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Abstract 

The needed increase of crop productivity is relying on the improvement of photosynthetic 

efficiency, which is mainly limited by the carbon fixation pathway Calvin-Benson-Bassham 

cycle (CBBC) due to its insufficient carboxylase Rubisco. This enzyme is not completely 

discriminating between CO2 and O2, hence, the oxygenase reaction leads to the appearance 

of toxic 2-phosphoglycolate requiring CO2-releasing photorespiration to detoxify and to recycle 

it into the CBBC intermediate 3-phosphogylcerate. Here, we aim to introduce a synthetic 

formate assimilation (FA) pathway to improve carbon fixation due to its function as an additional 

carbon-fixing route, which possibly also reduces the photorespiratory loss of CO2 via 

decreased glycine decarboxylation. To establish FA, genes encoding the proteins 10-formyl-

THF ligase (FTL), 5,10-methylene-THF dehydrogenase (MtdA), and 5,10-methenyl-THF 

cyclohydrolase (FchA) from Methylobacterium extorquens AM1 were stepwise transferred into 

the model cyanobacterium Synechocystis sp. PCC 6803 leading to the transgenic strain exF-

C-M. The action of the three enzymes should permit assimilation of externally added formate. 

Expression of the transgenes clearly stimulated the growth of strain exF-C-M in the presence 

of formate, along with increased glutamate/glutamine ratio. These data indicated that FA might 

have been established in exF-C-M, where it assists cell growth and might reduce the loss of 

ammonia via glycine decarboxylation. In addition to wild-type, the high CO2-requiring 

Synechocystis mutant ∆ccmM was selected as promising platform, because it directly permits 

to observe the efficiency of FA pathway via reduction of its CO2 dependence. The addition of 

formate enhanced the growth of ∆ccmM/exF-C-M at decreased CO2 supplementation, 

although no obvious stimulation in growth was found compared to ∆ccmM. The further 

improvement of FA should be done with ∆ccmM, since this strain allows the easiest validation 

of improved carbon fixation via FA. Finally, a segregated Synechocystis mutant ∆folD could be 

generated due to the expression of FTL and MtdA. The addition of formate rescued its retarded 

growth which can be used in future attempts to screen for suitable formate dehydrogenases. 

Collectively, the work reported first results to establish a synthetic FA pathway for the 

assimilation of organic carbon from formate in the photoautotrophic model cyanobacterium 

Synechocystis, which paves the way to introduce such a pathway subsequently in crop plants. 
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Die benötigte Steigerung von Ernteerträgen verlangt eine Verbesserung der Photosyntheseeffizienz, die 

hauptsächlich durch die Kohlenstofffixierung im Calvin-Benson-Bassham-Zyklus (CBBC) und die 

Effizienz dessen Carboxylase Rubisco begrenzt wird. Dieses Enzym akzeptiert neben CO2 auch O2 als 

Substrat, wobei die Oxygenasereaktion zum Auftreten des toxischen 2-Phosphoglykolat führt. Zu 

dessen Entgiftung benötigt es die Photorespiration, die 2-Phosphoglykolat zum CBBC-Zwischenprodukt 

3-Phosphogylcerat regeneriert, aber auch CO2 freisetzt. In der vorliegenden soll einen Syntheseweg für 

die Formiatassimilation (FA) etabliert werden, um die Photosynthese mit einem zusätzlichen 

Kohlenstoff-Fixierungsweg zu verbessern. Möglicherweise kann dieser auch den photorespiratorischen 

CO2-Verlust durch verminderte Glycindecarboxylierung verringern. Um die FA zu etablieren, wurden 

Gene, die für die Enzyme 10-Formyl-THF-Ligase (FTL), 5,10-Methylen-THF-Dehydrogenase (MtdA) 

und 5,10-Methenyl-THF-Cyclohydrolase (FchA) kodieren, schrittweise aus M. extorquens AM1 in das 

Modell-Cyanobakterium Synechocystis sp. PCC 6803 transferiert, was zum transgenen Stamm exF-C-

M führte. Die Wirkung der drei Enzyme sollte die Assimilation von extern zugesetztem Formiat 

ermöglichen. Die Expression der Transgene stimulierte eindeutig das Wachstum des Stammes exF-C-

M in Gegenwart von Formiat und zeigte ein verringertes Verhältnis von Glutamat zu Glutamin. Diese 

Daten deuten darauf hin, dass die FA in exF-C-M etabliert wurde und sie hier das Zellwachstum 

unterstützt und den Ammoniakverlust durch Glycindecarboxylierung verringert. Zusätzlich zum Wildtyp 

wurde die Synechocystis-Mutante ∆ccmM mit hohem CO2-Bedarf als vielversprechende Plattform 

ausgewählt, da sie die direkte Beobachtung der Effizienz des FA-Signalwegs durch Reduzierung ihrer 

CO2-Abhängigkeit erlaubt. Die Zugabe von Formiat verstärkte das Wachstum von ∆ccmM/exF-C-M bei 

verminderter CO2-Supplementierung, wobei im Vergleich zur parentalen ∆ccmM-Mutante keine 

offensichtliche Wachstumsstimulation erfolgte. Die weitere Optimierung der FA sollte in ∆ccmM erfolgen, 

da dieser Stamm die einfachste Validierung einer verbesserten Kohlenstofffixierung über FA ermöglicht. 

Schließlich konnte durch die Expression von FTL und MtdA eine segregierte ∆folD-Mutante erzeugt 

werden, die in zukünftigen Versuchen zum Screening für geeignete Formiatdehydrogenasen verwendet 

werden kann. Zusammenfassend berichtet die Arbeiten über die ersten Ergebnisse, einen 

synthetischen FA-Weg für die Assimilation organischen Kohlenstoffs aus Formiat im photoautotrophen 

Modell-Cyanobakterium Synechocystis zu etablieren. Diese Ergebnisse ebnen den Weg für die spätere 

Einführung eines solchen Stoffwechselweges in Kulturpflanzen. 
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1 Introduction 

1.1 The necessity to improve photosynthesis   

Recent reports show that global crop yield needs to double during the next 30 years to meet 

the requirements of the rising human population, changed diet and biofuel consumption (Ray 

et al., 2013; Bar-Even, 2018; Weber and Bar-Even, 2019). Numerous specialists suggested 

that, compared to having more cropland areas, enhancing crop production per unit area land 

is more sustainable for worldwide environmental protection (Tilman et al., 2011; Fan et al., 

2012; Pete, 2018). In the mid of 20th-century, crop yield increased remarkably even in the 

absence of more arable area, called “Green Revolution”, which benefited from plant breeding 

development, utilization of fertilizer and improved cultivation management (Evans 1997). Now, 

the utilization of fertilizers and other agrochemicals like herbicides are reaching their maximum, 

and thus a new “Green Revolution” is needed (Fischer & Edmeades 2010, Caemmerer & 

Evans 2010). Long et al. (2006) clearly discussed that the leaf photosynthesis is closely 

associated with crop production. Hence, to further improve crop yield in the future and start the 

second green revolution, it is essential to improve photosynthetic efficiency. 

Photosynthesis is a biological process used by photosynthetic organisms such as plants, algae 

and cyanobacteria to convert light energy into chemical energy and produce organic 

compounds from CO2. It can be divided into three phases: light absorption and energy delivery 

through antenna systems; primary electron transfer in reaction centers and finally carbon 

fixation. In the first process, sunlight is collected by diverse pigments associated in antenna 

systems and transferred to reaction center chlorophylls. It is subsequently able to initiate the 

transport of electrons from water in the electron transport chain to acceptors, which then serve 

as energy for the reduction of CO2 to triose-phosphate (Orr et al., 2017). As the light capturing 

efficiency in modern crop plants is near its theoretical maximum, the basic and applied 

researches are now mostly focus on the improvement of carbon fixation (Zhu et al., 2010; 

Weber and Bar-Even, 2019) described within the next chapters.  
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1.1.1 Improving carbon fixation via optimization of Rubisco  

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the predominant carbon-

fixing enzyme on earth catalyzing the carboxylation of ribulose-1,5-biphosphate (RuBP) to 

produce 3-phosphoglycerate (3-PGA) in the Calvin-Benson-Bassham cycle (CBBC) (Fig. 1). It 

is a slow catalyst with an average turnover between 1-10 s-1 compared to 50-100 s-1 of other 

enzymes in the central carbon metabolism (Erb and Zarzycki, 2016; Orr et al., 2017). Hence 

Rubisco contributes 30-50% of the soluble leaf protein to maintain the sufficient carbon fixing 

rate, which results in a huge nitrogen investment met by fertilizers (Feller et al., 2008; 

Sharwood, 2017). In addition, Rubisco contains both carboxylase and oxygenase activity, i.e. 

it can only partly discriminate between CO2 and O2. Thus when the carbon fixation acceptor 

RuBP is activated via the enolase activity of Rubisco, it also can react with O2 forming toxic 2-

phosphoglycolate (2-PG). This intermediate must be detoxified by the energetically costly 

photorespiratory pathway leading to the release of fixed carbon, nitrogen, and chemical energy. 

These features make Rubisco the key target for improving carbon fixing efficiency.  

Plant Rubisco forms a large hexadecameric complex assembled by eight large subunits 

arranged as dimers and eight small subunits (L8S8). The large subunit is encoded by the 

chloroplast DNA and the small subunit is encoded in the nucleus and imported into the stromal 

compartment of chloroplast from the cytosol by crossing the chloroplast membranes 

(Chatterjee and Basu, 2011). Until now, re-engineering Rubisco to increase its CO2 specificity 

and catalytic efficiency only achieved limited success. Tcherkez and coworkers proposed that 

all Rubiscos might be already perfectly adapted to the natural gaseous and thermal 

environments during long-term evolution (Tcherkez et al., 2006). So instead of working on to 

create a “super Rubisco”, replacing the endogenous Rubisco in crop plants with better natural 

variants could be another option. It has been reported that Rubisco from cyanobacteria have 

higher catalytic rate accompanied by their lower CO2 specificity compared to plant enzymes, 

whereas Rubisco from red algae has the best specificity for CO2 (Whitney et al., 2011). 

Transgenic tobacco lines with functional Rubisco from the cyanobacterium Synechococcus 
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elongatus PCC 7942 with or without assembly chaperon or carboxysomal protein were 

successfully constructed, whilst they can only grow under elevated CO2 condition (Lin et al., 

2014; Occhialini et al., 2016). However, these efforts lay a good foundation for further research 

on the expression of a foreign Rubisco with or without accompanying carbon concentrating 

mechanisms.  

 

Figure 1: CBBC (Reproduced from Raines 2003).  

1,3-PGA, 1,3-biphosphoglycerate; G-3-P, glyceraldehyde-3-phosphate; DHAP, dihydroxyacetone 

phosphate; Fru-1,6-P, fructose-1,6- bisphosphate; Fru-6-P, fructose-6-phosphate; E-4-P, erythrose-4 

phosphate; Sed-1,7-P, sedoheptulose-1,7-bisphosphate; Sed-7-P, sedoheptulose-7-phosphate; X-5-P, 

xylulose-5-phosphate; R-5-P, ribose-5- phosphate; Ru-5-P, ribulose-5-phosphate; RuBP, ribulose-1,5-

biphosphate; PGK, 3-phosphoglycerate kinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; 

TPI, triose-phosphate isomerase; FBPase, fructose-1,6-bisphosphatase; TK, transketolase; SBPase, 

sedoheptulose-1,7-bisphosphatase; RPI, phosphopentose isomerase; RPE, phosphopentose 

epimerase; PRKase, ribulose-5-phosphate kinase. 

1.1.2 Improving carbon fixation via optimization of RuBP regeneration  

The established biochemical model of C3 photosynthesis predicted that under sufficient CO2 

amounts, the ability of RuBP regeneration can also limit CO2 assimilation (von Caemmerer and 

Farquhar, 1981). This view was supported by the analysis of transgenic tobacco plants with 

nearly 40% less Rubisco, which performed the same photosynthetic rate as wild-type (Stitt & 
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Schulze, 1994). Investigations on CBBC enzymes (Fig. 1) responsible for RuBP regeneration 

indicated that reduction of the SBPase (Harrison et al., 1998; Olcer, 2001), TK (Henkes, 2001), 

and aldolase (Haake et al., 1999) resulted in strong reduction of photosynthesis. These results 

led to the assumption that overexpression of these three enzymes may lead to enhanced 

photosynthetic rate and growth.  

In support of this hypothesis, overexpression of either bifunctional FBP/SBPase from 

cyanobacteria (Miyagawa et al. 2001) or SBPase from Arabidopsis thaliana (Lefebvre, 2005; 

Rosenthal et al., 2011) or Chlamydomonas (Tamoi et al., 2006) in tobacco enhanced 

photosynthetic efficiency and RuBP regenerating capability in controlled environments or field 

trials at atmospheric or saturating CO2 conditions. The transgenic rice plant overexpressing 

SBPase showed also an enhanced tolerance of photosynthesis and growth to high 

temperature stress (Feng et al., 2007). In addition, similar results were observed in transgenic 

tobacco and Anabaena sp. PCC 7120 after overexpression of Fru-1,6-P aldolase (FBA) 

(Uematsu et al., 2012), TPI and FBPase (Kang et al., 2005; Ma et al., 2008), respectively. The 

transgenic tobacco with higher FBA activity exhibited higher biomass and faster photosynthetic 

rate under elevated CO2 condition, while no enhanced photosynthesis occurred at ambient air. 

These results indicated that the photosynthetic rate limiting step is transferred from Rubisco 

activity to the ability of RuBP regeneration under high CO2 concentration. However, an 

unexpected effect was observed in transgenic tobacco overexpressing plastidial TK from 

Arabidopsis. These plants exhibited slow growth and a chlorotic phenotype, which could be 

rescued by the supply of TPP or thiamine (Khozaei et al., 2015). Similarly, TK-overexpressing 

rice did not change its CO2 assimilation rate (Suzuki et al., 2017). These results probably 

indicated that TK activity is controlled by a complex regulatory mechanism.  

1.1.3 Improving carbon fixation via optimization of photorespiration 

1.1.3.1 Introduction of the photorespiratory pathway 

Photorespiratory pathway (Fig. 2) initiates with the oxygenation of RuBP catalyzed by the 
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oxygenase activity of Rubisco producing one molecule of each 3-PGA and toxic 2-PG in the 

chloroplast. The photorespiratory pathway salvages the majority of organic carbon from the 

produced 2-PG, but around 30% of the fixed carbon in C3 photosynthesis is lost under ambient 

conditions (Zhu et al., 2010). It comprises multiple enzymes and transporters localized in four 

compartments of plant cells (Hagemann and Bauwe, 2016). 2-PG phosphatase catalyzes in 

chloroplasts the 2-PG dephosphorylation to glycolate, which is transported to the peroxisome. 

There, glycolate is oxidized to glyoxylate by glycolate oxidase (GO) releasing H2O2, which is 

degraded by catalase (CAT). Glutamate: glyoxylate aminotransferase (GGAT) transaminates 

glyoxylate into glycine. The glycine is then transported into mitochondria, where glycine is 

decarboxylated by glycine decarboxylase complex (GDC) to 5, 10-methylene-THF with the 

release of NADH, CO2 and ammonia. One molecule of glycine and 5, 10-methylene-THF are 

reversibly converted to serine and THF catalyzed by serine hydroxymethyltransferase (SHMT). 

Serine returns back into peroxisomes and reacts with glyoxylate to produce glycine and 

hydroxypyruvate under the catalysis of serine: glyoxylate aminotransferase (SGAT). 

Hydroxypyruvate is reduced to glycerate by hydroxypyruvate reductase (HPR). Finally, 

hydroxypyruvate is transported into chloroplast and recycled into 3-PGA by glycerate 3-kinase 

(GLYK). In summary, during the conversion of two molecules 2-PG one molecule of 3-PGA is 

produced, which returns into CBC cycle. However, one molecule each of CO2 and of ammonia 

are released, which need to be re-fixed through high energy consuming reactions.  

Hence the hypothesis was proposed that the reduction of costly photorespiration could improve 

photosynthesis (Zelitch and Day, 1973). Later on this idea was changed, because it was found 

that the deletion or down-regulation of enzymes to inhibit photorespiration caused a conditional 

lethal phenotype (high CO2-requiring) in all oxygenic phototrophs including algae (Nakamura 

et al., 2005), cyanobacteria (Eisenhut et al., 2008b) and C4 plants (Zelitch et al., 2009), which 

perform carbon concentration mechanisms. Therefore, researches’ focus changes towards 

introducing bypasses to reduce photorespiratory carbon loss.  
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1.1.3.2 Photorespiratory bypasses 

Several strategies were proposed as photorespiratory bypasses (Fig.2) and engineered into 

C3 plants attempting to improve photosynthesis. The bacterial glycolate catabolic pathway was 

firstly introduced into the chloroplast of Arabidopsis (Kebeish et al. 2007). In this bypass, 

glycolate is directly converted into glycerate in chloroplast reducing the photorespiratory flux 

through peroxisome and mitochondria and shifting CO2 release from mitochondria to 

chloroplast. In this approach, five genes from E. coli were expressed, which encode glycolate 

dehydrogenase (GDH) oxidizing glycolate to glyoxylate, glyoxylate carboligase (GCL) 

converting two molecules of glyoxylate into one molecule tartronic semialdehyde inherent with 

the release of one CO2, and tartronic semialdehyde reductase (TSR) producing glycerate. The 

transgenic Arabidopsis plants expressing all the five genes performed reduced 

photorespiration and increased growth under the controlled condition (8 h light/16 h dark, short 

days) (Kebeish et al. 2007). The same approach was applied into biofuel crop Camelina sativa 

with similar results exhibiting reduced photorespiration, enhanced photosynthesis and 

increased seed yield (Dalal et al., 2015). However, the introduction of GDH alone in potato also 

increased its photosynthetic efficiency (Nölke et al., 2014). This result implies that glyoxylate 

produced by GDH maybe oxidized to CO2 via pyruvate dehydrogenase in chloroplast (Blume 

et al., 2013). So, it is still a matter of discussion whether the enhanced photosynthesis results 

from the bypass of photorespiration or the increased CO2 concentration in the chloroplast. The 

second bypass-route oxidizes glycolate completely to CO2 in the chloroplast catalyzed by a 

series of endogenous and introduced enzymes including GO, CAT, and malate synthase (MS), 

which seemingly enable the plant to grow faster and contain higher photosynthetic rate (Maier 

et al., 2012). But the introduction of the second bypass into tobacco only showed limited 

enhancement in the productivity and around 24% of the transgenic lines exhibited yellowish 

leaves and stunted growth (South et al., 2019). The third bypass was designed to replace GO 

with GDH to avoid H2O2 production and keep MS. This route increased the biomass of tobacco 

by 18% in the greenhouse (South et al., 2019). Additionally, the establishment of bypass 3 

along with the suppression of PLGG1 reducing the glycolate flux into peroxisome, further 
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enhanced biomass by 24% in tobacco. The fourth strategy was to import bacterial genes 

encoding GCL and hydroxypyruvate isomerase (HYI) respectively targeted to the peroxisome 

(Carvalho et al., 2011). This bypass converted glyoxylate directly to hydroxypyruvate in the 

peroxisome aiming to eliminate the release of ammonia. The bypass was only partly active, 

since the transgenic lines generated only expressed GCL but not HYI. And they clearly 

exhibited signs of a stress response under ambient air condition (Carvalho et al., 2011). 

 

Figure 2: Alternative photorespiratory pathways (reproduced from South et al. 2019). 

Bypass1 (red line) converts glycolate to glycerate with GDH, GCL and TSR. Bypass 2 (purple line) 

degrades glycolate to CO2 by GO, MS and CAT. Bypass 3 (green line) relies on two introduced enzymes 

GDH and MS.  

In recent years, with the development of synthetic biology, synthetic photorespiratory bypasses 

are proposed as another promising strategy to improve carbon assimilation (Blankenship et al., 

2011). The oxygen-insensitive alternative carbon fixation pathway the hydroxypropionate cycle 

found in filamentous anoxygenic phototrophs (Berg et al., 2007; Zarzycki et al., 2009) was 

redesigned and introduced into Synechococcus elongatus PCC 7942 to recycle the toxic 

glyoxylate preventing the loss of ammonia and coupling to the addition fixation of bicarbonate 

(Shih et al., 2014). Although no obvious benefits from this novel bypass were observed, this 

approach opens a new gate for improving photosynthesis. 
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1.1.4 Improving carbon fixation via engineering carbon concentrating 

mechanism 

Another promising method is to improve CO2 concentration around Rubisco, thereby 

increasing its carboxylase activity and suppressing its side-reaction oxygenation and 

subsequent photorespiration. Cyanobacteria, algae and some plants (C4 plants, CAM plants 

and C3-C4 intermediate species) have polyphyletically evolved carbon concentrating 

mechanisms (CCMs). CCMs act to actively accumulate inorganic carbon (i.e. bicarbonate and 

CO2) inside cells and accumulate the CO2 concentration at the site of Rubisco. It has been 

discussed that engineering them into C3 species will improve biomass production (Hibberd et 

al., 2008; von Caemmerer and Evans, 2010; Peterhansel et al., 2013; McGrath and Long, 

2014).  

Bioengineering approaches to establish the best understood cyanobacterial CCM have made 

the most distinct progress. The cyanobacterial CCM is composed of multiple inorganic carbon 

uptake systems and the Rubisco-including micro-compartment carboxysomes (Raven et al., 

2008; Kerfeld & Melnicki, 2016). The kinetic model proposed by McGrath and Long (2014) 

predicted that the introduction of cyanobacterial CCM into the chloroplast of C3 crop plants 

could increase net leaf CO2 uptake by nearly 60%, thereby resulting in a 36% to 60% 

enhancement of yield (McGrath and Long, 2014). Moreover, it is predicted that even the single 

addition of bicarbonate transporter BicA could enhance photosynthesis by 9%, whilst 16% 

stimulation will be achieved when multiple transporters were expressed (McGrath and Long, 

2014). The overexpression of the endogenous bicarbonate transporter BicA alone stimulated 

cells of Synechocystis sp. PCC 6803 to grow faster and to accelerate biomass production 

(Kamennaya et al., 2015). Meanwhile, studies to select suitable transit peptides that direct the 

cyanobacterial bicarbonate transporter to the inner envelope membrane of chloroplasts in 

plants have made significant progress (Pengelly et al., 2014; Nielsen et al., 2016; Rolland et 

al., 2016). A lot of effort was also made to understand the principles of carboxysome assembly 

(Cameron et al., 2013; Kerfeld and Melnicki, 2016). The attempts to establish functional 

carboxysome were already tested in the heterologous host E. coli (Bonacci et al., 2012; Cai et 
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al., 2016). A simplified α-carboxysome encapsulating with Form 1A-Rubisco from Cyanobium 

was produced within tobacco chloroplast and enabled it to grow autotrophically under high CO2 

condition (Long et al., 2018).  

To achieve the goal of introducing C4 photosynthesis in C3 crop plants, the international C4 rice 

consortium has been established (Hibberd et al., 2008; von Caemmerer et al., 2012). The 

major challenges in this task are the alterations of the anatomy and complex biochemistry in 

leaves (Häusler et al., 2002). C4 photosynthesis starts by the carboxylation of 

phosphoenolpyruvate (PEP) through PEP carboxylase (PEPC) yielding oxaloacetate (OAA) in 

the mesophyll cells. OAA is then reduced to malate by malate dehydrogenase (MDH), which 

is transported into the low gas permeable bundle sheath cells, where CO2 is released from 

malate through decarboxylase malic enzyme (ME). This results in an enrichment of CO2 in the 

proximity of Rubisco (Häusler et al., 2002). The ME reaction product pyruvate is returned back 

to mesophyll cells and is then used for the regeneration of the CO2 acceptor PEP by pyruvate 

orthophosphate dikinase (PPDK). However, overexpression of the single or all C4-specific 

major enzymes caused aberrant chloroplasts or did not significantly affect the photosynthetic 

assimilation rate (Ku et al., 1999; Takeuchi et al., 2000; Häusler et al., 2001; Taniguchi et al., 

2008). Hence, in addition to the main catalytic enzymes, the metabolite transporters between 

different subcellular compartments and their regulation also need to be identified (Denton et 

al., 2013). With the advanced development of next generation sequencing, a list of key factors 

including the regulatory proteins, putative transcriptional proteins and transporters was 

obtained to establish C4 biochemistry in C3 plants (Majeran et al., 2005; Bräutigam et al., 2008; 

Majeran and van Wijk, 2009; Li et al., 2010; Gowik et al., 2011; Schuler et al., 2016; Wang et 

al., 2016, 2017; Sedelnikova et al., 2018). These studies lay a good foundation for the 

understanding C4 photosynthesis and may help to produce a C4 rice prototype in the future. 

1.1.5 Improving carbon fixation via engineering synthetic carbon fixation 

pathway 

Instead of engineering the natural carbon assimilation pathways, the design and import a 
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complete novel pathway supporting or replacing CBBC are more ambitious. A computational 

approach was developed to investigate all the feasible and effective synthetic pathways basing 

on roughly 5000 enzymes from KEGG database. According to the final calculation, the 

malonyl-CoA-oxaloacetate-glyoxylate (MOG) pathway using the most effective carboxylase 

PEPC was determined as the most promising one (Bar-Even et al., 2010). Implementation of 

a partial MOG pathway in Synechococcus elongates PCC 7942 increased approximately 2 fold 

in bicarbonate assimilation (Yu et al., 2018). Another synthetic pathway, called CETCH was 

generated, which is supposed to be more energy efficient than CBBC and other natural existing 

oxygen-insensitive carbon fixation pathways (Schwander et al., 2016). The CETCH pathway 

is based on enoyl-CoA carboxylase/reductase to fix CO2 and was firstly constructed in vitro. 

This pathway is conducted by 17 enzymes originated from 9 different organisms and optimized 

by enzymes engineering and metabolic proofreading (Schwander et al., 2016). Subsequent 

attempts to establish such complicated novel pathways in plants are challenging, since plants 

contain a more complex background. Thus, the compatibility between the introduced synthetic 

pathways and endogenous metabolism should be analyzed before the real implementation 

(Erb et al., 2017).   

A recent comparison of carboxylation and CO2 reduction modules showed that pathways 

combining carboxylation with reduction are the most efficient way, providing us a new horizon 

to improve photosynthesis (Cotton et al., 2018). The reductive acetyl-CoA pathway (rAcCoA 

pathway) is the only known pathway initiated with CO2 reduction and its subsequent steps 

overlap with one-carbon metabolism in most organisms. Based on this, novel formate 

assimilating pathway (named FA pathway hereafter) supporting CBBC was proposed and 

tested in E. coli (Yishai et al., 2017). All the necessary components are naturally existing and 

are integrated from different living organisms to build this synthetic alternative carbon fixing 

pathway. 

1.2 The reductive acetyl-CoA pathway (rAcCoA pathway) 

The rAcCoA pathway (Fig. 3) was elucidated in the mid-to-late 1980s as a pathway used by 
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anaerobic, acetogenic bacteria to synthesize acetyl-CoA from CO2. This pathway is also 

referred to as Wood-Ljungdahl pathway in recognition of the two biochemists H.G. Wood and 

L.G. Ljungdahl, who together with their co-workers described this pathway (Ljungdahl, 1986; 

Wood, 1991; Drake et al., 2008; Fuchs, 2011). Compared to other carbon fixation pathways, it 

is a linear pathway separated in methyl and carbonyl branches that catalyzes the reduction 

and merging of two molecules of CO2 producing one molecule of acetyl-CoA (Drake et al., 

2008). The methyl branch starts with the reduction of one molecule of CO2 to formate through 

formate dehydrogenase (FDH) (Ljungdahl, 1986). Formate is then activated with 

tetrahydrofolate (THF) into 10-formyl-THF catalyzed by 10-formyl-THF ligase (FTL). This step 

is an ATP-consuming reaction (Lovell et al., 1988). 10-formyl-THF is further reduced to 5,10-

methenyl-THF via 5,10-methenyl-THF cyclohydrolase (Fch) and subsequently 5,10-

methylene-THF by 5,10-methylene-THF dehydrogenase (Mtd) (Ljungdahl et al., 1980). The 

enzyme 5,10-methylene-THF reductase (Clark and Ljungdahl, 1984; Ragsdale, 2008) converts 

stepwise 5,10-methylene-THF to more stable 5-methyl-THF. The methyl group of 5-methyl-

THF, serving as the precursor of the methyl group of acetyl-CoA, is transferred to the cobalt 

site of the heterodimeric corrinoid iron-sulfur protein (CoFeSP) catalyzed by 5-methyl-THF 

bounded corrinoid iron-sulfur protein methyltransferase (Svetlitchnaia et al., 2006; Ragsdale, 

2008). The following reaction transfers the methyl group from methyl-CoFeSP to the reduced 

NiFeS active site cluster A of acetyl-CoA synthase (ACS). In the carbonyl branch, the second 

molecule of CO2 is reduced to enzyme-bound CO by the NiFe clusters of CO dehydrogenase 

(CODH) (Lindahl et al., 1990). CODH is normally forming a complex with ACS that accepts the 

methyl group from methyl-CoFeSP and produces acetyl-CoA from CO, CoA and the methyl 

group (Fuchs, 2011). The product acetyl-CoA is then incorporated into acetate by acetate 

kinase or biomass. 

The reactions of CO2 reduction to 5,10-methylene-THF are most essential in the THF-

dependent one-carbon metabolism, which is present from bacteria to human (Hanson and 

Roje, 2001) with the exception of the first two steps, the production of formate and its activation 

to 10-formyl-THF. In photosynthetic organisms, one carbon metabolism closely connects with 
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serine-glycine interconversion in the photorespiratory process (Bauwe et al., 2010), which 

makes the establishment of synthetic FA bypass feasible and easier compared with other 

complex synthetic carbon fixing pathways. 

 

Figure 3: The acetyl-CoA pathway of acetogenic bacteria (reproduced from Schuchmann & 

Müller 2016). 

[H], redox equivalent (one electron+one proton); THF, tetrahydrofolate; CoFeSP, corrinoid iron-sulfur 

protein; CoA, Coenzyme A. The left reaction line represents the methyl branch and the right one shows the carbonyl 

branch.  
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1.3 Folate-dependent one-carbon metabolism interacting with 

photorespiration 

One-carbon metabolism plays a pivotal role in all living organisms, supplying C1 units for the 

synthesis of many intermediates and the regulation of metabolic processes (Jabrin et al., 2003). 

The most reduced THF-derivative 5-methyl-THF is utilized by methionine synthase (MS) to 

convert homocysteine to methionine (Ferla and Patrick, 2014). As a proteinogenic amino acid, 

methionine is broadly known as its function in the initiation of translation (Zou et al., 2017). In 

addition, it is the precursor for the synthesis of S-adenosyl methionine (SAM), which is an 

essential molecule involved in important metabolic processes such as transmethylation, 

transsulfuration and polyamine synthesis (Lu, 2000). 5,10-methylene-THF serves as both, C1 

donor and cofactor in the production of thymidylate catalyzed by thymidylate synthase (TS) 

(Carreras and Santi, 1995). 10-formyl-THF is required for the formation of purine rings in the 

de novo purine biosynthesis (Christensen and MacKenzie, 2006; Murta et al., 2009). In 

addition, 10-formyl-THF supplies its formyl group to synthesize formylmethionyl-tRNA (Dartois 

et al., 2003; Ravanel, 2011).  

Serine and glycine are the most important cellular sources for one carbon units (Hanson and 

Roje, 2001). As mentioned before, SHMT catalyzes the reversible reaction from glycine and 

5,10-methylene-THF to produce serine and free THF. On the other hand, glycine is oxidized 

by GDC with the formation of 5,10-methylene-THF and the release of CO2 and ammonia. In 

photosynthetic organisms, SHMT and GDC activities are coupled to maintain a steady state 

equilibrium of 5,10-methylene-THF and THF during photorespiration. 5,10-methylene-THF 

could be further reduced to 5-methyl-THF by 5,10-methylene-THF reductase (Sheppard et al., 

1999) or it can be oxidized to 5,10-methenyl-THF and subsequent hydrolyzed to form 10-

formyl-THF through Mtd and Fch activity, respectively. Besides, formate could also be 

incorporated to THF to produce 10-formyl-THF by FTL (Hanson and Roje, 2001). In humans 

and yeast, the FTL, Fch and Mtd activities are most associated together with a trifunctional 

protein named C1-THF synthase (Vickers et al., 2009). In addition, these activities are usually 

separated into a mono-functional FTL and a bifunctional enzyme FolD in plants and 
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prokaryotes (Vickers et al., 2009) or three mono-functional proteins in methylobacteria (Vorholt 

et al., 1998). 

1.4 Introduction of formate assimilating pathway into cyanobacterial 

model strain Synechocystis sp. PCC 6803 

1.4.1 Synechocystis sp. PCC 6803 

Considering the complexity of novel carbon fixation pathways, it has been suggested to initially 

test them in algae or cyanobacteria benefiting from their faster growth and easier genetic 

manipulation compared to higher plants (Ort et al., 2015). The cyanobacterial model strain 

Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis) was chosen and used 

as wild-type in this study. Synechocystis is a unicellular phototrophic cyanobacterium, using 

Rubisco as the main carboxylase and performing similar photosynthesis as higher plants 

(Durall and Lindblad, 2015). Furthermore, it was the first fully sequenced phototrophic 

organism (Kaneko et al. 1996). The genome information is now displayed in the manually 

curated database CyanoBase, which provides useful information about gene sequences and 

functions (Ikeuchi and Tabata, 2001). Synechocystis is also naturally competent and able to 

integrate foreign DNA into its genome via homologous recombination allowing easy mutation 

but also expression of foreign genes (Zang et al., 2007). Finally, its metabolic network is also 

relatively well understood. The photorespiration process in Synechocystis (Fig. 4) unlike in the 

compartmented plant cell occurs only in cytosol, which also could make the introduction of the 

FA pathway easier and feasible. 

1.4.2 Formate assimilation pathway 

In this study, the alternative synthetic FA pathway (Fig. 4) supporting CBBC will be introduced 

into the photosynthetic model organism Synechocystis. It is assumed that it will not only reduce 

the net loss of fixed carbon and nitrogen during the photorespiratory cycle but can also result 

in the additional carbon fixation via the CO2 reduction to formate. Furthermore, the FA pathway 

should not disrupt photorespiration, which is essential to oxygenic phototrophs.  
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The FA bypass begins with CO2 reduction to formate by FDH. Formate is then converted to 10-

formyl-THF through FTL similarly as in the rAcCOA pathway. 10-formyl-THF will be further 

reduced to 5,10-methylene-THF via Fch and Mtd activity. Synechocystis expresses the 

bifunctional FolD, which can naturally catalyze the reversible conversion between 10-formyl-

THF and 5,10-methylene-THF. Then the product 5,10-methylene-THF condenses with glycine 

to produce serine under the catalysis of native SHMT, which thereby is assumed to 

considerably reduces glycine decarboxylation via GDC. 

 

Figure 4: A scheme displaying synthetic FA pathway established in Synechocystis sp. PCC 6803. 

Purple arrows indicate FA pathway and black arrows indicate the native photorespiratory pathways and 

CBBC. The establishment of FA pathway in Synechocystis requires the following four steps. ①: FDH 

catalyzes the reduction of CO2 to formate. ②: FTL catalyzes formate and THF to form 10-formyl-THF. 

③: 10-Formyl-THF is converted to 5,10-methenyl-THF via Fch activity. ④ 5,10-Methenyl-THF is further 

reduced to 5,10-methylene-THF through Mtd activity. 

For the initial reaction, the pathway depends on a suitable FDH, which is not present in 

cyanobacteria. FDHs (EC 1.17.1.9) comprise a heterogeneous group of proteins broadly 

discovered in eukaryotes and prokaryotes (Jormakka et al., 2003; Yu et al., 2014). They can 
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be divided into two major classes, based on their metal content and the subsequent chemical 

strategy followed by the active site to carry out the formate oxidation (Maia et al., 2017). One 

class, metal-independent FDHs that contain no metal ion are composed of the NAD+-

dependent FDHs, and belong to the superfamily of D-specific dehydrogenases of 2-hydroxy 

acids (Tishkov and Popov, 2006; Maia et al., 2017). FDHs from this class usually catalyze 

formate oxidation coupled with the reduction of NAD+ to NADH. The other class of metal-

dependent FDHs are NAD+-independent, contain a complex inventory of redox active centers 

and are sensitive to oxygen (Maia et al., 2015). These proteins hold molybdenum, tungsten or 

other transition metals in their active sites coordinated with their pyranopterin cofactors to 

mediate the formate oxidation or CO2 reduction. An excellent candidate is the NAD-dependent 

FDH from acetogenic Clostridium carboxidivorcans. The ccFDH with a low binding affinity for 

formate was reported preferentially to reduce CO2 to formate with a catalytic rate 0.08 s-1 

(Alissandratos et al., 2013). Besides, several reports showed that certain FDHs were able to 

catalyze CO2 to produce formate (Maia et al., 2017), but this enzyme class is still difficult to 

use in application because of their slower rates (lower than Rubisco) and usual oxygen 

sensitivity.  

Thus, we first aimed to introduce the other enzymes necessary for the designed formate 

assimilating pathway except FDH into Synechocystis. This engineering attempt should result 

in a Synechocystis strain that can metabolize external formate. It will then be analyzed whether 

this new pathway increases cellular carbon fixation and possibly biomass production. The 

similar strategy was already applied to E. coli by three independent groups. Their studies 

successfully showed that external formate can be utilized to produce serine, which was 

supported by performing 13C isotope analysis (Yishai et al., 2017; Bang and Lee, 2018; Tashiro 

et al., 2018). However, to establish and verify formate assimilation, specific mutant 

combinations were generated which made E. coli completely dependent on the new pathways. 

Especially, in the background of the serine auxotrophy mutant of E. coli the serine synthesis 

from formate and formate assimilation flux was enhanced (Bang and Lee, 2018). Nevertheless, 

these studies verified that the formate assimilation pathways can be functional in an 
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engineered organism and provides many information which enzymes are suitable for further 

attempts.  

Our study is the first trial in a photoautotrophic organism, here Synechocystis. In contrast to 

the studies with E. coli, which is not performing photosynthesis and photorespiration, we aim 

to establish FA pathway in Synechocystis working supplementary to the CBBC. The presence 

of an intact CCM probably supplies enough organic carbon and energy for cells, which might 

make it more difficult to see the advantage of the additional formate assimilation. In order to 

improve the contribution of FA pathway to carbon assimilation and to make the cyanobacterial 

model more plant like, we also used a CCM-defective Synechocystis mutant ∆ccmM. Mutant 

∆ccmM exhibited high CO2-requiring phenotype along with a significant increase in 2-PG and 

a decrease in 3-PGA content after a shift to low carbon conditions (Hackenberg et al., 2012). 

These features resulted from enhanced oxygenase activity and declined carboxylase activity 

of Rubisco in ∆ccmM, making it a suitable background for the test of FA pathway. In addition, 

Synechocystis produces high amounts of NADPH and ATP through photosynthetic electron 

transport chain under light, supporting enough energy and reducing equivalents for formate 

assimilation with only small effects on the endogenous carbon fixing pathways. 

In summary, we present here experiments to establish an alternative carbon fixation route via 

the FA pathway to improve photosynthesis based on simplified sets of enzymes. Although lots 

of effort should be putting on engineering a better FDH to efficiently reduce CO2 to formate to 

complete the FA pathway in the future, our study serves as a platform for improving 

photosynthesis according to the biological C1 unit conversion in cyanobacteria. 

 



Materials 

 

 
18 

 

   

2 Materials  

2.1 Chemicals and enzymes 

2.1.1  Chemicals 

13C-Formate, 14C-Formate and tetrahydrofolic acid (THF) were purchased from Sigma Aldrich 

(USA). Tag-PCR Master Mix was bought from Qiagen (Germany). And all the other chemicals 

used in this project were obtained from Carl Roth (Karlsruhe, Germany). 

2.1.2 Enzymes 

Restriction endonucleases for DNA modification were purchased from New England Biolabs 

(USA). All the other enzymes used in this study, such as T4 DNA ligase for DNA ligation were 

obtained from Thermo Fischer Scientific (USA). 

2.2 Kits 

Kits for DNA extraction from standard agarose gels and mini-plasmid isolation were purchased 

from Macherey-Nagel (Düren, Germany). 

2.3 Media 

LB broth and LB agar for E. coil cultivation were bought from Carl Roth. BG11 for 

Synechocystis cultivation was prepared according to Rippka et al. (1979). 

2.4 Oligonucleotides 

All oligonucleotides used in this study were ordered from Eurofins Genomics (Ebersberg, 

Germany) and Microsynth (Switzerland) and stored as 100 µM stock solution. Oligonucleotides 

and respective sequences are listed in table 1.  
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Table 1: Oligonucleotides used in this study. 

 

Name Sequence Company 

sll0753-rev GAATTCTTAAATACCTAACCGTTGCCG Eurofins 

sll0753-fw AACATATGACTGCCGTACCCCCATCCTG  Eurofins 

sll0753-de-fw GATGTCTGCTTGCCGGGTGATATCG Microsynth 

sll1359-rev GGTAAAGCCAGCGTTAGTC Eurofins 

sll1359-fw CGGCAGAGAAACCGATAAG Eurofins 

sll1359-Ecoli-fw AACATATGAAAATAGGAAGAATTACGG Eurofins 

sll1359-Ecoli-rev GGATCCTCAATTCTGGCGTGATCCGG Eurofins 

ftl-fw AGATCTATGCATCATCACCATCAC Eurofins 

ftl-rev CAATTGTTAGAACAGACCGTCGAT Eurofins 

ftl-Ecoli-fw GAGCTCATGCATGCATCATCACCATCAC Eurofins 

ftl-Ecoli-rev GGTACCTTAGAACAGACCGTCGAT Eurofins 

ConII-fw GAGCTGCAGGAGCTCACCGGTTTCGAATTG Microsynth 

Fch-fw GCGACTAGTATGCATCATCACCATCACCACG Microsynth 

MtdA-rev GCGCTCGAGTTAAGCCATTTCTTTAGCCAG Microsynth 

ccmM (sll1031)-fw CCATCATCCGCCGTTAAT Eurofins 

ccmM (sll1031)-rev ACCGAGACAAGCTGTTGC Eurofins 

odc (sll1358)-fw  TCATAGCGCACCACATTG Eurofins 

odc (sll1358)-rev GTCATGGAAGGCAGAACC Eurofins 

tsr (slr0229)-fw ATAAGTCAGAGAAGTGAA Eurofins 

tsr (slr0229)-rev CCATGTTTACTCCAGTAA Eurofins 

gcvT (sll0171)-fw AGACCTGAAGGAAGCTGTAG Eurofins 

gcvT (sll0171)-rev GAGGAAGTGGTGCACAGGTT Eurofins 

SGAT-fw CATATGATGGACTATATGTATGGACCAGGG Microsynth 

SGAT-rev AGATCTTTAGATTCTAGAGGGAATGAGAGG Microsynth 

Underlines present restriction enzyme sites: CATATG (NdeI), GGATCC (BamHI), AGATCT (BglII), 

CAATTG (MunI), GAGCTC (SacI), GGTACC (KpnI), CTGCAG (PstI), ACTAGT (SpeI), CTCGAG (XhoI). 

2.5 Bacterial Strains 

Cloning and amplification of plasmids were performed in E. coli DH5α. A glucose-tolerant 

derivative of Synechocystis sp. strain PCC 6803 was used in all the experiments and served 

as the wild-type. Synechocystis sp. PCC 6803 and mutants used in this study are listed in table 

2 with their respective genotypes.  
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Table 2: Strains used in this study and their respective genotype. 

 

Strain Genotype Reference  

Synechocytis strains   

Wild-type PCC 6803  

∆sll1359 PCC 6803 sll1359::Gm This work 

∆folD PCC 6803 sll0753::Km This work 

exFTL/∆folD PCC 6803 exftl// sll0753::Km This work 

exF-C-M/∆folD PCC 6803 exftl//exfchA//exmtdA //sll0753::Km This work 

exFTL PCC 6803 exftl This work 

exFTL-SGAT PCC 6803 exftl//exSGAT This work 

exFTL/∆3pr 
PCC 6803 

exftl/sll0171::Sp//slr0229::Km//slr1358::Cm 
This Work 

∆3pr 
PCC 6803 

sll0171::Sp//slr0229::Km//slr1358::Cm 
(Eisenhut et al., 2008b) 

exF-C-M PCC 6803 exftl//exfchA//exmtdA This work 

∆ccmM/exFTL PCC 6803 exftl//sll1031::Km This work 

∆ccmM/exF-C-M PCC 6803 exftl//exfchA//exmtdA //sll1031::Km This work 

∆ccmM PCC 6803 sll1031::Km (Hackenberg et al., 2012) 

 

2.6 Bioinformatics tools 

Synechocystis sp. PCC 6803 nucleotide sequences were referred from the genome database 

CyanoBase (http://genome.microbedb.jp/cyanobase/GCA_000009725.1, (Nakamura et al., 

1998)). Multiple protein sequence alignments were done via the web tool Clustal Omega 

(Sievers et al., 2011). Multiple nucleic acids sequence alignments were done via the software 

BioEdit (Hall et al., 2011). 

  

http://genome.microbedb.jp/cyanobase/GCA_000009725.1
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3 Methods 

3.1 Growth conditions 

The cyanobacteria strains used in this work are listed in Table 2. The glucose-tolerant strain of 

Synechocystis sp. PCC 6803 served as wild-type. Cultivation of mutants and transgenic strains 

was performed at 50 μg/mL-1 kanamycin (Km), 20 μg/mL-1 spectinomycin (Sp), 10 μg/mL-1 

chloramphenicol (Cm), or at 50 μg/mL-1 erythromycin (Ery) as required. Axenic cultures of 

Synechocystis were grown photoautotrophically in batch cultures at 30 °C under continuous 

illumination. Contamination by heterotrophic bacteria was checked by spreading of 0.2 mL of 

culture on LB plates.  

The E. coli strain DH5α cultured in LB medium supplemented with respective antibiotics at 

37 °C was used for routine DNA manipulations. 

3.2 DNA manipulation 

Total DNA from Synechocystis was isolated according to Hagemann et al. (1997). And other 

DNA techniques, for example, transformation of E.coli cells, ligation and restriction analysis 

were done according to the standard methods (Sambrook and Russell 2001). PCR with 

specific oligonucleotides as described before was carried out using the Tag-PCR Master Mix. 

Plasmid isolation from E. coli cells was performed by mini-plasmid isolation kit. 

3.3 Generation of Synechocystis mutants  

Construction of mutants was conveniently performed by insertional mutagenesis. The targeted 

genes were amplified with specific primers (given in Table 1) using chromosomal Synechocytis 

wild-type DNA as template and cloned into pGEM-T vector (Promega). And the targeted genes 

were checked by DNA sequencing. The gene cassettes encoding different antibiotics were 

inserted into the coding region of target genes with around 500 bp franking region on left and 

right terminals. Subsequently, the transformation (Grigorieva and Shestakov, 1982) was 
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followed by selection with respective antibiotics producing the desired mutants. The genotype 

of mutants was characterized with specific primers via PCR (Table 1).  

3.4 Construction of expression plasmids 

For the expression of gene sll1359 in the E. coli vector pET28a (Novagen), the coding 

sequence was amplified through PCR using DNA of Synechocystis with primer pair sll1359-

Ecoli-fw/rev adding NdeI and BamHI restriction sites for cloning. The resulting fragment was 

first cloned into pGEM-T (Promega). And the sequence was further confirmed with DNA 

sequencing. After restriction, the sll1359 fragment was inserted into pET28a vector, resulting 

in plasmid pET28a-sll1359. 

The exogenous genes ftl, fchA and mtdA from M. extorquens AM1 were codon-optimized 

synthesized and kindly supplied by Dr. Arren Bar-Even. The CDS region of gene SGAT was 

amplified from cDNA of Arabidopsis thaliana. The construction process was described in detail 

in the results. 

3.5 Drop-dilution assay 

For drop-dilution assay on solid medium, strains were pre-cultivated in liquid BG11 

supplemented with antibiotics if required. Cultures were adjusted to OD750 nm = 1 and diluted to 

1:10, 1:100, 1:1000 and 1:10000. 2µl of each drop was spotted onto plates (BG11, pH 8, 

solidified by 0.9% Kobe agar) containing given amounts of supplements and cultivated under 

constant illumination at 30 °C for 10 days. Each spotting assay was done at least two replicates. 

Representative results are shown in the thesis.  

3.6 Protein expression and purification in E. coli 

The recombinant proteins were expressed in E. coli BL21. The correct clones with the 

respective plasmid were inoculated overnight at 37 °C in 5 mL LB-medium containing the 

respective antibiotic for selection. The pre-culture was diluted in fresh LB-medium to an 



Methods 
 

 

 
23 

 

   

OD600 nm of 0.1 and incubated at 37 °C to OD600 nm of 0.6 to 0.8 before induction with 1mM IPTG 

or 0.02% L-arabinose. Expression was carried out for 4 hours at 37 °C. Cells were harvested 

by centrifugation at 6000 g for 10 minutes and washed with lysis buffer (20 mM Tris-HCl pH 7.8, 

50 mM NaCl, 10 mM imidazole). Cells were lysed in lysis buffer supplemented with 1 mg/mL 

lysozyme and incubated on ice for 30 minutes. The resulting suspension was subsequently 

sonicated for 3 x 30 s at maximal power. Lysate was cleared by centrifugation at 14000 g for 

30 minutes at 4 °C.  

His-tagged proteins were purified via IMAC according to the manufactures protocol 

(QIAexpressionist, Qiagen) in the gravity flow mode. Lysate passed the Ni-NTA three times, 

followed by 3 washing steps with 20 batch volumes washing buffer (20 mM Tris-HCl pH 7.8, 

1 M NaCl, 40 mM imidazole). Elution was done with 1 batch volume of elution buffer (20 mM 

sodium phosphate pH 7.8, 500 mM NaCl, 300 mM imidazole) and repeated up to 3 times if 

desired. 

3.7 Protein extraction and quantification from Synechocystis 

10 – 20 mL Synechocystis cells were grown to a cell density of OD750 nm = 1 and total protein 

was extracted from these cells. Cells were collected by centrifugation at 6000 g for 10 minutes 

and immediately frozen in liquid nitrogen and storage in – 80 °C for further protein extraction. 

Frozen cells were added with 200 μL homogenization buffer (75 mM Tris-HCl, 1.5 mM EDTA, 

pH 7.5), 10 μL PMSF (30 mM dissolved in isopropanol as stock solution), 5 μL NaHSO3 (60 mM 

as stock solution), 5 μL (6 mM as stock solution) Pefablock and 0.5 mm glass beads when 

they are ready for proteins extraction. Samples were mixed by vortex 1 min, then frozen for 

20 s in liquid nitrogen and melted under ambient air. Repeat these three steps for 5 times. 

Lysate was got by centrifugation at 600 g for 5 minutes.  

Protein quantification was done according to the protocol (Schulz et al., 1994). The standard 

calibration curve was done with different concentration of BSA. 100 μL BSA reference solutions 

or cell lysate were mixed separately with 400 μL staining solution (90% MeOH, 10% acetic 
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acid and 0.01% amido black 10B) by vortex. The supernatant was removed by centrifugation 

at 12 000 g for 30 minutes. Then pellet was re-dissolved with 1 mL wash solution (90% MeOH, 

10% acetic acid). After the second centrifugation at 12 000 g for 15 minutes, the supernatant 

was discarded and the pellet was dried at 37 °C for 5 minutes. Finally, the pellet was dissolved 

in 1 mL resolving solution (200 mM NaOH) and absorption at 615 nm was measured in a 

photometer. The values obtained for the BSA reference solutions created the standard 

calibration equation using for the determinant of Synechocystis cells protein. 

3.8 FTL activity assay 

The FTL activity was assayed via the quantitative conversion of 10-formyl–THF, which is 

formed from formate in the FTL enzymatic reaction, to methenyl-THF by the addition of acid 

as described (Marx et al., 2003). The concentration of methenyl-THF was determined 

spectrophotometrically by its characteristic absorption changes at 350 nm. The assay was 

done under anaerobic conditions since THF is sensitive to oxygen. The reaction solution 

included 0.1 M Tris (pH 8), 10 mM MgCl2, 5 mM ATP, 50 mM sodium formate, 0.2 μM THF and 

50 μg lysate protein. THF was firstly aliquoted in Tris buffer at 4 mg/mL as mother solution 

under anaerobic condition. 

3.9 Formate oxidizing activity 

Formate oxidizing activity was measured according to the method (Choe et al., 2014). The 

formate degrading activity was determined spectrophotometrically by its characteristic 

absorption changes at 340 nm during the reaction at room temperature. The assay was 

performed using a solution containing 20 mM sodium phosphate buffer pH 7, 5 mM NAD+ or 

NADP+, 50 mM sodium formate and different amount of Synechocystis lysate. 

3.10 Western blotting 

Protein samples were mixed with 3-fold lammi buffer and boiled at 90 °C for 10 minutes. 

Samples were loaded in 12% (W/V) SDS-PAGE gel, further electrophoretically transferred to 
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PVDF membrane and detected using antibodies raised against either His-tag or special 

antibody (e.g. FTL antibody). After a subsequent washing step, the membrane was incubated 

with the secondary antibody conjugated to enzyme peroxidase. Then protein was probed using 

ECL chemiluminescence detection reagent. 

3.11 Quantification of internal amino acids and organic acids 

Free amino acids and organic acids were extracted from the frozen Synechocytis cell pellets 

of 5 mL of cultures with OD750 nm = 1 using 80% ethanol under 65 °C for 3 h. After centrifugation, 

the supernatant was dried by lyophilization and re-dissolved in 1 mL LC water. Amino acids 

and organic acids were separated through liquid chromatography coupled to tandem mass 

spectrometry (LC-MS/MS) with Discovery H5 F5 HPLC column (Sigma-Aldrich). All assays 

were repeated in 3 times by independent cell cultivation. Pair-wise t test was applied for the 

statistical comparison of mean values. 

3.12 Carbon labeling 

For stationary isotope tracing of proteinogenic amino acids, cells were pre-cultivated with air-

enriched by 5% CO2 in the BG11 medium. Then cells from wild-type and exFTL strains were 

shifted to ambient air starting with OD750 nm of 0.1 under continuous light and were cultivated 

fed with either 13C-labeled or unlabeled sodium formate. When the optical density at OD750 nm 

of cells were up to 1, cells were diluted to 0.1 and re-cultivated until 1. This step was repeated 

for 3 times to ensure at least 9 generation growing and enough 13C incorporation into 

proteinogenic amino acids. Furthermore, 2 mL of cells were harvested by centrifugation for 

5 min at 11 000 g. The pellet was hydrolyzed by incubation with 1 mL of 6N hydrochloric acid 

for a duration of 24 h in 95 °C. Samples were then lyophilized and sent to Dr. Arren Bar-Even’ 

lab for measurement. The further steps were done as described in the paper of Yishai et al. 

(2017). 
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4 Results  

4.1 Impact of external formate on Synechocystis wild-type 

Before the introduction of formate assimilation pathway into cyanobacterium model strain 

Synechocystis sp. PCC 6803, the impact of external formate on the Synechocystis wild-type 

and its ability of formate utilization were investigated. Since formate is frequently used as the 

bicarbonate analog for the study of the interaction of PSII and bicarbonate which can replace 

bicarbonate from its binding site in PSII (Stemler and Radmer, 1975; Semin et al., 1990; 

Shevela et al., 2007), its effect on photosynthesis was also studied and found to act as potent 

inhibitor. In addition, the candidate gene sll1359 encoding FDH in the genome of 

Synechocystis was also investigated if it could interfere with the planned formate assimilation 

strategy. Throughout this study, I used sodium formate to provide this compound to cells, since 

Synechocyctis is sensitive to pH of its growth environment (Nguyen and Rittmann, 2016).  

4.1.1 Growth effect of formate on wild-type 

The resistance of Synechocystis wild-type cells toward formate was studied on agar media 

supplied with formate whose concentration ranged from 0 to 200 mM (Fig. 5A). The growth of 

Synechocystis became retarded when exposed to formate above 100 mM, however, the cells 

survived with up to 200 mM formate in the medium. No change in growth and pigmentation 

was observed with formate supplementation below 50 mM to the plates.  

The effect of formate on photosynthetic oxygen evolution was then tested with concentrations 

lower than 50 mM in the presence of different light intensities (25 μmol, 50 μmol and 

100 μmol photons m-2 s-1). Photosynthesis of Synechocystis was not affected by 10 mM 

formate under all the tested light intensities, but it was severely inhibited by 50 mM formate at 

higher light intensity (Fig. 5B). 
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Figure 5: Effect of sodium formate on the Synechocystis wild-type. 

A. Resistance of wild-type cells toward formate. Serial dilutions of cell suspension (OD750 nm was 

approximately 1) were dropped on BG11 agar plates, pH 8, supplemented with different concentrations 

of formate (0-200 mM) for 7 d. B. Photosynthetic O2 evolution rates in the presence of different amounts 

of formate (0-50 mM). The pre-cultivated cells were grown under ambient air in flask and then inoculated 

at different light intensities when the O2 evolution rate was measured (25 - 100 μmol photons m-2 s-1).  

The growth rates of wild-type were compared to detect the impact of formate below 20 mM. 

Cells were cultivated in the multi-cultivator with continuous illumination. No significant 

difference was observed between cells in the presence of formate or in the absence of formate 

under different light intensities (50 μmol, 100 μmol and 200 μmol photons m-2 s-1) and different 

carbon concentrations (0.04% and 5% CO2, as shown in Table 3). To evaluate the impact of 

formate on wild-type cells in more detail, the steady state level of cellular metabolites was 

analyzed. For this purpose, cells were grown in liquid culture under ambient air and 

100 μmol photons m-2 s-1 supplied with 10 mM sodium formate or not. Samples were taken 

24 h later and evaluated by LC-MS/MS. In summary, the levels of cellular metabolites showed 
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no significant difference between cells grown with or without formate (Table 4). 

Collectively, these data indicate that formate can be taken up by Synechocystis, but low 

concentrations of formate are tolerated and only concentrations higher than 20 mM start to 

have negative impact on photosynthesis and growth of wild-type cells. Hence, 10 mM formate 

was used for all growth assays in liquid medium in this study, whereas ≥ 50 mM formate were 

used as supplementation for medium in agar plates to test the sensitivity of transgenic clones 

to formate. 

Table 3: Growth rates of Synechocystis wild-type cells under different growth conditions in the 

presence and absence of formate, respectively.  

The values of growth rates were normalized as d-1 and presented as means±SE of three independent 

replicates. 

Growth rate (d-1) 

 Light intensity (μmol photons m-2 s-1) 

Formate 

concentration 
50 100 200 

High carbon 

(5% CO2) 

0 mM 0.146±0.036 0.207±0.043 0.244±0.033 

10 mM 0.147±0.018 0.183±0.015 0.242±0.059 

20 mM 0.147±0.015 0.194±0.019 0.234±0.048 

Low carbon 

(air, 0.04% CO2) 

0 mM 0.073±0.018 0.112±0.027 0.138±0.012 

10 mM 0.084±0.029 0.115±0.021 0.136±0.006 

20 mM 0.084±0.018 0.114±0.025 0.14±0.012 

 

4.1.2 Investigation of candidate gene sll1359 potentially encoding FDH 

It has been reported that Synechocystis is able to degrade photorespiratory glyoxylate through 

the complete decarboxylation to CO2 via oxalate and formate (Eisenhut et al., 2008b). In this 

decarboxylation branch, oxalate is decarboxylated to formate with the release of one molecule 

of CO2 by oxalate decarboxylase (ODC) encoded by the gene sll1358 (Eisenhut et al., 2008a; 

Tottey et al., 2008). It has been postulated that the intermediate formate is further oxidized to 

CO2 through FDH. The gene encoding FDH in the genome of Synechocystis is not yet 

annotated. However, the ODC-encoding gene sll1358 is co-transcribed with the downstream 

gene sll1359 and both genes showed about 1.8 folds higher expression when cells were shifted 
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from high to low CO2 conditions, which promotes higher photorespiratory rates. The gene 

sll1359 encodes a protein that contains a cytochrome-c-like domain (Eisenhut et al., 2008a). 

These data indicated that Sll1359 might be a candidate encoding FDH despite the missing 

similarity to already assigned FDH proteins.  

 

Figure 6: Genotypic and phenotypic characterization of the ∆sll1359 mutant. 

A. Schematic presentation of construct for deletion of gene sll1359 in Synechocystis. The gene encoding 

gentamycin-resistance was inserted into gene sll1359. Oligonucleotides sll1359-fw and sll1359-rev 

flanking the insertion site were used to test the segregation. B. Complete segregation of the mutant 

∆sll1359 was verified with sll1359 specific primers. M: DNA marker; f1-f4: different clones; WT: wild-type. 

C. Growth curves of ∆sll1359 (triangle) and wild-type (circle) were measured either supplied with 10 mM 

formate (open) or not (solid) under constant light 100 μmol photons m-2 s-1 and ambient air condition in 

multi-cultivator. D. The induction of recombinant Sll1359 protein with IPTG. E. coli BL21 cells containing 

pET-28a-sll1359 plasmid was induced with 1 mM IPTG for 4 h under 37 ℃. The accumulation of His-

tagged recombinant protein was verified by Western-blotting (below coomassie-stained gel). 

To investigate the function of Sll1359, the gene was inactivated through interposon-

mutagenesis (Fig. 6A). The gentamycin resistance gene was obtained from pUC4G after HincII 

digestion. The sll1359 gene and its flanking sequence (2728 bp) were obtained from DNA of 

the Synechocystis wild-type (WT) via PCR using gene specific primers. The mutant plasmid 
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was constructed, where the gentamycin resistance cassette interrupted gene sll1359 (1957 bp) 

after deleting the internal part flanked by BmgBI and StuI sites. After selection of resistant 

colonies, the genotype of the obtained clones was checked with PCR. Clone f1 to f3 were 

completely segregated while f4 was not (Fig. 6B). The easily achieved mutation of sll1359 

indicates that its gene product has no essential function in Synechocystis under laboratory 

condition. Clone f1, named ∆sll1359 was used for further research. Subsequent growth 

experiments showed no difference in sensitivity to formate between mutant ∆sll1359 and wild-

type nor any growth retardation at ambient air (Fig. 6C). Additionally, the recombinant His-

tagged Sll1359 protein was purified for enzyme activity analysis (Fig. 6D). No formate-oxidizing 

or CO2-reducing activity was observed with recombinant Sll1359 protein in our lab. The same 

result was found with the total lysate of wild-type Synechocystis cells. These results indicate 

that Sll1359 is most likely not representing the FDH in Synechocystis. Therefore, the gene was 

left intact in the subsequent strains constructed with FA pathway to metabolize formate. 

4.2 Establishing FA pathway in Synechocystis wild-type 

Crucial for formate assimilation is the enzyme FTL that catalyzes the incorporation of formate 

into 10-formyl-THF, which can be subsequently converted into 5, 10-methenyl-THF and 5, 10-

methylene-THF, hence supplying C1 units for serine synthesis and contributing biomass. There 

is no gene annotated to encode FTL in the Synechocystis genome according to the database 

CyanoBase. It has been reported that the overexpression of FTL from Methylobacterium 

extorquens AM1 enable E. coli mutant ∆serA∆gcvTHP, in which the genes encoding SHMT 

and GDC were deleted, to substitute C1 units with the supply of external formate (Yishai et al., 

2017).  

In the following chapter, the gene encoding FTL from M. extorquens AM1 was chosen for the 

expression in Synechocystis attempting to efficiently utilize external formate through the FA 

pathway. The results we got proved that the introduction of FTL alone was insufficient for 

significant formate incorporation into the cyanobacterial biomass. Therefore, the further 

overexpression of an efficient alternative FolD was achieved aiming to enable Synechocystis 
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to assimilate external sodium formate into serine and stimulate its cell growth. 

4.2.1 Introduction of FTL in Synechocystis wild-type 

The codon-optimized gene ftl from M. extorquens AM1 was cloned under control of the strong 

light-induced promoter PpsbA2 on the plasmid pA2 (Lagarde et al., 2000) carrying an 

erythromycin resistance marker gene (plasmid referred to pA2-FTL; Fig. 7A). After selection of 

erythromycin-resistant clones, the stable integration of ftl into the genome was verified by PCR, 

which showed expected DNA bands of 1704 bp using DNA from transformants but not from 

wild-type (Fig. 7B). The clones were named accordingly exFTL. Western-blotting analysis 

using a FTL-specific antibody verified that these clones expressed the FTL protein, whereas 

no cross-reaction was observed with wild-type extracts (Fig. 7C). Moreover, 10-formyl-THF 

ligase activity was detected in crude extracts of the exFTL strain, when incubated with formate 

and THF (Fig. 7D). The lysate of exFTL cells displayed higher production of methenyl-THF 

than that of wild-type. These data confirmed that an active FTL from M. extorquens AM1 was 

expressed in Synechocystis. 

 

Figure 7: Schematic presentation of the FTL-expression construct and genotypic 

characterization of the FTL-expressing Synechocystis strain exFTL. 
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A. Construct for FTL expression in Synechocystis. The codon-optimized gene ftl from M.extorquens 

AM1 was integrated into the psbA2 site of the Synechocystis genome using the psbA2 flanking 

sequences for homologous recombination. An erythromycin-resistance marker (EryR) allowed the 

selection of recombinant lines. B. Verification of the genotype by PCR using DNA from the ftl-expressing 

clone (exFTL), wild-type (WT) or not DNA (H2O) as template and ftl-specific primer ftl-fw and ftl-rev. C. 

Western-blotting with an FTL-specific antibody verified the expression of FTL in exFTL but not in wild-

type. 20 μg of total lysate from each strain were loaded into SDS-PAGE gel. D. FTL enzyme activity was 

compared in crude protein extracts of exFTL and WT. The activity assay is detailed described in Methods. 

4.2.2 Phenotype and metabolome analysis of FTL-expressing strain exFTL 

The exFTL strain showed similar growth rate after addition of 10 mM sodium formate compared 

to wild-type at ambient air (Fig. 8A). Interestingly, exFTL cells exhibited higher glycine tolerance 

in the presence of formate. This strain grew with 3 mM glycine and formate, while wild-type 

cannot survive on plates containing 3 mM glycine and 100 mM formate (Fig. 8D). It seems that 

formate and glycine have an additive toxic effect on Synechocystis cells, which is relieved after 

ftl expression indicating that FTL could probably alleviate the toxicity of excess formate via 

formate assimilation.  

When the liquid BG11 medium was supplemented with formate, we observed marked 

difference in the metabolome of exFTL compared to wild-type cells. As expected, particularly 

serine and glycine levels changed. The incubation of formate resulted in nearly 3 folds higher 

serine levels in exFTL strain compared to wild-type, while in the absence of formate only 

slightly increased serine levels were found (Fig. 8B). In contrast, glycine contents were 

approximately 3 folds lower in exFTL with formate supplementation, whereas without formate 

addition only small differences appeared (Fig. 8C). The reduction of glycine in exFTL cells is 

consistent with its higher resistance to glycine. These results indicated that formate might be 

as expected incorporated into serine via FA pathway in exFTL strain resulting in the decreased 

pool of the precursor glycine.  
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Figure 8: Growth rates and selected metabolites in the strains wild-type and exFTL.  

A. Growth rates of exFTL and wild-type (WT) incubated with or without formate were compared. B. 

Resistance of WT and exFTL toward formate and glycine. The content of serine (C) and glycine (D), in 

WT and exFTL were measured by LC-MS/MS. Cells were cultivated under ambient air at 

100 μmol photons m-2 s-1. Samples were collected 24 h after sodium formate or not incubation, 

respectively. Given are mean values and SE of at least three independent replicates. *: P< 0.05; **: 

P< 0.01; ***: P< 0.001. 

The relative fold changes of other metabolites in cells of exFTL compared to wild-type are 

listed in Table 4. The samples from exFTL contained significant less 2-OG and other 

intermediates of the tricarboxylic acid (TCA) cycle than wild-type. Consistently, glutamate also 

decreased. In addition, amino acids leucine, proline and phenylalanine showed quite low level, 

while asparagine was higher in exFTL. With the supply of formate, histidine and methionine 

whose one carbon origins from 10-formyl-THF and 5, 10-methylene-THF respectively in exFTL 

performed marginal enhanced level. Aspartate and its derived amino acids lysine, threonine 
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and isoleucine exhibited increase. Leucine, proline and phenylalanine also performed higher 

level although they were still lower than those from wild-type. Interestingly, the exFTL strain 

showed slight increase in the carboxylation product 3-PGA, while the oxygenase product 2-

PG was slightly decreased upon incubation with formate. The highest accumulation was 

detected for 2-aminobutyric acid (AABA) that rose 9-fold in the presence of formate. 

Collectively, these metabolic changes show that FTL activity has broad impact on cellular 

metabolism after addition of formate.  

Table 4: Metabolome analysis of strain exFTL compared to wild-type. 

 

Relative folds WT+F / WT exFTL+F / exFTL exFTL / WT exFTL+F / WT+F  

Asn 0.96±0.05 0.95±0.11 1.67±0.38 1.63±0.19 

Asp 0.84±0.12 1.33±0.22 1.15±0.19 1.88±0.7 

Ser 0.89±0.05 2.74±0.53 1.25±0.21 3.81±0.65 

Ala 0.96±0.09 1.41±0.14 0.91±0.06 1.34±0.23 

Gly 1.02±0.22 0.34±0.09 0.73±0.02 0.26±0.13 

Gln 0.8±0.09 1.55±0.29 1.11±0.17 2.12±0.31 

Thr 0.94±0.02 2.35±0.58 1.18±0.27 2.89±0.61 

Met 1.04±0.06 1.3±0.14 0.87±0.23 1.09±0.36 

Cys 0.97±0.36 1.85±0.6 1.09±0.29 2.24±1.12 

Glu 0.98±0.19 0.68±0.14 0.78±0.12 0.55±0.14 

Pro 1.15±0.08 1.84±0.24 0.4±0.11 0.64±0.16 

Lys 0.81±0.08 1.45±0.44 1.1±0.14 1.95±0.55 

His 1.3±0.25 2.54±0.66 0.76±0.19 1.47±0.32 

Arg 0.8±0.17 1±0.44 1.16±0.22 1.37±0.24 

Val 0.79±0.19 1.58±0.21 0.72±0.06 1.46±0.04 

Ile 1.09±0.38 1.1±0.14 1.74±0.13 1.83±0.29 

Leu 1.05±0.24 1.96±0.33 0.24±0.04 0.45±0.01 

Phe 1.3±0.26 1.67±0.24 0.54±0.06 0.63±0.06 

AABA 0.79±0.1 9.12±2.38 0.89±0.03 10.22±1.72 

2-PG 1.04±0.17 0.83±0.07 1.03±0.22 0.83±0.09 

3-PGA 0.97±0.19 1.32±0.21 1.08±0.12 1.48±0.3 

2-OG 1.08±0.21 0.98±0.29 0.64±0.04 0.59±0.14 

Malate 1.21±0.2 0.8±0.12 0.43±0.07 0.28±0.03 

Isocitrate 0.86±0.1 0.71±0.11 0.65±0.01 0.54±0.08 

Lactate 0.93±0.19 0.85±0.16 0.71±0.21 0.64±0.14 

Citrate 0.86±0.09 0.73±0.14 0.63±0.01 0.53±0.07 

Succinate 1.07±0.18 0.64±0.08 0.18±0.01 0.11±0.02 
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Samples were collected 24 h later after either added with or without 10 mM formate. The values are 

normalized as relative folds and presented as means±SE from three independent biological replicates. 

The heatmap displays the log2 (relative folds) on a color-scale. 

4.2.3 Enhanced growth of exFTL with glycine 

As mentioned above, external formate did not stimulate the growth of FTL-expressing strain 

exFTL. Moreover, the serine levels increased while glycine dropped by nearly 70%. These 

data implied that glycine might be the limiting factor for higher formate incorporation rate. 

Therefore, growth experiments were performed, in which the medium was supplemented with 

glycine together with formate to verify our hypothesis. The questions are: can glycine be 

efficiently taken up by Synechocystis and how much glycine is suitable? Amino acids uptake 

of cyanobacteria are proposed to be manipulated by ATP-binding cassette (ABC)-type 

transporters (Quintero et al., 2001; Eisenhut et al., 2007; Bualuang and Incharoensakdi, 2015). 

Besides, it is reported that the supply of glycine up to 10 mM significantly increased cell growth 

of Aphanothece halophytica whereas higher than 40 mM glycine caused severe growth 

retardation (Bualuang et al., 2015). An increase in the growth inhibition corresponded with an 

increase of the externally supplied glycine in the range of 0-50 mM was observed in 

Synechocystis and the application of 20 mM MgCl2 relieved the toxicity of external glycine 

below 10 mM (Eisenhut et al., 2007). Furthermore, as we observed, glycine at 3 mM was found 

no obvious influence on wild-type and exFTL cells on the plates, whereas it was toxic to wild-

type when incubated with excess formate (Fig. 8D). Hence, glycine could be taken up directly 

by cyanobacteria and different species have different capability to resist glycine. In our case, 

growth experiments of exFTL and wild-type were monitored with the addition of 3 mM glycine. 

In addition, 20 mM MgCl2 was added to alleviate the toxicity of glycine to Synechocystis 

(Eisenhut et al., 2007). Consistent with our assumption, strain exFTL showed significantly 

higher growth rate than wild-type in the presence of both formate and glycine, whereas there 

was no marked growth difference when only glycine or formate was added (Fig. 9).  
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Figure 9: Growth rates of wild-type and exFTL supplied with glycine and formate.  

Cells were cultivated and monitored in multi-cultivator under ambient air at 100 μmol photons m-2 s-1 in 

BG11 medium supplemented with formate (10 mM), glycine (3 mM) or glycine and formate. 20 mM 

MgCl2 was added together to relieve the toxicity of glycine. 

4.2.4 Introduction of FTL in the photorespiratory mutant 

The aforementioned results indicated that glycine may limit the utilization of externally supplied 

formate. Therefore, strains that accumulate higher glycine levels were henceforth used for FTL 

expression. Glycine was accumulated by the photorespiratory triple mutant named 

ΔgcvT/Δtsr/Δodc (Eisenhut et al., 2008b). The mutant ΔgcvT/Δtsr/Δodc (named Δ3pr in this 

thesis hereafter) is defective in all the three routes metabolizing 2-PG, which is realized by the 

inactivation of odc encoding the oxalate decarboxylase involved in the decarboxlyation branch, 

gcvT encoding the T-protein of glycine decarboxylase in the plant-like C2 cycle, and tsr 

encoding the tartronic semialdehyde reductase in the glycerate pathway.  

4.2.4.1 Generation of exFTL/Δ3pr strain and phenotype characterization 

Plasmid pA2-FTL was transformed into the photorespiratory triple mutant Δ3pr. PCR analysis 

verified that the gene ftl was integrated into genome of the strain exFTL/∆3pr and all the wild-

type copies of the gcvT, tsr and odc genes were still inactivated (Fig. 10A). Western-blotting 

analysis confirmed that strain exFTL/∆3pr expressed protein FTL successfully (Fig. 10B). ∆3pr 
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exhibited higher sensitive to formate probably because of its higher glycine content, since the 

previous result already implied that glycine and formate had an additive toxic effect on cells 

(Fig. 8D). The exFTL/∆3pr cells grew in the medium supplied with 150 mM formate, while 

mutant ∆3pr cannot survive under the same condition (Fig. 10C). This result implied that higher 

content of formate was detoxified due to the expression of FTL in the new strain exFTL/∆3pr. 

The strain exFTL/∆3pr cells showed significantly faster growth than mutant ∆3pr, however this 

enhancement did not depend on the addition of external formate (Fig. 10D). 

 
Figure 10: Genotypic and phenotypic characterization of the strain exFTL/∆3pr.  

A. Verification of the genotype by PCR using DNA from WT and strain exFTL/∆3pr with specific primers 

described in materials and methods. B. Western-blotting with the FTL-specific antibody verified the 
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expression of FTL in the strain exFTL/∆3pr. C. Resistance of ∆3pr and exFTL/∆3pr toward formate. 

Strains were plated on BG11 agar plates, pH 8, supplied with different amounts of formate incubated 

under continuous illumination of 30 μmol of photons m-2 s-1 at 30 °C and ambient air for 7 d. D. Growth 

rates of ∆3pr and exFTL/∆3pr were monitored as an increase of OD720 nm in BG11 medium supplied with 

either 10 mM formate, 20 mM MgCl2 or both over time. Cells were cultivated in the multi-cultivator under 

100 μmol of photons m-2 s-1, 30 °C bubbling with ambient air. 

4.2.4.2 Metabolites analysis with exFTL/Δ3pr strain 

Serine and glycine concentration were further analyzed. The supply of formate did not change 

serine level in exFTL/∆3pr, which remained significantly lowered (approximately 80%) than 

that of wild-type (Fig. 11A). Additionally, exFTL/∆3pr showed similar content of serine with ∆3pr 

mutant. Glycine showed a slight decrease in exFTL/∆3pr after incubation with formate, but it 

still presented at quite high levels pointing at almost not stimulated consumption of glycine (Fig. 

11B). Other amino acids and TCA cycle associated organic acids did not show significant 

changes (data not shown). These results supposed that formate did not contribute to larger 

extent toward the production of serine in exFTL/∆3pr strain, which is contrary to the previous 

accumulation of serine observed in exFTL strain. 

 

Figure 11: Serine and glycine were compared between wild-type, photorespiratory mutant and 

FTL-expressing strains.  

The content of serine (A) and glycine (B), in WT, exFTL, ∆3pr and exFTL/∆3pr were evaluated. Cells 

were cultivated under ambient air at 100 μmol photons m-2 s-1. Samples were collected 24 h either with 

or without 10 mM formate, respectively. Given are mean values and SE of at least three replicates. *: 

P< 0.05; **: P< 0.01; ***: P< 0.001. 



Results 
 

 

 
39 

 

   

4.2.5 Attempt to improve formate assimilation by expression of SGAT 

In addition to enhance the glycine pool, another bottleneck to achieve higher growth in exFTL 

might be limited serine utilization. To this end, we aimed to increase its conversion rate to 

hydroxypyruvate via the enzyme SGAT that converts serine and glyoxylate to glycine and 

hydroxypyruvate. Hence, a new strain exFTL-SGAT was built attempting to improve the 

formate assimilation flux via serine into 3-PGA.  

 

Figure 12: Schematic presentation and phenotypic characterization of the strain exFTL-SGAT.  

A. Construct for SGAT expression in Synechocystis. The codon-optimized gene SGAT from Arabidopsis 

thaliana was integrated into the neutral site of the Synechocystis genome. A gentamycin-resistance 

marker (GentR) was allowed for the selection of recombinant lines. B. Verification of the genotype by 

PCR using DNA from the ftl and SGAT-expressing clone (exFTL-SGAT), wild-type (WT) or no DNA (H2O) 

as template and ftl-specific primer and SGAT-specific primer. M: DNA marker; WT: wild-type. C. Western-

blotting with SGAT-specific or FTL-specific antibodies verified the protein expression in the strain exFTL-

SGAT. Cells were cultivated in the copper-free BG11. 20 μg of total lysate from each strain were loaded 

into SDS-PAGE gel. The blotting membrane was probed firstly with SGAT-specific antibody to detect 

SGAT. After stripping, FTL-specific antibody was used to detect FTL. D. Growth rates of WT, exFTL and 

exFTL-SGAT were monitored as increase in OD720 nm over time in BG11 medium free of copper supplied 

with or without 10 mM formate. Cells were cultivated in the multi-cultivator at 100 μmol photons m-2 s-1 

and bubbling with ambient air. 
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The coding region of gene SGAT (AT2G13360) from Arabidopsis thaliana was cloned into the 

cyanobacterial expression vector pSK9 under the control of promoter PpetJ and integrated into 

the neutral site of the genome in Synechocystis (Fig. 12A). The recombinant strains were 

verified by PCR, which displayed the expected DNA fragment of 1230 bp (Fig. 12B). The petJ 

promoter is suppressed by copper in the medium. Hence, cells of exFTL-SGAT were cultivated 

in copper-free medium to achieve high expression of protein SGAT (44 kDa), which was 

confirmed by Western-blotting analysis (Fig. 12C). However, we did not observe any 

stimulation on the growth of strain exFTL-SGAT by formate (Fig. 12D). 

4.2.6 Labeling pattern of proteinogenic amino acids 

To verify whether externally supplied formate is incorporated into cellular biomass, the 13C-

labeling pattern of proteinogenic amino acids was evaluated in cells grown in the presence of 

13C-labeled formate. The amino acids methionine, histidine, glycine and serine were 

particularly analyzed to elucidate whether the C1-dependent building blocks produced from 

formate in exFTL strain can be traced in these target amino acids. We speculated that most 

methionine in exFTL will be labeled once because its methyl group comes from 5-methyl-THF. 

5-Methyl-THF serves its methyl group for the methylation of homocysteine to produce 

methionine, which can be adenylated to form S-adenosyl-methionine (Ferla and Patrick, 2014). 

The same result was expected with histidine, since one carbon of it is originated from 10-

formyl-THF. In addition, a small portion of serine will be labeled when it is produced from 

glycine and formate converted 5, 10-methylene-THF, while glycine was not expected to be 

labeled. Samples were harvested 5 days after incubated either with 10 mM unlabeled or 13C-

labeled formate. Protein was hydrolyzed and used for labeling pattern analysis. As Fig. 13A 

shows, glycine was unlabeled, which was in consistence with our assumption. Serine was also 

completely unlabeled in wild-type and exFTL cells pointing against incorporation of formate 

into this expected amino acid (Fig. 13B). Methionine was only slightly labeled, around 1.5% of 

methionine in exFTL was labeled than wild-type (Fig. 13C). Histidine presented the same 

nominal labeled pattern as methionine in exFTL (Fig. 13D). 
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Figure 13: Labeling pattern of proteinogenic glycine, serine, methionine and histidine were 

compared between wild-type and exFTL.  

Wild-type (WT) and exFTL cells were fed without, with either unlabeled or 13C-labeled formate for 5 d 

under ambient air at 100 μmol photons m-2 s-1. 

4.2.7 Attempt to improve FA pathway by overexpression of FolD in wild-type  

These 13C-formate-labeling results indicated that a rather small amount of C1 units derived 

from formate was used for methionine and histidine synthesis, but it was not at all used for 

serine synthesis. These results indicated that the endogenous FolD might be the limiting factor 

for the assimilation of formate to serine. It is reported that FolD protein activity is often inhibited 

by 10-formyl-THF (Dev and Harvey, 1978). To overcome this problem, another FolD protein 

from M. extorquens AM1 was expressed in Synechocystis. In M. extorquens AM1 the FolD 

enzyme is separated on the two proteins FchA and MtdA, which catalyze the conversion from 

10-formyl-THF to 5, 10-methenyl-THF and 5, 10-methenyl-THF reduced to 5, 10-methylene-

THF, respectively. Furthermore, these enzymes are known to work preferentially in the 

direction of methylene-THF synthesis. Correspondingly, the expression of proteins FTL, FchA 
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and MtdA from M. extorquens AM1 enabled E. coli to supply all its glycine and serine from 

formate and CO2 through the reductive glycine pathway and the synthesized C1 compounds 

were able to provide 10% of the biomass carbon (Yishai et al., 2018). Hence the 

overexpression of this efficient FolD from M. extorquens AM1 should pave the way for formate 

assimilation through FA pathway.  

4.2.7.1 Construction of the FchA-MtdA expressing vector allowing regulation of their 

translation 

Codon-optimized versions of the two genes fchA (UniProt Q49135) and mtdA (UniProt P55818) 

were synthesized. Each gene was fused with a ribosome-binding site and the two genes were 

put in one operon under the control of the constitutive promoter PconII. Furthermore, an 

engineered theophylline-dependent riboswitch (Ma et al., 2014) was introduced to control the 

translation initiation of FchA, which will allow to switch protein expression on and off by adding 

or removing theophylline. His-extensions (His-tag) were added to the N-terminal of both FchA 

and MtdA protein for easier characterization of protein expression. The entire construct was 

cloned into the autonomous plasmid pVZ322 leading to the recombinant plasmid pVZ-fchA-

mtdA (Fig.14A). The plasmid was transferred via conjugation into the strains exFTL. The 

genotype of transformants were characterized with specific primers as shown in Fig. 14B and 

14C. The correct clone was named exF-C-M. 

 
Figure 14: Schematic presentation of the FchA-MtdA-expression construct and genotypic 

characterization of the Synechocystis strain exF-C-M.  
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A. Construct for Fch-MtdA expression in Synechocystis. The codon-optimized genes fchA and mtdA 

from M. extorquens AM1 were cloned in the autonomous plasmid pVZ322. B and C. Verification of the 

genotype by PCR using DNA from the ftl-expressing clone (exFTL), wild-type (WT) and transformant 

exF-C-M as template with mtdA-specific primer and ftl-specific primer, respectively.  

 

Figure 15: Theophylline sensitivity and protein expression of wild-type, exFTL and exF-C-M.  

A. Serial dilution of cells (OD750 nm = 1) were dropped on BG11 agar plates, pH 8, supplemented with 

various concentrations of theophylline (0-5 mM) for 7 d at ambient air condition. B. Western-blotting with 

FTL-specific antibody and His-tag antibody verified the expression of FTL and MtdA in exF-C-M but not 

in WT. Strain exF-C-M was induced with different concentrations of theophylline: T0.1, 0.1 mM; T1, 

1 mM; T2, 2 mM. 

The translation of FchA was induced by addition of different concentrations of theophylline in 

the medium. To determine the applicable range of theophylline concentration in Synechocystis, 

we examined the tolerance of cells to various concentrations of theophylline (Fig. 15A). We 

observed significant growth retardation of Synechocystis on the plates supplemented with 
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≥ 2 mM theophylline. The expression of introduced proteins was analyzed by Western-blotting. 

FTL proteins were successfully expressed in exF-C-M strain using FTL-specific antibody and 

the expression of MtdA with size of approximately 30 kDa was confirmed with His-tag antibody 

(Fig. 15B), while no evidence of expression of FchA protein with size of about 21 kDa was 

obtained under the induction of different concentrations of theophylline (0-2 mM) (data not 

shown). Considering the toxicity of high content of theophylline to Synechocystis cells and 

similar expression level of FTL and MtdA under different induced conditions (Fig. 15B), 0.1 mM 

theophylline was chosen as the concentration used in the further experiments in this study. 

4.2.7.2 Phenotype and metabolome analysis of exF-C-M  

The overexpression of MtdA, was obviously harmful to cells, which is concluded from the 

retarded growth of the strain exF-C-M strain compared to only FTL-expressing strain exFTL 

when spotted on agar plates (Fig. 16A) or cultivated in liquid media (Fig. 16B). As shown, the 

supplement of formate to the media clearly rescued the growth of exF-C-M strain indicating 

that the rewiring of one-carbon metabolism made Synechocystis more dependent on formate.  

 

Figure 16: Phenotype characterization of wild-type, exFTL and exF-C-M.  

A. Resistance of exFTL and exF-C-M toward formate. Serial dilution of cells (OD750 nm = 1) were dropped 

on BG11 agar plates, pH 8, supplemented with 0.1 mM theophylline and formate (0 and 50 mM) for 7 d. 

B. Growth rate of cells was measured supplied either with or without 10 mM sodium formate. The 

medium of exF-C-M was added with 0.1 mM theophylline. Cells were grown in liquid BG11 in the multi-

cultivator at ambient air under 100 μmol photons m-2 s-1. 
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Considering CO2 is preferred than formate as the inorganic carbon source, a CO2 limiting 

environment was built to examine whether external formate had an additive stimulation on the 

growth in exF-C-M strain. The CO2 in the air was removed through the irreversible reaction 

with barium hydroxide to produce insoluble barium carbonate. The left air with less CO2 was 

used to bubble cells. Cells grew much slower under this condition, however, the supply of 

formate did not enhance their growth (Fig. 17). 

 

Figure 17: Growth of exFTL and exF-C-M strain under CO2-limiting condition.  

Growth rate of cells was measured supplied either with or without 10 mM formate. The medium of exF-

C-M contained 0.1 mM theophylline. Cells were grown in liquid BG11 in the multi-cultivator with CO2-

depleted air and 100 μmol photons m-2 s-1 condition. 

The relative fold changes of internal metabolites in cells of exF-C-M compared to exFTL are 

listed in Table 5. The samples from exF-C-M contained relative higher amino acids except 

glutamate and histidine. Among them, lysine and arginine enhanced around 4-fold. Less 

malate, lactate and succinate were also detected. When supplemented with formate, most 

amino acids including serine and glycine showed declined level in exF-C-M. On the contrary, 

glutamate rose to approximately 2-fold and TCA cycle related organic acids increased to some 

extent. The content of 2-PG decreased and 3-PGA increased in formate inoculated exF-C-M. 

Intriguingly, citrate and isocitrate in exF-C-M displayed more than 3-fold higher than exFTL 

after incubation with formate. Additionally, when formate was supplied, the unexpected higher 

content of AABA observed in exFTL was not found in exF-C-M. Oppositely, the level of AABA 
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decreased in the latter strain added with formate. 

Table 5: Metabolome analysis of strain exF-C-M compared to exFTL.  

 

Relative folds exF-C-M / exFTL (exF-C-M+F) / exF-C-M (exF-C-M+F) / (exFTL+F) 

Asn 1.53±0.16 0.85±0.1 0.85±0.1 

Asp 1.77±0.17 0.52±0.08 1.3±0.03 

Ser 1.24±0.07 0.62±0.05 0.62±0.05 

Ala 2.12±0.24 0.84±0.17 2.18±0.07 

Gly 1.38±0.17 0.84±0.3 1.87±0.14 

Gln 2.13±0.07 0.67±0.1 1.43±0.05 

Thr 1.26±0.07 0.77±0.06 0.9±0.05 

Glu 0.44±0.03 2.02±0.06 0.98±0.13 

Pro 2.07±0.35 0.87±0.15 1.61±0.08 

Lys 4.58±0.28 0.62±0.22 2.78±0.05 

His 0.66±0.05 0.73±0.08 0.53±0.11 

Arg 3.81±0.28 0.89±0.25 3.32±0.07 

Val 1.59±0.11 0.75±0.13 1.79±0.06 

Met 1.7±0.08 0.86±0.15 1.61±0.08 

Tyr 1.43±0.14 0.78±0.12 1.09±0.08 

Ile 1.86±0.18 0.69±0.11 1.42±0.05 

Leu 1.27±0.04 0.97±0.08 1.42±0.06 

Phe 1.53±0.18 1.03±0.09 1.44±0.07 

Trp 1.91±0.23 0.74±0.16 1.47±0.08 

AABA 1±0.28 0.58±0.02 0.07±0.16 

2-PG 0.79±0.22 0.75±0.09 0.64±0.07 

3-PGA 1.14±0.03 1.32±0.08 1.01±0.1 

2-OG 1.17±0.08 1.12±0.09 1.39±0.07 

Malate 0.73±0.12 1.18±0.04 0.57±0.09 

Isocitrate 1.08±0.08 1.37±0.33 3.67±0.12 

Lactate 0.52±0.06 1.29±0.1 0.65±0.19 

Citrate 1.11±0.08 1.39±0.39 3.86±0.14 

Succinate 0.67±0.06 1.15±0.06 0.52±0.13 

 

Cells were grown in liquid BG11 in the multi-cultivator at ambient air under 100 μmol photons m-2 s-1. 

Samples were collected 24 h later after either added with 10 mM formate or not. The medium of exF-C-

M was added with 0.1 mM theophylline. The values are normalized as relative folds and presented as 

means±SE from two independent biological replicates. The heatmap displays the log2 (relative folds) 

on a color-scale. 
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4.3 Establishing FA pathway in ΔccmM mutant 

Mutant ∆ccmM harbours a deletion of gene sll1031, which encodes the carboxysomal 

structural protein CcmM. Hence, the mutant cannot form carboxysomes, which resulted in a 

high CO2-requiring phenotype, i.e. this mutant is unable to grow under ambient air conditions 

(Hackenberg et al., 2012). The enhanced oxygenase activity of Rubisco and the increased flux 

into the photorespiratory pathway in ∆ccmM make this strain more similar to the plant situation 

and it is hypothesized that generated formate assimilation rate could reduce its CO2 

dependence. 

4.3.1 Introduction of FTL in ΔccmM 

The gene ccmM (sll1031) was inactivated through interposon-mutagenesis (Fig. 18A). The 

kanamycin resistance gene was obtained from pUC4K after Hinc II digestion. The ccmM gene 

and its flanking sequence (2799 bp) were obtained from DNA of the Synechocystis wild-type 

(WT) via PCR using gene specific primers. The mutant plasmid was constructed, where the 

kanamycin resistance cassette interrupted gene ccmM (2242 bp) after deleting the internal 

part flanked by DraI and HpaI sites. After selection of resistant colonies, the genotype of the 

obtained clones was checked with PCR (Fig. 18B). Then the plasmid PA2-FTL was 

transformed into mutant ΔccmM. PCR analysis verified that the gene ftl was integrated into 

genome of the new strain ΔccmM/exFTL (Fig. 18B). Western-blotting analysis confirmed that 

strain ΔccmM/exFTL expressed protein FTL successfully (Fig. 18B). Due to the high CO2-

requiring phenotype, the cultivation of mutant ∆ccmM was always done at 5% CO2 as standard 

high carbon condition. Considering our aim that the assimilation of formate will support CO2 

fixation and reduce photorespiration, we assumed that the successful expression of the FA 

pathway can reduce the CO2 requirement significantly lower than 5% CO2. Hence the strains 

in the ∆ccmM background were cultivated under stepwise reduced CO2 conditions to test 

whether formate can support the growth of ∆ccmM/exFTL at relative carbon-limiting 

environment. For this purpose, the starting concentration of CO2 was set to 0.8%. After an 

initial growth phase, the CO2 concentration was stepwise reduced to 0.7%, 0.6% until 0.3% 
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every second day. As shown in Fig. 18C, ∆ccmM/exFTL strain extended the lag phase at the 

beginning. However, during the stepwise reduced CO2 condition, the FTL-expressing mutant 

cells still showed growth at 0.4 and even 0.3% CO2, where the parental mutant ∆ccmM already 

stopped growth. Unfortunately, the supplement of formate did not stimulate the growth of 

∆ccmM/exFTL. An interesting phenomenon was that ∆ccmM and ∆ccmM/exFTL cells died in 

the growth experiments when the starting concentration of CO2 was set to 0.6%, implying 0.8% 

CO2 might be the lowest concentration for the survive of ∆ccmM. 

 
Figure 18: Genotypic and phenotypic characterization of the strain ∆ccmM/exFTL.  

A. Schematic presentation of construct for deletion of gene ccmM in Synechocystis. Oligonucleotides 

sll1031-fw and sll1031-rev flanking the insertion site were used to test the segregation. B. Verification 

of the genotype by PCR using DNA from wild-type (WT), mutant ∆ccmM, and ∆ccmM/exFTL as template 

with sll1031-specific primer and ftl-specific primer, respectively. Western-blotting with an FTL-specific 

antibody verified the expression of FTL in ∆ccmM/exFTL but not in ∆ccmM. C. Growth curves of ∆ccmM 

(circle) and ∆ccmM/exFTL (triangle) were monitored as an increase of OD720 nm either supplied with 

10 mM formate or not under constant light 100 μmol photons m-2 s-1and stepwise reduced CO2 condition 

(0.8%-0.3% CO2) in multi-cultivator. 



Results 
 

 

 
49 

 

   

 

Table 6: Metabolome analysis of strain ∆ccmM/exFTL and ∆ccmM.  

 

Relative 

folds 

(∆ccmM+F) / 

∆ccmM 

(∆ccmM /exFTL+F) / 

(∆ccmM /exFTL) 

(∆ccmM /exFTL) / 

(∆ccmM) 

(∆ccmM/exFTL+F) 

/ (∆ccmM +F) 

Asn 1.02±0.14 1.05±0.17 0.46±0.06 0.5±0.17 

Asp 0.66±0.07 0.94±0.09 0.47±0.03 0.68±0.14 

Ser 1.03±0.16 0.78±0.08 0.88±0.05 0.69±0.15 

Ala 0.99±0.15 1.39±0.03 0.5±0.04 0.71±0.07 

Gly 1.03±0.11 0.79±0.07 0.63±0.05 0.49±0.07 

Gln 1.22±0.06 2.02±0.1 1.26±0.14 2.09±0.17 

Thr 1.13±0.05 1.08±0.06 1.05±0.12 1±0.1 

Glu 1.15±0.1 0.59±0.06 0.6±0.02 0.33±0.06 

Pro 0.98±0.04 1.07±0.07 0.39±0.02 0.43±0.04 

Lys 1.22±0.01 1.11±0.03 2.24±0.14 2.04±0.08 

His 0.98±0.09 0.9±0.09 1.67±0.02 1.54±0.16 

Arg 0.91±0.13 1.33±0.05 1.75±0.06 2.58±0.31 

Val 0.89±0.26 0.92±0.05 1.52±0.07 1.66±0.42 

Met 1.07±0.17 0.91±0.04 1.31±0.11 1.16±0.3 

Tyr 0.73±0.22 1.12±0.04 2.76±0.33 4.47±1.12 

Ile 0.85±0.2 0.93±0.05 0.24±0.02 0.27±0.06 

Leu 0.76±0.27 0.95±0.04 0.92±0.08 1.26±0.36 

Phe 0.92±0.09 0.93±0.1 0.43±0.05 0.43±0.03 

Trp 0.93±0.06 0.96±0.06 1.52±0.16 1.57±0.19 

AABA 0.72±0.07 0.99±0.05 1.05±0.14 1.29±0.24 

2-PG 0.96±0.09 0.84±0.06 1.04±0.08 0.84±0.06 

3-PGA 0.75±0.07 0.43±0.05 0.84±0.15 0.47±0.11 

2-OG 1.07±0.29 0.71±0.09 1.44±0.16 1.04±0.38 

Malate 1.3±0.19 0.89±0.14 1.22±0.11 0.84±0.18 

Isocitrate 0.67±0.16 0.58±0.06 0.97±0.37 0.9±0.43 

Lactate 1.07±0.08 0.92±0.17 0.88±0.12 0.76±0.21 

Citrate 0.67±0.16 0.67±0.05 0.99±0.39 1.09±0.58 

Succinate 1.63±0.29 0.96±0.15 0.49±0.05 0.29±0.07 

 

Samples were collected 24 h later after either added with 10 mM formate or not. The values are 

normalized as relative folds and presented as means±SE from two independent biological replicates. 

The heatmap displays the log2 (relative folds) on a color-scale. 
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The internal metabolites from ∆ccmM did not display huge difference compared to those 

inoculated with formate (as shown in Table 6). In contrast, many cellular metabolites showed 

alterations in ∆ccmM/exFTL in comparison with ∆ccmM. Strain ∆ccmM/exFTL displayed 

enhanced glutamine, lysine, histidine, arginine, valine, tyrosine and leucine to different extent, 

while glutamate and other amino acids and TCA cycle related organic acids presented lower 

level compared to ∆ccmM. Among them, tyrosine exhibited the highest increase 

(approximately 2.5 folds), whereby isoleucine decreased about 70%. After supplemented with 

formate, the most intriguingly changes were the increased content of glutamine and decreased 

glutamate in ∆ccmM/exFTL, similar with those observed with exFTL. The same changes as 

those in exFTL were also detected in TCA cycle related intermediates. Different with exFTL, 

the significant increase of serine level and decrease of glycine were not observed with formate 

inoculated ∆ccmM/exFTL. The unexpected high content of AABA in exFTL also did not appear 

in ∆ccmM/exFTL when added with formate. 

4.3.2 Introduction of FTL and MtdA in ΔccmM 

The recombinant plasmid pVZ-fchA-mtdA was also transferred into ∆ccmM/exFTL to establish 

FA pathway. PCR analysis verified that the genes fchA and mtdA were transferred into the 

strain ΔccmM/exFTL (Fig. 19A). The gene ccmM was still inactivated and gene ftl was still 

integrated into the genome of new strain ΔccmM/exF-C-M. Western-blotting analysis 

confirmed that strain ΔccmM/exFTL expressed protein FTL and MtdA successfully (Fig. 19A). 

But as same to exF-C-M, FchA was not expressed (data not shown). To compare the growth 

of ΔccmM/exF-C-M and ΔccmM/exFTL, the starting concentration of CO2 was set to 0.8%. 

After an initial growth phase, the CO2 concentration was stepwise reduced to 0.7%, 0.6% until 

0.5% every second day. As Fig. 19B shows, formate did not affect the growth of ∆ccmM/exFTL. 

Supplemented with 0.1 mM theophylline, ∆ccmM/exF-C-M without formate grew much slower, 

whereas the addition of formate enabled it to recover as ∆ccmM/exFTL.  
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Figure 19: Genotypic and phenotypic characterization of the strain ∆ccmM/exF-C-M.  

A. Verification of the genotype by PCR using DNA from wild-type (WT), ∆ccmM/exFTL and ∆ccmM/exF-

C-M as template with sll1031-specific primer, ftl-specific primer and mtdA-specific primer, respectively. 

Western-blotting with an FTL-specific antibody verified the expression of FTL in both ∆ccmM/exF-C-M 

and ∆ccmM/exFTL, while MtdA was only expressed in ∆ccmM/exF-C-M using His-tag antibody. B. 

Growth curves of ∆ccmM/exFTL (circle) and ∆ccmM/exF-C-M (triangle) were monitored as an increase 

of OD720 nm. Formate was added into the medium per 2 day. The medium of ∆ccmM/exF-C-M was 

supplemented with 0.1 mM theophylline. Cells were grown at stepwise decreased CO2 conditions in 

liquid BG11 medium with continuous light of 100 μmol photons m-2 s-1. 

The internal metabolite pools were compared subsequently. Samples were collected at the fifth 

day and the seventh day, at the latter time point the cultures started to show growth differences 

(Fig. 19B). The intermediates with clear and interesting changes are listed in Table 7 and 8. 

Compared to ∆ccmM/exFTL, the strain ∆ccmM/exF-C-M showed lower contents of organic 

acids whereas higher levels of most amino acids were observed (Table 7). Among them, 

glutamine increased more significantly with time (Table 7 and 8). Under formate 

supplementation, the most prominent changes were measured in the glutamine and glutamate 

amounts in ∆ccmM/exF-C-M, which decreased nearly by 60% and increased around 65%, 

respectively, in samples collected at the fifth day (Table 7). In samples from day 7 the difference 
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of glutamine increased to over 100% in formate-supplemented cells of ∆ccmM/exF-C-M (Table 

8). Additionally, the levels of TCA cycle intermediates increased approximately 65 - 90% with 

time. Finally, these compounds accumulated approximately 3 times in strain ∆ccmM/exF-C-M 

compared to ∆ccmM/exFTL. In addition, 3-PGA showed slightly increased content, while 2-PG 

displayed marginal decreased level in ∆ccmM/exF-C-M cells with formate.  

Table 7: Metabolome analysis of strain ∆ccmM/exFTL and ∆ccmM/exF-C-M at day 5.  

 

Day 5 
(∆CcmM/exFTL+F) 

/ (∆CcmM/exFTL) 

(∆CcmM/exF-C-M+F) 

/ (∆CcmM/exF-C-M) 

(∆CcmM/exF-C-M) 

/ (∆CcmM/exFTL) 

(∆CcmM/exF-C-M+F) 

/ (∆CcmM/exFTL+F) 

Asn 0.75±0.34 1.6±0.24 1.07±0.13 2.74±0.17 

Asp 1.05±0.13 1.32±0.23 1.38±0.2 1.71±0.09 

Ser 0.88±0.04 1.11±0.32 1.47±0.28 1.8±0.23 

Ala 1.4±0.11 0.99±0.21 1.33±0.11 0.93±0.16 

Gly 0.89±0.1 0.83±0.22 1.47±0.32 1.32±0.18 

Gln 1.06±0.06 0.42±0.02 1.88±0.06 0.74±0.06 

Thr 0.8±0.06 0.85±0.18 1.36±0.12 1.43±0.28 

Glu 0.65±0.02 1.69±0.24 1.33±0.16 3.43±0.33 

Pro 0.89±0.03 0.61±0.09 0.92±0.09 0.64±0.1 

Lys 1.08±0.07 0.79±0.06 0.99±0.03 0.73±0.07 

His 0.79±0.14 0.96±0.14 0.87±0.17 1.05±0.08 

Arg 0.84±0.08 0.59±0.03 0.85±0.01 0.61±0.09 

Val 0.76±0.06 0.59±0.08 1.22±0.09 0.94±0.03 

Met 0.81±0.06 1.03±0.18 1.09±0.13 1.37±0.19 

Tyr 1.01±0.06 0.96±0.07 0.8±0.03 0.76±0.1 

Ile 0.92±0.11 0.74±0.04 1.33±0.02 1.08±0.15 

Leu 1.07±0.09 0.79±0.05 1.4±0.05 1.05±0.12 

Phe 0.95±0.08 0.76±0.08 1.39±0.04 1.12±0.16 

Trp 0.99±0.1 0.65±0.04 1.39±0.08 0.92±0.14 

AABA 1.26±0.26 0.96±0.1 0.89±0.21 0.69±0.16 

2-PG 0.87±0.09 0.9±0.13 1.1±0.12 1.1±0.12 

3-PGA 0.92±0.12 1.23±0.18 0.96±0.21 1.26±0.09 

2-OG 0.87±0.1 1.08±0.22 1.12±0.19 1.36±0.05 

Malate 0.94±0.18 1.9±0.27 0.59±0.16 1.18±0.28 

Isocitrate 0.42±0.04 1.94±0.23 0.72±0.06 3.32±0.33 

Lactate 0.81±0.13 1.15±0.21 1.11±0.21 1.57±0.17 

Citrate 0.43±0.04 1.9±0.26 0.72±0.07 3.19±0.26 

Succinate 0.98±0.14 1.02±0.17 1.13±0.18 1.18±0.27 
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Table 8: Metabolome analysis of strain ∆ccmM/exFTL and ∆ccmM/exF-C-M at day 7. 

 

Day 7 
(∆CcmM/exFTL+F) 

/ (∆CcmM/exFTL) 

(∆CcmM/exF-C-M+F)  

/ (∆CcmM/exF-C-M) 

(∆CcmM/exF-C-M) 

/ (∆CcmM/exFTL) 

(∆CcmM/exF-C-M+F) 

/ (∆CcmM/exFTL+F) 

Asn 0.89±0.04 1.67±0.17 0.83±0.08 1.54±0.12 

Asp 0.66±0.08 2.4±0.07 0.61±0.09 2.21±0.08 

Ser 0.67±0.06 1.06±0.02 1±0.06 1.57±0.06 

Ala 1.32±0.09 0.95±0.02 0.89±0.06 0.64±0.01 

Gly 0.78±0.05 1.18±0.21 0.92±0.21 1.36±0.03 

Gln 1.06±0.01 0.49±0.01 1.74±0.04 0.81±0.02 

Thr 0.91±0.04 1.19±0.03 1.07±0.01 1.41±0.1 

Glu 0.86±0.02 2.15±0.08 0.77±0.02 1.93±0.07 

Pro 0.87±0.09 0.67±0.02 1.14±0.05 0.88±0.05 

Lys 1.06±0.01 0.49±0.01 1.77±0.05 0.83±0.03 

His 1.02±0.08 0.86±0.09 1.13±0.03 0.96±0.04 

Arg 1.08±0.03 0.93±0.02 0.98±0.02 0.85±0.04 

Val 0.99±0.08 1.09±0.1 0.96±0.04 1.06±0.11 

Met 1.02±0.11 1.27±0.11 0.92±0.1 1.16±0.09 

Tyr 1.13±0.02 1.13±0.07 1.02±0.02 1.02±0.09 

Ile 0.91±0.05 0.93±0.03 1.11±0.04 1.14±0.05 

Leu 0.74±0.09 0.57±0.04 1.82±0.14 1.42±0.07 

Phe 0.84±0.02 1.43±0.04 0.96±0.04 1.63±0.09 

Trp 0.92±0.02 0.95±0.07 1.13±0.02 1.16±0.07 

AABA 1.42±0.15 0.84±0.09 0.84±0.12 0.5±0.04 

2-PG 0.92±0.22 0.92±0.43 1.21±0.15 1.17±0.22 

3-PGA 1.2±0.13 1.34±0.1 0.9±0.06 1.02±0.11 

2-OG 0.96±0.02 1.48±0.15 0.83±0.06 1.28±0.08 

Malate 0.99±0.07 1.23±0.07 0.66±0.03 0.82±0.06 

Isocitrate 0.53±0.08 1.66±0.11 0.95±0.03 3.03±0.3 

Lactate 0.98±0.17 0.98±0.16 0.95±0.1 0.95±0.13 

Citrate 0.53±0.09 1.67±0.14 0.95±0.02 3.04±0.56 

Succinate 0.8±0.11 0.94±0.07 0.79±0.04 0.96±0.24 

 

Samples were collected at day 5 and day 7, respectively, as shown in Fig. 19B. The values are 

normalized as relative folds and presented as means±SE from three independent biological replicates. 

The heatmap displays the log2 (relative folds) on a color-scale. 
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4.4 Formate-dependent C1-auxotrophy reporter strain 

The C1-auxotrophy and serine-auxotrophy strains relying on formate were successfully 

created in E. coli (Yishai et al., 2017). These strains served as base to confirm that it is possible 

to produce all the necessary C1 units via different THF-derivatives and serine, respectively, 

from formate. The aforementioned experiments in this study indicated that successful formate 

incorporation into 10-formyl-THF may allow to replace the endogenous FolD, which could 

result in the generation of a formate-dependent Synechocystis strain that can be later on 

applied to select efficient formate production enzymes. The following chapter describes the 

generation process of the formate-dependent null mutant ∆folD in Synechocystis. 

4.4.1 Characterization of enzyme FolD 

Until now, the gene for FolD has not been verified in Synechocystis. First, we searched 

possible candidate gene coding for this protein in the genome of Synechocystis. There was 

one putative gene sll0753 annotated to encode FolD according to the database CyanoBase, 

which shows amino acid sequence similarities to FolD proteins from Escherichia coli, 

Arabidopsis thaliana, Photobacterium phosphoreum, Mycobacterium tuberculosis, 

Rhodopirellula baltica and Streptococcus pneumoniae (Fig. 20) with 46, 34, 38, 44, 46, and 

51% identity, respectively. Bifunctional FolD consists of a N-terminal bifunctional domain (D/C) 

and a C-terminal domain for NADP+ cofactor binding (Ho Lee et al., 2011; Sah and Varshney, 

2015), which are both found in Sll0753. As reported, the highly conserved motif Y-X-X-X-K in 

the N-terminal is involved in the active site for the dehydrogenase/cyclohydrolase activity (as 

shown in Fig. 15). In addition, the C-terminal domain contains a G-X-G-X-X-X-G finger print 

motif forming a Rossmann fold for the location of NADP+ molecule (Pawelek et al., 2000; Ho 

Lee et al., 2011; Sah and Varshney, 2015). Hence, the protein Sll0753 was our prime candidate 

for further analysis of FolD in Synechocystis. 
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Figure 20: Amino acid sequence alignment of FolD highlighting the conserved residues.  

The amino acid sequence (residues 5−285) of Sll0753 from Synechocystis is aligned with the FolD 

sequences from Escherichia coli, Arabidopsis thaliana, Photobacterium phosphoreum, Mycobacterium 

tuberculosis, Rhodopirellula baltica and Streptococcus pneumoniae by Clustal Omega. The completely 

conserved residues are denoted with asterisks below the sequence. The NADP+ binding motif with its 

interacting residue is indicated in blue box and the active sites for D/C activity are shown in red box. 

4.4.2 Attempts to generate mutant ∆folD in wild-type 

Gene sll0753 was inactivated by standard interposon-mutagenesis. The mutant plasmid in 
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which a kanamycin resistance cassette interrupted gene sll0753 was constructed (Fig. 21A). 

The kanamycin resistance gene aphII was obtained from pUC4K after HincII digestion. The 

sll0753 gene and its flanking sequence (1257 bp) were amplified from DNA of the 

Synechocystis wild-type via PCR using gene-specific primers. The DNA fragment was cut by 

EcoRV and BmgBI, leading to the deletion of an internal fragment of 147 bp (Fig. 21A), which 

encode for amino acid residues 204-252 involved in the NADP+ binding (Fig. 20). The 

completed plasmid pT-0753-k was characterized with specific primers (Fig. 21B) and 

transformed into Synechocystis wild-type cells. Genotypic analysis of 50 recombinant clones 

showed that all were showed non-segregated genomes, i.e. they contained both the wild-type 

and the mutant gene copies (Fig. 21C and D, data not shown). The non-segregated genotype 

of these clones confirmed the essential function of protein FolD and verified our assumption 

that Synechocystis requires another pathway to synthesize 10-formyl-THF to replace FolD. 

 

Figure 21: Attempts to delete gene sll0753 in Synechocystis wild-type.  

A. Construct for deletion of gene sll0753 in Synechocystis. The aphII gene was inserted into gene 

sll0753. B. The completed plasmids named pT-0753-K were characterized by the primer sll0753-

fw/sll0753-rev. M: marker; pT-0753: plasmid containing the entire gene sll0753. C and D. The genotypes 

of selected clones were characterized by the primer pair sll0753-fw/sll0753-rev and Kana-fw/sll0753/rev.  
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4.4.3 Attempts to generate mutant ∆folD in the presence of exogenous enzyme 

FTL 

Theoretically the introduction of FTL should satisfy the demand of 10-formyl-THF for purine 

synthesis and enable the complete deletion of gene folD. Similar results were reported before 

with Leishmania major, which confirmed that the overexpression of its endogenous gene ftl 

enabled the complete loss in folD (Murta et al., 2009). We already obtained an FTL-expressing 

strain exFTL described in the previous chapters (see Fig. 7), which should satisfy the demand 

of 10-formyl-THF via formate assimilation. The folD deletion construct pT-0753-k was then 

introduced into the FTL-expressing strain exFTL. Analysis of 6 independent clones named 

exFTL/∆folD showed they possessed ftl gene except exFTL/∆folD-a-3 (Fig. 22A) and 

contained the sll0753 mutant gene (Fig. 22B) in the genome. But all of the 15 selected clones 

still kept wild-type gene copies of sll0753 (Fig. 22C). The further supplementation of formate 

aiming at enhancing the production of 10-formyl-THF did also not result in the complete 

segregation of folD in total 13 clones (Fig. 22D).  

4.4.4 Attempts to generate mutant ∆folD using nutritional supplements 

The unexpected difficulties to segregate the folD mutation are likely related to a limited rate for 

10-formyl-THF synthesis via FTL in the absence of FolD in Synechocystis. To overcome this 

possible limitation, I performed metabolite complementation experiments. To this end, 0.3 mM 

IMP and inosine together with formate were supplied into the growth medium of non-

segregated clones. After approximately 7 d incubation, the genotype of clones was checked 

by PCR with sll0753-specific primers. Among them, one non-segregated clone was selected 

for continuous acclimation with IMP or inosine and formate. These steps were repeated for 

three times. Albeit the copies of mutant gene with fragment at 2367 bp increased to some 

extent with time, the wild-type gene (1257 bp) was still detected in total 90 clones by PCR 

analysis (Fig. 23). 
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Figure 22: Attempts to delete gene sll0753 in the presence of exogenous FTL.  

A. The genotypes of 6 selected clones (exFTL/∆folD-a-1 – exFTL/∆folD-a-6) were characterized by the 

primer pair ftl-fw/ ftl-rev (as shown in Table 1). WT: wild-type cells; M: marker; H2O: without DNA. B. The 

genotypes of 6 selected clones were characterized by the primer pair Kana-fw/sll0753/rev. C and D. 

The genotypes of 28 selected clones were characterized by the primer pair sll0753-fw/sll0753-rev. One 

non-segregated clone exFTL/∆folD-a was selected and further inoculated with formate for 7 d. After that, 

13 clones named exFTL/∆folD-b-n were selected and their genotypes were characterized by PCR. 

exFTL/∆folD-1 – exFTL/∆folD-n: different selected clones. 
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Figure 23: Attempts to delete gene sll0753 after supplementation with IMP or inosine.  

A-E. The genotypes of selected clones were characterized by the primer pair sll0753-fw/sll0753-rev. M: 

marker; exFTL/∆folD-inosine/IMP-n: different selected clones; WT: wild-type cells. Some lanes did not 

show bands because of insufficient DNA quality. 
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4.4.5 The deletion of folD in the presence of exogenous enzymes FTL and MtdA 

The expression of FTL and nutritional supplement did not bypass the essential requirement of 

FolD, which might indicate that FolD is probably also playing important roles in other metabolic 

processes. To guarantee the complete deletion of folD, we assumed that the strain exF-C-M 

expressing proteins FTL and MtdA should satisfy the demand of endogenous FolD in 

Synechocystis. The deletion construct pT-0753-k was introduced into the exF-C-M strain 

supplemented with formate on the transformation plates. To verify the complete loss of gene 

folD, an internal primer located in the deletion fragment was designed. This new approach 

finally resulted in the complete segregation of mutant ∆folD, because in contrast with previous 

results all wild-type-sized fragments of sll0753 disappeared (Fig. 24).   

 

Figure 24: The completely deletion of sll0753.  

A. The genotype of exF-C-M/ΔfolD was characterized by the specific primer pair sll0753-fw/sll0753-rev. 

B. The complete segregation of folD was examined by primer pair sll0753-de-fw/sll0753-rev. C. The 

introduction of gene ftl, fchA and mtdA in exF-C-M/ΔfolD was confirmed by PCR amplified with the 

specific primer pair ftl-fw/ ftl-rev and Fch-fw/MtdA-rev.  
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5 Discussion 

5.1 Impact of external formate on Synechocystis 

There are several reports describing positive but also negative effects after addition of external 

formate on photoautotrophic organisms mostly plants. The growth of rice in terms of the length 

of aerial part and fresh weight was reported to be stimulated by low external sodium formate 

amounts of 1.8 mM, while it was suppressed when incubated with 18 mM formate (Shiraishi et 

al., 2000). The growth stimulation probably resulted from an increased CO2 concentration in 

the rice leaves due to formate oxidation by FDH. Formate (Different formate salt were tested) 

above 4 mM delayed the seed germination and reduced primary root elongation, while lower 

concentration of formate caused no obvious effect in Arabidopsis thaliana (Li et al., 2002). 

Formic acid treatments below 1 mM had also no obvious influence on seed germination and 

the length of seedlings of garden cress and ryegrass, but higher concentration severely 

reduced their germination and growth (Himanen et al., 2012). According to these reports, it 

can be concluded that higher concentrations of formate are toxic to plants and different plant 

species exhibit different sensitivity toward formate.  

Why is formate toxic? Formate is broadly known to significantly inhibit the electron transfer and 

proton release at PSII, which can be reversed by the addition of bicarbonate (Xiong et al., 

1998). Bicarbonate is bound to specific sites in the PS II and stimulates its activity (e.g., 

Shevela et al., 2007), whereas the analog formate is supposed to remove bicarbonate from its 

position and thus inhibiting PSII activity.     

Similar to the situation in plants, I observed concentration-dependent effects of formate on 

Synechocystis. Low concentrations of formate are tolerated and are not affecting growth and 

photosynthetic activity. Only concentrations exceeding 20 mM have negative impact on 

photosynthesis and growth of wild-type cells (Fig. 5A and B). These results showed that 

formate up to 20 mM can be added externally to Synechocystis to test its assimilation in wild-

type and different transgenic strains.  
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Furthermore, the negative effects of high formate concentrations also imply that formate can 

be taken up possibly via diffusion into the Synechocystis cells, since no homologs to known 

formate transport systems are encoded in its chromosome. In contrast, a formate transporter 

FocA as an integral membrane protein was identified in E. coli (Suppmann and Sawers, 1994; 

Wang et al., 2009). It belongs to formate/nitrite transporter family widely distributed most 

among enterobacteria (Wei et al., 2013). Formate is a major product under anaerobic 

fermentation via the pyruvate formate lyase (PFL) pathway in many enterobacteria (Wang et 

al., 2009; Roger et al., 2017). The accumulation of formate might cause cytoplasmic 

acidification. Therefore, formate must be exported from cytoplasm to periplasm to be 

metabolized to CO2 by FDHs (Wang et al., 2009). In addition, FocA from Salmonella 

typhimurium was recognized to switch its mode from a passive exporter at high external pH to 

an active formate/H+ importer at low pH (Lü et al., 2011). Different to E. coli, the preliminary 

14C-formate uptake assay (Fig. 25) provided a proof that formate could be taken up in 

Synechocystis and most likely via diffusion due to its lower rate. Further repeats and 

optimization of the formate uptake assay needs to be done to rule out the reason for the initial 

decrease in radioactivity. Nevertheless, FA pathway can be investigated with supplementation 

of external formate before the introduction of a suitable FDH synthesizing formate directly from 

CO2.   

 

Figure 25: Formate uptake assay. 

Pre-cultures were grown under ambient air in liquid BG11. Cells were adjusted to OD750 nm=1 
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supplemented with 10 mM unlabeled-sodium formate containing 0.1% 14C labeled-sodium formate. 

1 mL Samples were taken at given time points (0, 5, 10, 20, 60, 120 and 180 min), filtered and washed 

with 10 mL pre-cooled BG11containing 10 mM formate. Uptake of radioactive formate was measured 

on the filters by liquid scintillation counter. 

5.2 Investigation of candidate gene sll1359 encoding FDH 

Our aim is to establish a FA pathway in photoautotrophic organisms. Therefore, their 

endogenous cellular metabolism should not negatively interfere with formate assimilation. The 

protein FDH is the first enzyme of formate metabolism, which can be found in many organisms. 

FDH is capable of oxidizing formate into CO2 or reducing CO2 into formate. Plant FDHs mostly 

work in the oxidizing direction and regulate the intracellular content of formate in response to 

stress (Ambard-Bretteville et al., 2003). The addition of external formate strongly induced the 

expression of FDH in potato (Hourton-Cabassa et al., 1998) and Arabidopsis (Olson et al., 

2000). Overexpression of FDH protected Arabidopsis against toxic effects of excess formate 

(Li et al., 2002). Additionally, formate oxidation is coupled to the reduction of diverse terminal 

electron acceptors to supply energy in prokaryotes (Maia et al., 2017).  

FDHs are also found in diverse prokaryotes such as E. coli (Jormakka et al., 2002; Raaijmakers 

and Romão, 2006), and was detected with some nitrogen-fixing cyanobacteria (Heyer et al., 

1989; Norman and Colman, 1992). There are reports on the excretion of several fermentation 

products including formate, which further imply the existence of FDH in cyanobacterial phylum 

(Heyer and Krumbein, 1991). For example, Synechocystis was reported to possess a 

photorespiratory branch that degrades glyoxylate through oxalate and formate into two 

molecules of CO2 including an FDH as last enzyme. Due to weak sequence similarities it was 

predicted that the protein Sll1359 could represent the FDH (Eisenhut et al., 2008b). To verify 

the FDH function of this protein, the gene sll1359 was expressed in E. coli to obtain 

recombinant protein for biochemical studies (Fig. 6D) and a corresponding mutant was 

generated and investigated (Fig. 6C). Many completely segregated mutant clones were 

obtained, which indicated that protein Sll1359 is not functionally important under laboratory 

conditions. Moreover, the mutant ∆sll1359 did not show the expected increased sensitivity 
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toward formate compared with wild-type, which made an involvement in Sll1359 as formate 

degradation unlikely. Consistently, we did not observe formate oxidizing activity with 

recombinant protein Sll1359. In contrast, potato plants whose FDH was suppressed 

accumulated more internal formate due to the decreased consumption of formate (Ambard-

Bretteville et al., 2003). Hence, we can conclude that gene sll1359 most probably does not 

encode FDH in Synechocystis. Variable FDH expression was reported in E. coli, where it was 

found that formate was required for the expression of FDH-N and FDH-H (Birkmann et al., 

1987; Leonhartsberger et al., 2002). Hence, we tried to measure FDH activity in total lysates 

from wild-type cells inoculated either with or without formate, but without success. Together 

with the missing growth stimulation of external formate, these results imply that Synechocystis 

does not express FDH, or, FDH activity is quite low in cells grown under our specific lab 

condition. 

Collectively, we concluded from these experiments that the establishment of a FA pathway will 

be not interfered by significant formate degradation via an endogenous FDH in Synechocystis. 

Hence, in the absence of a suitable FDH for formate production via CO2 reduction inside 

Synechocystis, we can establish the FA pathway on the expense of externally supplied formate. 

5.3 Expression of FTL in wild-type  

The second step in the FA pathway is the insertion of formate into the C1 unit pool bound to 

THF, which is initially done by the action of FTL. The single introduction of a heterologous FTL 

enabled E. coli to assimilate external formate into serine through the FA pathway (Bang and 

Lee, 2018). Approximately 10% of carbon atoms in the entire serine pool were labeled in the 

FTL-expressing E. coli strain supplemented with 13C-labeled sodium formate, which was close 

to theoretical consideration (Bang and Lee, 2018).  

The success in E. coli encouraged us to establish the same formate metabolizing pathway in 

photosynthetic organism Synechocystis by expression of FTL. For this purpose we used the 

FTL protein from M. extorquens, which was shown before to perform high enzyme activity and 
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enabled E. coli to incorporate formate (Marx et al., 2003). Although, it was successfully 

expressed in Synechocystis, our FTL-expressing strain exFTL did not grow faster with formate 

compared to wild-type (Fig. 8A). If external formate was assimilated by FA pathway, an 

increased organic carbon flux into serine would be predicted. According to our pathway 

depicted in Fig. 4, the expression of FTL enables cells to incorporate formate into 10-formyl-

THF, which then might be converted to 5, 10-methylene-THF by the endogenous FolD and 

further to serine via the endogenous SHMT. As expected, the serine pool increased about 3-

fold in exFTL strain upon addition of formate (Fig. 8B). Meanwhile, the glycine level in exFTL 

was approximately 3-fold reduced in the presence of formate (Fig. 8C). These changes of 

serine and glycine are consistent with the close relationship of these metabolites in the 

GDC/SHMT catalyzed serine-glycine cycling and the associated C1 metabolism.  

In addition, exFTL exhibited higher resistance toward external glycine and formate compared 

to wild-type, which is consistent with the significantly reduced glycine and the supposed 

increased formate assimilation into serine. Hence, these two critical intermediates are 

detoxified in higher rates, formate via FTL alleviating toxic effects on PSII caused from excess 

formate (Sah et al., 2015), whereas the toxic effect of glycine via its Mg2+-chelating effect 

(Eisenhut et al., 2007) is reduced due to increased usage of glycine for serine synthesis via 

SHMT. Our results also imply that glycine and formate supplementation have an additive toxic 

effect to Synechocystis cells (Fig. 8D). There are two possible explanations for this observation. 

First, the supplementation of formate could result in the accumulation of glycine, for example 

the higher amount of methyl-THF might reduce glycine oxidation via GDC. In addition, formate 

could also inhibit the glyoxylate degradation through the decarboxylation branch of the 2-PG 

metabolism producing more glycine. Accordingly, the addition of formate probably stimulated 

the concentration of glycolate and further glycine. However, glycine contents decreased after 

formate incubation in exFTL cells (Table 4) making this scenario unlikely. Second, formate and 

glycine might have a joint negative effect on photosynthesis and carbon fixation rate due to the 

block in photosynthetic electron transfer and the inactivation of Rubisco, respectively. Thus, 

high external concentration of formate and glycine caused severely inhibition to cells than 
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either of them alone.  

Many other cellular metabolites also showed alteration after formate addition to strain exFTL 

(Table 4) suggesting that a massive metabolic reprogramming occurred. Consistent with the 

changes of serine and glycine, a slightly elevated amount of 3-PGA and a decrease in 2-PG 

were measured, which could indicate less photorespiration and better CBBC activity. Moreover, 

2-OG and other organic acids involved in the TCA cycle exhibited significantly reduced level, 

indicating the introduction of FTL reduced TCA cycle flux. The meta-analysis of metabolic data 

showed that the intermediates of TCA cycle/GABA shunt were affected in a wide range of plant 

photorespiratory mutants, implying a close connection between the two pathways (Bauwe et 

al., 2010; Florian et al., 2013; Florian et al., 2016). For example, the Arabidopsis mutants 

defective in GGAT displayed a slight photorespiratory phenotype and reduced TCA cycle-

related organic acids including pyruvate, fumarate and succinate (Dellero et al., 2015). In 

contrast, most amino acids increased to different extent in exFTL when supplemented with 

formate (Table 4), the exceptions were glutamate, asparagine, arginine and isoleucine 

indicating a modification in amino acids metabolisms. The aminotransferases involved in the 

photorespiratory pathway could affect the specific composition and total amount of amino acids 

(Florian et al., 2013). GGAT and SGAT mediate the transamination of glyoxylate to form glycine 

functionally importantly in the regulation of major amino acids level in plants (e.g. glutamate 

and glutamine) (Fahnenstich et al., 2008). GGAT converts glutamate and glyoxylate to glycine 

and 2-OG, while SGAT uses serine and glyoxylate to produce glycine and hydroxypyruvate. 

Glutamine synthase (GS) combines glutamate and free ammonia to synthesize glutamine, 

which is subsequently used to produce glutamate from 2-OG by glutamate synthase (GOGAT) 

(Bauwe et al., 2010). Hence, photorespiratory pathway closely interacts with nitrogen 

assimilation and has an important role in maintaining a steady state equilibrium of glutamate, 

glutamine and 2-OG in plants, which is most likely the same in cyanobacteria. Although we 

could not detailed explain why specific amino acids increase or decrease in exFTL strain 

supplied with formate, the intervention into photorespiration and C1 metabolism obviously did 

affect overall amino acids metabolism.   
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Figure 26: Changes of metabolites related to AABA metabolism. 

The relative fold changes in metabolites related to AABA metabolism in cells of FTL-expressing strain 

(exFTL) compared to wild-type (WT). Samples were collected 24 h either with or without formate, 

respectively. Cells were cultivated under ambient air at 100 μmol photons m-2 s-1. Given are mean values 

and SE of at least three independent replicates. *: P< 0.05; **: P< 0.01; ***: P< 0.001.  

Surprisingly, the highest increase (9-fold) of AABA was observed in the formate supplemented 

exFTL strain. AABA is a non-proteinogenic amino acid, which is of pharmacological 

significance (Zhang et al. 2009; Seo et al., 2012). Up to now, the natural pathway for the de 

novo biosynthesis of AABA is scarcely understood. According to the KEGG pathway database, 

AABA might appear as side-product from serine cleavage or branched amino acids synthesis 

as shown in Fig. 26. AABA could be produced from 2-oxobutyrate by amination (Weber et al., 

2017), and 2-oxobutyrate is mainly synthesized from threonine that acts as precursor for the 

branched amino acid isoleucine biosynthesis in E. coli (Guillouet et al., 1999). In addition, this 



Discussion 
 

 

 
68 

 

   

intermediate is also one product of cystathionine cleavage by cystathionine γ-lyase (Nagasawa 

et al., 1984), and cystathionine could be formed from serine by cystathionine ß-synthase (Jhee 

et al., 2000). As shown in Fig. 26, serine, cysteine, aspartate and threonine increased to 

different extents, while glutamate declined slightly in the formate inoculated exFTL strain in 

comparison to wild-type. But the increase of isoleucine in exFTL strain was independent of 

formate. Thus, the increased AABA was most likely related to increased serine and threonine 

pools in exFTL strain.   

In addition, the high accumulation of AABA indicates that serine is not sufficiently fast 

converted into 3-PGA in the photorespiratory cycle as expected in our designed pathway. Thus, 

enzyme SGAT from Arabidopsis thaliana was expressed in the above generated strain exFTL 

aiming to improve serine-to-hydroxypyruvate conversion rate. To investigate the role of 

enhanced SGAT activities in FA pathway, gene SGAT is translationally fused to the promoter 

of the petJ gene encoding cytochrome c553 that is repressed by copper (Kuchmina et al., 2012) 

(Fig. 12A). No stimulation on growth (Fig. 12D) was observed with the exFTL-SGAT strain 

when supplemented with formate, which might be due to the low expression level of protein 

SGAT indicated from the faint signal band in western-blotting (Fig. 12C). Hence, the expression 

of SGAT needs to be further improved as well as analysis of the according metabolites changes.   

5.4 Attempts to enhance FA rate by increasing glycine level  

According to the metabolic data of exFTL strain, the significantly declined glycine might be also 

limiting factor. Hence, to increase the FA rate, enhancing the pool of the precursor glycine 

might be an option. Consistent with this assumption, growth of strain exFTL was best 

stimulated by the combined addition of 10 mM formate and 3 mM glycine, while this treatment 

did not influence growth of the wild-type (Fig. 9). Hence, we aimed to express ftl in a strain with 

defective photorespiration (∆3pr) and enhanced glycine concentration (Eisenhut et al. 2008) 

to obtain better FA. Moreover, the GDC is inactivated in this strain, which also should minimize 

photorespiratory CO2 loses and NH3 production and could further enhance the efficiency of FA 

route. As expected, the expression of FTL enhanced the growth of exFTL/∆3pr compared to 
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mutant ∆3pr. But the stimulation did not depend on the supplementation of formate, which is 

an interesting and surprising observation (Fig. 10D). This result could suggest that mutant ∆3pr 

might produce formate internally, which was not expected since all the three photorespiratory 

pathways to detoxify glycolate were blocked in mutant ∆3pr. However, it has been shown that 

formate can appear due to decarboxylation of glyoxylate to formate via non-enzymatic 

oxidation (Igamberdiev and Eprintsev, 2016). Besides, formate is also reported as a co-product 

in conversion of fatty aldehydes to alkanes by aldehyde decarbonylase in cyanobacteria (Warui 

et al., 2011). 

Despite the growth stimulation, the content of serine did not significantly change in exFTL/∆3pr 

compared to wild-type either with or without formate (Fig. 11A). This observation implied that 

external formate did not stimulate serine formation rate in exFTL/∆3pr cells, which was contrary 

to the enhanced serine production observed with exFTL. A possible explanation of this 

observation might be related to the fact that mutant ∆3pr was defective in GDC and the 

production of 5,10-methylene-THF could be affected. Hence, to meet the demand of C1 units, 

SHMT probably catalyzed the breakdown of serine to synthesize glycine and 5,10-methylene-

THF in mutant ∆3pr. Photorespiration was considered as an important pathway via 

SHMT/GDC to produce serine from glycine in photosynthetic organisms including 

Synechocystis (Ros et al., 2014; Knoop et al. 2010). However, it has been shown that SHMTs 

from Synechocystis (Eisenhut et al., 2006) and halotolerant cyanobacterium A. halophytica 

(Waditee-Sirisattha et al., 2012) catalyze the conversion of serine and THF to glycine and 5, 

10-methylene-THF, which could provide all the necessary glycine and C1 units for the cell from 

serine produced via the phosphoserine pathway (Klemke et al. 2015). This scenario is 

supported by the findings that GDC could be mutated whereas it was not possible to completely 

knock out gene shmt in Synechocystis (Hagemann et al., 2005). Furthermore, Synechocystis 

as all other cyanobacteria employs the CCM to increase CO2 concentration at the site of 

Rubisco diminishing photorespiration to a large extent, only approximately 1% oxygenation 

relative to carboxylation of Rubisco was observed (Orf et al., 2016) leading to a very small 

photorespiratory flux in Synechocystis (Young et al., 2011). These results indicate that 
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photorespiration might contribute only marginal to the serine pool. Due to the essential nature 

of the phosphoserine pathway for serine biosynthesis, for example the deletion of serA failed 

even when fed with external serine, this assumption could not be yet proven experimentally 

(Klemke et al., 2015). I also tried to mutate serA in this thesis but again with no success. These 

observations make it likely that SHMT could produce 5,10-methylene-THF and glycine from 

serine explaining unchanged serine and slightly decreased glycine pools in exFTL/∆3pr after 

formate incubation. Theoretically, 5,10-methylene-THF should be synthesized via FTL and 

endogenous FolD in the strain exFTL/∆3pr, which is then used to synthesize serine from the 

enhanced glycine pool. Obviously, the expressed FTL only provided an alternative way for the 

synthesis of 10-formyl-THF, the precursor for purine synthesis, which could also explain the 

general stimulation of growth in the strain exFTL/∆3pr compared to ∆3pr. In order to improve 

the conversion of 10-formyl-THF into 5,10-methylene-THF we later on considered replacing 

endogenous FolD by another enzyme as has been done before in E. coli strains engineered 

to assimilate formate (Yishai et al., 2017; Bang and Lee, 2018; Tashiro et al., 2018).   

5.5 Labeling pattern of proteinogenic amino acid 

Nowadays, application of 13C isotope analysis of proteinogenic amino acids provides a straight 

way to verify the detailed metabolic flux (Azizan et al., 2017). Therefore, we fed strain exFTL 

with 13C-labeled formate and analyzed the isotopic signature of proteinogenic amino acids. 

Glycine was completely unlabeled in strain exFTL (Fig. 13A), which is in agreement with our 

hypothesis. However, serine was also unlabeled (Fig. 13B) disproving our assumption that 

increased serine was synthesized from external formate in exFTL. Approximately 1.5% of 

methionine and histidine were labeled. This weak label could originate from FTL-dependent 

formate assimilation into 10-formyl-THF and its conversion into 5-methyl-THF (Fig. 13C and 

D), which serve as precursors for these amino acids. Obviously, the subsequent conversion of 

10-formyl-THF up to serine was inhibited by the addition of formate in exFTL strain. A likely 

candidate is endogenous FolD, since it has been shown that the Mtd activity of FolD could be 

allosterically inhibited by 10-formyl-THF, the product of this enzyme, as a feedback regulation 
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mechanism in C1 metabolism (Dev and Harvey, 1978). The attempts to establish the FA 

pathway in E. coli confirmed this speculation. The expression of only FTL from M. extorquens 

AM1 did not enable the E. coli serine-auxotrophic mutant ∆serA∆gcvTHP to synthesize enough 

serine from formate and glycine (Yishai et al., 2017). Only the overexpression of endogenous 

FolD alongside with FTL rescued the growth of this mutant in serine-free medium (Yishai et al., 

2017). Another study showed that single overexpression of FTL in E. coli had only a rather 

weak effect on carbon assimilation, less than 10% carbon of proteinogenic methionine and 

serine became once labeled but the labeling increased to 70% with additional expression of 

endogenous FolD (Bang and Lee, 2018). Interestingly, over 90% carbon of methionine and 

serine was labeled in a strain, which overexpressed FTL and the two proteins FchA and MtdA 

from M. extorquens AM1 that form FolD activity. Furthermore, this strain consumed about half 

of the externally supplied formate within 50 h cultivation, while the ftl-expressing strains with 

endogenous E. coli FolD only consumed low formate amounts (Bang and Lee, 2018). 

Expression FTL and FolD from Moorella thermoacetica were also shown to be sufficient to 

rescue mutant ∆serA∆gcvP with formate and displayed much higher activities than 

endogenous FolD (Yu and Liao, 2018). The similar result was obtained due to overexpression 

of the enzymes FTL, Fch and Mtd from C. ljungdahlii but not with those from Acetobacterium 

woodii (Tashiro et al., 2018). Therefore, the absence of 13C incorporation into serine from 

labeled formate was most likely due to the reduced activity of FolD in the Synechocystis exFTL 

strain.  

After obtaining these results the question appeared, why did the steady state contents of serine 

increase and glycine decrease after formate incubation in exFTL? Probably, the enzyme SHMT 

was inhibited in exFTL in addition to FolD (as shown in Fig. 27). It has been shown that 10-

formyl-THF may strongly inhibit Mtd activity of FolD (Dev and Harvey, 1978), which might result 

in the accumulation of the reaction intermediate 5,10-methenyl-THF converted from 10-fromyl-

THF in the formate inoculated exFTL strain. Hence, the accumulation of 10-formyl-THF 

produced in exFTL cells affects the equilibrium state between the C1 units 5,10-methylene-

THF and 5,10-methenyl-THF. The latter intermediate can be also used by SHMT to form 5-
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formyl-THF, which is a strong inhibitor of SHMT (Stover and Schirchs., 1990; Goyer et al., 2005; 

Collakova et al., 2008). Hence, most likely the serine accumulation in the Synechocystis strain 

exFTL results from the inhibition of SHMT via 5-formyl-THF. This regulatory effect results in 

the accumulation of serine produced via the phosphoserine pathway and also explains why 

the product glycine decreased. Cancer cells with suppressed activity in mitochondrial FolD 

also exhibited increased serine and decreased glycine amounts, which was explained by a 

regulatory effect on SHMT (Koufaris et al., 2016). 

 

Figure 27: A Scheme displaying the probable interaction of photorespiration and one-carbon 

metabolism in Synechocystis.  

5-FCL, 5-formyl-THF cycloligase. Possible SHMT inhibition by 5-formyl-THF as well as Mtd activity 

inhibition by 10-formyl-THF are shown by a dashed line.   

5.6 Attempts to improve FA rate by overexpression of an alterntive FolD in wild-type 

The above discussed issues clearly indicate that an efficient solution to enhance formate 

assimilation flux is to express an additional better suited FolD to enhance the serine-forming 

flux from formate. As discussed, instead of the bifunctional FolD from Synechocystis, FolDs 

from M. extorquens AM1, M. thermoacetica and C. ljungdahlii, which use two separate 
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enzymes to catalyze the two-step conversion of formyl-THF into 5,10-methylene-THF, are 

suitable candidates. Considering that gene ftl we used originates from M. extorquens AM1, 

genes fchA and mtdA from the same organism were chosen and expressed in this study to 

keep consistency. The two genes were synthesized in an artificial operon and successively 

transferred into the strain exFTL.  

To investigate the role of their activities in FA pathway, a synthetic theophylline-dependent 

riboswitch (Ma et al., 2014) was used to control the expression of fchA (Fig. 14A). The available 

data indicated that probably only the M. extorquens mtdA gene was successively expressed 

in strain exF-C-M (Fig. 14B), because a protein with correct molecular mass was detected in 

cells of this strain independent from the addition of theophylline (Fig. 15B). The gene fchA was 

also successively transferred into exF-C-M (Fig. 14B). However, the expression of the FchA 

protein could not be verified, since the His-tag antibody did not detect a protein around 21 kDa 

in crude extracts of exF-C-M. Most likely the synthetic riboswitch fused to the coding sequence 

of gene fchA could prevent its unsuccessful expression, because the successful expression of 

the downstream gene mtdA showed that the constitutive promoter was active. Here, we used 

exactly the same riboswitch E published by Ma et al. (2014), which was proven to permit 

highest levels of expression after induction with theophylline in different cyanobacteria species. 

However, it has been shown that the expression of only FTL and endogenous FolD was 

sufficient to rescue the growth of the E. coli serine-auxotrophic mutant ∆serA∆gcvP in serine-

free medium after formate addition (Bang and Lee, 2018). Since the accumulated 10-formyl-

THF might inhibit the Mtd activity of the bifunctional FolD as discussed, we hope that the 

successful expression of FTL and MtdA in this study might also build FA pathway without 

additional expression of FchA in Synechocystis. 

We observed retarded growth of the strain exF-C-M in the absence of additional formate but 

growth was recovered similarly to exFTL in the presence of formate in the medium under 

ambient air (Fig. 16). A prolonged lag phase was also observed for E. coli strains equipped 

with M. extorquens FTL, FchA and MtdA, whereby cells only expressing FTL grew normally 
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(Bang and Lee, 2018). These results suggested that such a rewiring of C1 metabolism made 

cells more dependent on formate. To test if the FA pathway stimulated cell growth under very 

low carbon condition, the CO2 amount in ambient air was reduced using barium hydroxide 

(Radmer et al., 1978) (Fig. 17). Cells grew very slowly under this condition suggesting the 

successful depletion of CO2 in the air. Unfortunately, we did not observe any stimulation of 

growth with formate in both exFTL and exF-C-M strain. In exF-C-M, the levels of most amino 

acids increased except glutamate and histidine implying that folate-dependent C1 metabolism 

affected amino acids homeostasis (Table 5). The most intriguingly observation was the 

increased glutamate and decreased glutamine in exF-C-M inoculated with formate, the 

opposite trend with those in exFTL. The increased glutamate/glutamine ratio along with 

accumulated 2-OG might be a sign of nitrogen depletion (Zhang et al., 2018). A reasonable 

explanation could be that ammonia release by glycine decarboxylation reaction was inhibited 

in strain exF-C-M, because an active FA pathway will provide additional carbon fixation from 

formate via 5,10-methylene-THF. This intermediate, as a product of GDC, inhibits glycine 

decarboxylation and reduces the release of CO2 and ammonia. Theoretically, the FA pathway 

might then contribute to serine synthesis.  

The question arises, if higher production of serine could theoretically improve cyanobacterial 

cell growth. This possibility was tested by serine supplementation in growth experiments with 

wild-type cells, because Synechocystis expresses transport systems for amino acids (Quintero 

et al., 2001; Eisenhut et al., 2007; Bualuang et al., 2015). Serine supplementation at 10 mM 

did not stimulate growth of cyanobacterium Anabaena cylindrica PCC 7122 compared to cells 

without serine (Rawson, 1985). Here, we added serine at 10 mM and 20 mM to the 

Synechocystis wild-type. The preliminary growth assay indicated that serine higher than 10 

mM rather caused a slight inhibitory effect on growth of Synechocystis (Fig. 28). Further growth 

experiments need to be done with serine at concentration lower than 10 mM also including 

13C-labeled serine to estimate the potential of increased serine availability on growth of 

Synechocystis. We can at least conclude from this experiment that it will be quite hard to 

observe a significant growth stimulation from the FA pathway in the wild-type background, 
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since 10 mM of formate can maximal form 10 mM of serine. Therefore, another background is 

necessary to test FA efficiency. For the alterations of other amino acids, it is hard to explain 

only with the current data due to the complexity in their regulation mechanisms. For example, 

the increase of lysine and threonine level in exF-C-M compared to exFTL is still an open 

question and needs further investigation.  

 

Figure 28: Growth of wild-type feed with different concentration of serine. 

Growth of cells was measured in BG11 supplemented with different amount of serine (0 mM (solid circle), 

10 mM (open circle) and 20 mM (triangle)). Cells were grown in liquid BG11 in the multi-cultivator at 

ambient air and 100 μmol photons m-2 s-1. 

5.7 Establishing the FA pathway in ΔccmM mutant 

As discussed above in great detail, it was not possible to observe positive effects of the FA 

pathway on growth and serine assimilation in the Synechocystis wild-type. This is most likely 

based on the situation that the CCM enables cyanobacteria such as Synechocystis to perform 

efficient carbon fixation even at very low CO2 levels and it also suppresses photorespiration to 

much smaller amount than in plants (Orf et al., 2016). Therefore, we assumed that FA 

pathways may bring higher benefits in a cell background with less efficient CO2 assimilation 

and higher photorespiratory flux. For this purpose, we used subsequently the ΔccmM mutant, 

where the mutation of the CcmM protein abolishes the formation of carboxysomes thereby 

disrupting the CCM and stimulating photorespiration (Hackenberg et al. 2012). To test if the 
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establishment of FA pathway reduces the CO2 dependence of ΔccmM mutant, an independent 

gas mixing system was used to connect with multi-cultivator regulating the concentration of 

CO2, allowing to do the growth experiment in a stepwise decreasing CO2 condition. The 

expression of FTL in ΔccmM mutant initially extended the lag phase. However, during the 

stepwise reduced CO2 condition, the FTL-expressing mutant cells still showed growth at 0.4 

and even 0.3% CO2, where the parental mutant already stopped growth. Unfortunately, this 

effect was found in the presence but also the absence of formate supplementation (Fig. 18C). 

No huge changes in metabolites were observed with ΔccmM when inoculated with formate 

(Table 6), while most amino acids and intermediates of TCA cycle displayed alterations in 

ΔccmM/exFTL compared to ΔccmM representing the introduction of FTL did affect the 

endogenous metabolisms. Interestingly, the accumulation of serine observed in exFTL was not 

found with ΔccmM/exFTL supplied with formate. A possible explanation is that the 

photorespiratory flux of ΔccmM/exFTL under the provided CO2 concentration might be higher 

than that in exFTL accelerating serine-to-hydroxypyruvate conversion. When FTL and MtdA 

were simultaneously expressed in ΔccmM mutant, similar effects observed before with strain 

exF-C-M appeared. The new strain ΔccmM/exF-C-M showed retarded growth in the absence 

of formate compared to ΔccmM/exFTL. However, the growth retardation was relieved when 

supplied with formate (Fig. 19B). In the presence of formate, similar growth was observed in 

the strains ΔccmM/exF-C-M and ΔccmM/exFTL indicating no further reduction of CO2 

requirement after expression of fchA and mtdA. However, significant changes were detected 

in the metabolite profiles (Table 7). The content of glutamine and glutamate decreased nearly 

by 60% and increased 65%-100%, respectively, in ΔccmM/exF-C-M with time. This change 

resembles the alterations of glutamine and glutamate in strain exF-C-M. Meanwhile, TCA cycle 

associated intermediates increased approximately 65 - 90%. Accordingly, these changes were 

most likely related to the reduction of glycine decarboxylation activity as discussed above for 

the strains with wild-type background. Although FA did not reduce the CO2 dependence, the 

FA pathway might be established in the new constructed strain ΔccmM/exF-C-M. Further 

improvement on the FA flux could be done in the ΔccmM background, easily validating its 
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efficiency supporting carbon fixation.  

5.8 Attempts to generate a formate-dependent strain on the basis of ∆folD 

For the future selection of suitable FDHs as entrance enzyme of the FA pathway, we aimed to 

generate a formate-dependent Synechocystis strain. As shown before in other bacteria (Sah 

et al., 2015), we assumed that a knockout of folD could result in a formate-dependent C1-

auxotrophy strain, since supplementation with formate and expression of ftl should sustain the 

synthesis of formyl-THF as precursor for purine synthesis. In the beginning, we verified that 

the gene encoding FolD was correctly annotated in the Synechocystis genome (Fig. 20). 

Attempts to generate completely segregated mutant ∆folD by standard interposon-

mutagenesis were unsuccessful, despite analysis of a large amount of independent clones 

(Fig. 21). In all cases, these clones contained both wild-type and mutant gene copies in their 

genome, which excluded the possibility of failure in transformation. Hence, we are confident in 

concluding that gene folD plays an essential role in Synechocystis under our lab condition.  

As mentioned above, organism dependent on FolD activity because of its essential product 

10-formyl-THF. Hence, FolD could be dispensable when an additional pathway for 10-formyl-

THF synthesis or enough external nutrients substituting 10-formyl-THF are provided. The 

ectopic expression of FTL provides an alternative route for 10-formyl-THF synthesis from 

formate, which enabled the complete deletion of folD in Leishmania major (Murta et al., 2009). 

Similar results were obtained in E. coli by expression of heterologous FTL from Clostridium 

perfringens but the mutant depended on formate and glycine (Sah et al., 2015). In this study, 

plasmid pT-0753-k to generate mutant ∆folD was transformed into the previously obtained 

FTL-expressing strain exFTL. But mutation in folD was still not segregated even after long-

term formate supplementation (Fig. 22). We doubted that the production of 10-formyl-THF 

synthesized through FTL was insufficient to meet the requirement for purine biosynthesis. The 

lower rate of formate uptake (Fig. 25) might not satisfy the demand on formate of FTL which 

was reported with Km 22 mM for formate (Marx et al., 2003). It has been shown that the 

introduction of FTL enabled E. coli to lose gene folD, but 10-formyl-THF in this mutant 

displayed significantly lower level compared to the control strain (Sah et al., 2015). Thus, 
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inosine or IMP, the important intermediates in the purine synthesis together with formate was 

supplied to inoculate the non-segregated mutant exFTL/∆folD. After several rounds of 

selections, 90 clones were investigated with PCR (Fig. 23). The mutant gene copies seemed 

to become enriched with the inoculation time, but none of the clones completely lost gene folD. 

Our result suggested that except the synthesis of 10-formyl-THF as purine synthesis precursor, 

FolD might also have important function in other metabolisms in Synechocystis. For example, 

as one product of FolD, 5,10-methenyl-THF acts as a cofactor of photolyase in algae (Heijde 

et al., 2010).  

Theoretically, an alternative FolD should be able to compensate the absence of the 

endogenous FolD. Accordingly, plasmid pT-0753-k was transformed into the exF-C-M strain 

generated in this study, which expresses in addition to FTL the FolD from M. extorquens. 

Indeed, with supplementation of formate during the transformation process, a segregated null 

mutant ∆folD was obtained with additional expression of FTL and MtdA (Fig. 24). Although the 

null mutant can survive without formate, it grew very slowly and formate clearly rescued its 

growth as shown in the preliminary growth assay (Fig. 29). These results implied that formate-

dependent FA pathway might be established in mutant ∆folD with the expression of FTL and 

MtdA providing C1 units from formate. The result also shows that the new constructed mutant 

has the potent for screening suitable FDHs for the further research. 

 

Figure 29: Growth of exF-C-M/∆folD in the presence or in the absence of external formate. 

Growth of cells was measured supplied either with (open circle) or without (solid circle) 10 mM formate. 

Cells were grown in liquid BG11 in the multi-cultivator at ambient air under 100 μmol photons m-2 s-1. 
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5.9 Future perspectives 

Although we are not able to show whether the FA pathway stimulates the growth of 

Synechocystis, the mutant ∆folD dependent on formate was developed. Its use paves the way 

to test suitable FDHs in the Synechocystis. Moreover, this strain should be also used to analyze 

whether serine could improve cell growth. The effect of lower concentration of serine on growth 

is needed to be investigated. In our study, we could only test to improve FA efficiency by 

enhancing FolD activity via the expression of MtdA, indicating from that the overexpression of 

FTL and MtdA stimulate the growth of transgenic strains in the presence of formate. Future 

studies are needed to further improve FolD through the introduction of both enzyme activities 

Fch and Mtd. Besides, our study shows that high CO2-requring mutant ΔccmM is more suitable 

background to test FA efficiency. With the free adjusted CO2 concentration cultivator, the CO2 

dependence of ΔccmM engineered with FA pathway could be easily monitored. Additionally, 

formate assimilation through reverse glycine pathway to synthesize glycine from CO2 was 

already constructed in E. coli (Bang and Lee, 2018; Yishai et al., 2018), which could also be 

tested in ΔccmM. 13C isotope analysis is also required to verify 13C-labeling serine in the newly 

designed strain fed with 13C-formate. Attempts to obtain an absolute serine auxotroph strain 

∆serA can be tried on this basis.  

In addition, one intriguingly point is the unexpected accumulation of AABA in FTL-expressing 

strain. AABA is used as an important chiral intermediate for the production of several important 

drugs including the anticonvulsant brivaracetam, levetiracetam and ethambutol (Zhang et al. 

2009; Seo et al., 2012). But it is still a huge challenge to achieve the high-level production in 

commercial systems. Our study might provide a good vision in investigating the synthetic 

mechanism of AABA. Furthermore, we observed many more unexpected changes in the 

primary metabolism of Synechocystis, which probably are connected to imbalances in the C1 

homeostasis, which is generally not well understood. Possibly, some of the strains generated 

here could be also used in future studies to analyze regulatory impact of formyl-THF and 

related compounds in more detail. 
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