36 ⋅ |𝐻1 ∩𝐻2 ∩𝐻3|.

Proof. Apparently the asserted Hasse-type diagram as well as its dual diagram fit
the assumption of Lemma 4.25. Thus, by Lemma 4.14 we have

|𝑆| ≤ 6|𝐻1 ∩𝐻2 ∩𝐻3|

and

|𝑇 | ≤ 6 ⋅ |�̃�1 ∩ �̃�2 ∩ �̃�3| = 6 ⋅ | ̃
⟨𝐿1, 𝐿2, 𝐿3⟩| = 6 ⋅

|𝐺|
| ⟨𝐿1, 𝐿2, 𝐿3⟩ |

.

By multiplying both inequalities we have

|𝐺| ≤ 36 ⋅ |𝐻1 ∩𝐻2 ∩𝐻3| ⋅
|𝐺|

| ⟨𝐿1, 𝐿2, 𝐿3⟩ |

which is equivalent to the assertion.

The results on the even set structure of formally dual sets are a useful tool that
we use in Sections 4.4 and 5.2.
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4.4 Formally dual sets of small rank
In this section we study primitive formally dual sets of rank less or equal to four.
We characterize primitive formally dual sets up to rank three and give some state-
ments about rank four primitive formally dual sets.

Lemma 4.28. If 𝑆 is a primitive formally dual set of rank one, then 𝑆 = 𝐺 = {1}.

Proof. Since 𝑆 has rank one, 𝑆𝑆 (−1) = 𝜆𝐻 . Lemma 4.15 yields, that 𝐻 = {1}
and on the other hand 𝐻 = 𝐺. Thus 𝑆 = 𝐺 = {1}.

Lemma 4.29. There is no primitive formally dual set of rank two.

Proof. Suppose 𝑆 is as asserted. There are only two possible Hasse-diagrams for
two subgroups, namely

𝐻2

𝐻1 or
𝐻2𝐻1 .

By Lemma 4.21 we can exclude the second case. Thus by Proposition 4.22 we
have 𝐻1 = {1},𝐻2 = 𝐺, 𝜆1 = |𝑆|, 𝜆2 = 1, but this is a contradiction to Lemma
4.16 since 𝜆1 + 𝜆2 ≠ |𝑆|.

Certain relative difference sets are examples of primitive formally dual pairs
of rank three (see Corollary 4.7). The following theorem shows, that there are no
other examples:

Theorem 4.30 ([LPS19, Theorem 4.19]). If 𝑆 is a primitive formally dual set of
rank three, then it is an (𝑛, 𝑛, 𝑛, 1)-RDS.

Proof. There are the following possible Hasse-diagrams of three subgroups:

a) b) c) d) e) .

By Lemma 4.21 we can exclude the possibilities b), c) and d) from our discus-
sion.
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If𝑆 has a Hasse-diagram of type a) it follows by Proposition 4.22 that its Hasse-

diagram is

𝐻3 = 𝐺

𝐻2

𝐻1 = {1} and 𝜆1 = |𝑆|, 𝜆3 = 1, |𝐺| = |𝑆|2. By Proposition 4.23 𝑆

is an
(

|𝑆|2

|𝐻2|
, |𝐻2|,

|𝑆|2

|𝐻2|
, |𝑆|2

|𝐻2|
2

)

-RDS. Therefore |𝑆| = |𝑆|2

|𝐻2|
yielding |𝐻2| = |𝑆| and

therefore 𝑆 is an (𝑛, 𝑛, 𝑛, 1)-RDS for 𝑛 = |𝑆|.
If 𝑆 has a Hasse-diagram of type e) it follows by Corollary 4.27, Lemma 4.20

and Lemma 4.15 that

|𝐺| = | ⟨𝐻1,𝐻2,𝐻3⟩ | ≤ 36 ⋅ |𝐻1 ∩𝐻2 ∩𝐻3| = 36.

By Table A.1 in the Appendix we see that all rank three primitive formally dual
sets in groups of order not bigger than 36 are (𝑛, 𝑛, 𝑛, 1)-RDS. Note that if 𝑆 is a
product of two RDS then 𝑆 is not an (𝑛, 𝑛, 𝑛, 1)-RDS and supp(𝑆𝑆 (−1)) is not a
union of three subgroups. By the above discussion these examples can not have
rank three.

When examining formally dual sets, we have examples which are even with
respect to a chain of subgroups of odd length (see Example 6.2). But there are
also examples that don’t seem to permit such a structure (see Theorem 6.4). The
following question remains open: which is the smallest rank of a formally dual set
which is not even with respect to a chain of subgroups? At this point it cannot be
completely ruled out that such a set has rank four. By Lemma 4.21 we know that
the respective subgroups of a rank four primitive formally dual set has to have one
of the following types:

, , , , , .

In the following we present partial results on some of these types.

Lemma 4.31. There is no primitive formally dual set of type

𝐻4

𝐻3

𝐻2

𝐻1 .
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Proof. Suppose 𝑆 ⊂ 𝐺 is such a set. Due to Lemma 4.15 and Proposition 4.22,
we have 𝐻1 = {1}, 𝐻4 = 𝐺, 𝜆1 = |𝑆|, 𝜆4 = 1 and |𝐺| = |𝑆|2.

We apply Proposition 4.23 to see that 𝜆3 = −1. But then, by Lemma 4.16
|𝑆| + 𝜆2 − 1 + 1 = |𝑆| yielding 𝜆2 = 0 which is a contradiction.

Lemma 4.32. There is no primitive formally dual set of type

𝐻1

𝐻2 𝐻3

𝐻4

.

Proof. Suppose 𝑆 is such a primitive formally dual set. By Lemma 4.15 we have
𝐻4 = 𝐺 and 𝐻1 = {1}. Let 𝑇 be a formal dual of 𝑆. Since 𝑇 is by Lemma 4.14
also of the asserted type we assume without loss of generality |𝑆|2 ≤ |𝐺| ≤ |𝑇 |2.
By Lemma 4.20 we know that both  and ̃ are impartible in  and ̃ respec-
tively. Thus, by Lemma 4.19 we have 𝜆𝑖, 𝜆𝑖 ∈ ℤ for all 𝑖. In particular,

𝜆4 =
|𝐺|
|𝑇 |3

𝜆4|�̃�4| =
|𝑆|
|𝑇 |2

𝜆4 ∈ ℤ

and therefore |𝑇 |2 divides |𝑆| ⋅ 𝜆4. Furthermore, using Lemma 4.16 we have

|𝑇 | = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = (𝜆1 + 𝜆2)
⏟⏞⏟⏞⏟
0≤⋯<|𝑇 |

+ (𝜆1 + 𝜆3)
⏟⏞⏟⏞⏟
0≤⋯<|𝑇 |

− 𝜆1
⏟⏟⏟
0≤⋯<|𝑇 |

+𝜆4

and therefore −|𝑇 | < 𝜆4 < 2|𝑇 | which is equivalent to

−|𝐺| < |𝑆| ⋅ 𝜆4 < 2|𝐺|. (4.2)

Since |𝑇 |2 ≥ |𝐺| divides |𝑆| ⋅ 𝜆4 this yields 𝜆4 = |𝑇 |2

|𝑆|
≥ |𝑇 | and |𝑇 | < 2|𝑆|.

By applying Lemma 4.16 again we additionally have 𝜆1 + 𝜆2, 𝜆1 + 𝜆3 ≥ 0 and
𝜆1 + 𝜆2 + 𝜆3 ≤ 0 and thus 𝜆2, 𝜆3 < 0, 𝜆1 > 0.

By Theorem 4.5 we then have

𝜆4 =
|𝐺|
|𝑇 |3

|�̃�4|𝜆4 =
|𝑆|
|𝑇 |2

⋅
|𝑇 |2

|𝑆|
= 1, 𝜆2, 𝜆3 < 0
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as well as 𝜆1 > 0. By Lemma 4.16 we have 𝜆4+𝜆2 = 1+𝜆2 ≥ 0, 𝜆4 + 𝜆3 = 1 + 𝜆3 ≥ 0
and thus 𝜆2 = 𝜆3 = −1. Altogether

|𝑆| = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 𝜆1 − 1

and thus 𝜆1 = |𝑆| + 1.
We have

𝜆1 =
|𝐺|
|𝑆|3

𝜆1 =
|𝑇 |
|𝑆|2

(|𝑆| + 1) ∈ ℤ.

Thus we know that |𝑆|2 divides |𝑇 | ⋅ (|𝑆| + 1). Since gcd(|𝑆|, |𝑆| + 1) = 1 this
yields that |𝑆|2 divides |𝑇 |. So |𝑆|2 ≤ |𝑇 | < 2|𝑆| yielding |𝑆| = 1. This is only
possible if 𝑆 = 𝑇 = 𝐺 = {1} which is not of the assumed type. Therefore the
assertion follows by contradiction.

The remaining cases of rank four primitive formally dual sets might be exam-
ined by Lemma 4.15 and Lemma 4.26 for some additional restriction. But not
much more is known. Furthermore, the smallest example, in terms of rank, of a
primitive formally dual set which is not even with respect to a chain of subgroups
is not known yet. In particular, we conjecture the following:

Conjecture 4.33. Every primitive formally dual set of rank at most four is either
trivial or an (𝑛, 𝑛, 𝑛, 1)-RDS. Furthermore, there is a formally dual set of rank 5
which is not even with respect to a chain of subgroups.



5 Non-existence results

In this chapter we examine conditions under which no primitive formally dual
pair can exist. In Chapter 4 we have seen such conditions on the type of even
set (Lemmata 4.21, 4.28, 4.29, 4.31, 4.32). In this chapter we focus on the group
structure and the size of the set. It seems, that especially in cyclic groups formal
duality is very rare. In particular the following has been conjectured by Cohn,
Kumar, Reiher and Schürmann:

Conjecture 5.1 ([CKRS14, Beginning of Section 4.2]). If𝑆 is a primitive formally
dual set in a cyclic group, then 𝐺 = 𝐶4 and 𝑆 is equivalent to TITO.

Many results in this chapter are in favor of this conjecture. But it remains open.
For the rest of this chapter we examine formal duality in additive groups if not

said otherwise. By applying Theorem 4.5 to cyclic groups we essentially get the
following:

Corollary 5.2 ([Sch17, Theorem 3.1]). Let 𝑆 be a formally dual subset of ℤ𝑛. The
weight enumerator satisfies

𝜈𝑆(𝑦) = 𝜈𝑆(gcd(𝑦, 𝑛))

for all 𝑦 ∈ ℤ𝑛.

Furthermore, Theorem 4.5 can be transformed into a linear equation among
the weight enumerators in the cyclic case. This is possible since in this case the
annihilator of a cyclic subgroup is again cyclic.

Corollary 5.3. Let 𝑆 and 𝑇 form a formally dual pair in 𝐺 = ℤ𝑛. Furthermore,
let

𝑆𝑆 (−1) =
∑

𝑑|𝑛

𝜆𝑑[𝑑ℤ𝑛], 𝑇 𝑇 (−1) =
∑

𝑑|𝑛

𝜆𝑑 [̃𝑑ℤ𝑛] =
∑

𝑑|𝑛

𝜆𝑛∕𝑑[𝑑ℤ𝑛]

the unique even set representations of 𝑆 and 𝑇 (see Lemma 2.8). Then for any
divisor 𝑑 of 𝑛 we have

49
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1. 𝜈𝑆(𝑑) =
∑

𝑒|𝑑 𝜆𝑒,

2. 𝜈𝑇 (𝑑) =
∑

𝑒|𝑑 𝜆𝑛∕𝑒,

3. 𝜆𝑑 =
∑

𝑒|𝑑 𝜇(𝑛∕𝑒)𝜈𝑆(𝑒),

4. |𝑆|2

|𝑇 |
𝜈𝑇 (𝑑) =

∑

𝑒|𝑛 𝐶𝑛(𝑑, 𝑒)𝜈𝑆(𝑒),

where 𝐶𝑛(𝑑, 𝑒) =
∑

𝑔| gcd(𝑑,𝑛∕𝑒) 𝜇(𝑛∕(𝑒𝑔))𝑔.

Proof. We have
𝜈𝑆(𝑑) =

∑

𝑒∶𝑑∈𝑒ℤ𝑛

𝜆𝑒 =
∑

𝑒|𝑑

𝜆𝑒

as well as
𝜈𝑇 (𝑑) =

∑

𝑒∶𝑑∈[̃𝑒ℤ𝑛]

𝜆𝑒 =
∑

𝑛
𝑒 |𝑑

𝜆𝑒 =
∑

𝑒|𝑑

𝜆𝑛∕𝑒.

Furthermore, we define an arithmetic function 𝜆 by

𝜆(𝑒) =

{

𝜆𝑒 if 𝑒|𝑛
0 otherwise

.

Observe that by Corollary 5.2 we have

𝜈𝑆(𝑦) = 𝜈𝑆(gcd(𝑦, 𝑛)) =
∑

𝑑| gcd(𝑦,𝑛)
𝜆𝑑 =

∑

𝑑|𝑦

𝜆(𝑑)

for all 𝑦. By the Moebius inversion formula (Theorem 2.4) we have for any 𝑑|𝑛:

𝜆𝑑 = 𝜆(𝑑) =
∑

𝑒|𝑑

𝜇(𝑛∕𝑒)𝜈𝑆(𝑒).

The last assertion follows by Theorem 4.5 as

|𝑆|2

|𝑇 |
𝜈𝑇 (𝑑) =

∑

𝑔|𝑑

|𝑆|3

|ℤ𝑛|
𝜆𝑛∕𝑔 =

∑

𝑔|𝑑

𝜆𝑛∕𝑔 ⋅
|

|

|

|

|

[

𝑛
𝑔
ℤ𝑛

]

|

|

|

|

|

=
∑

𝑔|𝑑

∑

𝑒| 𝑛𝑔

𝜇(𝑛∕(𝑒𝑔))𝜈𝑆(𝑒) ⋅ 𝑔.

Note that 𝑔|𝑑 and 𝑒| 𝑛
𝑔

is equivalent to 𝑒|𝑛 and 𝑔| gcd(𝑑, 𝑛∕𝑒) and thus

|𝑆|2

|𝑇 |
𝜈𝑇 (𝑑) =

∑

𝑒|𝑛

∑

𝑔| gcd(𝑑,𝑛∕𝑒)
𝜇(𝑛∕(𝑒𝑔))𝑔 ⋅ 𝜈𝑆(𝑒) =

∑

𝑒|𝑛

𝐶𝑛(𝑑, 𝑒) ⋅ 𝜈𝑆(𝑒).
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In [Sch17, Corollary 3.1] the author proved Corollary 5.3 (4) in a different
way using sums of roots of unity. A similar result regarding the discrete Fourier
transform of so called 𝑟-even functions is given in [TH11, Proposition 2]. We
presented the above proof of this result to show the connection to even set theory.

We proceed in Section 5.1 to examine non-existence results obtained with the
so called Field-descent method. The results obtained this way are non-existence
results up to finitely many exceptions. In Section 5.2 we state restrictions of the
groups that contain primitive formally dual sets of a given size. Thereby, we em-
phasize on cyclic groups and observe that formal duality in cyclic groups seems
indeed very rare.

5.1 The field-descent method
In this section we describe the field descent method and its application on for-
mal duality. For more background information about the field descent method see
[Sch99], [Sch02] or [LS05].

For the rest of the section, we use the radical of an integer𝑁 that is defined as

rad(𝑁) =
∏

𝑝|𝑁
𝑝 prime

𝑝.

The main observation we use is that an element of ℤ[𝜁𝑚] whose squared abso-
lute value is an integer, is contained in a rotation of some smaller ℤ[𝜁𝑚′] The size
of this smaller ℤ[𝜁𝑚′] basically depends on the prime factorizations of𝑚 and 𝑛. To
be precise:

Theorem 5.4 ([Sch02, Proposition 2.2.7, Theorem 2.2.8]). Let 𝐴 ∈ ℤ[𝜁𝑚], such
that |𝐴|2 = 𝑛 ∈ ℤ. Then, there is a number 𝐹 (𝑚, 𝑛) dividing 𝑚 such that

𝐴 ∈ 𝜁 𝑗𝑚ℤ[𝜁𝐹 (𝑚,𝑛)]

for some 𝑗 ∈ ℤ. Furthermore, there is an explicit computable value 𝐶(𝑃 ) such
that

𝐹 (𝑚, 𝑛) ≤ 𝐶(𝑃 )

for all 𝑚, 𝑛, 𝑃 ∈ ℤ such that rad(𝑚 ⋅ 𝑛)|𝑃 .

Furthermore, the field descent method gives an upper bound on the absolute
value of elements of ℤ[𝜁𝑚]:
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Theorem 5.5 ([Sch02, Theorem 2.3.2]). Let 𝑋 ∈ ℤ[𝜁𝑚] with

𝑋 =
𝑚−1
∑

𝑖=0
𝑎𝑖𝜁

𝑖
𝑚

where the 𝑎𝑖 are integer numbers with 0 ≤ 𝑎𝑖 ≤ 𝐶 for some constant 𝐶 . Further-
more, assume that |𝑋|

2 = 𝑛 ∈ ℤ. Then

𝑛 ≤ 𝐶2𝐹 (𝑚, 𝑛)2

4𝜑(𝐹 (𝑚, 𝑛))
.

Note that the character values |𝜒(𝑆)|2 of a formally dual set 𝑆 are indeed in-
tegers (see Remark 3.9). So the field descent method can be applied.

In [Mal18] Malikiosis used these results to give an alternative proof of the
characterization of primitive formally dual sets in cyclic groups of prime power
order (see Corollary 5.12) as well as the following:

Theorem 5.6 ([Mal18, Theorem 7.3. and proof]). Let 𝑝, 𝑞 be two distinct primes.
There is a constant 𝐷(𝑝, 𝑞) such that no group ℤ𝑁 with rad(𝑁) = 𝑝𝑞 and
𝑁 > 𝐷(𝑝, 𝑞) contains primitive formally dual subsets.

Thus, for any fixed pair 𝑝, 𝑞 of primes, there are at most finitely many cyclic
groups ℤ𝑁 that permit a primitive formally dual subset.

We generalize this result:

Theorem 5.7. Let 𝑝, 𝑞 be two distinct primes and 𝑁 ′ an arbitrary integer. There
is a constant𝐷(𝑝, 𝑞,𝑁 ′) such that no group of the form ℤ𝑁 ×𝐺′ where rad(𝑁)|𝑝𝑞,
|𝐺′

| = 𝑁 ′ and 𝑁 > 𝐷(𝑝, 𝑞,𝑁 ′) contains primitive formally dual subsets.

Proof. Suppose 𝑆, 𝑇 ⊂ 𝐺 form a primitive formally dual pair and without loss of
generality |𝑇 |2 ≤ |𝐺| ≤ |𝑆|2 as well as (0, 0) ∈ 𝑆, 𝑇 .

We claim that there is an element of supp(𝑇𝑇 (−1)) whose order is at least 𝑁 :
If rad(𝑁) = 𝑝 the claim follows directly by the primitivity of 𝑇 . Suppose

rad(𝑁) = 𝑝𝑞 and supp(𝑇𝑇 (−1)) does not contain any element of order𝑁 or higher.
Since 𝑇 is primitive, it is not contained in one of the subgroups 𝑝𝑞ℤ𝑁 × 𝐺′,
𝑝ℤ𝑁 × 𝐺′ or 𝑞ℤ𝑁 × 𝐺′. Therefore, there are elements (𝑎, 𝑥) ∈ 𝑝ℤ𝑁 × 𝐺′ ,
(𝑎′, 𝑥′) ∈ 𝑞ℤ𝑁 × 𝐺′ such that 𝑝 ∤ 𝑎 and 𝑞 ∤ 𝑎′. But then
(𝑎 − 𝑎′, 𝑥 − 𝑥′) ∈ supp(𝑇𝑇 (−1)). Since 𝑎 − 𝑎′ is not divisible by 𝑝 or 𝑞 we have
gcd(𝑎− 𝑎′, 𝑁) = 1 and therefore ord(𝑎− 𝑎′, 𝑥− 𝑥′) ≥ 𝑁 which proves the claim.
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So let 𝑎 ∈ supp(𝑇𝑇 (−1)) be an element of order at least 𝑁 . Thus the kernel of
the respective character 𝜒𝑎 has at most size 𝑁 ′. Due to Corollary 4.3 the weight
enumerator is constant on the set of generators of ⟨𝑎⟩. Note that ⟨𝑎⟩ ≃ ℤ𝑀 for
some 𝑀 with 𝑁|𝑀 . By counting differences in 𝑇 we have

𝜈𝑇 (𝑎) ⋅ 𝜑(𝑁) ≤ 𝜈𝑇 (𝑎) ⋅ 𝜑(𝑀) < |𝑇 |2 ≤ |𝐺| = 𝑁 ⋅𝑁 ′,

or in other terms 𝜈𝑇 (𝑎) <
𝑁

𝜑(𝑁)
⋅𝑁 ′ ≤ 𝑝𝑞

(𝑝−1)(𝑞−1)
𝑁 ′ < 𝑝𝑞𝑁 ′. Define

𝑛 = |𝜒𝑎(𝑆)|2 =
|𝑆|2

|𝑇 |
𝜈𝑇 (𝑎), 𝑚 = |𝐺| = 𝑁 ⋅𝑁 ′.

and 𝑅(𝑝, 𝑞,𝑁 ′) = rad((𝑝𝑞𝑁 ′)!). Note that since |𝑆| divides |𝐺| we have

rad(|𝑆|2) | rad(𝐺) | rad(𝑝𝑞𝑁 ′) | 𝑅(𝑝, 𝑞,𝑁 ′).

Moreover, since 𝜈𝑇 (𝑎) < 𝑝𝑞𝑁 ′ we also have rad(𝜈𝑇 (𝑎)) | rad((𝑝𝑞𝑁 ′)!) and thus
rad(𝑛) | 𝑅(𝑝, 𝑞,𝑁 ′). Also 𝑚 divides |𝐺| and thus rad(𝑚) | 𝑅(𝑝, 𝑞,𝑁 ′). Further-
more, 𝜒𝑎(𝑆) =

∑𝑚
𝑖=1 𝑎𝑖𝜁

𝑖
𝑚 where 0 ≤ 𝑎𝑖 ≤ ker(𝜒𝑎) ≤ 𝑁 ′. Using Theorems 5.4, 5.5

and the fact that 𝐹 (𝑚, 𝑛) divides |𝐺| and therefore 𝐹 (𝑚,𝑛)
𝜑(𝐹 (𝑚,𝑛))

≤ rad(𝑝𝑞𝑁 ′)
𝜑(rad(𝑝𝑞𝑁 ′))

we have

√

𝑁 ⋅𝑁 ′ ≤ |𝑆|3

|𝐺|
𝜈𝑇 (𝑎) = 𝑛 ≤ 𝑁 ′2𝐹 (𝑚, 𝑛)2

4𝜑(𝐹 (𝑚, 𝑛))
≤ 𝑁 ′2⋅𝐶(𝑅(𝑝, 𝑞,𝑁 ′))⋅

rad(𝑝𝑞𝑁 ′)
4𝜑(rad(𝑝𝑞𝑁 ′))

and thus

𝑁 ≤ 1
16
𝑁 ′3 ⋅

(

𝐶(𝑅(𝑝, 𝑞,𝑁 ′)) ⋅
rad(𝑝𝑞𝑁 ′)

𝜑(rad(𝑝𝑞𝑁 ′))

)2

= 𝐷(𝑝, 𝑞,𝑁 ′).

Note that the field descent method can be applied any time we can control the
size of ker(𝜒𝑎) for some 𝑎 with 𝜈𝑇 (𝑎) > 0 as well as rad(𝐹 (𝑚, 𝑛)). The following
result from a private communication with Malikiosis also uses these ideas:

Theorem 5.8 ([Mal17]). Let 𝑃 = 𝑝1 ⋅ ⋯ ⋅ 𝑝𝑟 be a product of distinct primes.
Suppose there is a constant 𝐹 (𝑃 ) such that for any primitive formally dual set
𝑆 ⊂ ℤ𝑁 with rad(𝑁) | 𝑃 there exists a 𝑑 ≤ 𝐹 (𝑃 ) with 𝜈𝑆(𝑑) ≠ 0. Then there is a
constant 𝐷(𝑃 ) such that no group ℤ𝑁 with rad(𝑁)|𝑃 and 𝑁 > 𝐷(𝑃 ) contains a
primitive formally dual subset.
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Therefore, an answer of the following conjecture would yield further non-
existence results in the cyclic case:

Conjecture 5.9. For any product of distinct primes 𝑃 = 𝑝1 ⋅⋯ ⋅ 𝑝𝑟 there is a con-
stant 𝐹 (𝑃 ) such that for any primitive formally dual set 𝑆 ⊂ ℤ𝑁 with rad(𝑁) | 𝑃
there exists a 𝑑 ≤ 𝐹 (𝑃 ) with 𝜈𝑆(𝑑) ≠ 0.

5.2 Further restrictions
In this section we discuss further restrictions on primitive formally dual sets and
the groups which posses them.

We continue with a result that generalizes the characterization of formally
dual sets in cyclic 𝑝-groups. This characterization has been proven elementary
in [Sch17], [Xia16, Section 3.2]. An alternative proof that uses the field descent
method is given in [Mal18, Theorem 6.1]. We state a proof using the even set ap-
proach to emphasize on the strong connection between relative difference sets and
formally dual sets.

Therefore, we need the following theorem:

Theorem 5.10 ([Pot95a, Theorem 4.1.1]). Let 𝐷 be an (𝜆𝑛, 𝑛, 𝜆𝑛, 𝜆)-RDS and
𝑔 ∈ 𝐺. Then the order of 𝑔 divides 𝜆𝑛 or 𝐷 is equivalent to TITO. Especially
if 𝐺 is cyclic then 𝐷 is equivalent to TITO.

We use this to prove the following, which can be seen as a generalization of
the characterization of formally dual sets in groups of prime power order:

Theorem 5.11. There is no primitive formally dual set of type

𝐻𝑟

𝐻𝑟−1

𝐿 = ⟨𝐾⟩

𝐾

𝐿′ =
⋂

𝐾

𝐻2

𝐻1

such that 𝐿′ and 𝐺∕𝐿 are cyclic groups.
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Proof. Suppose 𝑆 is a as asserted. By using Proposition 4.22 we have |𝐺| = |𝑆|2,
𝐻1 = {1}, 𝜆1 = |𝑆| and 𝜆𝑟 = 1. We apply Proposition 4.23 on 𝑆 to see that 𝑆
(the reduction of 𝑆 to 𝐺∕𝐿) is an

(

|𝑆|2

|𝐻𝑟−1|
, |𝐻𝑟−1|

|𝐿|
, |𝑆|2

|𝐻𝑟−1|
, |𝐿|⋅|𝑆|

2

|𝐻𝑟−1|
2

)

-RDS in 𝐺∕𝐿. By

Theorem 5.10 with 𝑛 = |𝐻𝑟−1|

|𝐿|
and 𝜆 = |𝐿|⋅|𝑆|2

|𝐻𝑟−1|
2 we have without loss of generality

𝑛 = 2, 𝜆 = 1, 𝑆 = TITO, 𝐺∕𝐿 = 𝐶4. Comparing parameters we get

|𝐺| = |𝑆|2 = 2|𝐻𝑟−1| = 4|𝐿|.

Note that𝐺∕�̃�′ ≃ 𝐿′ which is also cyclic. Thus, we can use the same approach
on the formal dual of 𝑆 which yields that |𝐻2| = 2, |𝐿′

| = 4, 𝜆1 = 1, 𝜆2 = −1
(see Lemma 4.14). Furthermore, by Theorem 4.4 we have

𝜆2 =
|𝐺|
|𝑇 |3

𝜆2|�̃�2| = −
|𝑆|
2
.

Let 𝑎 be a generator of 𝐿′, i.e. 𝐿′ = ⟨𝑎⟩ = {1, 𝑎, 𝑎2, 𝑎3}. Then we have by Lemma
4.16

𝜈𝑆(𝑎) = 𝜈𝑆(𝑎3) =
𝑟

∑

𝑖=3
𝜆𝑖 =

𝑟
∑

𝑖=1
𝜆𝑖

⏟⏟⏟
=|𝑆|

− 𝜆1
⏟⏟⏟

=|𝑆|

− 𝜆2
⏟⏟⏟
=− |𝑆|

2

=
|𝑆|
2

and on the other hand

𝜈𝑆(𝑎2) =
𝑟

∑

𝑖=2
𝜆𝑖 = |𝑆| − 𝜆1 = 0.

Thus, 𝑆 is a union of translates of {1, 𝑎}.
Recall that 𝑆 = TITO and therefore 𝑆 ∩ 𝐿,𝑆 ∩ 𝑣𝐿 ≠ ∅ for some element 𝑣

such that 𝑣𝐿 is a generator of 𝐺∕𝐿. Without loss of generality, let 𝑥 ∈ 𝑆 ∩ 𝑣𝐿,
𝑦 ∈ 𝑆 ∩ 𝐿 such that 𝑥𝑎, 𝑦𝑎 ∈ 𝑆. Then 𝑥𝑦−1 = (𝑥𝑎)(𝑦𝑎)−1 ∈ 𝑆 ∩ 𝑣𝐿 ⊂ 𝐺 ⧵𝐻𝑟−1.
But then 2 ≤ 𝜈𝑆(𝑥𝑦−1) = 𝜆𝑟 = 1 which is a contradiction.

Theorem 5.11 might be seen as a generalization of the characterization in cyclic
𝑝-groups since it implies this result as follows:

Corollary 5.12. If 𝑆 is a primitive formally dual set in a cyclic group 𝐺 of prime
power order, then 𝐺 = 𝐶4 and 𝑆 is equivalent to TITO.
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Proof. By the structure of𝐺 is it obvious that 𝑆 is a formally dual set with respect
to a chain of subgroups. Combining Lemma 4.28, Lemma 4.29, Lemma 4.31 and
Theorem 5.11 we see that the rank of 𝑆 is three. Thus by Theorem 4.30 it is an
(𝑛, 𝑛, 𝑛, 1)-RDS and by Theorem 5.10 it has to be equivalent to TITO.

As mentioned in [LPS19] the even set approach could yield even more insights
on primitive formally dual sets in cyclic groups if the following is true

Conjecture 5.13. A primitive formally dual set in a cyclic group has at most rank
three.

In fact the Conjectures 5.13 and 5.1 are equivalent by Theorem 4.30 and since
TITO is the only (𝑛, 𝑛, 𝑛, 1)-RDS in a cyclic group by Theorem 5.10.

If we consider cyclic groups that are divisible by at most two primes, we get a
simple bound on the set size:

Lemma 5.14 ([Mal18, Lemma 4.8, Lemma 7.1]). Let 𝑁 be an integer that is
divisible by exactly two primes. If 𝑆 is a primitive formally dual set, then

|𝑆|(|𝑆| − 1) ≥ 𝜑(𝑁).

In some special cases Malikiosis was able to use the so called polynomial in
order to obtain non-existence results. This method identifies any element

𝑎 =
ord(𝑔)−1
∑

𝑘=0
𝑎𝑔𝑘𝑔

𝑘 ∈ ℚ ⟨𝑔⟩

of the group algebra over a cyclic group as polynomial by defining

𝑎[𝑋] =
𝑜𝑟𝑑(𝑔)−1
∑

𝑘=0
𝑎𝑔𝑘𝑋

𝑘.

This allows to use algebraic and number theoretic methods. He could derive the
following for cyclic groups with an order that is divisible by two primes (see also
[LPS19, Proposition 2.12]):

Theorem 5.15 ([Mal18, Propositions 7.4 - 7.7, A.2 - A.4, Theorems 7.3, 8.3]).
There is no primitive formally dual subset of ℤ𝑁 if one of the following is true for
two distinct primes 𝑝, 𝑞

1. 𝑁 = 𝑝𝑎𝑞 for 𝑎 ≥ 1,
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2. 𝑁 = 𝑝𝑎𝑞2 for 𝑎 = 2 or 𝑎 odd,

3. 𝑁 = 𝑝4𝑞3,

4. 𝑁 = 𝑝3𝑞3 except we have simultaneously |𝑝 − 𝑞| = 2 and 𝑝2|𝑞𝑝−1 − 1 and
𝑞2|𝑝𝑞−1 − 1 (simultaneously twin primes and a Wieferich pair) or

5. 𝑁 = 𝑝𝑎𝑞3 where 𝑎 ≥ 4 and 𝑝, 𝑞 < 103.

Furthermore, if 𝑝, 𝑞 ≥ 5 and𝑁 = 𝑝𝑎𝑞𝑏 for 𝑎 ∈ {1, 2, 3, 4, 5, 7} or 𝑎, 𝑏 ∈ {6, 8, 10}
then there is no primitive formally dual subset of ℤ𝑁 with size unequal to

√

𝑁
(from a private communication with Schlage-Puchta [SP17]).

In the following we need some more number theoretic background. Let 𝑏 be
an integer with prime factorization

∏

𝑝𝑏𝑝 . An integer 𝑎 is called self-conjugate
modulo 𝑏 if for each prime divisor 𝑝|𝑎 there is an exponent 𝑒(𝑝) such that

𝑎𝑒(𝑝) ≡ −1 mod 𝑏
𝑝𝑏𝑝
.

Something more can be said under the self conjugacy assumption:

Theorem 5.16 ([LPS19, Theorem 5.8]). Let𝐺 be a group and 𝑝 be a self-conjugate
prime modulo exp(𝐺) such that the 𝑝-Sylow group of 𝐺 is cyclic. If 𝑝𝑘|| |𝐺| then
𝐺 does not contain a primitive formally dual set unless 𝑘 = 2. In this case 𝑝 is a
common divisor of |𝑆| and |𝑇 |, whenever 𝑆 and 𝑇 form a formally dual pair.

Now we examine results that restrict the size of a primitive formally dual set.
In the following, we use

𝑎𝑆 =
|𝑆|2

gcd(|𝑆|2, |𝑇 |)
, 𝑏𝑆 =

|𝑆|
gcd(|𝑆|, |𝑇 |2)

and 𝑎𝑇 , 𝑏𝑇 analougusly.
Recall, that |𝑆|2

|𝑇 |
𝜈𝑇 (𝑦) ∈ ℤ by Remark 3.9 and thus 𝑏𝑇 |𝜈𝑇 (𝑦). If additionaly 𝑇 is

supposed to be primitive, then 𝑏𝑇 ≠ |𝑇 | (otherwise there would be an 𝑦 such that
𝜈𝑇 (𝑦) = |𝑇 |, since the weight enumerator can not be zero everywhere). It easily
follows that gcd(|𝑆|2, |𝑇 |) ≠ 1 as well as gcd(|𝑆|, |𝑇 |) ≠ 1 and thus |𝐺| = |𝑆|⋅|𝑇 |
is not squarefree (see also [Xia16, Theorems 3.6, 3.7]).

Next we state a restriction regarding the prime divisors of |𝑆|. This is an adap-
tion of [LPS19, Theorem 5.1].
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Proposition 5.17 ([LPS19, Theorem 5.1]). Let 𝑆 and 𝑇 form a primitive formally
dual pair in 𝐺. Furthermore, let 𝑝 be a prime divisor of |𝐺| such that the 𝑝-Sylow
group of 𝐺 is cyclic. Moreover, suppose 𝑝𝑟||𝑎𝑆 , then

gcd(|𝑆|, |𝑇 |2) ⋅ gcd(𝑏𝑆 , 𝑝𝑟) ≥ 𝑝𝑟.

The following result gives an exponent-bound of the size of 𝑆:

Proposition 5.18. [LPS19, Proposition 5.10] Let 𝐺 be a group and 𝑝 be a prime
divisor of |𝐺|. Furthermore, let 𝑝𝑒 be the exponent of the 𝑝-Sylow group of𝐺, then
for any primitive even set 𝑆 we have

|𝑆|(|𝑆| − 1) ≥ 𝑝𝑒−1(𝑝 − 1).

Especially this is true for primitive formally dual sets.

For very small sizes, the following Lemma often suffices to justify the non-
existence of a primitive formally dual set:

Lemma 5.19 ([LPS19, Proposition 5.9]). Let 𝑆 be a primitive subset of a group
𝐺 and 𝑠 be the minimal number of generators of 𝐺. Then

|𝑆| ≥ 𝑠 + 1.

Next we state two lemmata which then are combined to a non-existence result:

Lemma 5.20 ([LPS19, Theorem 5.3]). Let 𝑆 and 𝑇 form a formally dual pair in
𝐺. Furthermore, let 𝑝 be a prime dividing the order of |𝐺|. For any element 𝑦 ∈ 𝐺
of order 𝑝 we have:

𝑝|𝑇 | divides |𝑆|2(|𝑇 | − 𝜈𝑇 (𝑦)) and 𝑝|𝑆| divides |𝑇 |2(|𝑆| − 𝜈𝑆(𝑦)).

Note, that if 𝑆 and 𝑇 are primitive the right hand sides are positive and non zero.

Lemma 5.21 ([LPS19, Proposition 5.6 and proof]). Let 𝑆 be a primitive formally
dual set in 𝐺. Furthermore, suppose 𝐺 = 𝐻 ×𝑁 such that 𝐻 ≃ 𝐺∕𝑁 ≃ ℤ𝑝𝑒 for
some prime 𝑝. Moreover, let 𝑞 be a prime that generates ℤ∗

𝑝𝑒 (a so called primitive
root modulo 𝑝𝑒). If 𝑞𝑓 | 𝑎𝑆 and 𝑓 is odd, then 𝑞𝑓+1 | |𝜒(𝑆)|2 for every linear
character 𝜒 ∈ �̂�.

We use these results to show the following, which generalizes [LPS19, Exam-
ple 5.7] (details of the proof have been inspired by a private communication with
S. Li [Li19]):
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Theorem 5.22. Let 𝑆 and 𝑇 form a primitive formally dual pair in 𝐺. Moreover,
let 𝑝 be a prime and 𝑒 an integer such that 𝐺 ≃ ℤ𝑝𝑒 × 𝐺′. Furthermore, let 𝑄 be
the set of all primes 𝑞 that forfill the following conditions:

1. 𝑞𝑠|| |𝑇 | for odd 𝑠,

2. 𝑞𝑠| |𝑆|2,

3. 𝑞 is a primitive root modulo 𝑝𝑒 if 𝑝 is odd

4. 𝑞 ≠ 𝑝 if 𝑝 = 2

and let 𝑄 =
∏

𝑞∈𝑄 𝑞. Then

𝑝 ⋅𝑄 ≤ gcd(𝑝 ⋅ |𝑇 |, |𝑆|2).

Proof. Suppose 𝑆, 𝑇 , 𝑝 and 𝑒 are as asserted and 𝑝 ⋅ 𝑄 > gcd(𝑝 ⋅ |𝑇 |, |𝑆|2).
Let 𝑦 be an element of order 𝑝.Due to Lemma 5.20 we know that 𝑝|𝑇 | divides
|𝑆|2(|𝑇 | − 𝜈𝑇 (𝑦)). Thus 𝑝 ⋅ |𝑇 |∕ gcd(𝑝 ⋅ |𝑇 |, |𝑆|2) divides |𝑇 | − 𝜈𝑇 (𝑦), say |𝑇 | −
𝜈𝑇 (𝑦) = 𝑘 ⋅ 𝑝 ⋅ |𝑇 |∕ gcd(𝑝 ⋅ |𝑇 |, |𝑆|2). Note that

|𝑇 | ≥ |𝑇 | − 𝜈𝑇 (𝑦) = 𝑘 ⋅
𝑝 ⋅ |𝑇 |

gcd(𝑝 ⋅ |𝑇 |, |𝑆|2)
> 0

and therefore
𝑄 >

gcd(𝑝 ⋅ |𝑇 |, |𝑆|2)
𝑝

≥ 𝑘 > 0.

If 𝑄 = ∅ then 𝑄 = 1 and we have a contradiction. Otherwise, there is a 𝑞 ∈ 𝑄
that does not divide 𝑘. Note that 𝑞 also does not divide 𝑝 ⋅ |𝑇 |∕ gcd(𝑝 ⋅ |𝑇 |, |𝑆|2)
due to the definition of 𝑄. Therefore, 𝑞 also does not divide

𝜈𝑇 (𝑦) = |𝑇 | − 𝑘 ⋅
𝑝 ⋅ |𝑇 |

gcd(𝑝 ⋅ |𝑇 |, |𝑆|2)
.

Choose 𝑘 such that 𝑞𝑘|| |𝑆|2 and note that 𝑞𝑠|| gcd(|𝑆|2, |𝑇 |). It is easy to see
that

𝑞2𝑘−𝑠||
|𝑆|2

|𝑇 |
𝜈𝑇 (𝑦) = |𝜒𝑦(𝑆)|2. (5.1)

If 𝑝 = 2 then 𝜒𝑦 has order two. Therefore 𝜒𝑦(𝑆) ∈ ℤ and |𝜒𝑦(𝑆)|2 is a square
number, which is a contradiction to Equation (5.1) since 2𝑘− 𝑠 is odd. If 𝑝 is odd,
then we know that 𝑞2𝑘−𝑠+1| |𝜒𝑦(𝑆)|2 by Lemma 5.21 which is again a contradiction
to Equation (5.1).
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We continue by stating restrictions on groups that can contain a primitive for-
mally dual set of prime size.

Proposition 5.23 ([LPS19, Corollary 5.11]). We have

1. TITO is the only primitive formally dual set of size 2

2. If 𝑆 is a primitive formally dual subset of 𝐺 with |𝑆| = 𝑝 where 𝑝 is an odd
prime. Then the 𝑝-Sylow group of𝐺 has to be isomorphic to (ℤ𝑝)𝑘 for 𝑘 ≥ 2.

Combining all non-existence results of this section, the only groups of order
≤ 63 that can contain primitive formally dual sets are isomorphic to one of

ℤ4, ℤ2
3, ℤ4 × ℤ2

2, ℤ2
4, ℤ8 × ℤ2,

ℤ2
5, ℤ2

4 × ℤ2, ℤ8 × ℤ2
2, ℤ8 × ℤ4, ℤ16 × ℤ2,

ℤ2
6, ℤ18 × ℤ2, ℤ12 × ℤ3, ℤ2

7
(see also Table A.1 in the appendix, or Appendix B (1)). Moreover, if 𝑆 is a

primitive formally dual set in ℤ𝑁 with |𝑆|2 ≤ 𝑁 ≤ 1000 then the pair (𝑁, |𝑆|) is
one of the following:

(600, 10), (784, 28) or (900, 30) (see [LPS19, Remark 5.12]). A complete list
of open cases in cyclic groups up to order 10000 can be found in Appendix B (2).

Especially, the case𝑁 = 900 = 22⋅32⋅52, |𝑆| = 30 = 2⋅3⋅5 seems exceptional
as it is the first square number with more than two prime factors. Therefore, we
state a conjecture in contrary to Conjecture 5.1:

Conjecture 5.24. There is a primitive formally dual subset of ℤ900 of size 30.



6 Constructions of primitive formally
dual sets

This chapter is organized as follows. We introduce all known constructions of
formally dual sets in Section 6.1 and discuss their irreducibility in Section 6.2.

6.1 Constructions
In this section we discuss ways to construct primitive formally dual sets in addition
to Corollary 4.7 and Example 6.2.

First note that by Corollary 4.7 any pair of (𝑛, 𝑛, 𝑛, 1)-RDS with forbidden sub-
groups 𝑁 and �̃� respectively form a primitive formally dual pair. For a detailed
treatment of relative difference sets with various examples see [Pot95b].

In the following we examine Galois Rings and an example defined in a cross
product of Galois Rings. Let 𝑝𝑡 be a prime power and ℤ𝑝𝑡[𝑥] be the polynomial
ring over ℤ𝑝𝑡 . Furthermore, let 𝑓 be a monic polynomial in ℤ𝑝𝑡[𝑥] such that 𝑓 is
irreducible over ℤ𝑝. We denote by GR(𝑝𝑡, 𝑠) = ℤ𝑝𝑡[𝑥]∕(𝑓 (𝑥)) the Galois ring of
characteristic 𝑝𝑡 and rank 𝑠 = deg𝑓 . The additive group of GR(𝑝𝑡, 𝑠) is isomorphic
to (ℤ𝑝𝑡)𝑠. Furthermore, there is a chain of principal ideals

{0} = (𝑝𝑡) ⊂ (𝑝𝑡−1) ⊂⋯ ⊂ (𝑝) ⊂ GR(𝑝𝑡, 𝑠).

We define for any 𝑣 ∈ GR(𝑝𝑡, 𝑠):

𝜈𝑝(𝑣) = max{𝑘 ∶ 0 ≤ 𝑘 ≤ 𝑡, 𝑣 ∈ (𝑝𝑘)}.

Moreover, the multiplicative group GR(𝑝𝑡, 𝑠)× = GR(𝑝𝑡, 𝑠) ⧵ (𝑝) contains a unique
cyclic group of order 𝑝𝑠−1. The Teichmüller set  is the union of this cyclic group
and 0.

61
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The 𝑝-adic representation of an element 𝑣 ∈ GR(𝑝𝑡, 𝑠) is the unique represen-
tation of 𝑣 as

𝑣 =
𝑡−1
∑

𝑖=0
𝑝𝑖𝑣𝑖 for suitable 𝑣𝑖 ∈  .

The generalized Frobenius automorphism is given by 𝜎 ∶
∑𝑡−1

𝑖=0 𝑝
𝑖𝑣𝑖 ↦

∑𝑡−1
𝑖=0 𝑝

𝑖𝑣𝑝𝑖
and generates a cyclic group of size 𝑠. The generalized Trace function is given by

Tr(𝑥) =
𝑠−1
∑

𝑖=0
𝜎𝑖(𝑥)

and has the following properties:

1. Tr(𝑥) ∈ ℤ𝑝𝑡 and Tr ∶ 𝐺 → ℤ𝑝𝑡 is surjective,

2. Tr(𝑥 + 𝑦) = Tr(𝑥) + Tr(𝑦),

3. Tr(𝜆𝑥) = 𝜆Tr(𝑥).

We identify GR(𝑝𝑡, 𝑠) with its dual group by the trace isomorphism given by
the pairing ⟨𝑎, 𝑥⟩ = 𝜒𝑎(𝑥) = 𝜁Tr(𝑎⋅𝑥)𝑝𝑡 .

More information about Galois Rings can be found in [Yam90, Section 2] and
[Wan03, Chapter 14].

We start with a preparatory lemma:

Lemma 6.1. We have (̃𝑝𝑖) = (𝑝𝑡−𝑖) under the trace isomorphism.

Proof. It suffices to show that Tr(𝑎 ⋅𝑥) = 0 for all 𝑥 ∈ (𝑝𝑖) if and only if 𝑎 ∈ (𝑝𝑡−𝑖).
Suppose Tr(𝑎 ⋅ 𝑥) = 0 for all 𝑥 ∈ (𝑝𝑖). Let 𝑎 = 𝑝𝑘𝑎𝑘 + ⋯ + 𝑝𝑡−1𝑎𝑡−1 be the

𝑝-adic representation of 𝑎 (we choose 𝑘 to be the smallest index such that 𝑎𝑘 ≠ 0).
We claim that 𝑘 ≥ 𝑡 − 𝑖. Indeed: Suppose 𝑘 < 𝑡 − 𝑖. Let 𝑣 ∈ GR(𝑝𝑡, 𝑠) such

that Tr(𝑣) = 1.
Then 𝑝𝑡−𝑘−1𝑎−1𝑘 𝑣 ∈ (𝑝𝑖) and

𝑝𝑡−1 = 𝑝𝑡−1 Tr(𝑣) = Tr(𝑝𝑡−1𝑣) = Tr(𝑎 ⋅ 𝑝𝑡−𝑘−1𝑣𝑎−1𝑘 ) = 0

which is a contradiction.
On the other hand, suppose 𝑎 ∈ (𝑝𝑡−𝑖) and 𝑥 ∈ (𝑝𝑖) say 𝑎 = 𝑝𝑡−𝑖𝑎′ and 𝑥 = 𝑝𝑖𝑥′.

Then Tr(𝑎 ⋅ 𝑥) = Tr(𝑝𝑡 ⋅ 𝑎′ ⋅ 𝑥′) = 0.
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We continue by stating the announced example with an alternative proof based
on even set theory.

Example 6.2 ([LPS19, Theorem 3.13]). Let 𝑝 be an odd prime and 𝑠, 𝑡 arbitrary
integers. The sets

𝑆 = {(𝑥, 𝑥2) ∶ 𝑥 ∈ GR(𝑝𝑡, 𝑠)}

and
𝑇 = {(𝑥2, 𝑥) ∶ 𝑥 ∈ GR(𝑝𝑡, 𝑠)}

form a formally dual pair under the isomorphism canonically induced by the trace
isomorphism.

Proof. Any 𝑎 ∈ GR(𝑝𝑡, 𝑠) is invertible if and only if 𝑎 ∉ (𝑝). Using this fact
we compute the weight enumerator 𝜈𝑆(𝑎, 𝑏) as solutions of the equations 𝑥 − 𝑦 =
𝑎, 𝑎(𝑥 + 𝑦) = 𝑥2 − 𝑦2 = 𝑏. If 𝜈𝑝(𝑎) > 𝜈𝑝(𝑏) this equation has no solution. If
𝜈𝑝(𝑎) ≤ 𝜈𝑝(𝑏) we might write

𝑎 = 𝑝𝜈𝑝(𝑎)𝑎′ ∈ (𝑝𝜈𝑝(𝑎)) ⧵ (𝑝𝜈𝑝(𝑎)+1), with 𝑎′ ∈ GR(𝑝𝑡, 𝑠)×.

So we need to solve

𝑥 − 𝑦 = 𝑎, 𝑝𝜈𝑝(𝑎)(𝑥 + 𝑦) = (𝑎′)−1𝑏

which is equivalent to 𝑦 = 1
2
((𝑥 + 𝑦) − 𝑎), 𝑝𝜈𝑝(𝑎)(𝑥 + 𝑦) = (𝑎′)−1𝑏 (note that 2 is

invertible since 𝑝 is odd). By restricting this equation by (𝑝𝜈𝑝(𝑎)) it can be seen that
it has |(𝑝𝑡−𝜈𝑝(𝑎))| = 𝑝𝜈𝑝(𝑎)𝑠 solutions. Thus

𝜈𝑆(𝑎, 𝑏) =

{

𝑝𝜈𝑝(𝑎)𝑠 if 𝜈𝑝(𝑎) ≤ 𝜈𝑝(𝑏)
0 otherwise

or equivalently

𝑆𝑆 (−1) =
𝑡

∑

𝑖=0
𝑝𝑖𝑠

(

(𝑝𝑖) × (𝑝𝑖)
)

−
𝑡−1
∑

𝑖=0
𝑝𝑖𝑠

(

(𝑝𝑖+1) × (𝑝𝑖)
)

.

In a similiar manner and additionaly using Lemma 6.1 as well as |𝐺| = 𝑝2𝑡𝑠, |𝑆| =
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𝑝𝑡𝑠, |(𝑝𝑖)| = 𝑝𝑡−𝑖 we see

𝑇𝑇 (−1) =
𝑡

∑

𝑖=0
𝑝𝑖𝑠

(

(𝑝𝑖) × (𝑝𝑖)
)

−
𝑡−1
∑

𝑖=0
𝑝𝑖𝑠

(

(𝑝𝑖) × (𝑝𝑖+1)
)

=
𝑡

∑

𝑖=0
𝑝(𝑡−𝑖)𝑠

(

(𝑝𝑡−𝑖) × (𝑝𝑡−𝑖)
)

−
𝑡−1
∑

𝑖=0
𝑝(𝑡−𝑖−1)𝑠

(

(𝑝𝑡−𝑖−1) × (𝑝𝑡−𝑖)
)

=
𝑡

∑

𝑖=0

|𝐺|
|𝑆|3

𝑝𝑖𝑠|(𝑝𝑖) × (𝑝𝑖)|
(

̃(𝑝𝑖) × (𝑝𝑖)
)

−
𝑡−1
∑

𝑖=0

|𝐺|
|𝑆|3

𝑝𝑖𝑠|(𝑝𝑖) × (𝑝𝑖+1)|
(

̃(𝑝𝑖+1) × (𝑝𝑖)
)

.

Thus by Theorem 4.5 the sets 𝑆 and 𝑇 form a formally dual pair.

In [LPS19] a set with an even set representation as seen in the proof of Ex-
ample 6.2 has been referred to as generalized relative difference set. Note that for
𝑠 = 1 this example simplifies to an example in ℤ𝑝𝑡×ℤ𝑝𝑡 which has been introduced
in [Xia16, Theorem 3.1]. The special case of 𝑠 = 𝑡 = 1 has already been given
in [CKRS14, Theorem 3.2]. Furthermore, it is easy to see that 𝑆 is formally self
dual under the isomorphism (𝑎, 𝑏) ↦ (𝑡(𝑏), 𝑡(𝑎)) where 𝑡 is the trace isomorphism.

In the following, we present a construction of primitive formally dual sets that
use a certain kind of difference set:

Definition 6.3. A skew Hadamard difference set 𝐷 is a difference set such that the
following group algebra equation holds:

1 +𝐷 +𝐷(−1) = 𝐺.

The set

𝐷∗ = {𝑎 ∈ ℤ𝑚
𝑝 ∶ 𝜒𝑎(𝐷) =

−1 + 𝑖
√

|𝐺|
2

}

is the dual skew Hadamard difference set. Note that𝐷∗ is indeed a skew Hadamard
difference set by [WH09, Corollary 2.7].

A given skew Hadamard difference set in ℤ𝑚
𝑝 can be lifted to a formally dual

set in ℤ2𝑚
𝑝 in the following way:
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Theorem 6.4 ([LPS19, Theorem 3.20]). Let 𝐷 be a skew Hadamard difference
set in ℤ𝑚

𝑝 . For any 𝛼, 𝛽 ∈ ℤ𝑝 ⧵ {0} define a group homomorphism 𝜙𝛼,𝛽 ∶ ℤ𝑚
𝑝 →

ℤ𝑚
𝑝 × ℤ𝑚

𝑝 by 𝑥↦ (𝛼𝑥, 𝛽𝑥). For any distinct scalars 𝛼, 𝛽 ∈ ℤ𝑝 the sets

𝑆 = (0, 0) ∪̇ 𝜙1,𝛼(𝐷) ∪̇ 𝜙1,𝛽(𝐷(−1)) and,

𝑇 = (0, 0) ∪̇ 𝜙 𝛼
𝛼−𝛽 ,

1
𝛽−𝛼

(𝐷∗) ∪̇ 𝜙 𝛽
𝛼−𝛽 ,

1
𝛽−𝛼

(𝐷(−1)
∗ )

form a formally dual pair in ℤ𝑚
𝑝 under the standard pairing.

The following example gives such a formally dual set:

Example 6.5. The set {1, 2, 4} ⊂ ℤ7 is a skew Hadamard difference set. By taking
𝛼 = 1, 𝛽 = 2 in Theorem 6.4 we know that

{(0, 0), (1, 1), (2, 2), (4, 4), (3, 6), (5, 3), (6, 5)} ⊂ ℤ7 × ℤ7

is a primitive formally dual set.

Next we discuss a method developed by Li and Pott [LP18] to generate prim-
itive formally dual sets in ℤ2 × 𝐺, given a suitable primitive formally dual set in
𝐺. Note that this construction leads to formally dual sets of unequal size, unlike
all other known constructions.

First we need some notation: We define a lifting operator 𝜋 on two sets
𝑆0, 𝑆1 ⊂ 𝐺 as

𝜋(𝑆0, 𝑆1) = {(0, 𝑥) ∶ 𝑥 ∈ 𝑆0} ∪̇ {(1, 𝑥) ∶ 𝑥 ∈ 𝑆1} ⊂ ℤ2 × 𝐺.

The following theorem determines under which circumstances a partition of a
formally dual set can be lifted by 𝜋 to another formally dual set. To this extend we
define the generalized weight enumerator as

𝜈𝑆0,𝑆1
(𝑣) = #{(𝑥, 𝑦) ∈ 𝑆0 × 𝑆1 ∶ 𝑥 − 𝑦 = 𝑣} = [𝑆0𝑆

−1
1 ]𝑣.

Note that 𝜈𝑆 = 𝜈𝑆,𝑆 .
Now we have everything to state the following result, called lifting construc-

tion:

Theorem 6.6. [LP18, Theorem 3.1, Corollary 3.4] Let𝐺 be a finite abelian group.
Let Δ ∶ 𝐺 → �̂�, 𝑧↦ 𝜒𝑧 be an isomorphism, Δ∗ be the adjoined isomorphism and
�̂�𝑧 = Δ∗(𝑧). Furthermore, let 𝑆 and 𝑇 form a formally dual pair in 𝐺 under Δ.
Let 𝑆0, 𝑆1, 𝑇0, 𝑇1 ⊂ 𝐺 be such that 𝑆 = 𝑆0 ∪̇ 𝑆1 and |𝑇0| + |𝑇1| = 2|𝑇 |.
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The sets 𝜋(𝑆0, 𝑆1) and 𝜋(𝑇0, 𝑇1) form a primitive formally dual pair under the
isomorphism Δ2 given by ⟨(𝑥, 𝑦), (𝑎, 𝑏)⟩Δ2

= (−1)𝑎𝑥 ⋅ ⟨𝑦, 𝑏⟩Δ if and only if

|

|

�̂�𝑧(𝑇0 + 𝑇1)||
2 = 4

|𝑇 |2

|𝑆|
(𝜈𝑆0

(𝑧) + 𝜈𝑆1
(𝑧)), for every 𝑧 ∈ 𝐺 and (6.1)

|

|

�̂�𝑧(𝑇0 − 𝑇1)||
2 = 4

|𝑇 |2

|𝑆|
(𝜈𝑆0,𝑆1

(𝑧) + 𝜈𝑆1,𝑆0
(𝑧)), for every 𝑧 ∈ 𝐺. (6.2)

In particular, 𝜋(𝑆0, 𝑆1) and 𝜋(𝑇 , 𝑇 (−1)) form a formally dual pair under Δ2 if
and only if

|

|

|

�̂�𝑧(𝑇 + 𝑇 (−1))||
|

2
= 4

|𝑇 |2

|𝑆|
(𝜈𝑆0

(𝑧) + 𝜈𝑆1
(𝑧)), for every 𝑧 ∈ 𝐺.

These conditions might be stated in terms of even sets by using the same ap-
proach as in Theorem 4.5:

Corollary 6.7. Under the same assumptions as in Theorem 6.6 we have: The sets
𝜋(𝑆0, 𝑆1) and 𝜋(𝑇0, 𝑇1) form a primitive formally dual pair under the isomorphism
Δ2 defined in Theorem 6.6 if and only if there are parameters 𝜆1,… , 𝜆𝑟, 𝜇1,… , 𝜇𝑠
and subgroups 𝐻1,… ,𝐻𝑟, 𝐿1,… , 𝐿𝑠 such that

1. 𝑆0𝑆
(−1)
0 + 𝑆1𝑆

(−1)
1 =

∑𝑟
𝑖=1 𝜆𝑖𝐻𝑖,

2. (𝑇0 + 𝑇1)(𝑇0 + 𝑇1)(−1) = 4 |𝐺|
|𝑆|3

∑𝑟
𝑖=1 𝜆𝑖|𝐻𝑖|�̃�𝑖,

3. 𝑆0𝑆
(−1)
1 + 𝑆1𝑆

(−1)
0 =

∑𝑠
𝑖=1 𝜇𝑖𝐿𝑖,

4. (𝑇0 − 𝑇1)(𝑇0 − 𝑇1)(−1) = 4 |𝐺|
|𝑆|3

∑𝑠
𝑖=1 𝜇𝑖|𝐿𝑖|�̃�𝑖.

Also, if 𝑇0 = 𝑇 and 𝑇1 = 𝑇 (−1) only the first two statements need to be satisfied.

Proof. Suppose Equations (1) - (4) are satisfied. We have

|�̂�𝑧(𝑇0 + 𝑇1)|2 = 4
|𝐺|
|𝑆|3

𝑟
∑

𝑖=1
𝜆𝑖|𝐻𝑖|�̂�𝑧(�̃�𝑖) = 4

|𝐺|
|𝑆|3

∑

𝑖 ∶ 𝑧∈𝐻𝑖

𝜆𝑖|𝐺|

= 4
|𝑇 |2

|𝑆|
[𝑆0𝑆

(−1)
0 + 𝑆1𝑆

(−1)
1 ]𝑧 = 4

|𝑇 |2

|𝑆|
(𝜈𝑆0

(𝑧) + 𝜈𝑆1
(𝑧)).
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Analougusly,

|�̂�𝑧(𝑇0 − 𝑇1)|2 = 4
|𝐺|
|𝑆|3

∑

𝑖 ∶ 𝑧∈𝐿𝑖

𝜇𝑖|𝐺| = 4
|𝑇 |2

|𝑆|
[𝑆0𝑆

(−1)
1 + 𝑆1𝑆

(−1)
0 ]𝑧

= 4
|𝑇 |2

|𝑆|
(𝜈𝑆0,𝑆1

(𝑧) + 𝜈𝑆1,𝑆0
(𝑧)).

Thus, 𝜋(𝑆0, 𝑆1) and 𝜋(𝑇0, 𝑇1) form a primitive formally dual pair by Theorem 6.6.
On the other hand, given equations (6.1), (6.2) we see that the right hand sides

are rational for every 𝑧 ∈ 𝐺. By Lemma 2.10 this yields that

(𝑇0 − 𝑇1)(𝑇0 − 𝑇1)(−1), (𝑇0 + 𝑇1)(𝑇0 + 𝑇1)(−1) ∈ (𝐺).

Thus, there are 𝐻1,… ,𝐻𝑟, 𝐿1,… , 𝐿𝑠 ≤ 𝐺, 𝜆1,… , 𝜆𝑟, 𝜇1,… , 𝜇𝑟 ∈ ℚ such that
Equations (2) and (4) are satisfied. Equations (1) and (3) then follow similar to the
first part of the proof.

If we construct two primitive formally dual sets in the terms of Theorem 6.6,
we can combine them to get a new one of the same type. This construction can be
applied succesively and is therefore called the recursive lifting construction:

Theorem 6.8 ([LP18, Theorem 5.1]). Let 𝑆, 𝑇 ⊂ 𝐺 form a primitive formally
dual pair under Δ and 𝑈, 𝑉 ⊂ 𝐻 form a primitive formally dual pair under Γ.
Let ⟨(𝑥, 𝑦), (𝑎, 𝑏)⟩Δ2

= (−1)𝑎𝑥 ⋅ ⟨𝑦, 𝑏⟩Δ and Γ2 analogously. Furthermore, suppose
𝑆 = 𝑆0 ∪̇ 𝑆1 and 𝑈 = 𝑈0 ∪̇ 𝑈1 such that

1. 𝜋(𝑆0, 𝑆1) and 𝜋(𝑇 , 𝑇 (−1)) form a formally dual pair in ℤ2 ×𝐺 under Δ2 and

2. 𝜋(𝑈0, 𝑈1) and 𝜋(𝑉 , 𝑉 (−1)) form a formally dual pair in ℤ2 ×𝐻 under Γ2.

Then the sets
𝜋(𝑆0 × 𝑈0 ∪ 𝑆1 × 𝑈1, 𝑆0 × 𝑈1 ∪ 𝑆1 × 𝑈0)

and
𝜋(𝑇 × 𝑉 , 𝑇 (−1) × 𝑉 (−1))

form a formally dual pair in ℤ2 × 𝐺 ×𝐻 under

⟨(𝑥, 𝑦, 𝑧), (𝑎, 𝑏, 𝑐)⟩ = 𝜁𝑎𝑥2 ⋅ ⟨𝑦, 𝑏⟩Δ ⋅ ⟨𝑧, 𝑐⟩Γ .
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Note that Theorems 6.6 and 6.8 only describe a general framework to lift primi-
tive formally dual sets. However, a suitable partition 𝑆 = 𝑆0 ∪̇ 𝑆1 has to be chosen
first. The next result is a concrete infinite family of primitive formally dual sets
obtained by the lifting construction:

Example 6.9 ([LP18, Theorem 5.1]). Let 𝐺 = ℤ2𝑚
4 and 𝑆 = 𝑇 = TITO2𝑚 ⊂ 𝐺.

Note that 𝑆 is formally self dual under the standard pairing by Lemma 3.18 and
Example 3.11. Let

𝑆0 = {(𝑥1,… , 𝑥2𝑚) ∈ 𝑆 ∶ 𝑥1 +⋯ + 𝑥2𝑚 ≡ 0, 1 (𝑚𝑜𝑑4)}
𝑆1 = {(𝑥1,… , 𝑥2𝑚 ∈ 𝑆 ∶ 𝑥1 +⋯ + 𝑥2𝑚 ≡ 2, 3 (𝑚𝑜𝑑4)}

Then 𝜋(𝑆0, 𝑆1) and 𝜋(𝑇 , 𝑇 (−1)) form a primitive formally dual pair in ℤ2 × ℤ2𝑚
4

under the standard pairing.

For 𝑚 = 1 this construction yields 𝑆0 = {(0, 0), (1, 0), (0, 1)}, 𝑆1 = {(1, 1)}
and

{(0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)} ⊂ ℤ2 × ℤ4 × ℤ4.

Note that this is also the smallest example of a primitive formally dual pair of
unequal size (see also Table A.1 in the Appendix).

The formally dual sets of Example 6.9 can be used as building blocks for The-
orem 6.8 to obtain a huge number of non-equivalent primitive formally dual sets
in groups of the form ℤ2 × ℤ2𝑚

4 for 𝑚 ≥ 2. An alternative direct construction of
these examples is presented in [LP19].

To conclude this chapter we give a list of groups that contain primitive formally
dual sets:

1. ℤ2𝑠
𝑝𝑡 for odd 𝑝 by Example 6.2 or Theorem 6.4,

2. ℤ2 × ℤ2𝑚
4 by Example 6.9 or Theorem 6.6,

3. any group that contains an (𝑛, 𝑛, 𝑛, 1)-RDS with forbidden subgroup 𝑁 as
well as an (𝑛, 𝑛, 𝑛, 1)-RDS with forbidden subgroup �̃� for some subgroup
𝑁 ≤ 𝐺 by Corollary 4.7,

4. cross products of the preceding groups by Lemma 3.18.
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6.2 Irreducibility
Due to Lemma 3.18 it is an interesting question whether the examples constructed
in the above section are irreducible or not. We prove irreducibility for three known
examples.

First of all, note the following:

Lemma 6.10. A primitive formally dual set 𝑆 ⊂ 𝐺 with 1 ∈ 𝑆 is not irreducible
if and only if 𝑆 = Δ(𝑆1 × 𝑆2) for some non-trivial formally dual sets 𝑆1 ⊂ 𝐺1,
𝑆2 ⊂ 𝐺2 with 1 ∈ 𝑆1, 1 ∈ 𝑆2 and some isomorphism Δ ∶ 𝐺1 × 𝐺2 → 𝐺.

Proof. Suppose 𝑆 is not irreducible. Then there are non-trivial formally dual sets
𝑆1 ⊂ 𝐺1, 𝑆2 ⊂ 𝐺2 an element 𝑣 ∈ 𝐺 and an isomorphism Δ such that

𝑆 = 𝑣 ⋅ Δ(𝑆1 × 𝑆2).

Furthermore 1 = 𝑣 ⋅ Δ(Δ−1(𝑣−1)) ∈ 𝑆 and therefore

Δ−1(𝑣−1) = (𝑤−1
1 , 𝑤

−1
2 ) ∈ 𝑆1 × 𝑆2

where (𝑤1, 𝑤2) = Δ−1(𝑣). Then 𝑆 = Δ([𝑤1 ⋅ 𝑆1] × [𝑤2 ⋅ 𝑆2]). Since 𝑤1 ⋅ 𝑆1 and
𝑤2 ⋅ 𝑆2 are again non-trivial primitive formally dual subsets and 1 = 𝑤1 ⋅ 𝑤−1

1 ∈
[𝑤1 ⋅ 𝑆1], 1 = 𝑤2 ⋅𝑤−1

2 ∈ [𝑤2 ⋅ 𝑆2] the assertion follows.

In the following we show that many primitive examples from the previous sec-
tion are in fact irreducible.

Corollary 6.11. If 𝑆 is a primitive formally dual set of one of the following forms,
then it is irreducible:

1. an (𝑛, 𝑛, 𝑛, 1)-RDS,

2. 𝑆 = {(𝑥, 𝑥2) ∶ 𝑥 ∈ GR(𝑝𝑡, 𝑠)} from Example 6.2,

3. 𝑆 = 𝜋(𝑆0, 𝑆1) as given in Example 6.9 or

4. 𝑆 is lifted from a skew Hadamard DS for 𝑚 = 1 as in Theorem 6.4.

Proof. The first three assertions follow by Lemma 6.10 as:
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1. Write 𝐺 multiplicatively. Let 𝑆 be an (𝑛, 𝑛, 𝑛, 1)-RDS and assume without
loss of generality that 1 ∈ 𝑆. Suppose there is an isomorphism
Δ ∶ 𝐺1 × 𝐺2 → 𝐺 such that Δ(𝑆1 × 𝑆2) = 𝑆 for some non-trivial primitive
formally dual sets 𝑆1, 𝑆2. Note that 𝑆1×𝑆2 is also an (𝑛, 𝑛, 𝑛, 1)-RDS. Since
𝑆1 is not trivial there is an 𝑥 ∈ 𝐺1 ⧵ {1} such that 𝜈𝑆1

(𝑥) ≠ 0. But due to
the RDS property we have 𝜈𝑆1×𝑆2

(𝑥, 1) = 𝜈𝑆1
(𝑥) ⋅ |𝑆2| = 1 and thus |𝑆2| = 1

which is a contradiction since 𝑆2 is supposed to be non-trivial.

2. Note that 𝐺 is written additively. Suppose there are primitive formally dual
sets 𝑆1 ⊂ ℤ𝑠1

𝑝𝑡 and 𝑆2 ⊂ ℤ𝑠2
𝑝𝑡 such that 𝑠1 + 𝑠2 = 2𝑠 and there is an isomor-

phism Δ ∶ ℤ𝑠1
𝑝𝑡 × ℤ𝑠2

𝑝𝑡 → GR(𝑝𝑡, 𝑠)2 such that Δ(𝑆1 × 𝑆2) = 𝑆 and 0 ∈ 𝑆1
and 0 ∈ 𝑆2.
Since 𝑆1 and 𝑆2 are primitive we can choose elements 𝑥1 ∈ 𝑆1 and 𝑥2 ∈ 𝑆2
of order 𝑝𝑡 respectively. Now let 𝑏, 𝑐 ∈ GR(𝑝𝑡, 𝑠) such that Δ(𝑥1, 0) = (𝑏, 𝑏2)
and Δ(0, 𝑥2) = (𝑐, 𝑐2).
Then Δ(𝑥1, 𝑥2) = (𝑏 + 𝑐, 𝑏2 + 𝑐2) ∈ 𝑆 and thus (𝑏 + 𝑐)2 = 𝑏2 + 𝑐2 which is
only possible if 2𝑏𝑐 = 0. Note that 𝑏 and 𝑐 are units. Indeed, if 𝑏 ∈ (𝑝) then
Δ(𝑝𝑡−1𝑥1, 0) = (0, 0) which is not possible since Δ is an isomorphism. Thus
2𝑏𝑐 = 0 is equivalent to 2 = 0 but since 𝑝 is odd this is a contradiction.

3. Note that𝐺 is written additively. Let𝑆 = 𝜋(𝑆0, 𝑆1) as given in Example 6.9.
Note that (0, 0) ∈ 𝑆 due to the definition of 𝑆0. Suppose there is an isomor-
phism Δ such that Δ(𝑆 ′ × 𝑆 ′′) = 𝑆 for some primitive formally dual sets
𝑆 ′ ⊂ 𝐺1, 𝑆 ′′ ⊂ 𝐺2 with 0 ∈ 𝑆 ′, 0 ∈ 𝑆 ′′.
Note that 𝑈 = Δ(𝑆 ′ × 0) ⊂ 𝑆 and 𝑉 = Δ(0 × 𝑆 ′′) ⊂ 𝑆 have to be two sets
such that 𝑢+𝑣 ∈ 𝑆 for all 𝑢 = (𝑢′, 𝑢1,… , 𝑢2𝑚) ∈ 𝑈 , 𝑣 = (𝑣′, 𝑣1,… , 𝑣2𝑚) ∈ 𝑉
and 𝑈 ∩ 𝑉 = {0}. Define the support of 𝑈 as

supp(𝑈 ) = {𝑖 ∶ there is an 𝑢 = (𝑢′, 𝑢1,… , 𝑢2𝑚) ∈ 𝑈 such that 𝑢𝑖 ≠ 0}

and the supp(𝑉 ) analogously. Note that 𝑢 + 𝑣 ∈ 𝑆 yields that
𝑢𝑖, 𝑣𝑖, 𝑢𝑖 + 𝑣𝑖 ∈ {0, 1} and thus the support of 𝑈 and the support of 𝑉 have
to be disjoint. Consider the following table of pairs (𝑢′ + 𝑣′,

∑

𝑖(𝑢𝑖 + 𝑣𝑖)):

𝑢′ = 0,
∑

𝑖 𝑢𝑖 ≡ 1 𝑢′ = 1,
∑

𝑖 𝑢𝑖 ≡ 3
𝑣′ = 0,

∑

𝑖 𝑣𝑖 ≡ 1 0, 2 1, 0
𝑣′ = 1,

∑

𝑖 𝑣𝑖 ≡ 3 1, 0 0, 2



6.2. IRREDUCIBILITY 71

The occurring entries can not be achieved by elements of 𝑆 by definition.
Thus at most one of

∑

𝑖 𝑢𝑖 or
∑

𝑖 𝑣𝑖 can be odd.
Therefore we assume without loss of generality that only 𝑈 contains ele-
ments with odd sums and 𝑉 does not. Thus, 𝑈 contains at most all elements
associated with subsets of supp(𝑈 ) while 𝑉 contains at most all vectors as-
sociated with subsets of even size of supp(𝑉 ). Since𝑆 ′′ is not trivial we have
|𝑆 ′′

| = |𝑉 | ≥ 2 and therefore | supp(𝑉 )| ≥ 1 and |𝑆 ′′
| = |𝑉 | < 2| supp(𝑉 )| as

well as |𝑆 ′
| = |𝑈 | ≤ 2supp(𝑈 ). Altogether, we have

2| supp(𝑈 )|+| supp(𝑉 )| ≤ 22𝑚 = |𝑆| = |𝑆 ′
| ⋅ |𝑆 ′′

| < 2| supp(𝑈 )| ⋅ 2| supp(𝑉 )|

which is a contradiction.

The last assertion follows simply by Corollary 5.12 since 𝑆 ⊂ (ℤ𝑝)2 for some odd
prime 𝑝.

We are not able to show irreducibility for all examples presented. We close the
section by collecting the open cases in the following question:

Question 6.12. Which of the following examples of primitive formally dual sets
are irreducible?

1. Sets constructed using Theorem 6.4 for 𝑚 > 1,

2. Sets constructed using Theorem 6.8 with sets from Example 6.9 as building
blocks.
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7 Algorithmic approach

In this chapter we discuss an algorithmic approach to find all primitive formally
dual pairs in a given group. We discuss a general framework yielding twelve differ-
ent heuristic approaches in Section 7.1. We compare the performance of respective
implementations in Section 7.2 and give a recommendation which one to use. Our
implementation can be used to compute a complete list of primitive formally dual
pairs in cases, where no non-existence result is known. This algorithm has been
used to compute Table A.1 in the appendix. First, we state the problem that the
algorithm solves:

Problem 7.1. Given a group 𝐺 = ℤ𝑛1 × ⋯ × ℤ𝑛𝑚 of order 𝑛 and a divisor 𝑏 of
𝑛 with 𝑏 ≤

√

𝑛 compute a list of all primitive formally dual pairs 𝑆, 𝑇 such that
𝑏 ≤ |𝑆| ≤

√

𝑛.

7.1 Graph search algorithm
To compute an answer of Problem 7.1 we propose to use a graph search algorithm
on a special graph to compute a set of candidates for formally dual sets before
explicitly checking formal duality. We begin with some preparatory definitions.

Let 𝐺 = ℤ𝑛1 ×⋯ × ℤ𝑛𝑚 be a finite abelian group. We can define an order on
𝐺 and {𝑆 ⊂ 𝐺 ∶ |𝑆| = 𝑟} as follows:

Definition 7.2. We inherit the order of ℤ𝑛 from ℤ, i.e. 𝑎+ℤ𝑛 < 𝑏+ℤ𝑛 if and only
if 𝑎′ < 𝑏′ where 𝑎′ and 𝑏′ is the smallest non-negative integer such that 𝑎′ ∈ 𝑎+𝑛ℤ
and 𝑏′ ∈ 𝑏 + 𝑛ℤ respectively. An abelian group 𝐺 = ℤ𝑛1 × ⋯ × ℤ𝑛𝑚 is ordered
lexicographically. I.e. (𝑥1,… , 𝑥𝑚) < (𝑦1,… , 𝑦𝑚) if and only if there is an integer
𝑘 with 1 ≤ 𝑘 ≤ 𝑚 such that 𝑥𝑖 = 𝑦𝑖 for all 𝑖 < 𝑘 and 𝑥𝑘 < 𝑦𝑘. Furthermore, we
use the same approach to order subsets of 𝐺 of size 𝑟: Suppose 𝑆 = {𝑠1,… , 𝑠𝑟},

73
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𝑇 = {𝑡1,… , 𝑡𝑟} with 𝑠1 < ⋯ < 𝑠𝑟 and 𝑡1 < ⋯ < 𝑡𝑟. We say 𝑆 < 𝑇 if and only if
there is an index 𝑘 such that 𝑠𝑖 = 𝑡𝑖 for all 𝑖 < 𝑘 as well as 𝑠𝑘 < 𝑡𝑘.

Furthermore, we consider equivalence relations which are suitable for the graph
search algorithm:

Definition 7.3. An equivalence relation ∼ is called feasible if for all 𝑆, 𝑆 ′ with
𝑆 ∼ 𝑆 ′ we have

1. |𝑆| = |𝑆 ′
|

2. 𝑆 is a formally dual set if and only if 𝑆 ′ is a formally dual set

3. if 𝑆 ⊂ 𝑈 then there is a set 𝑈 ′ ∼ 𝑈 such that 𝑆 ′ ⊂ 𝑈 ′

Another concept we use are monotone conditions:

Definition 7.4. A monotone condition 𝐶 ∶ 2𝐺 → {0, 1} for formal duality is a
boolean function such that

1. if 𝐶(𝑆) = 0 and 𝑆 ⊂ 𝑈 then 𝐶(𝑈 ) = 0

2. if 𝑆 is a primitive formally dual set then 𝐶(𝑆) = 1.

In the following, fix a finite abelian group 𝐺 = ℤ𝑛1 × ⋯ × ℤ𝑛𝑚 of order 𝑛, a
divisor 𝑑 of 𝑛, a feasible relation ∼ and a monotone condition 𝐶 .

Consider the directed graph 𝐺(𝑉 ,𝐸) where

𝑉 = {𝑆 ⊂ 𝐺 ∶ 𝑆 ≤ 𝑆 ′ for all 𝑆 ′ ∼ 𝑆, |𝑆| ≤ 𝑛∕𝑑, 𝐶(𝑆) = 1, 0 ∈ 𝑆}

and 𝑆𝑈 ∈ 𝐸 if and only if there is an 𝑥 > max(𝑆) such that 𝑈 = 𝑆 ∪ {𝑥}.
The size of this graph depends on the sizes of equivalence classes of ∼ and the

support of 𝐶 .

Theorem 7.5. The graph 𝐺(𝑉 ,𝐸) defined above is a directed tree and

Σ = {𝑆 ′ ∶ 𝑆 ′ ∼ 𝑆 for some 𝑆 ∈ 𝑉 }

contains all primitive formally dual sets of size up to 𝑛∕𝑑.
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Proof. It is clear that any set 𝑆 ⊂ 𝐺 of size 2 is connected to {0}. Let 𝑈 ∈ 𝑉 at
least of size two and 𝑆 = 𝑈 ⧵max(𝑈 ). Note that 𝐶(𝑆) = 1 since 𝐶(𝑈 ) = 1 and 𝐶
is monotone. Furthermore, suppose there is a set 𝑆 ′ such that 𝑆 > 𝑆 ′ and 𝑆 ∼ 𝑆 ′.
Since ∼ is feasible there also is a set 𝑈 ′ ⊃ 𝑆 ′ with 𝑈 ∼ 𝑈 ′, say 𝑈 ′ = 𝑆 ′ ∪ {𝑥}.
Since 𝑈 = 𝑆 ∪ {max(𝑈 )} ≤ 𝑈 ′ we also have 𝑆 ≤ 𝑆 ′. Therefore, 𝑆 ∈ 𝑉 and
𝑆𝑈 ∈ 𝐸. Due to the definition of 𝐸 there also is no other set 𝑆 ′ ∈ 𝑉 such that
𝑆 ′𝑈 ∈ 𝐸. Altogether, 𝐺(𝑉 ,𝐸) is a directed tree.

Next, suppose 𝑆 is a primitive formally dual set of size 𝑘 ≤ 𝑛
𝑑
. Let �̂� be the

minimal set such that �̂� ∼ 𝑆 and 0 ∈ �̂�. Note that 𝐶(�̂�) = 1 since ∼ is feasible
and thus �̂� ∈ 𝑉 and 𝑆 ∈ Σ.

We propose to execute a breath-first search on 𝐺(𝑉 ,𝐸) to get a list of candi-
dates for formally dual sets. Note that 𝐺(𝑉 ,𝐸) has to be computed first. Due to
the monotone condition, we don’t need to check the condition on every node when
computing the graph. Instead we can ’cut off’ whole branches when the condition
in one node is 0. The candidates for primitive formally dual sets of size 𝑘 and
the candidates for formally dual sets of size 𝑛∕𝑘 can then be examined pairwise
to get a complete list of primitive formally dual sets of size 𝑘 (respecting ∼). A
pseudo code of this algorithm with an implicitly generated search tree is given in
Algorithm 1 in the appendix.

In the following we introduce three types of conditions and four types of equiv-
alence relations which can be combined to twelve different heuristic approaches.

The most simple monotone condition is constant to one. Other examples of
monotone conditions are given by a list  such that every possible weight enumer-
ator of a formally dual set is contained in  . The respective monotone condition
is defined by

𝐶(𝑆) =

{

1 if ∃𝜈 ∈  ∶ 𝜈𝑆(𝑥) ≤ 𝜈(𝑥)∀𝑥 ∈ 𝐺
0 otherwise

.

Such a list can be computed with the help of even set theory as an integer point
problem in polytopes. To this extend, observe that by Corollary 2.9 and Lemma
4.16 we have:

Corollary 7.6. Let 𝑆 be a primitive formally dual set and 𝑆𝑆 (−1) =
∑𝑟

𝑖=1 𝜆𝑖𝐶𝑖 be
the unique even set representation with respect to cyclic groups. Then we have:
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𝜆𝑖 ∈ ℤ, (7.1)
|𝐺|2

|𝑆|3
𝜆𝑖 ∈ ℤ, (7.2)

𝑟
∑

𝑖=1
𝜆𝑖 = |𝑆|, (7.3)

0 ≤
∑

𝑖 ∶ 𝑔∈𝐶𝑖

𝜆𝑖 < |𝑆|, (7.4)

0 ≤
∑

𝑖 ∶ 𝑔∈𝐶𝑖

𝜆𝑖|𝐶𝑖| < |𝑆|2. (7.5)

Proof. Equation (7.1) follows directly from Corollary 2.9. For equation (7.2) con-
sider

𝑇𝑇 (−1) =
𝑟

∑

𝑖=1
𝜆𝑖𝐶𝑖.

Due to Corollary 2.9 we have 𝜆𝑖 ⋅
|𝐺|
|𝐶𝑖|

∈ ℤ and by Theorem 4.5 we have

𝜆𝑖 ⋅
|𝐺|
|𝐶𝑖|

=
|𝐺|
|𝑆|3

|𝐶𝑖|𝜆𝑖 ⋅
|𝐺|
|𝐶𝑖|

=
|𝐺|2

|𝑆|3
𝜆𝑖

yielding the assertion. The rest of the assertions easily follow from Lemma 4.16.

Furthermore, note that by computing all possible 𝜆𝑖 we can compute the weight
enumerator as

𝜈𝑆(𝑔) = [𝑆𝑆 (−1)]𝑔 =
∑

𝑖 ∶ 𝑔∈𝐶𝑖

𝜆𝑖.

Finding 𝜆𝑖 that satisfy the conditions in Corollary 7.6 is equivalent to the problem
of computing lattice points in a polytope. There are several programs to solve such
a problem, for example Normaliz [BIR+] (which is used in our implementation
Appendix B (3)).

We state three different conditions derived by a list of suitable weight enumer-
ators:

1. constant condition ( = ℤ𝑛),
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2.  corresponds to the assumptions in Corollary 7.6 except for (7.2)

3.  corresponds to the assumptions in Corollary 7.6 including (7.2)

Furthermore, we describe four different kinds of equivalence relations which
are feasible due to Corollary 3.14:

1. 𝑆 ∼ 𝑆 ′ if and only if 𝑆 = 𝑆 ′,

2. 𝑆 ∼ 𝑆 ′ if and only if 𝑆 = 𝜙(𝑆 ′) for some automorphism 𝜙 of 𝐺,

3. 𝑆 ∼ 𝑆 ′ if and only if 𝑆 = 𝑣 + 𝑆 ′ for some 𝑣 ∈ 𝐺,

4. 𝑆 ∼ 𝑆 ′ if and only if𝑆 and 𝑆 ′ are equivalent.

Note, that the knowledge from Chapters 5 and 6 is not included in the algo-
rithm. The graph search approach is therefore only recommended in cases where
no other theoretic result is known.

7.2 Comparison
For convenience we use the notation𝐴𝑘,𝑙 for the heuristic presented in the previous
section that uses condition 𝑘 and equivalence relation 𝑙.

It is not easy to calculate the runtime classes. We conjecture, that all heuristics
have the same runtime class. A stronger condition or relation will result in a smaller
search tree, but maybe needs longer to compute the graph in the first place.

Thus, we compare the running times of the heuristics on small examples. There-
fore, we implemented the framework of Algorithm 1 in gap [GAP19] (see Apendix
B (3)). To solve the integer point problem that yields the list of possible weight
enumerator we used Normaliz [BIR+].

We proceed by defining a measure of quality. Define 𝑡𝑖,𝑗(𝐺, 𝑏) to be the time
in milliseconds that the implementation of 𝐴𝑖,𝑗 needed to solve Problem 7.1 for a
given group 𝐺 and 𝑏 | |𝐺|. Since 𝐴1,1 is the most naive approach (it is basically
brute force), we will use it as a ’baseline’ and compare the quality of the heuristics
by the quality measure

𝑞𝑖,𝑗(𝐺, 𝑏) = log(𝑡𝑖,𝑗(𝐺, 𝑏)∕𝑡1,1(𝐺, 𝑏)).

Thus, a ’fast’ heuristic has a negative quality measure 𝑞𝑖,𝑗(𝐺, 𝑏).
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First of all observe Figure A.1 in the appendix which compares the heuristics
𝐴𝑖,𝑗 for fixed equivalence relation 𝑗.

Note, that in some cases the preparation of the condition failed or took an un-
bearable amount of time which is represented in the figure as bars that exceed the
boundaries of the diagram. Due to this unstable behavior we do not recommend to
use conditions 2 or 3 in the current implementation. However, in some examples,
presumably groups that are large enough and have a ’controllable’ amount of cyclic
subgroups, Condition 3 had a much better performance then the other conditions
(see (ℤ25, 5), (ℤ4 × ℤ3, 2), (ℤ12, 2), (ℤ2 × ℤ2 × ℤ3, 2) in Figure A.1). Therefore,
more investigation is needed, either to find a more stable implementation or to
characterize the groups in which Condition 3 behaves well.

Next, observe Figure A.2 in the appendix which compares the implementations
𝐴𝑖,𝑗 for fixed condition 𝑖.

It is apparent, that the heuristics using Relations 2, 3, 4 are, in many cases,
faster than the respective heuristic using Relation 1. From the available data we
recommend using Relation 3 since this heuristic is in all presented examples faster
than Relation 1 and therefore is the most stable.

On the other hand, heuristics using Relation 4 are occasionally faster (see
(ℤ4 × ℤ4, 4), 𝑡1,𝑖). So, further investigation is needed in order to decide whether
other heuristics are more suitable for larger examples.

Overall we recommend the use of Heuristic 𝐴1,3. Note that this is also the only
implementation which has been faster than 𝐴1,1 in every considered example.



8 Conclusions

In this chapter we summarize the results and open questions of this thesis for future
investigations.

As seen in Section 3.1 formal duality of periodic sets is strongly motivated by
the so called energy minimization problem. Still a better understanding about the
connection of these two problems is needed, i.e.

Question 8.1. Is every energy minimizer a formally dual periodic set?

The study of formal duality of periodic sets can be reduced to the setting of
finite abelian groups by using the Poisson summation formula (see Section 3.2).
In this new setting, it has been shown that the ’formally dual’ property is invari-
ant under translations and automorphisms, yielding the notion of equivalence of
formally dual sets (see Corollary 3.14).

A simple way to create a new formally dual set out of a given formally dual
set 𝑆, is to regard 𝑆 as a subset of a larger group. A related approach is to take a
union of cosets whose natural restriction is 𝑆 (see Theorem 3.15). The ’building
blocks’ of this operation are the primitive formally dual sets. Also, taking the cross
product of two formally dual sets will produce a new one as shown in Lemma 3.18.
The ’building blocks’ regarding all these operations are called irreducible formally
dual sets. The following questions seem natural and might be seen as the overall
goal of the study of formally dual sets:

Question 8.2. Is there a characterization of all primitive formally dual sets? Is
there a characterization of all irreducible formally dual sets?

After choosing an isomorphism we are able to define formal self duality which
seems to behave very similar to formal duality. In Proposition 3.22 we showed,
that in many cases the study of formally self dual sets can be reduced to the study
of primitive formally self dual sets. However, it is an open question for arbitrary
isomorphisms (see also Conjecture 3.23):

79
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Question 8.3. Suppose 𝑆 ⊂ 𝐻 ≤ 𝐺 is formally self dual.
Is {𝑣�̃� ∶ 𝑣 ∈ 𝑆} ⊂ 𝐻∕�̃� a formally self dual set?

All conjectured energy minimizers correspond to the trivial formally dual set
or to TITO𝑘 (see Section 3.3). This yields the question, if anything else is possible
at all:

Question 8.4. Is there an energy minimizer that does not reduce to {1} or TITO𝑘?

In the subsequent chapter, we presented the even set approach. An even set
can be interpreted as a set such that its multiset of differences lies in the algebra
(𝐺). Even sets are a broader class of sets than formally dual sets. The most
important tool that is provided by even sets is given in Theorem 4.5. It shows that
the respective parameters of a formally dual set and its formally dual partner trans-
late into each other in a simple manner. Moreover, there are many results about
formally dual sets of certain types. Many of the results in the even set theory could
be reformulated if we only allow integer coefficients, which yields the following
question (see also Conjecture 4.17):

Question 8.5. Does a minimal representation of an even set always have integral
parameters?

Note that this question can also be reformulated in terms of (𝐺).
In Section 4.4 it has been shown that all primitive formally dual sets up to

rank three are either trivial or (𝑛, 𝑛, 𝑛, 1)-RDS. And in Corollary 4.7 we have seen
a condition for (𝑛, 𝑛, 𝑛, 1)-RDS to be formally dual. This condition holds for any
known examples of RDS, which yields the following question:

Question 8.6. Is every (𝑛, 𝑛, 𝑛, 1)-RDS a formally dual set?

For higher rank these questions are still open, i.e. we have the following two
open questions (see also Conjecture 4.33):

Question 8.7. Is there a characterization of all primitive formally dual sets of rank
four? Is there a primitive formally dual set of rank five which is not even with
respect to a chain of subgroups?

Moreover, there are many groups without primitive formally dual sets as seen
in Chapter 5. For example, the field descent method can be used to show non-
existence in cyclic groups. This method would yield even more results if we could
answer the following questions (see also Conjecture 5.9):
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Question 8.8. Let 𝑃 = 𝑝1 ⋅ ⋯ ⋅ 𝑝𝑟 be an arbitrary product of distinct primes. Is
there a constant 𝐹 (𝑃 ), depending only on 𝑃 , such that for any primitive formally
dual set 𝑆 ⊂ ℤ𝑁 with rad(𝑁) | 𝑃 there exists a 𝑑 ≤ 𝐹 (𝑃 ) with 𝜈𝑆(𝑑) ≠ 0?

A weaker, related question is the following:

Question 8.9. Is there a primitive formally dual set 𝑆 in a cyclic group ℤ𝑁 such
that 𝜈𝑆(1) = 0?

In Section 5.2 we have seen properties of groups that can not contain a primitive
formally dual set. However, there are still many groups where no theoretic result
is known. This naturally yields the following question:

Question 8.10. Are there non-existence results in the cases that are listed as ’no
result’ or ’computer search’ in Table A.1 or Appendix B (1)?

An important conclusion of Chapter 5 is, that primitive formal duality in cyclic
groups seems rare. But it is still not clear whether there are only two primitive
formally dual sets in cyclic groups or not. In particular we have the following
open questions (see also Conjecture 5.24):

Question 8.11. Is there a primitive formally dual set in a cyclic group other than
TITO and the trivial example? Is there a primitive formally dual set in a cyclic
group which is divisible by exactly two primes? Is there a primitive formally dual
set in 𝑍900 of size 30?

In Chapter 6 we have seen several constructions of families of primitive for-
mally dual sets. Some questions are the following:

Question 8.12. Can you construct primitive/irreducible formally dual sets in groups
that are not yet covered? Can you use the lifting construction framework (Theo-
rems 6.6 and 6.8) to construct other examples than the lifted TITO example (Ex-
ample 6.9)?

In Section 6.2 we checked most of the examples for irreducibility. Two open
cases are left. For convenience of the reader we state Question 6.12 here one more
time:

Question 8.13. Which of the following examples of primitive formally dual sets
are irreducible?

1. Sets constructed using Theorem 6.4 for 𝑚 > 1,
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2. Sets constructed using Theorem 6.8 with sets from Example 6.9 as building
blocks.

Finally, in Chapter 7 we proposed a graph search algorithm for cases where no
theoretic result yields non-existence. This yields the following open problems:

Question 8.14. Is there a faster algorithm than the proposed graph search algo-
rithm? Can the unstable behavior of the non-trivial conditions be fixed? Are there
other monotone conditions and feasible equivalence relations which yield faster
heuristics? How do the heuristics compare for big examples?

The study of formal duality is far from being finished. It is neither a common
phenomenon, since there are many groups without primitive formally dual sets,
nor is it impossible to achieve since there are several examples. Due to this and
its relations to other fields of mathematics, formal duality is an interesting topic
which deserves further investigation.
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Appendix

A Table of results

(|𝐺|, |𝑆|) 𝐺 prim. f.d.s. reasoning
(4, 2) ℤ2

2 none Lemma 5.19
ℤ4 TITO Example 3.11

list complete Proposition 5.23 (1)
(8, 2) arbitrary none Proposition 5.23 (1)
(9, 3) ℤ2

3 (3, 3, 3, 1)-RDS Example 6.2
list complete computer search

ℤ9 none Proposition 5.23(2)
(12,−) arbitrary none Theorem 5.16 with 𝑝 = 3
(16, 2) arbitrary none Proposition 5.23 (1)
(16, 4) ℤ4

2 none Lemma 5.19
ℤ4 × ℤ2

2 none computer search
ℤ2

4 product of smaller examples Lemma 3.18
self dual (4, 4, 4, 1)-RDS Corollary 4.7
list complete computer search

ℤ8 × ℤ2 none computer search
ℤ16 none Corollary 5.12

(18,−) arbitrary none Theorem 5.16 with 𝑝 = 2
(20, 2) arbitrary none Proposition 5.23 (1)
(24, 2) arbitrary none Proposition 5.23 (1)
(24, 4) ℤ6 × ℤ2

2 none Theorem 5.16 with 𝑝 = 3
ℤ12 × ℤ2 none Theorem 5.16 with 𝑝 = 3

ℤ24 none Theorem 5.15 (1)
(25, 5) ℤ2

5 (5, 5, 5, 1)-RDS Example 6.2

89



90 INDEX

list complete computer search
ℤ25 none Proposition 5.23(2)

(27, 3) ℤ3
3 none Lemma 5.19

ℤ9 × ℤ3 none Proposition 5.23(2)
ℤ27 none Proposition 5.23(2)

(28,−) arbitrary none Theorem 5.16 with 𝑝 = 7
(32, 2) arbitrary none Proposition 5.23 (1)
(32, 4) ℤ5

2 none Lemma 5.19
ℤ4 × ℤ3

2 none Lemma 5.19
ℤ2

4 × ℤ2 lifted TITO Example 6.9
list complete computer search

ℤ8 × ℤ2
2 none computer search

ℤ8 × ℤ4 none computer search
ℤ16 × ℤ2 none computer search

ℤ32 none Corollary 5.12
(36, 2) arbitrary none Proposition 5.23 (1)
(36, 3) ℤ2

6 none Theorem 5.22 with 𝑝 = 2, 𝑒 = 1
ℤ18 × ℤ2 none Proposition 5.23(2)
ℤ12 × ℤ3 none Theorem 5.16 with 𝑝 = 2

ℤ36 none Proposition 5.23(2)
(36, 6) ℤ2

6 none computer search
ℤ18 × ℤ2 none computer search
ℤ12 × ℤ3 product of smaller examples Lemma 3.18

list complete computer search
ℤ36 none Theorem 5.15 (2)

(40, 2) arbitrary none Proposition 5.23 (1)
(40, 4) ℤ10 × ℤ2

2 none Theorem 5.16 with 𝑝 = 5
ℤ20 × ℤ2 none Proposition 5.17 with 𝑝 = 5 on 𝑇

ℤ40 none Theorem 5.15 (1)
(44,−) arbitrary none Theorem 5.16 with 𝑝 = 11
(45,−) arbitrary none Theorem 5.16 with 𝑝 = 5
(48, 2) arbitrary none Proposition 5.23 (1)
(48, 4) ℤ6 × ℤ3

2 none Lemma 5.19
ℤ12 × ℤ2

2 none Theorem 5.16 with 𝑝 = 3
ℤ12 × ℤ4 none Theorem 5.16 with 𝑝 = 3
ℤ24 × ℤ2 none computer search

ℤ48 none Theorem 5.15 (1)
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(48, 6) ℤ6 × ℤ3
2 none Theorem 5.16 with 𝑝 = 3

ℤ12 × ℤ2
2 none Theorem 5.16 with 𝑝 = 3

ℤ12 × ℤ4 none Theorem 5.16 with 𝑝 = 3
ℤ24 × ℤ2 none Proposition 5.17 with 𝑝 = 3

ℤ48 none Theorem 5.15 (1)
(49, 7) ℤ2

7 (7, 7, 7, 1)-RDS Example 6.2
from skew Hadamard DS Theorem 6.4
list complete computer search

ℤ49 none Proposition 5.23(2)
(50,−) arbitrary none Theorem 5.16 with 𝑝 = 2
(52, 2) arbitrary none Proposition 5.23 (1)
(54,−) arbitrary none Theorem 5.16 with 𝑝 = 2
(56,−) arbitrary none Theorem 5.16 with 𝑝 = 7
(60, 2) arbitrary none Proposition 5.23 (1)
(60, 6) ℤ30 × ℤ2 none Theorem 5.16 with 𝑝 = 3

ℤ60 none Proposition 5.17 with 𝑝 = 3
(63, 3) ℤ21 × ℤ3 none Proposition 5.17 with 𝑝 = 7 on 𝑇

ℤ63 none Proposition 5.23(2)

B Cd appendix
On the in the printed version enclosed CD are the following files:

1. giantTable.pdf - a table similar to Table A.1 for groups up to order 103,

2. cyclicExceptions.pdf - a list of cyclic groups without known non-existence
result up to order 104.

3. searchv3.gap - the source code of the gap implementation of Algorithm 1
and several more useful functions.

4. template.tex - a tex file to visualize LateX tables produced with the command
GetExampleTable(range) contained in (3).
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C Algorithm and Comparison

Algorithm 1 A general framework to compute Problem 7.1
1: Prepare monoton conditions 𝐶 and a feasible relation ∼
2: for 𝑘 = 1,… , 𝑛∕𝑑 do ⊳ Compute candidate sets of size ≤ 𝑛∕𝑑
3: if 𝑘 = 1 then
4: 𝑆∗(𝑘) ← [{{0}}] ⊳ w.l.o.g. 0 ∈ 𝑆
5: else
6: 𝑆∗(𝑘) ← [] ⊳ initialize 𝑆∗(𝑘) that will contain nodes of size 𝑘
7: for 𝑆 ′ ∈ 𝑆∗(𝑘 − 1) do ⊳ start with smaller set 𝑆 ′

8: for 𝑥 > max(𝑆 ′) do
9: 𝑆 ′′ ← 𝑆 ′ ∪ {𝑥} ⊳ create branches

10: if 𝑆 ′′ ≤ 𝑆 for all 𝑆 ∼ 𝑆 ′′ and 𝑆 ′′ satisfies 𝐶 then
11: Add 𝑆 ′′ to 𝑆∗(𝑘) ⊳ Add if it is a graph node
12: end if
13: end for
14: end for
15: end if
16: end for
17: If necessary, delete all non-primitive sets, and all non-even sets from 𝑆∗

18: 𝐿← ∅ ⊳ Initializing list 𝐿 of formally dual sets
19: for 𝑑|𝑛 ∶ 𝑏 ≤ 𝑑 ≤

√

𝑛 do
20: for 𝑆 ∈ 𝑆∗(𝑑), 𝑇 ∈ 𝑆∗(𝑛∕𝑑) do
21: for 𝑇 ′ ∶ 𝑇 ′ ∼ 𝑇 do
22: If 𝑆 and 𝑇 ′ form a formally dual pair, add (𝑆, 𝑇 ′) to 𝐿.
23: end for
24: end for
25: end for
26: return 𝐿
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Figure A.1: Comparison of Heuristics where the equivalence relation is fixed, bars
that exceed the boundaries are either infinite or bigger than 5
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Figure A.2: Comparison of Heuristics where the type of conditions is fixed, bars
that exceed the boundaries are either infinite or bigger than 5
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