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PROCESSING LEARNER PROFILES FOR SMART INDICATORS  
Christian Glahn, Marcus Specht, Rob Koper; Open University of the Netherlands 

Abstract  
Indicators help learners to organise, orientate and navigate through complex environments by 
providing contextual information relevant for the performance of learning tasks. Smart indicator 
systems adapt their approach of information aggregation and indication according to a learner’s 
situation or context. In this paper context is used as temporal context of the learning progress. This 
paper introduces an experimental scenario in which smart indicators are applied. The following section 
provides a definition of smart indicators that is derived from concepts of self-regulated learning and 
context-aware systems. Based on this definition a system’s architecture for smart indicators is 
proposed. Based on the preceding sections, the two problems of the research questions are addressed 
by discussing the implementation as it is used for the experimental scenario. This paper concludes 
with an analysis of current learning standards regarding the applicability in the domain of open 
communities. 

Introduction 
The term lifelong learning refers to a complex process in which people develop new and extend their 
existing competences. While during early phases of this process, students follow mostly prepared 
activities and curricula provided by schools, colleges or universities. In these environments of initial 
education, it is often required to support transitions of learners between topics, courses and curricula. 
After initial education the learning environments and the learning processes become more complex. 
Learners do not follow pre-designed paths that are provided by learning facilitators, but constantly 
change between formal training, non-formal learning, and informal competence acquisition. 
Furthermore, the way how people learn is different to what is known in teaching and training during 
initial education [20]. Therefore, many learners have difficulties in recognising and valorising their 
knowledge and competences they have acquired throughout life [3, 16, 31].  
In contrast to these observations reflective practitioners [34] have an increasing relevance on the 
economical success of enterprises and organisations, and also to the social wealth of nation states and 
societies. Reflective practitioners are drivers of the knowledge society, because they are aware of their 
knowledge and competences and able to apply, to adapt and to extend these competences in their 
professional practice. Reflective practitioners are also referred as “high skilled individuals” in policy 
documents. The value of these individuals for economies and societies has become undeniable, as 
effects such as “brain-drain” [18] can be identified from the micro-economics of a team within an 
organisation to the macro-economics of a nation state. Attracting alien expertise is one approach to 
address this problem. However, the economical stability and social wealth depends on the ability of an 
organisation to establish, support, and sustain a reflective culture among the majority of their members 
and communities. 
One aspect of this problem is how to support reflection and to raise awareness on learning processes 
and on competence acquisition. With respect to the changing contexts and processes of practitioners, it 
can be argued that such support on reflection and awareness has to adapt to these changes and has to 
take contextual information into account. This is because of several reasons, among which the 
following ones are most relevant to our research. Actors depend on the availability of external 
information in order to organise, orientate and navigate through complex environments by utilising 
contextual information [7, 38]. Contextual information on the learning process has been proven as 
important to support the learning process. It stimulates the learners' engagement in and commitment to 
collaboration [4, 27, 32]; it helps to raise awareness of and stimulates reflection about acquired 
competences [24, 25]; and it supports thoughtful behaviour in navigation and on learning paths [36]. 
Despite this evidence on the role of contextual information for reflection and learning, little research 
has been conducted on adapting the presentation of contextual information to the changing needs of 
lifelong learners throughout their learning process. 
 



During a process, contextual information is provided by what we call indicators. Indicators provide a 
simplified representation of the state of a complex system that can be understood without much 
training. The framing question of the research presented in this paper is the utilisation of indicators to 
support reflection and raise awareness on learning processes in non-formal and informal learning 
settings. It has been argued that indicators are part of the interaction process between learners and 
learning environments [17]. As such, indicators depend on information about previous learning 
activities and their contexts. The information processing for this purpose can be modelled as four 
operational layers: a sensor layer, a semantic layer, a control layer, and a presentation layer. This paper 
analyses the relations and functions of these layers.   
The question for research of this paper is how to provide smart indicators to learners in an 
unstructured community environment. The answer two this question is based on two problems. The 
first problem is related to gather of learner information [6, 29] and develop context models [12], which 
then can be reported to the learners. The second problem is the modelling of context aware adaptation 
strategies that define which resources can be used to generate the appropriate information according to 
a learner’s context. In this paper we address the second problem and discuss how to utilise learning 
technology specifications for modelling adaptation strategies.  
This paper continues with introducing an experimental scenario in which smart indicators are applied. 
The following section provides a definition of smart indicators that is derived from concepts of self-
regulated learning and context-aware systems. Based on this definition a system’s architecture for 
smart indicators is proposed. Based on the preceding sections, the two problems of the research 
questions are addressed by discussing the implementation as it is used for the experimental scenario. 
This paper concludes with an analysis of current learning standards regarding the applicability in the 
domain of open communities. 

Experimental Scenario 
In order to develop better understanding of supporting strategies for learning interactions we 
implemented a web-based prototype of smart indicators. The prototype integrates indicators into a 
community system. This system combines the community member’s web-logs, del.icio.us1 link lists 
and tag clouds. The indicator provides information on the interest and the activity to the learners. It 
contains two core components: An interest tag cloud and an overall activity chart. To maintain these 
indicators the system tracks selection activities, tagging activities, and contributions. The system 
adapts the presented information according to a learner’s activity and interest level: It provides richer 
information the more a learner contributes to the community. Therefore, new participants will have 
different information indicated than those who contribute regularly to a community. The community 
system acknowledges that its participants might already use a web-log or del.icio.us instead of offering 
similar services. However, it is not a requirement for participation to have both. When learners register 
for being “members”, they can provide a URL to a feed address of their web-log and their nick-name 
on del.icio.us. This personal profile is later used for creating a learner model. Therefore, the 
community system provides only a portal to recent contributions, while the actual content is external 
to the system. 
Each action within the system is considered as a learning activity and learners score “learning points” 
with each action they perform in order to indicate their learning progress. However, some actions 
require more effort than others. For example, accessing content provided by other users is easier to 
perform than contributing content through a web-log. Because of these differences, the actions have 
different scores.  
The indicator system is based on immediate and delayed interaction monitoring by interaction sensors. 
Immediate monitoring is implemented only for selections (so called click-through), through which the 
system gathers information about requests of web-log entries or links from the link list. Data about 
contributions is accumulated from RSS22 or ATOM3 feeds independent from a learner’s actions on the 
user interface. Information on the collected links and associated comments is gathered through 
del.icio.us’ RPC interface4. The tagging activities are extracted from the data on tag clouds that is 

                                                      
1 http://del.icio.us 
2 http://blogs.law.harvard.edu/tech/rss 
3 http://tools.ietf.org/html/rfc4287 
4 http://del.icio.us/help/json/ 



provided from both the link lists and the learner’s web-logs. A learner tags an external link or a web-
log entry if a tag is added to the contribution.  
The semantic layer of the prototype provides two aggregators: an activity aggregator and an interest 
aggregator. The semantic layer analyses the sensor data according to a definition given by the 
aggregators. Different to the sensor layer, the semantic layer is not limited to organising incoming 
sensor data, but it uses the aggregators to transform the sensor data into meaningful information. 
The control layer defines how the indicators adapt to the learner’s behaviour. The prototype 
implements two elemental adaptation strategies. The first strategy aims at motivating learners to 
participate to the community’s activities. The objective of the second strategy is to raise awareness on 
the personal interest profile and stimulate reflection on the learning process and the acquired 
competences. The prototype adapts the strategies according to a learner’s participation to the 
community. 
The purpose of the indicator layer is to integrate the values selected by the control layer into the user 
interface of the community system. The indicator layer provides different styles of displaying and 
selects an appropriate style for the incoming information. Two graphical and one widget indicator are 
provided by the prototype. One graphical indicator is used during the first level of the control strategy. 
This indicator shows the amount of actions for the last seven days. A second control strategy uses a 
different graphical indicator. It displays the activity in comparison to the average community member. 
The maximum value of the scale used by this indicator is the most active community member. Finally, 
the indicator layer provides a tag cloud widget for displaying the interests of a learner. In principle this 
widget is a list of hyperlinks. The tag cloud indicates higher interest values for each topic through the 
font size of the related tags. 

   
Fig. 1. Sample Indicators on different strategy levels  

Defining indicator systems 
In the introduction we have highlighted some principles of indicators. With regard to learning 
technology feedback and recommender systems meet these principles. Therefore, it is necessary to 
distinguish indicator systems from them. Feedback systems [30, 33] analyze user interactions to 
inform learners on their performance on a task and to guide the learners through it. Recommender 
systems analyze interactions in order to recommend suitable follow-up activities [1]. The objective of 
both system types is to affect a learner’s future activities by providing useful information. Both 
approaches are tightly coupled to goals or processes that are shared within a learning community. In 
contrast, indicator systems provide information about past actions or the current state of the learning 
process, without making suggestions for future actions. Having these considerations in mind, we 
define indicator systems as follows. 
An indicator system is a system that informs a user on a status, on past activities or on events that 
have occurred in a context; and helps the user to orientate, organize or navigate in that context 
without recommending specific actions. 
Humans actively search for relations to their previous interactions, in particular for indicators that 
provide information on the success and the value of their actions, if their actions depend on strategies 
that require alignment during the interaction process [21, 38]. In other words, people continuously 
seek for indicators that help them to verify or modify their actions, tactics and strategies. Thus, 
indicators on learning are important facilitators of these processes and are based on three general 
principles [13, 24, 26]. 
 Indicators rely on monitoring of the learning actions and the learning context. 



 Indicators have to adapt according to a learners’ goals, actions, performance, outcomes, and 
history as well as to the context in which the learning takes place. 

 Indicators are responses to a learner's actions or to changes in the context of the learning process, 
where the response is not necessarily immediate. 

Most indicators implement a static approach of providing information to learners rather than adapting 
to the learning process [9, 15, 19, 22, 24, 28]. These approaches are considered as static according to 
the third principle. In contrast, smart indicator systems adapt their approach of information 
aggregation and indication according to a learner’s situation or context. In our setting context is 
defined by the temporal context of the learning progress. 

An architecture for smart indicators 
A smart indicator is a component of a context aware system that traces a learner’s interactions as well 
as contextual data in order to provide meaningful information in response to learning actions. In this 
section we describe a system’s architecture for smart indicators. 
We applied an architecture for context aware systems as it has been described in Zimmermann, 
Specht, & Lorenz [40]. The architecture has four layers and specifies operations on the data and 
information flow through a system from the learner input to the system response (see Fig. 2). The 
layers are the sensor layer, the semantic layer, the control layer, and the indicator layer. 

 

Fig. 2. Layers for context-aware information processing 

The sensor layer is responsible for capturing the interaction footprints. A sensor is a simple measuring 
unit for a single type of data. The objective of sensor layer is to trace learner interactions. It also 
includes other measures that are relevant for the learning process which are not a direct result of an 
interaction between the learner and the system. Sensors that do not gather information about a 
learner’s interactions are called contextual sensors. Examples for contextual sensors are standardised 
meta-data, or tagging activities and contributions of peer-learners. In the architecture the sensor layer 
adds data to process log in order to allow the adaptation to the interaction history. 
The semantic layer collects the data from the sensors and from the process log and aggregates this data 
into higher level information. The semantic layer defines operations or rules for processing sensor data 
[11]. The definition of how the data from one or more sensors has to be transformed is called an 
aggregator [12]. These rules can be named according to their meaning, for instance activity or interest. 
The aggregated information is interpreted by the control layer according to the history and context of a 
learner. The specific approach for interpretation is called a strategy [11]. It defines the conditions for 
selecting and combining aggregators as well as their presentation according to the learner’s context. A 
strategy also controls the personalization of aggregators. Finally, the aggregated information has to get 
presented to the learner. The indicator layer handles this part of the interaction. At this level the actual 
response is created by translating aggregated values into representations that are not just machine-



readable but also accessible to humans. The active strategy of the control layer selects these 
representations and provides the aggregated information to them.  
Many approaches in adaptive hypermedia implement adaptation on the level of the semantic layer, 
while the main strategy at the level of the control layer does not adapt to the learning process [e.g. 2, 5, 
8, 9, 10, 15, 37]. In contrast, our approach of smart indicators adapts the strategies on the control layer 
in order meet the changing needs of a learner. By doing so, the adaptation strategies are adaptable to 
the different phases of the learning process.  
In order to develop better understanding of supporting strategies for learning interactions we 
implemented a web-based prototype of smart indicators. Fig. 3 shows the data-flow between the 
different layers of the architecture. According to the architecture the prototype has four functional 
layers: A sensor layer monitors the learners’ activities and collects traces of interest. A semantic layer 
provides two aggregators to transform the data provided by the sensors. A control layer controls the 
indicator behaviour according to the results of the aggregators of the semantic layer. The indicator 
layer transforms the information into widgets that are integrated into the user interface of the system. 

 

Fig. 3. Component interaction of the prototype 

Learner and Context Modelling 
With regard to the three defining principles of indicator systems, learner monitoring and learner 
modelling are central factors in the process of offering indicators for the learning process. The first 
requirement define that indicators rely on learner and context monitoring and the second requirement 
defines that indicators have to adapt to the learning progress and learning context. These requirements 
specify that an indicator system has to develop concepts of both the learners and the learning context. 
Based on this information the indicator system can select appropriate information and representations 
of that information for a learner. 
In order to identify learning processes and changes in the learning context it is necessary to maintain a 
history of the learner’s interactions. A learner model is basically a collection of traces of past 
interactions with the system. These interaction footprints can be used to assess certain factors of the 



learning process, such as activity or interest [14, 15, 39]. In the proposed architecture the learner 
modelling is performed in two steps. The first step is the data collection and homogenisation; and the 
second step is the semantic aggregation and assessment. 
The system’s view on the learners and learning context depends on the data that is available for 
interpretation. This underlying data is collected and homogenised by the sensor layer. The sensor layer 
accepts data coming from different sensors types and origins. The sensor layer clusters the incoming 
data into named sensor groups in order to maintain and organise the incoming data. Within a sensor 
group each data set contains the same type of information. For instance, in the experimental scenario a 
sensor collects data about which tags were used by a learner. This data may originate from the use of 
tags for social book-marking or web-logging; or from detected selections of links in the system’s user 
interface. From the system’s perspectives, this data belongs to the same class and is therefore 
organised within the same sensor group in the learner’s process- log. 
The sensor data is stored in a database. This database organises the incoming data in alignment with 
the activity notation of the IMS Learner Information Package specification (IMS LIP) [35]. IMS LIP 
activity information allows collecting process information on learner activities within a learning 
environment which is similar to a log-file.  
Within the experimental scenario context is defined by learner actions in a fixed timeframe. The 
boundaries of context are therefore given by social and temporal constraints. The indicators relate the 
learner actions to this context and make these relations visible to the learner. This context depends on 
the learning interactions of all learners. The context model is based on anonymous learner information. 
This is achieved by calculating the arithmetic median of all learning actions within a fixed timeframe, 
in order to identify the “average” learner behaviour. Therefore, context is emerges through 
information processing of the learners’ process-logs on the semantic layer. 
Although the described approach of learner and context modelling is suitable for the experimental 
scenario, it is limited to social and temporal contexts. The given approach excludes spatial contexts 
that are defined by special sensor measures that are independent from learner actions. Examples for 
such independent data sources are GPS sensors or thermometers. Although we are aware of these 
limitations, spatial contexts were excluded from this research. 

Defining adaptation strategies 
On the semantic layer the sensor data in the process-log is enriched. The definition of aggregators is 
defined as rule-sets. For these rule-sets IMS Learning Design (IMS LD) level B conditions [23] were 
used as an anchor. However, IMS LD conditions support neither data sets nor arrays in properties [23], 
while the sensor information in the process-log is available as data-sets. By extending IMS LD 
conditions with simple set operations such as “sum”, “average” or “range” it was possible to define the 
aggregators by using a well tested approach. The aggregators are referred to through unique names and 
are exported as global properties of an IMS LD monitoring service. 
The adaptation strategies on the control layer are defined as IMS LD activities. IMS LD activities are 
defined by pre- and post-conditions and a set of resources that should be used during the activities. For 
defining an adaptation strategy the output of the aggregators of the semantic layer are used to define 
pre- and post-conditions for a part of the strategy. The aggregators that are used while a strategy is 
active are referred as resources of the IMS LD activity. The output style is also defined as a reference 
to the XSLT style-sheet that should be used by the indicator service.  

Conclusions and further research 
In this article we discussed a first prototype for smart indicators. Its implementation is based the 
principles of the learning interaction cycle and context aware systems. For the prototype we used IMS 
LIP and IMS LD to provide learner and context models and associate them with adaptation strategies. 
Although IMS LD provides a flexible way to model adaptation strategies as learning activities, there 
were limitations in these specifications for modelling contexts and aggregation rules of the learners’ 
interaction trajectories. Although these restrictions limit the use of this approach for general cases of 
smart indicators, we described an experimental scenario in which the underlying principles can be 
tested within these limitations. 



Further research will have to focus on two main challenges. The first challenge addresses the use of 
smart indicators for learner support. While the experimental scenario in this paper is based on 
reasoning, more research is required to provide evidence on those factors that affect learner 
engagement and motivation. The second challenge is based on the limitation in modelling context 
based learner support by using the existing learning technology specification. Future work has to 
clarify is how contexts can be modelled and how these models can be utilised in order to support 
learners, effectively. 
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