

Universidad Católica de Santa María

Facultad de Ciencias e Ingenierías Físicas y Formales Escuela Profesional de Ingeniería Mecánica, Mecánica Eléctrica y Mecatrónica

PRODUCCIÓN Y CARACTERIZACIÓN DE NANOESTRUCTURAS DE CARBONO A PARTIR DE GAS METANO Y EVALUACIÓN DE SUS PROPIEDADES MECÁNICAS EN UNA MATRIZ DE POLIPROPILENO.

Tesis presentada por el Bachiller: Villagarcía Cárdenas, Bryan Luis Para optar el Título Profesional de Ingeniero Mecánico

Asesor: Ing. Castro Valdivia, Jorge

Arequipa – Perú 2019

Universidad Católica de Santa María

🖀 (51 54) 382038 Fax:(51 54) 251213 🖂 ucsm@ucsm.edu.pe @http://www.ucsm.edu.pe Apartado:1350

ESCUELA PROFESIONAL DE INGENIERÍA MECANICA, MECÁNICA ELÉCTRICA Y MECATRÓNICA

INFORME DICTAMINATORIO

VISTO

EL BORRADOR DE TESIS TITULADO:

"PRODUCCION Y CARACTERIZACION DE NANOESTRUCTURAS DE CARBONO A PARTIR DE GAS METANO Y EVALUACION DE SUS PROPIEDADES MECANICAS EN UNA MATRIZ DE POLIPROPILENO"

Presentado por el Bachiller:

VILLAGARCIA CARDENAS BRYAN LUIS

Nuestro DICTAMEN es:

sustantados as payianjento **OBSERVACIONES:** Ear bre 201/9 Arequipa, **ÁRPIO RIVERA** ING. JORGE CASTRO VALDIVIA RCO

Para:

A mis padres Luis Villagarcía Móntoya y Patricia Cárdenas Bernal, por haber sido mi mejor ejemplo a seguir, dándome siempre su apoyo y amor para poder seguir adelante, alcanzando mis metas; a mis hermanos Jeancarlo y Alejandra por siempre darme todo su apoyo incondicional y sus buenos consejos para poder seguir siempre hacia adelante superándome y cada vez ser mejor.

AGRADECIMIENTOS

Agradezco al PhD. Hermann Alcázar; por la oportunidad de ser parte del proyecto, su asesoría y apoyo en toda esta etapa del desarrollo de la investigación.

Agradezco a las Ingenieras Maria Vargas, Rossibel Churata y Zulema por toda su colaboración y apoyo en todas las etapas del proyecto.

Agradezco a las Profesores por haberme compartido su conocimiento en transcurso del proyecto.

Agradezco al Vicerrectorado de Investigación de la UCSM, por permitirme la oportunidad de ser parte de este proyecto, habiéndome dado las facilidades de uso de sus laboratorios y materiales a lo largo de esta investigación.

RESUMEN

Las nanoestructuras de carbono son materiales de excelentes propiedades mecánicas, eléctricas, entre otras; las cuales se vienen investigando con gran interés científico en la industria; una de las cuales es como reforzante de resinas, aleaciones mecánicas, geles, cerámicos y polímeros, aumentando así sus propiedades mecánicas de manera considerable. En la actualidad se vienen usando en diversas aplicaciones como en la aeronáutica, automotriz, eléctrica. En este estudio se realizará la síntesis y obtención de nanotubos de carbono y nanofibras de carbono para poder usarlas como reforzante del polipropileno y se espera mejorar sus propiedades mecánicas. Para la obtención de estas nanoestructuras se usara el reactor del laboratorio de investigación de la Universidad Católica de Santa María, siendo el método a aplicar la deposición química en fase vapor, usando gas metano como hidrocarburo precursor y catalizadores de níquel y hierro soportados en alúmina con el método de impregnación; Por ende al obtenerlos y realizar la mezcla de cada compuesto se procederá a la comparación de las propiedades mecánicas mediante probetas normalizadas, para poder definir cuál de las nanoestructuras de carbono presenta las mayores propiedades mecánicas como reforzante del polipropileno.

Palabras Clave: Nanotubo de carbono, Nanofibra de Carbono, Deposición química en fase vapor, catalizadores, metano, polipropileno, ensayos mecánicos.

ABSTRACT

Carbon nanostructures are materials with excellent mechanical, electrical properties, among others. ; these are the investigations with great scientific interest in the industry one of which is as a reinforcer of resins, mechanical alloys, gels, ceramics and polymers, as well as their mechanical properties in a considerable way. Currently, they are included in various applications such as aeronautics, automotive, electrical. In this study the synthesis and obtaining of carbon nanotubes and carbon nanofibers is done to use as a reinforcer of the polypropylene and it is expected to improve its mechanical properties. In order to obtain these nanostructures, the reactor of the research laboratory of the Catholic University of Santa María is used as a method to apply chemical deposition in the vapor phase, using methane gas as a precursor hydrocarbon and nickel and iron catalysts supported in alumina with the impregnation method; Therefore, obtain and obtain the mixture of each compound will proceed to the comparison of the mechanical properties through standardized test pieces, to be able to define the carbon nanostructures present the mechanical properties as reinforcer of the polypropylene

Keywords: Carbon nanotube, Carbon Nanofiber, Chemical vapor deposition, catalysts, methane, polypropylene, mechanical tests.

INTRODUCCIÓN

La investigación para la síntesis y obtención de nanotubos de carbono se desarrolla en el laboratorio de investigación a la ciencia de los materiales de la Universidad Católica de Santa María, con un marco de financiamiento del vicerrectorado de investigación.

Los nanotubos de carbono fueron descubiertos por Sumio Lijima en el año 1991, (Ibrahim, 2013) posteriormente se continuaron con las investigaciones por Donald Bethune y la corporación IBM obteniendo nanotubos de carbono de pared única. Esta forma alotropica se considera que el material deriva de una lámina de grafeno formando un cilindro con puntas cerradas. En la actualidad existen muchas formas de síntesis de nanotubos de carbono que están ligadas a la obtención de fibra de carbono, entre estas podemos encontrar Arco de descarga eléctrica, Ablación laser y Deposición química en fase vapor, Por lo cual el presente proyecto será desarrollado por la ultima mencionada.

El método de deposición química en fase vapor es el más utilizado para la producción de nanotubos de carbono, consiste en la introducción de un hidrocarburo (El cual utilizaremos en proyecto es metano) a un reactor de cuarzo que se encuentra a temperaturas elevadas (superiores a 600 °C), en el reactor se encuentra el catalizador, acelerando las reacciones químicas para la obtención de nanotubos de carbono.

Los catalizadores son esenciales para la producción de nanotubos de carbono ya que influyen en la calidad y rendimiento, permitiendo la adhesión disociativa del gas metano y a través de las partículas metálicas la formación del grafeno y nanotubos de carbono.

En el presente proyecto, se estudia la síntesis de nanotubos de carbono química en fase vapor y la comparación de las propiedades mecánicas que tiene los nanotubos de carbono con diferente composición de catalizador y nanofibras de carbono como reforzante de polipropileno. Mediante el método CVD se obtiene los nanotubos de carbono, a partir de gas metano, en un reactor que trabaja a altas temperaturas y presiones bajas.

ÍNDICE

AGRAI	DECIMIENTOSiv
INTRO	DUCCIÓNvii
RESUN	/IENv
ABSTR	XACTvi
CAPÍT	ULO I1
1. Marc	xo Metodológico1
1.1.	Tema de Investigación1
1.2.	Descripción del problema1
1.3.	Hipótesis1
1.4.	Variables1
	1.4.1. Variables Independientes
	1.4.2. Variables Dependientes
1.5.	Objetivos2
	1.5.1. Objetivo General
	1.5.2. Objetivos Específicos2
1.6.	Alcances
1.7.	Justificación
CAPÍT	ULO 2
2. Marc	xo Teórico4
2.1.	Definición de nanotubos de carbono4
2.2.	Propiedades de los Nanotubos de Carbono5
2.3.	Clasificación de nanotubos de carbono6
	2.3.1. Nanotubo de capa unica (SWNT)
	2.3.2. Nanotubo de multiple capa (MWCNT)
	2.3.3. Tipos de NTC sobre la basa de Quiralidad
2.4.	Métodos de producción de nanotubos de carbono9
	2.4.1. Método de Arco Electrico
	2.4.2. Método de Vaporización por Láser
	2.4.3. Método de Desposición Quimica en fase Vapor

viii

2.5.	Aplicación industrial de nanotubos de carbono	.12
2.6.	Metodología de síntesis de nanotubos de carbono	.13
2.7.	Caracterización de nanotubos de carbono	.14
2.8.	Definición de nanofibra de carbono	.14
2.9.	Deposición química de vapor CVD	.15
	2.9.1. Ventajas del método CVD	.15
2.10.	Catalizador	.16
2.11.	Soporte de catalizador (alúmina)	.17
2.12.	Fuente de Carbono	.17
2.13.	Polipropileno	.18
2.14.	Nanocompuestos de polímeros con nanotubos de carbono	.18
	2.14.1. Mezclado en solución	. 19
	2.14.2. Mezclado en Fundido	. 19
	2.14.3. Polimerización In-Situ	. 19
2.15.	Propiedades mecánicas de los materiales	. 19
	2.15.1. Ensayo mecánico de tracción	. 19
	2.15.2. Ensayo mecánico de charpy	.20
	2.15.3. Ensayo mecánico de dureza	.21
APÍTU	ULO 3	.22
APÍT Meto	ULO 3 odología Experimental	.22 .22
APÍT Meto 3.1.	ULO 3 odología Experimental Ubicación del Área de Investigación	.22 .22 .22
APÍT Meto 3.1. 3.2.	ULO 3 odología Experimental Ubicación del Área de Investigación Preparación de los catalizadores por el método de impregnación	.22 .22 .22 .22
APÍTI Meto 3.1. 3.2.	ULO 3 odología Experimental Ubicación del Área de Investigación Preparación de los catalizadores por el método de impregnación 3.2.1. Documentación experimental	.22 .22 .22 .22 .22
APÍT Meto 3.1. 3.2.	ULO 3 odología Experimental Ubicación del Área de Investigación Preparación de los catalizadores por el método de impregnación 3.2.1. Documentación experimental 3.2.2. Selección del tipo de catalizador	.22 .22 .22 .22 .22 .22
APÍT Meto 3.1. 3.2.	ULO 3	.22 .22 .22 .22 .22 .22 .23 .24
APÍT Meto 3.1. 3.2.	ULO 3	.22 .22 .22 .22 .22 .22 .23 .24 .25
APÍT Meto 3.1. 3.2.	ULO 3	.22 .22 .22 .22 .22 .22 .23 .24 .25 .25
APÍT Meto 3.1. 3.2.	ULO 3 dología Experimental Ubicación del Área de Investigación Preparación de los catalizadores por el método de impregnación 3.2.1. Documentación experimental 3.2.2. Selección del tipo de catalizador 3.2.3. Metodo de impregnación 3.2.4. Etapas del método de impregnación 3.2.5. Materiales y Reactivos 3.2.5.1. Reactivos	.22 .22 .22 .22 .22 .22 .22 .23 .24 .25 .25
APÍT Meto 3.1. 3.2.	ULO 3 dología Experimental Ubicación del Área de Investigación Preparación de los catalizadores por el método de impregnación 3.2.1. Documentación experimental 3.2.2. Selección del tipo de catalizador 3.2.3. Metodo de impregnación 3.2.4. Etapas del método de impregnación 3.2.5. Materiales y Reactivos 3.2.5.1. Reactivos 3.2.5.2. Materiales	.22 .22 .22 .22 .22 .22 .22 .23 .24 .25 .25 .26
APÍT Meto 3.1. 3.2.	ULO 3 dología Experimental Ubicación del Área de Investigación Preparación de los catalizadores por el método de impregnación 3.2.1. Documentación experimental 3.2.2. Selección del tipo de catalizador. 3.2.3. Metodo de impregnación 3.2.4. Etapas del método de impregnación 3.2.5. Materiales y Reactivos. 3.2.5.1. Reactivos. 3.2.5.2. Materiales 3.2.5.3. Instrumentos y Maquinaria	.22 .22 .22 .22 .22 .22 .22 .23 .24 .25 .25 .25 .26 .26
APÍT Meto 3.1. 3.2.	ULO 3 odología Experimental Ubicación del Área de Investigación Preparación de los catalizadores por el método de impregnación 3.2.1. Documentación experimental 3.2.2. Selección del tipo de catalizador. 3.2.3. Metodo de impregnación 3.2.4. Etapas del método de impregnación 3.2.5. Materiales y Reactivos. 3.2.5.1. Reactivos. 3.2.5.2. Materiales y Maquinaria 3.2.5.3. Instrumentos y Maquinaria 3.2.6. Metodologia del desarrollo de los catalizadores	.22 .22 .22 .22 .22 .23 .24 .25 .25 .25 .26 .26 .27
APÍT Meto 3.1. 3.2.	ULO 3 dología Experimental. Ubicación del Área de Investigación Preparación de los catalizadores por el método de impregnación 3.2.1. Documentación experimental 3.2.2. Selección del tipo de catalizador. 3.2.3. Metodo de impregnación 3.2.4. Etapas del método de impregnación 3.2.5. Materiales y Reactivos. 3.2.5.1. Reactivos. 3.2.5.2. Materiales 3.2.5.3. Instrumentos y Maquinaria 3.2.6.1. Catalizador Fe40-Ni10:	 .22 .22 .22 .22 .22 .23 .24 .25 .25 .25 .26 .26 .27 .27
	 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13. 2.14. 2.15. 	 2.6. Metodología de síntesis de nanotubos de carbono 2.7. Caracterización de nanotubos de carbono 2.8. Definición de nanofibra de carbono 2.9. Deposición química de vapor CVD 2.9.1. Ventajas del método CVD 2.10. Catalizador 2.11. Soporte de catalizador (alúmina) 2.12. Fuente de Carbono 2.13. Polipropileno 2.14. Nanocompuestos de polímeros con nanotubos de carbono 2.14.1. Mezclado en solución 2.14.2. Mezclado en Fundido 2.14.3. Polimerización In-Situ 2.15. Propiedades mecánicas de los materiales 2.15.1. Ensayo mecánico de charpy 2.15.3. Ensayo mecánico de dureza

3.3.	Síntes	is de Nanotubos de Carbono	38
Procedimiento			38
3.3.1. Document		Documentación experimental	38
	3.3.2.	Deposición Quimica de Vapor	38
	3.3.3.	Etapas del método CVD	39
	3.3.4.	Etapas del método de Sintesis	40
	3.3.5.	Parámetros que Influyen en el Proceso de Obtención de Nanotubos de	
		Carbono	40
		3.3.5.1. Temperatura de crecimiento de la fibra de carbono	40
		3.3.5.2. Tasa de flujo de los gases de reacción	41
		3.3.5.3. Catalizador	43
	3.3.6.	Definición de los parámetros de síntesis	44
	3.3.7.	Procedimiento de síntesis de fibra de carbono	44
	3.3.8.	Rediseño de procesos unitarios y sistema integrado a partir de	
		evaluaciones	45
	3.3.9.	Materiales y Reactivos	46
		3.3.9.1. Reactivos	46
		3.3.9.2. Materiales	46
		3.3.9.3. Instrumentos y Maquinaria	46
	3.3.10	. Metodología	46
		3.3.10.1.Síntesis de Nanotubo de Carbono	46
		3.3.10.2. Evaluación y validación de la operatividad y desempeño del sis	tema
		rediseñado	51
	3.3.11	. Caracterización de los Nanotubos de Carbono	53
		3.3.11.1.Microscopia electrónica de barrido	53
		3.3.11.2.Espectroscopia de Raman	56
3.4.	Aplica	ación de los Nanoestructuras de Carbono como Reforzante	60
	3.4.1.	Materiales y Equipos	60
		3.4.1.1. Equipos	60
		3.4.1.2. Materiales	60
	3.4.2.	Procedimiento	60
	3.4.3.	Preparación de las probetas normalizadas:	61
		3.4.3.1. Procedimiento de obtención de la mezcla	61
		3.4.3.2. Probeta normalizada para ensayo de Tracción:	67

	3.4.3.3. Probeta normalizada para ensayo de Charpy:	74
	3.4.3.4. Probeta normalizada para ensayo de Dureza:	78
3.4.4.	Resultados de los Ensayos	81
	3.4.4.1. Ensayo de Tracción:	81
	3.4.4.2. Ensayo de charpy	89
3.4.5.	Ensayo de Dureza	89

CONCLUSIONES	90
RECOMENDACIONES	91
BIBLIOGRAFÍA	

XI

ÍNDICE DE TABLAS

Tabla 2-1	Propiedades de los NTC
Tabla 2-2	Comparación de los métodos de obtención de Nanotubos de Carbono11
Tabla 3-1	Información de tipos de catalizadores para la obtención de NTC23
Tabla 3-2	Resumen de rango de cargas de Fe-Ni usada en la síntesis de Catalizador Fe40-
	Ni1024
Tabla 3- 3	Resumen de rango de cargas de Fe-Ni usada en la síntesis de Catalizador Fe50-
	Ni25
Tabla 3-4	Etapas del Proceso de Ingregnación25
Tabla 3- 5	Metodologia de síntesis del Catalizador Fe40-Ni1027
Tabla 3- 6	Metodología de síntesis del Catalizador Fe50
Tabla 3- 7	Análisis teórico de Temperatura para la obtención de NTC41
Tabla 3- 8	Análisis teórico de Flujo de Gases para la obtención de NTC42
Tabla 3-9	Análisis teórico del tipo de catalizador para la obtención de NTC43
Tabla 3- 10	Parámetros para la obtención de NTC44
Tabla 3-11	Procedimiento de Síntesis de NTC44
Tabla 3- 12	Parámetros de Programación de Flujo de Gases para la obtención de NTC 45
Tabla 3-13	Parámetros de Programación del Horno para la obtención de NTC45
Tabla 3- 14	Condiciones y obtención de NTC por Ensayo
Tabla 3-15	Numero de Probetas Normalizadas para los ensayos mecánicos
Tabla 3-16	Medidas de probetas de ensayo de Tracción
Tabla 3-17	Resultados de ensayo de Tracción
Tabla 3- 18	Resultados de ensayo de Charpy
Tabla 3- 19	Resultados de ensayo de Dureza

xii

ÍNDICE DE FIGURAS

Figura 2-1	Formación de Nanotubos de Carbono	5
Figura 2- 2	Estructura de nanotubo SWCNT	7
Figura 2- 3	Nanotubo de carbono de tipo MWCNT	8
Figura 2-4	Estructura de nanotubos de carbono según la Quiralidad: a) Armchair, b) Ziga	zag
	c) Chiral	8
Figura 2- 5	Diagrama esquemático básico del proceso CVD	.16
Figura 2- 6	Grafica Esfuerzo-Deformación	.19
Figura 2- 7	Ensayo de Charpy	.20
Figura 2-8	Ensayo de Dureza	.21
Figura 3-1	Mezcla del agitador magnético a 70°C	.29
Figura 3- 2	Solución de hierro Fe(NO3)3 9 H2O	.29
Figura 3- 3	Proceso de Secado mediante el Rotavapor	.30
Figura 3-4	Resultado del Catalizador después del Proceso del Rotavapor	.30
Figura 3- 5	Resultado del proceso de Secado- catalizador Fe40-Ni10	.31
Figura 3- 6	Resultado de proceso molido - catalizador Fe40-Ni10	.31
Figura 3- 7	Horno eléctrico calcinación a 600°C	.32
Figura 3-8	Resultado de proceso de calcinación - catalizador Fe40-Ni10	.32
Figura 3-9	Resultado del proceso de molienda- catalizador Fe40-Ni10	.33
Figura 3-10	Proceso de Rotavapor- catalizador Fe40-Ni0	.35
Figura 3-11	Resultado del proceso de secado- catalizador Fe40-Ni0	.36
Figura 3-12	Resultado de proceso molido - catalizador Fe40-Ni0	.37
Figura 3-13	Resultado final del catalizador	.37
Figura 3-14	Diagrama del proceso CVD	.39
Figura 3-15	Etapas para la síntesis de fibra de carbono	.39
Figura 3-16	Catalizador Fe50/Al2O3	.47
Figura 3-17	Colocación de Catalizador dentro del Reactor Horizontal	.47
Figura 3-18	Obtención de NTC	.49
Figura 3-19	Retiro de los NTC del Reactor	.50
Figura 3- 20	Pesado de la muestra de NTC	.50
Figura 3- 21	Deposición de NTC con el catalizador Fe50 Al2O3	.52
Figura 3- 22	Muestra de NTC con el catalizador Fe50 Al2O3	.52
Figura 3- 23	Deposición de NTC con el catalizador Fe40Ni10 Al2O3	.53
Figura 3- 24	Muestra de NTC con el catalizador Fe40Ni10 Al2O3	.53

xiii

Figura 3-25	Imágenes SEM de los Nanotubos de Carbono con el catalizador Fe50 Al2C)3
	5	54
Figura 3-26	Imágenes SEM de los Nanotubos de Carbono con el catalizador Fe50 Al2C)3
		54
Figura 3- 27	Imágenes SEM de los Nanotubos de Carbono con el catalizador Fe40Nil	10
	Al2O3	55
Figura 3-28	Imágenes SEM de los Nanotubos de Carbono con el catalizador Fe40Nil	10
	Al2O3	55
Figura 3-29	Imágenes SEM de los Nanotubos de Carbono	56
Figura 3- 30	Ensayo de Espectroscopia de Raman del Catalizador Fe40Ni10 Al2O3 a 700°	°C
		57
Figura 3- 31	Ensayo de Espectroscopia de Raman del Catalizador Fe40Ni10 Al2O3 a 750°	°C
		58
Figura 3- 32	Ensayo de Espectroscopia de Raman del Catalizador Fe40Ni10 Al2O3 a 800°	°C
		58
Figura 3- 33	Ensayo de Espectroscopia de Raman del Catalizador Fe50/Al2O3 a 700°C5	59
Figura 3- 34	Ensayo de Espectroscopia de Raman del Catalizador Fe50/Al2O3 a 750°C5	59
Figura 3- 35	Pesado de Muestras de NTC- NFC y Pellets PP puro	52
Figura 3- 36	De Muestras de NTC y Pellets PP	52
Figura 3- 37	Equipo Brabender	53
Figura 3- 38	Mezclado de Muestras de NTC y Pellets de PPpuro en el Equipo Brabender 6	54
Figura 3- 39	Mezcla de PPpuro y NTC	54
Figura 3-40	Prensa Brabender	55
Figura 3- 41	Planchas de acero inoxidable para prensado	56
Figura 3-42	Prensado de la mezcla PP+NTC(Fe40Ni10)6	56
Figura 3-43	Probeta para ensayo de Tracción Mecánico	57
Figura 3-44	Peso de PP virgen puro	58
Figura 3-45	Plancha de PP virgen	58
Figura 3-46	Probetas de PP puro para el ensayo de Tracción	59
Figura 3- 47	Muestra de PP virgen y NTC (Fe40 Ni10)	59
Figura 3-48	Mezcla de PP virgen y NTC (Fe40 Ni10)	70
Figura 3-49	Probetas de PP virgen y NTC (Fe40 Ni10) para el ensayo de Tracción	70
Figura 3- 50	Muestra de la mezcla de PP virgen y NTC (Fe50) salida del brabender	71
Figura 3- 51	Mezcla de PP virgen y NTC (Fe50)	71

XIV

Figura 3- 52	Probetas de PP virgen y NTC (Fe40 Ni10) para el ensayo de Tracción72
Figura 3- 53	Muestra de PP virgen y NFC (Ni50)72
Figura 3- 54	Mezcla de PP virgen y NTC (Ni50)73
Figura 3- 55	Probetas de PP virgen y NTC (Ni50) para el ensayo de Tracción73
Figura 3- 56	Pesado de Muestras de Pellets PP puro74
Figura 3- 57	Equipo Brabender75
Figura 3- 58	Molde para ensayo de Charpy75
Figura 3- 59	Introducción de la mezcla a la matriz para ensayo de Charpy76
Figura 3- 60	Probetas de Charpy de PP puro77
Figura 3- 61	Probetas de Charpy de PP + NTC (Fe40 Ni10)77
Figura 3- 62	Probetas de Charpy de PP + NFC (Ni50)78
Figura 3- 63	Molde para ensayo de Dureza
Figura 3- 64	Equipo para ensayos de Tracción
Figura 3- 65	Equipo de ensayo de Charpy
Figura 3- 66	Equipo para ensayo de Dureza81
Figura 3- 67	Longitudes de la probeta según Norma ASTM D 63
Figura 3- 68	Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 1 – PP Puro83
Figura 3- 69	Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 2– PP Puro83
Figura 3-70	Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 3– PP Puro 84
Figura 3-71	Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 1–NFC84
Figura 3-72	Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 2– NFC85
Figura 3-73	Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 3- NFC85
Figura 3-74	Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 1- NTC(Cat Fe
	50 Al2O3)
Figura 3-75	Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 2- NTC(Cat Fe
	50 Al2O3)
Figura 3-76	Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 3- NTC(Cat Fe
	50 Al2O3)
Figura 3-77	Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 1-NTC(Cat Fe
	40 Ni10 Al2O3)
Figura 3-78	Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 2- NTC(Cat Fe
	40 Ni10 Al2O3)
Figura 3-79	Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 3- NTC(Cat Fe
	40 Ni10 Al2O3)

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

GLOSARIO DE TÉRMINOS

Deposición Química en Fase Vapor	CVD
Deposición Química en Fase Vapor Catalítico	CCVD
Fibra de Carbono	FC
Nanofibras de Carbono	CNFs
Nanotubos de Carbono	CNT
Nanotubos de carbono de pared múltiple	MWCNT
Nanotubos de carbono de pared Simple	SWCNT
Descomposición Catalítica del Metano	DCM
Microscopia Electrónica de Transmisión	_TEM
Analisis Termogravimetrico	TGA
Difracción de rayos X	XDR
Microscopia Electronica de Barrido	SEM
Reducción de Temperatura Programada	TPR
Microscopia electronica de transmisión de alta resolución	HR-TEM
Microscopia electronica de transmisión de alta resolución Temperatura programada de oxidación	HR-TEM
Microscopia electronica de transmisión de alta resolución Temperatura programada de oxidación Fierro	HR-TEM TPO Fe
Microscopia electronica de transmisión de alta resolución Temperatura programada de oxidación Fierro Cobalto	HR-TEM TPO Fe Co
Microscopia electronica de transmisión de alta resolución Temperatura programada de oxidación Fierro Cobalto Niquel	HR-TEM TPO Fe Co Ni
Microscopia electronica de transmisión de alta resolución Temperatura programada de oxidación Fierro Cobalto Niquel Hidrógeno	HR-TEM TPO Fe Co Ni H ₂
Microscopia electronica de transmisión de alta resolución Temperatura programada de oxidación Fierro Cobalto Niquel Hidrógeno Nitrógeno	HR-TEM TPO Fe Co Ni H ₂ N ₂
Microscopia electronica de transmisión de alta resolución Temperatura programada de oxidación Fierro Cobalto Niquel Hidrógeno Nitrógeno Metano	HR-TEM TPO Fe Co Ni H ₂ N ₂ CH ₄
Microscopia electronica de transmisión de alta resolución Temperatura programada de oxidación Fierro Cobalto Niquel Niquel Hidrógeno Nitrógeno Metano Polipropileno	HR-TEM TPO Fe Co Ni H ₂ N ₂ CH ₄ PP
Microscopia electronica de transmisión de alta resolución Temperatura programada de oxidación Fierro Cobalto Cobalto Niquel Hidrógeno Nitrógeno Metano Polipropileno Grados Celcius	HR-TEM TPO Fe Co Ni H ₂ N ₂ CH ₄ PP °C
Microscopia electronica de transmisión de alta resolución Temperatura programada de oxidación Fierro Cobalto Niquel Niquel Hidrógeno Nitrógeno Metano Polipropileno Grados Celcius Nanómetro	HR-TEM TPO Fe Co Ni H2 N2 CH4 PP ℃ nm
Microscopia electronica de transmisión de alta resolución Temperatura programada de oxidación Fierro Cobalto Niquel Niquel Hidrógeno Nitrógeno Metano Polipropileno Grados Celcius Nanómetro Pascal	HR-TEM TPO Fe Co Ni H2 N2 CH4 PP °C nm Pa

xvi

CAPÍTULO I

1. Marco Metodológico

1.1. Tema de Investigación

"Producción y caracterización de nanoestructuras de carbono a partir de gas metano y evaluación de sus propiedades mecánicas en una matriz de polipropileno"

1.2. Descripción del problema

En la actualidad la información de la obtención de nanotubos de carbono es muy escasa, ya que las compañías que producen nanotubos de carbono salvaguardan su propiedad intelectual, proporcionando información limitada acerca de su obtención. Por lo cual este proyecto desea obtener información sobre la síntesis de los NTC variando la composición química del catalizador y comparando las propiedades mecánicas de los NTC Y NFC como reforzantes de polipropileno.

1.3. Hipótesis

Es posible obtener nanotubos de carbono con el método de deposición química en fase vapor, usando gas metano como hidrocarburo precursor y catalizadores de níquel y hierro soportados en alúmina con el método de impregnación, ya que los catalizadores a alta temperatura aceleran y propician la descomposición del metano para la producción de nanotubos de carbono.

Por ende, las comparaciones de las propiedades mecánicas se deben hacer mediante probetas normalizadas, para poder definir cuál de las nanoestructuras de carbono presenta las mayores propiedades mecánicas como reforzante del polipropileno.

1.4. Variables

1.4.1. Variables Independientes

- Porcentaje de Hierro en la composición química del catalizador.
- Porcentaje de Níquel en la composición química del catalizador.
- Método de preparación del catalizador.

- Método de síntesis de los NTC.
- Método de obtención de la matriz reforzada.
- Porcentaje de nanoestructuras de carbono en la matriz reforzada.

1.4.2. Variables Dependientes

- Caracterización de catalizadores estructurados.
- Caracterización de los NTC obtenidos.
- Caracterización de la matriz reforzante.

1.5. Objetivos

1.5.1. Objetivo General

Producir y caracterizar nanotubos de carbono a partir dos tipos de catalizador, y hacer una comparación de las propiedades mecánicas de compuestos de nanotubos y nanofibras de carbono con matriz reforzante de polipropileno.

1.5.2. Objetivos Específicos

- Obtener catalizadores metálicos de por el método de impregnación para diferentes concentraciones de níquel y hierro.
- Sintetizar los Nanotubos y Nanofibras de Carbono por el método de deposición química en fase vapor.
- Caracterizar los Nanotubos de carbono con un ensayo SEM.
- Definir la proporción de concentración de NTC y NFC en la Matriz reforzante.
- Definir la metodología de obtención de las probetas normalizadas para los ensayos mecánicos.
- Comparar los resultados de las propiedades mecánicas de los NTC y NFC como reforzarte en el polipropileno.

1.6. Alcances

El presente proyecto contempla la producción de nanotubos de carbono de dos tipos de catalizador, con el método de deposición química en fase vapor. Su caracterización se dará por medio de un análisis de microscopía electrónica de barrido y electroscopía RAMAN, posteriormente obtener las probetas normalizadas en una matriz de polipropileno con reforzantes de NTC y NFC para poder realizar ensayos y obtener sus propiedades mecánicas por consiguiente poderlas comparar.

Por lo tanto, el proyecto comprende la ejecución de experimentos; ejecución e interpretación resultados, caracterización de los nanotubos de carbono obtenidos en el laboratorio.

1.7. Justificación

Los nanotubos de carbono son de gran interés en la industria, debido a sus diversas aplicaciones y la capacidad de mejorar o reemplazar a distintos materiales usados en la industria. Presentan extraordinarias propiedades mecánicas como reforzante de resinas, aleaciones mecánicas, geles, cerámicos y polímeros, que intervienen en muchos procesos industriales, mediante el método de obtención propuesto nos permite evitar el uso de elevado de presiones y temperaturas.

Por lo tanto, la investigación esta tesis estará centrada en obtener nanotubos de carbono de mejores prestaciones de la calidad, con catalizadores de níquel- hierro soportado en alúmina, y un flujo de gas metano, para caracterizarlo y evaluar sus propiedades mecánicas mediante ensayos mecánicos.

Capítulo 2

2. Marco Teórico

2.1. Definición de nanotubos de carbono

Los CNT son alótropos de carbono con una nanoestructura cilíndrica (Ibrahim, 2013), formados por el ordenamiento concéntrico de varias o una sola capa, en una forma tubular. Las nanoestructuras de carbono se han estudiado durante décadas; pero fue el informe de Ijima, que logro los nanotubos de carbono sean una de las categorías más investigadas en el área de los materiales, debido a sus buenas propiedades ópticas (Ibrahim, 2013), electrónicas, mecánicas, electromecánicas y químicas que generan una extensa investigación sobre sus posibles aplicaciones (Kim Yen Tran, 2006). El descubrimiento de Sumio Iijima en la década de 1990 descubrió a los CNT como cilindros de grafeno a nano escala que se encuentran cerrados por los extremos. Estas estructuras de un solo cilindro se les dominaron nanotubos de carbono de pared simple (SWCNT), mientras que las estructuras que contengan 2 a más cilindros de grafeno concéntricas fueron denominadas nanotubos de paredes múltiple (MWCNTs) (Shah KA, 2016)

La demanda de producción de los nanotubos de carbono va en aumento actualmente supera las 1000 toneladas al año; sin embargo, el precio de ambos tipos de nanotubos (SWCNT y MWCNT) a granel sigue siendo muy costoso; siendo así 10 veces más costoso que el de fibras de carbono. Siendo unas variables que el proceso de producción a gran escala no se puede controlar la pureza y las propiedades de los NTC (Shah KA, 2016)

Figura 2- 1 Formación de Nanotubos de Carbono Fuente: (Ibrahim, 2013)

2.2. Propiedades de los Nanotubos de Carbono

Los nanotubos son conocidos como la fibra más rígida, con un módulo de Young de 1 a 1.4 TPa, una resistencia a la tracción de 50 GPa o superior. En comparación con las fibras de carbono en una relación fuerza-peso; son cuatro veces más fuertes en dirección axial. La máxima deformación de SWNT es >10%, la cual es mayor que la mayoría de los materiales estructurales. Estas excelentes propiedades mecánicas se deben al enlace de covalencia C–C y la red hexagonal sin costura. La conductividad también es muy alta en dirección al eje del nanotubo, normalmente va alrededor de 1750–5800 W /mK. (Inpil Kang, 2006)

		SWCNT	MWCNT
Propiedades	Modulo de Young	1 TPa	1-1.2 Tpa
Mecánicas	Resistencia a la Tracción	60 Gpa	0.15 Tpa
Propiedades Térmicas	Conductividad Térmica	1750-5800 W/m°K	>3000 W/m°K
Propiedades	Metálico	0 eV	0 eV
Electrónicas	Semiconductor	0.4-2 eV	0 eV

Tabla 2- 1 Propiedades de los NTC

Fuente: (Shah KA, 2016)

2.3. Clasificación de nanotubos de carbono

2.3.1. Nanotubo de capa unica (SWNT)

Los Nanotubos de capa única se forman a partir de una lámina de grafeno enrollada sobre sí misma (Ibrahim, 2013), presentan un diámetro atómico de 1.4nm y una longitud que varía de 0.3 a 2nm. Los SWNT presentan dos regiones con diferentes propiedades físicas y químicas, la primera región es la pared lateral del tubo y la segunda es la parte del extremo del tubo (Ahmad Aqel, 2010) Normalmente son sintetizados por el método de deposición química de vapor catalizada (CVD). (Inpil Kang, 2006)

Los SWNT tienen excelentes propiedades mecánicas y eléctricas (Ahmad Aqel, 2010); pero al introducirlos en una mezcla con un polímero de alta carga puede ser muy dificultoso. (Inpil Kang, 2006)

Los SWNTC presentan un costo purificado de \$ 500/g. (Carbón Nanotecnologías, Inc.) (Inpil Kang, 2006)

Figura 2- 2 Estructura de nanotubo SWCNT Fuente: (Ahmad Aqel, 2010)

2.3.2. Nanotubo de multiple capa (MWCNT).

Los MWCNT son múltiples capas de grafeno laminadas, estas están unidas mediante fuerzas electromagnéticas (López, 2006); con diámetros que van desde 2 a 50nm (Ibrahim, 2013); la distancia entre capas es aproximadamente de 3.3 A°; hay casos especiales que presenta nanotubos de doble pared, estos presentan una morfología y propiedades parecidas al los SWCNT (Ahmad Aqel, 2010). Los MWCNT presentan propiedades altas y variadas, pero son más fáciles de procesar debido a su diámetro mayor de 10-50nm y su longitud aproximada de 50nm. Se producen normalmente a partir del método CVD con metano de gas precursor sobre nanoparticulas de cobalto soportadas en nanoparticulas porosas de MgO. (Inpil Kang, 2006)

Los MWCNT presentan buenas propiedades electroquímicas, su costo es moderado; puede ser posible introducir los nanotubos a una mezcla polimérica mediante el proceso de fundición, dependiendo de las características del polímero. (Inpil Kang, 2006)

Los MWCNT presentan un costo de \$ 150/g. (First Nano, Inc) (Inpil Kang, 2006)

Figura 2-3 Nanotubo de carbono de tipo MWCNT Fuente (Mohammad Hadi Dehghani, 2018)

2.3.3. Tipos de NTC sobre la basa de Quiralidad

La quiralidad es un factor muy importante para determinar las propiedades eléctricas de los NTC; en base a esta propiedad los NTC se clasifican en Chiral, armchair y zigzag como veremos en la figura N°2.4 (Ibrahim, 2013)

Figura 2- 4 Estructura de nanotubos de carbono según la Quiralidad: a) Armchair, b) Zigzag c) Chiral Fuente: (Rao, 2001)

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

2.4. Métodos de producción de nanotubos de carbono

En la actualidad existen muchos tipos para la producción de Nanotubos de carbono como son el método de vaporización láser, el método de descarga por arco y el método de deposición química; este último el más utilizado debido a que presenta mayor producción de NTC y a un costo menor. (Shah KA, 2016)

2.4.1. Método de Arco Electrico

Este es el primer método para la fabricación de NTC en cantidades Macroscópicas, usado Lijima en 1991. Ebbesen y Ajayan informaron que este método produce a gran escala MWCNT (Ibrahim, 2013). Este método consiste en la conexión de electrodos de carbono los cuales generan un vapor por medio de una descarga eléctrica, esto genera que el carbono se evapore de forma plasmática generando así los NTC (Ahmad Aqel, 2010)

2.4.2. Método de Vaporización por Láser

Este método fue descubierto por un grupo de científicos de la universidad de Rice, cuando investigaban la producción de moléculas metálicas. Es un método se da por medio de la ablación laser, se usa varillas de grafito en cuales en su extremo lleva pequeñas cantidades de Ni y Co (Ibrahim, 2013), las cuales son bombardeadas mediante pulsos laser a 1200°C, permitiendo el crecimiento de los NTC, el tubo crecerá hasta que se agreguen los átomos del catalizador (Ibrahim, 2013). Este método logra producir pequeñas cantidades de CNT, debido a que estos nanotubos son de una pureza alta en comparación que el método de arco eléctrico o el método CVD. (Ahmad Aqel, 2010)

2.4.3. Método de Desposición Quimica en fase Vapor

Este método se descubrió en los años 1996 (Ibrahim, 2013). Es uno de los procesos más recomendados para la producción a gran escala de NTC, debido a que nos permite controlar la dirección del crecimiento en el sustrato y sintetiza una gran cantidad de NTC (Ibrahim, 2013). El proceso de síntesis de los NTC por este método trata de que el catalizador se deposite sobre el sustrato y luego de la activación del catalizador que se lleva a través de una sustancia química o recocido térmico, se coloca en un reactor tubular para el crecimiento. Se calienta el reactor a una temperatura de 600 a 1200°C, e ingresa una mezcla de un gas hidrocarburo (etileno, acetileno, metano, etc.) y gas inerte

(nitrógeno, hidrogeno, argón). En esta etapa comienza a reaccionar sobre la superficie de los catalizadores por un período de 15 a 60 min; obteniendo así los NTC y dejando enfriar al sistema a temperatura ambiente. (Shah KA, 2016). El método CVD da como resultado nanotubos de simple y múltiples capas de baja calidad, pero es eficiente en la producción en masa, lo que favorece una producción comercial. (Ahmad Aqel, 2010)

10

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

Parámetros	Deposición química en fase Vapor	Arco Eléctrico	Ablación Laser
Proceso	El proceso se basa en colocar el catalizador en el horno calentarlo a una temperatura elevada e ir suministrando un hidrocarburo gaseoso de manera lenta, a medida que se va descomponiendo el hidrocarburo libera átomos de carbono y se va formando los NTC	Este proceso consiste en conectar dos barras de grafito a una fuente de alimentación un una separación milimétrica; para lo cual a 100 amperios se evapora el carbono dando lugar a la formación de un plasma el cual dará la generación de NTC	En este método hace explosionar al grafito a través de pulsos láser, estos pulsos general gas de carbono los cuales a partir de ello se genera los CNT
Condición	gas inerte a baja presión	Gas inerte o nitrógeno a una presión de 500 torr	Altas temperaturas de 500 a 1000°C a presión atmosférica
Temperatura	500 a 1200 °C	4000°C	Temperatura ambiente a los 100°C
Productos	Nanotubos de SWCNT de una longitud de 0.6 nm y un diámetro de 4 nm	Nanotubos de Carbono SWCNT cortos de diámetro 0.6-1.4nm	Nanotubos de carbono SWCNT largos de 1- 5nm y de diámetro de 1-2nm
Troductos	Nanotubos de MWCNT de longitud de 10 nm y un diámetro de 240nm aprox.	Nanotubo MWCNT cortos de diámetro de 1-3 nm	
Fuente de Carbono	Hidrocarburos	Grafito Puro	Grafito
Pureza	Media a alta pureza	Media	Altas temperaturas de 500 a 1000°C a presión atmosférica
Costo	bajo	Alto	Alto
Rendimiento	Alto	Bajo	Bajo
Ventajas	Mejor manejo de producción a gran escala, proceso simple, en el caso de SWCNT se puede controlar el diámetro.	Produce fácilmente SWCNT y MWCNT de manera fácil; Los SWCNT tienen pocos defectos en su estructura; su síntesis se puede dar al aire libre	Los NTC son de buena calidad y de distribución más estrecha de los SWCNT que en el método de arco eléctrico

Tabla 2-2 Comparación de los métodos de obtención de Nanotubos de Carbono

UNIVERSIDAD

DE SANTA MARÍA

CATÓLICA

Fuente (Shah KA, 2016)

2.5. Aplicación industrial de nanotubos de carbono

Las características eléctricas de las CNT las hacen prometedoras para el desarrollo de un compuesto inteligente único y revolucionario. Además, a diferencia de otros materiales inteligentes, los CNT poseen una alta resistencia térmica y eléctrica por consiguiente pueden proporcionar capacidades funcionales simultáneamente. Estas capacidades representan la posibilidad de desarrollar actuadores. Capaces de operar a alta y baja tensión, sensores electroquímicos y mecánicos. (Inpil Kang, 2006)

Las diversas aplicaciones de las CNT son recubrimientos electromagnéticos y de absorción de microondas, materiales de interfaz térmica, iónicos y electrónicos, dispositivos de transporte tales como actuadores, supercondensadores, baterías, fibras, sensores, almacenamiento de energía y dispositivos de conversión de energía, fuentes de radiación y dispositivos semiconductores de tamaño manométrico entre otras. (Shah KA, 2016)

Existen diversas aplicaciones de los nanotubos de carbono, debido a sus excelentes propiedades que este posee entre las más usadas tenemos.

- Supercondesadores y Actuadores: Esta aplicación se da gracias a la su gran área superficie, así también por su alta conductividad eléctrica. Se Realizó estudios donde demuestran que los actuadores de NTC presentan una tensión máxima de 6MPa, este valor es 100 veces mayor a la de los musculo natural. (Ibrahim, 2013)
- Almacenamiento de Combustibles: Esta aplicación se debe a sus propiedades de capilaridad, al ser capaces de absorber gas; son utilizados para almacenamiento de combustibles a base de hidrogeno.
- **Bioquímica y Biosensores:** Se debe a las propiedades electrónicas y estructurales, lo cual lo hace muy usado en aplicaciones bioelectromecanicas. Han demostrado ser capaces de mejorar síntesis de enzimas y otras proteínas.
- **Baterías:** Esta aplicación se da para la mejora de las baterías de litio ya que a su alta reactividad limita su aplicabilidad; por tal motivo al combinar los CNT y el litio se espera que haya un intercambio de iones de litio por medio de los CNT ya que es necesario un medio de separación entre el ánodo y el cátodo; teóricamente se espera una capacidad de almacenamiento de 372mAh/g (Ibrahim, 2013).

• **Reforzarte de es Estructuras:** Se usan los NTC para mejorar las propiedades mecánicas de los materiales añadiendo una pequeña cantidad de NTC. Se crean piezas para generar una mayor dureza como partes automotrices, bicicletas entre otras aplicaciones.

2.6. Metodología de síntesis de nanotubos de carbono

La obtención de Nanotubos de carbono por el método de deposición química en fase vapor se da en varias etapas como las mostramos a continuación:

- Etapa de Purga: El objetivo de la purga es extraer todas las impurezas que se encuentren en el reactor, la purga se efectuará antes de ingresar el catalizador al reactor. El cual se realizará introduciendo un flujo elevado de nitrógeno al reactor, esta etapa se realizará a temperatura ambiente.
- Etapa de Calentamiento: El catalizador inactivo será colocado en el reactor antes del calentamiento. Luego se programa el horno a una temperatura y velocidad de calentamiento determinada; seguido se introduce en el sistema un flujo de nitrógeno el cual genera un ambiente inerte en el reactor.
- 3. Etapa de Activación de catalizador: La activación del catalizador consiste en la reducción del catalizador a su estado elemental que se realiza a través de ataque químico con gases reductores (H₂) y temperatura, de esta forma se obtiene catalizador pre-tratado que contiene las partículas metálicas en su forma activa a partir de la cual crecen los filamentos de Carbono.
- 4. Etapa de Crecimiento: Después de la etapa de reducción, para la formación de estructuras de carbono a partir de metano en el reactor se reajustarán las condiciones de temperatura y composición de los gases en el reactor, se calienta el horno/reactor a la temperatura de reacción suficiente (600 a 1200°C), se hace reaccionar una mezcla de hidrocarburos gaseoso (metano) y un gas de proceso (nitrógeno, hidrógeno, argón) sobre la superficie de los catalizadores activos durante un periodo determinado de tiempo (15-60 min). A partir de este momento comienza la nucleación y crecimiento de la fibra, a medida que la fuente de carbono se va descomponiendo y difundiendo a través del catalizador. La orientación de la "alfombra" de fibra formada está influenciada por la gravedad y por el sentido del flujo a través del lecho.

5. **Etapa de enfriamiento**: Para finalizar la síntesis, el horno se enfría mediante una corriente de nitrógeno hasta temperatura ambiente.

2.7. Caracterización de nanotubos de carbono

La caracterización de los NTC se da mediante dos tipos de análisis:

• Microscopia electrónica de Barrido

Este ensayo consiste en estudiar la superficie de los sólidos a una alta resolución, se da por la interacción de los electrones con los sólidos, lo cual nos da una mayor información de su orientación cristalina y su composición química. Un microscopio electrónico de barrido se puede observar la superficie de toda clase de muestras cristalinas y amorfas. (Farias Carrillo, 2010)

El funcionamiento de este microscopio está basado en exponer la muestra a un haz de electrónico de sección transversal pequeña y de alta energía, generando una imagen punto a punto de esa superficie (Farias Carrillo, 2010)

• Microscopia electrónica de Transmisión

La micrografía electrónica consiste al registro de la intensidad de electrones transmitidos a través de la muestra; por lo que estos electrones inciden sobre el material atravesándolos y permitiendo que el sistema de lentes magnéticos capte esta interacción, reproduciendo así una imagen electrónica. El objetivó principal de la microscopia electrónica es relacionar esta imagen electrónica, con la naturaleza y estructura del material. (Farias Carrillo, 2010)

Estos ensayos consisten en hacer un barrido con un haz de electrones sobre la muestra, la cual esa cubierta por una capa fina de carbón, generando partículas y energía, las cuales son captadas para transfórmalas en imágenes y datos.

2.8. Definición de nanofibra de carbono

Los CNF presentan múltiples tubos concéntricos anidados con paredes con un ángulo de 20° respecto a su eje longitudinal; presentan un gran diámetro como de los MWCNT, pero no son tubos continuos. Tienen un diámetro que va de 65 a 130 nm. (Inpil Kang, 2006) Los CNF presentan propiedades electroquímicas moderadas; al realizar una mezcla de NFC con polímeros es mucho más sencilla que los NTC, debido al tamaño de las fibras que son mucho más grandes. (Inpil Kang, 2006). El precio de las nanofibras de carbono es de \$100/lb (Ciencias aplicadas, Inc) (Inpil Kang, 2006)

2.9. Deposición química de vapor CVD

Este método fue desarrollado en los años 60 y 70, es muy utilizado en la obtención de fibras de carbono y nanofibras de carbono. El proceso de síntesis de los NTC por este método trata de que el catalizador se deposite sobre el sustrato y luego de la activación del catalizador que se lleva a través de una sustancia química o recocido térmico, se coloca en un reactor tubular para el crecimiento. Se calienta el reactor a una temperatura de 500 a 1100°C (López, 2006), e ingresa una mezcla de un gas hidrocarburo (etileno, acetileno, metano, etc) y gas inerte (nitrógeno, hidrogeno, argón). En esta etapa comienza a reaccionar sobre la superficie de los catalizadores por un periodo de 15 a 60 min; obteniendo así los NTC y dejando enfriar al sistema a temperatura ambiente. (Shah KA, 2016) . El método de deposición química en fase vapor es el más utilizado para la producción de nanotubos de simple capa y capa múltiple, utilizando como fuente un hidrocarburo (mayormente acetileno, etileno y metano) (Kim Yen Tran, 2006)

El método de deposición química en fase vapor es un proceso para la producción de NTC a gran escala debido a que es menos costoso porque trabaja a temperaturas por debajo de los 1000°C; para lo cual tiene un gran rendimiento de producción de nanotubos de un tamaño pequeño; por consiguiente para la producción de NTC de mayor tamaño se usan los métodos de ablación laser o descarga eléctrica (Kim Yen Tran, 2006); es una de las técnicas más prometedoras para la producción en masa de NTC, ya que el mundo hay diversas empresas que se ocupan de la producción y comercialización de CNT a gran escala. (Shah KA, 2016)

2.9.1. Ventajas del método CVD

- Este método es una técnica simple, económica y es ideal para la producción a gran escala de nanotubos de carbono
- Se puede utilizar gran cantidad de hidrocarburos en cualquier estado y sus diversos sustratos

• Se puede utilizar para el crecimiento de los nanotubos en formas diferentes como alineados, retos, enrolladlos o cualquier arquitectura deseada (Shah KA, 2016)

La síntesis de nanotubos por este método incluye muchos parámetros como los hidrocarburos, catalizadores, temperatura, presión, velocidad de flujo de gas, tiempo de deposición, tamaño de catalizador, geometría de reactor, etc.

Figura 2- 5 Diagrama esquemático básico del proceso CVD Fuente: (Shah KA, 2016)

2.10. Catalizador

La función del catalizador es descomponer a los hidrocarburos a una temperatura más baja que su descomposición espontanea, para así poder extraer el carbono y dar paso a la formación de los NTC. (Shah KA, 2016). Para la producción de NTC mediante el proceso de deposición química en fase vapor se usa catalizadores de hierro con soporte de cobalto o níquel preparados por método de impregnación, co-precipitanción o proceso de sol-gel. (Kim Yen Tran, 2006)

En los catalizadores la fuente que normalmente se usa son los metales de transición generalmente son el Fe, Co, Ni debido a que a altas temperaturas, el carbono tiene una mejor solubilidad con estos metales y también debido a que el carbono tiene una alta tasa de difusión con los metales ya mencionados (Shah KA, 2016)

Para la elección del soporte del catalizador es un área critica, mayormente se usan soportes de materiales como Al2O3, SiO2 o MgO debido a su gran área superficial, porosidad y dispersión de los metales para influir directamente en la productividad de producción de NTC (Kim Yen Tran, 2006)

En la síntesis de CNT los catalizadores juegan un rol importante, esto se debe a que dependiendo de las características del catalizador mejora el rendimiento y la calidad de los CNT. Las partículas catalizadoras actúan como sitios de nucleación para el crecimiento de los NTC. (Shah KA, 2016)

2.11. Soporte de catalizador (alúmina)

El soporte del catalizador desempeña una gran importancia en la calidad y rendimiento en la formación de NTC, hay que tener en cuenta el material del soporte, su morfología y sus propiedades de textura; dado que todo ello afecta en la distribución y tamaño en el crecimiento de los CNT. (Shah KA, 2016)

Los principales materiales usados como soporte del catalizador son el silicio, carburo de silicio, grafito, cuarzo, sílice, alúmina, oxido de magnesio, carbonato de calcio, zeolita, etc. El soporte de alúmina que usan Fe y Mo como catalizadores son más eficientes para la producción de nanotubos de simple capa. (Shah KA, 2016)

2.12. Fuente de Carbono

La fuente de carbono desarrolla un papel importante en la morfología de los nanotubos de carbono y su tasa de crecimiento. Los hidrocarburos lineales como el metano, etileno, acetileno, etc. producen NTC huecos y rectos, mientras que los hidrocarburos cíclicos como el benceno, xileno, fullereno, etc, producen CNT relativamente curvados. (Shah KA, 2016)

Las fuentes de carbono eficientes para la producción de MWCNT son los hidrocarburos cíclicos; pero son inestables a altas temperaturas y por lo tanto se puede producir compuestos carbonosos que influyen en el crecimiento de los NTC (Shah KA, 2016)

Las fuentes normalmente usadas para la producción de los NTC por el método CVD son el metano, acetileno, etano, benceno, etileno, xileno, monóxido de carbono, isobutano, etanol. Además otros compuestos orgánicos como el aceite de eucalipto, aceite de ricino, aceite de coco y palma entre otras se han usado para poder producir CNT. (Shah KA, 2016)

2.13. Polipropileno

El polipropileno es uno de los polímeros más usados en la producción de plásticos debido a sus buenas propiedades en peso y resistencia al impacto. Los proyectos de investigación en la actualidad, tienden a realizar mezclas con otros materiales sobre matrices de PP por medio de desarrollo de materiales compuestos utilizando partículas a nano o micro escala. (Caicedo Carolina, 2017). El PP presenta ventajas competitivas frente a otros polímeros por sus propiedades mecánicas, baja densidad, alta versatilidad y su bajo costo de producción (Morelo, 2015)

Las propiedades mecánicas del PP son determinadas mediante ensayos a la tracción y flexión mediante normas internacionales (ASTM ó ISO), las cuales nos dan dimensiones de las probetas a utilizar en cada ensayo.

En la actualidad el polipropileno presenta una demanda global de 55 millones de toneladas por año. Su uso masivo se debe a que es usado en diversas aplicaciones como recipientes rígidos, electrodomésticos, herramientas de mano, fibras, telas, piezas de vehículos, etc. en muchos casos reemplazando a los materiales metálicos y cerámicos. (Caicedo Carolina, 2017)

2.14. Nanocompuestos de polímeros con nanotubos de carbono

El objetivo esencial de la mezcla es obtener una buena dispersión y homogeneidad de los nanotestructuras de carbono en toda la matriz polimérica (Morales, 2008). La matriz de la mezcla entre un polímero y nanotubos de carbono presenta mejores propiedades que las del polímero en estado natural; estas propiedades dependen de diversos factores; el más importante es la dispersión de los nanotubos y su adhesión a los componentes, ya que al aumentar estos factores las propiedades de la matriz aumentan.

Si la dispersión de las Nanoestructuras de carbono en la matriz no es adecuada pueden actuar como defectos en lugar de mejorar sus propiedades. (Morales, 2008)

Existen 3 formas de mezcla entre polímeros y NTC las cuales detallamos a continuación:

2.14.1. Mezclado en solución

Se da cuando el polímero se disuelve en un solvente y simultáneamente se disuelve los NTC mediante un proceso de ultrasonido; al tener ambas soluciones se mezclan y posteriormente se extrae el solvente por un proceso de evaporación o ultrasonido. (López, 2006)

2.14.2. Mezclado en Fundido

En este método el polímero es calentado hasta su estado de fusión; cuando el polímero este completamente fundido se le añade los NTC; se sigue moviendo hasta obtener una mezcla completamente dispersa y homogénea. (López, 2006)

2.14.3. Polimerización In-Situ

En este método se utiliza la polimerización de monómeros en presencia de los NTC; permitiendo la dispersión de NTC durante toda la reacción; este proceso mejora la resistencia mecánica y la adhesión entre los nanotubos y el polímero. (López, 2006)

2.15. Propiedades mecánicas de los materiales

2.15.1. Ensayo mecánico de tracción

En el ensayo de tracción se somete al material a una fuerza axial; aplicando al material una o más fuerzas externas que van a tratar de estirar al material hasta su punto de rotura. Se realiza mediante equipos los cuales nos permite conocer curvas de carga – desplazamiento de las materias como se muestra en la figura 2-6. (Jones, 2008)

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

2.15.2. Ensayo mecánico de charpy

La prueba de impacto de charpy es muy utilizada en la industria debido a su facilidad para llevarla a cabo y su bajo costo; este ensayo nos permite conocer una descripción cualitativa de la fragilidad del material. (A. Rossoll, 1999)

El péndulo de Charpy es un péndulo ideado por Georges Albert Charpy que se utiliza en ensayos para determinar la tenacidad de un material. Este ensayo consiste en golpear mediante una masa a una probeta; esta masa se encuentra acoplada al borde el péndulo como se muestra en la figura, la cual se deja caer a una altura y Angulo calculado; mediante el cual se controla la velocidad de aplicación a la carga en el momento de impacto. (Ortega, 2006)

Son ensayos de impacto de una probeta entallada y ensayada a flexión en 3 puntos. El péndulo cae sobre el dorso de la probeta y la parte. La diferencia entre la altura inicial del péndulo (h) y la final tras el impacto permite medir la energía absorbida en el proceso de fracturar la probeta.

Las pruebas de impacto de Charpy se realizan según normas internacionales en las cuales detallan las dimensiones de las probetas. Las entidades de estas normativas son ISO y ASTM.

Figura 2- 7 Ensayo de Charpy Fuente: (Ortega, 2006)

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

2.15.3. Ensayo mecánico de dureza

El ensayo de dureza consiste en presionar una punta de diamante o una bola de acero endurecida contra la superficie del material que se va a analizar. Cuanto más penetre la punta de diamante más blando es el material (Jones, 2008). Este ensayo junto con el de tracción, uno de los más empleados en la selección y control de calidad de los metales. El ensayo de dureza es simple, aporta valiosa información y causa un daño mínimo a la probeta.

Capítulo 3

3. Metodología Experimental

3.1. Ubicación del Área de Investigación

El estudio se basa en la obtención de nanotubos de carbono a base de catalizadores de hierro y níquel soportados en alúmina por medio del método de impregnación y a diferentes concentraciones químicas, también en la preparación de probetas normalizadas de una mezcla de nanoestructuras de carbono y polipropileno. Se evaluarán la resistencia a la compresión, dureza, charpy, características morfológicas y la actividad de las diferentes probetas obtenidas. La preparación de las probetas y determinación de las propiedades mecánicas ya mencionadas se realizará en los laboratorios de materiales de la Universidad Católica de Santa María.

3.2. Preparación de los catalizadores por el método de impregnación

3.2.1. Documentación experimental

En el presente estudio se realizo la selecion del catalizador para poder obtener nanotubos de carbono, mediante la descomposion catalica del metano por el metodo de deposición quimica en fase vapor. El catalizador tiene como función principal descomponer el hidrocarburo a una temperatura menor a su temperatura de descomposición y directamente actua como sitios de nucleacíon para el creciemiento de nanoestructuras de carbono.

Los catalizadores mas usuados son los metales de transición del grupo VIII debido a su estabilidad, alta actividad y costo tales como el Ni, Fe y Co. Como se puede observar en la tabla 3-1, para la obtencion de nanotubos de carbono el principal componente del catalizador es el Fe. Al agregarle Fe al catalizador se mejora su estabilidad catalitica, mejorando la velocidad de disfusion del carbono y evitando la formacion de carbono amorfo (N. Bayat, 2015)

Al sintetisar NTC con el catalizador Ni-Fe/Al2O3por metodos de impregnación, sol-gel y coprecipitación; se obtuvo que el metodo de impregnación obtuvo una mejor actividad catalitica a altas temperaturas, pero una menor area superficial que los otros dos metodos ya mencionados. (Ahmed. Sadeq Al–Fatesh, 2016)

3.2.2. Selección del tipo de catalizador

Los nanotubos de carbono son alotropos de carbono tales como los fullerenos o el grafito; estos se forman en función a las capas de grafito debido a ello extinten 2 tipos de NTC, los nanotubos de capa simple y los nanotubos de capa multiple. La forma de obtencion de estos NTC depende esencialmente del tipo de catalizador usado y de las condiciones de obtencion (hidrocarburo, Gas de activacion, Temperatura)

De la informacion obtenida de la tabla 3-1 se muestra que para la obteción de nanotubos de carbono uno de los mejores resultados es el tipo de catalizador Fe-Ni/Al2O3 y el Fe/Al2O3,los cuales se emplearan en este estudio, debido a su alta producion de NTC y a su baja temperatura para realizar su obteción.

PAPER	Тіро	oo Concentración		Método	
/ * /1 14 • * /		Metales	Porcentaje (%)		
(Vladimir V. Chosnokov 2000)	Ni-Cu-Fe/Al2O3	Ni	70		
Cheshokov, 2009)		Cu	10	impregnación	
		Fe	10		
	$Ni_{Ee}/A12O3$	Ni	50		
	M-PC/AI203	Fe	5		
(Nima Bayat,	N: $E_0/\Lambda 12O2$	Ni	50	sol-gel y	
2015)	NI-FE/AI2O5	Fe	10	hímeda	
	Ni-Fe/Al2O3 —	Ni	50	numedu	
		Fe	15		
(Wenqin Shen,	N; $E_{\alpha}/M_{\alpha}(A1)O$	Ni	65	Humedad	
2007)	INI-Fe/Mg(AI)O -	Fe	35	incipiente	
	$Ni_{E} = Fe/\Delta 12O3$	Ni	5	Impregnación	
(A.S. Al-Fatesh,	111-1 C/11203	Fe	20	Sol-gel	
2016)	N; $E_0/\Lambda 12O_2$	Ni	10	301-gei	
	111-1 C/11203	Fe	20	Coprecipitación	
(Kim Yen Tran, 2006)	Fe/Al2O3	Fe	0.7x10-3 mol de Fe por gramo de catalizador	Sol-gel	
2000)	E G (1110.05	Fe	1 1		
	Fe-Co/AI2O3	Со	- 1.:1		
(Mauricio	$N_{\rm H}^{\rm i}$ Eq. (L = 20.2	Ni	50	Combustión	
Velasquez, 2016)	INI-Fe/La2U3	Fe	50	Propia	

Tabla 3-1 Información de tipos de catalizadores para la obtención de NTC

		Ni	Ni 75 Fe 25	
	NI-Fe/La2O3	Fe		
(Ahmed. Sadeq Al–Fatesh, 2016)	Fe/La2O3	Fe	25	Impregnación Húmeda
	Fe/Al2O3	Fe	50	
(J.L. Pinilla, 2011)	Fe-Co/MgO	Fe	50	Fusión
		Co	5	
	Ni-Fe/Al2O3	Ni	41.9	
(Gaowei Wang, 2013)	(2:1:1)	Fe	19.9	- Conrecipitación
	Ni-Fe/Al2O3	Ni	20.6	Coprecipitación
	(1:2:1)	Fe	39.1	

Fuente: Elaboración Propia

3.2.3. Metodo de impregnación

Existen muchos métodos para la preparación de catalizadores como el método de precipitación, fusión, sol-gel, combustión, coprecipitación e impregnación; este último se seleccionó debido a su mejor desempeño en el crecimiento de nanoestructruras de carbono.

Para la preparación de catalizadores por este método se parte a base de sales como en nitrato de aluminio (soporte del catalizador- Alúmina), nitrato de níquel (Ni(NO3)2.6H20) y Nitrato de hierro (Fe(NO3)2.9H2O). Se realiza la impregnación de metales en un soporte de alúmina en un volumen de disolución y una concentración de precursores (nitratos de níquel y hierro). El proceso se realiza en 2 etapas una para cada nitrato, posteriormente se procede a secar ya habiendo realizado la impregnación, y al finalizar se molturan y calcinan.

Se seleccionaron 2 tipos de catalizador para la obtención de NTC, la carga de estos catalizadores se muestra en la tabla 3-2 y tabla 3-3.

Tabla 3- 2 Resumen de rango de cargas de Fe-Ni usada en la síntesis de Catalizador Fe40-Ni10

Componente	%molar
Fe	40
Ni	10
Metal:alumina	50:50
Fuente: Elabora	ación Propia

Tabla 3-3 Resumen de rango de cargas de Fe-Ni usada en la síntesis de Catalizador Fe50-Ni

Componente	%molar
Fe	50
Metal:alumina	50:50

Fuente: Elaboración Propia

3.2.4. Etapas del método de impregnación

Las etapas del metodo de impregnación se detallan en la tabla 3-4; luego del realizar todas las etapas se obtiene el catalizador, el cual se debera almacenar en un recipiente libre de humedad hasta su uso.

Etapa	Descripción
Pesado de soporte	En esta etapa se pesa 120 gr del soporte del catalizador en una capsula
del catalizador	de porcelana.
Secado de soporte	Se procede a secar el soporte del catalizador en un horno por un tiempo
del catalizador	aproximado de 3 horas.
Añadir Solución de	Se añade la solución del metal, cuya concentración dependerá de la
Metal Precursor	cantidad de metal que se desea incorporar.
	Se mescla la solución en un agitador magnético a una temperatura de
Mezcla de solución	70°C durante un tiempo de 3 horas.
Reservar	Se reserva la mezcla en un balón por un tiempo de 24 horas
Secado en el	Se hace un secado de la solución en el Rota vapor hasta tener una
Rotavapor	mezcla homogénea y acuosa.
Secado	Se evapora el agua de la mezcla a 105°C por un tiempo de 4 horas.
Moler	Se muele la mezcla hasta un tamaño homogéneo y fino.
	Se calcina la mezcla a una temperatura de 500°C y por un tiempo de
Calcinar	4 horas.
Almacenar	Se almacena en un recipiente de polipropileno de tapa ancha.

Tabla 3- 4 Etapas del Proceso de Ingregnación

Fuente: Elaboración Propia

3.2.5. Materiales y Reactivos

3.2.5.1. Reactivos

- Nitrato de níquel
 - (Ni(NO3)2.6H20)

- Nitrato de hierro
 - (Fe(NO3)2.9H2O)

UNIVERSIDAD

LICA

de santa maría

• Nitrato de aluminio

- o Alúmina en polvo seca
- Agua destilada
- 3.2.5.2. Materiales
 - Pipetas gravimetica de vidrio
 - o Matraz
 - Bagueta de vidrio
 - Luna de reloj de vidrio
 - Mortero de porcelana
 - Espátula de acero inoxidable
 - Crisol de porcelana
- 3.2.5.3. Instrumentos y Maquinaria
 - o Balanza analítica
 - Agitador magnético con plancha caliente

- o Alcohol
- Hielo seco
- Frasco de polipropileno de tapa ancha
- Desecador de vidrio
- Probeta de vidrio de 100 ml
- o Espátula de acero inoxidable
- Varilla agitadora magnética

- o Horno eléctrico hasta 1200°C
- Estufa eléctrica hasta 300°C
- o Rotavapor

3.2.6. Metodologia del desarrollo de los catalizadores

3.2.6.1. Catalizador Fe40-Ni10:

Metodología de síntesis

Tabla 3- 5 Metodologia de síntesis del Catalizador Fe40-Ni10

Etapa		Descripción	
	Pesar Alúmina	Pesar 120 ± 1 gr de alúmina en polvo en la cápsula de porcelana en una balanza	
	Secar Alúmina	Secar 120 gr de alúmina en polvo en el horno a $105^{\circ}C \pm 5^{\circ}C$ durante 3 horas.	
	Pesar alúmina seca	Pesar (Valor gr ± 0.01 gr) de alúmina seca y fría en una capsula de porcelana ver tabla 2.	
	Trasladar la alúmina	Trasvasar a un balón de fondo redondo	
	Añadir solución de Niquel	Añadir la solución de Niquel cuya concentración dependerá de la cantidad de metal que se pretende incorporar.	
	Mezclar	Mezclar en el agitador magnético a 70°C durante tres horas.	
Ai	ňadir solución de Fe	Añadir la solución de Hierro cuya concentración dependerá de la cantidad de metal que se pretende incorporar.	
	Mezclar	Mezclar en el agitador magnético a 70°C durante tres horas.	
	Reservar	En el balón reservar la solución durante 24 horas.	
Fuente: Elaboración Propia			

Secar en el Rotavapor	Verter la mezcla al balón del rotavapor
Secar	Evaporar el agua de la mezcla a 105 °C hasta peso constante.
Moler	Moler la mezcla hasta tamaño homogéneo.
Verter la mezcla	Verter la mezcla a un crisol de porcelana
Calcinar	Calcinar a 550°C durante 6 horas.
Almacenar	Almacenar en un recipiente polipropileno de tapa ancha de 100 g de capacidad.

Síntesis del Catalizador

El catalizador se sintetizo en una relación molar 40:10:50 soportado en alúmina, siguiendo el procedimiento anteriormente indicado.

1. Se inició el proceso de preparación pesando las sales de nitrato de níquel y nitrato de hierro según a la relación molar planteada, seguidamente en un vaso precipitado de 600ml se le añadió un volumen de agua destilada para hacer la disolución de estas sales. Estas soluciones permanecieron en reposo un tiempo determinado. Luego se mezcló la solución de nitrato de níquel con solución de alúmina en un matraz de vidrio, para posteriormente poder hacer la impregnación mediante el agitador magnético a 70°C por un promedio de 3 horas; dando como resultado una solución acuosa de color celeste como se muestra en la figura 3-1.

Figura 3- 1 Mezcla del agitador magnético a 70°C Fuente: Elaboración Propia

 Después de la impregnación de alúmina y níquel, se le añadió la solución de hierro Fe(NO3)3 igualmente en el agitador magnético a 70°C, dando como resultado una solución acuosa de color marrón. Al acabar este proceso se reservó la mezcla por un promedio de 24 horas.

Figura 3- 2 Solución de hierro Fe(NO3)3 9 H2O Fuente: Elaboración Propia

3. Después de permanecer la mezcla reservada por un tiempo determinado, se inició el proceso de secado mediante el rotavapor, durando un promedio de 3 horas. Este proceso consta en una zona caliente donde se coloca la muestra de mediante un balón como se muestra en la figura 3-3 y una zona fría que sirve para la condensación del agua destilada extraída de la mezcla, para ello se utilizó hielo seco y alcohol para poder tener una baja temperatura necesaria en el proceso. Como resultado se obtuvo una solución espesa de color marrón como se puede ver en la figura 3-4.

Figura 3-3 Proceso de Secado mediante el Rotavapor Fuente: Elaboración Propia

Figura 3- 4 Resultado del Catalizador después del Proceso del Rotavapor Fuente: Elaboración Propia

4. Al obtener la mezcla del Rotavapor, se inicio con el proceso de secado del catalizador, para ello se uso una estufa a 105°C por un tiempo de 11 horas. Los

resultados obtenidos fueron un sólido de color marrón con una leve capa en la parte superior de color blanquecino como se puede ver en la figura N-°5.

Figura 3- 5 Resultado del proceso de Secado- catalizador Fe40-Ni10 Fuente: Elaboración Propia

5. Al ya tener una mezcla seca, se pasó al proceso de molienda. En este proceso se observó que el catalizador se hidrataba muy rápido por lo que se hacía complicado molerlo, ya que se formaba aglomeraciones de la mezcla; por lo cual se trató de reducirlo al tamaño más pequeño, como se podrá observar en figura 3-6.

Figura 3- 6 Resultado de proceso molido - catalizador Fe40-Ni10 Fuente: Elaboración Propia

 Ya obteniendo el catalizador después del proceso de molienda, se pasó al proceso de calcinación en un horno eléctrico de 1200°C a una temperatura de 550°C por

UNIVERSIDAD Católica De Santa María

un promedio de 6 horas. Resultado fue sólidos pequeños de color marrón-blanco como se puede ver en la figura 3-8.

Figura 3- 7 Horno eléctrico calcinación a 600°C Fuente: Elaboración Propia

Figura 3- 8 Resultado de proceso de calcinación - catalizador Fe40-Ni10 Fuente: Elaboración Propia

7. Al tener la muestra calcinada, se pasa al proceso de molienda nuevamente. En este proceso la muestra se molió por un promedio de 15 minutos hasta que se obtuvo un polvo fino de color marrón como se puede ver en la figura 3-9.

Figura 3- 9 Resultado del proceso de molienda- catalizador Fe40-Ni10 Fuente: Elaboración Propia

- Para finalizar se pesó, rotuló y almaceno la muestra obtenida obteniendo un promedio de 8g de catalizador Fe40-Ni10.
- 9. El catalizador se sintetizo en una relación molar 40:10:50 soportado en alúmina, siguiendo el procedimiento anteriormente indicado.

3.2.6.2. Catalizador Fe50:

Metodología de síntesis

Etapa	Descripción
Pesar Alúmina	Pesar 120 ± 1 gr de alúmina en polvo en la cápsula de porcelana en una balanza
Secar Alúmina	Secar 120 gr de alúmina en polvo en el horno a $105^{\circ}C \pm 5^{\circ}C$ durante 3 horas.
Pesar alúmina seca	Pesar (Valor gr ± 0.01 gr) de alúmina seca y fría en una capsula de porcelana ver tabla 2.

Tabla 3- 6 Metodología de síntesis del Catalizador Fe50Fuente: Elaboración Propia

Trasladar la alúmina	Trasvasar a un balón de fondo redondo	
Añadir solución de Fe	Añadir la solución de Hierro cuya concentración dependerá de la cantidad de metal que se pretende incorporar.	
Mezclar	Mezclar en el agitador magnético a 70°C durante tres horas.	
Reservar	En el balón reservar la solución durante 24 horas.	
Secar en el Rotavapor	Verter la mezcla al balón del rotavapor	
Secar	Evaporar el agua de la mezcla a 105 °C hasta peso constante.	
Moler	Moler la mezcla hasta tamaño homogéneo.	
Verter la mezcla	Verter la mezcla a un crisol de porcelana	
Calcinar	Calcinar a 550°C durante 6 horas.	
Almacenar	Almacenar en un recipiente polipropileno de tapa ancha de 100 g de capacidad.	

Síntesis del Catalizador

El catalizador se sintetizo en una relación molar 50:0:50 (Fe:Ni:Alúmina) soportado en alúmina, siguiendo el procedimiento anteriormente indicado.

 Se inició el proceso de preparación pesando la sal de nitrato de hierro según a la relación molar, seguidamente en un vaso precipitado de 600ml se le añadió un volumen de agua destilada para hacer la disolución de esta sal. Luego se mezcló la solución de nitrato de hierro con solución de alúmina en un matraz de vidrio, para posteriormente poder hacer la impregnación mediante el agitador magnético a 70°C por un promedio de 3 horas; dando como resultado una solución acuosa de color marrón. Al acabar este proceso se reservó la mezcla por un promedio de 48 horas.

 Después de permanecer la mezcla reservada por un tiempo determinado, se inició el proceso de secado mediante el rotavapor, durando un promedio de 3 horas. Como resultado se obtuvo una solución espesa de color marrón-rojizo como se puede ver en la figura 3-10.

Figura 3- 10 Proceso de Rotavapor- catalizador Fe40-Ni0 Fuente: Elaboración Propia

3. Al obtener la mezcla del Rotavapor, Al igual que el otro tipo de catalizador se inició con el proceso de secado, para ello se usó una estufa a 105°C por un tiempo de 11 horas. Los resultados obtenidos fueron un sólido macizo de color marrón - rojizo con una leve capa en la parte superior de color blanquecino como se puede ver en la figura 3-11.

REPOSITORIO DE TESIS UCSM

Figura 3- 11 Resultado del proceso de secado- catalizador Fe40-Ni0 Fuente: Elaboración Propia

4. Al ya tener una mezcla seca, se pasó al proceso de molienda. Se observó que al igual que el otro catalizador se hidrataba muy rápido por lo que también se hacía complicado molerlo por el mismo motivo que el otro catalizador; igualmente se trató de reducirlo al tamaño más pequeño, como ve en la figura 3-12.

Figura 3- 12 Resultado de proceso molido - catalizador Fe40-Ni0 Fuente: Elaboración Propia

- 5. Posteriormente ambos catalizadores pasaron al proceso de calcinación en un horno eléctrico a una temperatura de 550°C por un promedio de 6 horas, como se puede ver en la figura 3-7. El resultado de este catalizador fue solidos de tamaño pequeño de color marron-rojiso-blanco.
- 6. Al tener la muestra calcinada, se pasa al proceso de molienda nuevamente. En este proceso la muestra se molió por un promedio de 15 minutos hasta que se obtuvo un polvo fino de color marrón-rojizo. Luego se pasó a proceso de almacenaje y pesado, como se puede ver en la figura 3-13, obteniendo aproximadamente 9g de catalizador.

Figura 3- 13 Resultado final del catalizador Fuente: Elaboración Propia

3.3. Síntesis de Nanotubos de Carbono

Procedimiento

3.3.1. Documentación experimental

Las nanoestructuras de carbono se han estudiado durante décadas; pero fue el informe de Ijima, que logro los NTC sean una de las categorías más investigadas en el área de los materiales, debido a sus buenas propiedades electrónicas, mecánicas, electromecánicas y químicas que generan una extensa investigación sobre sus posibles aplicaciones (Kim Yen Tran, 2006)

En este estudio se realizó la selección de la metodología de obtención de nanotubos de carbono mediante el método de deposición química en fase vapor (CVD) tiendo como principales variables la temperatura, presión y flujo de gases; estos cuales forman un rol importante en la producción de NTC.

Los catalizadores sintetizados fueron basados en metales de transición del grupo VIII, como Ni, Fe; soportados en una base de alúmina; fueron sintetizados mediante el método de impregnación. El primer catalizador se desarrolló únicamente con el metal Fe soportado en alúmina. El segundo catalizador se desarrolló con metales de Fe y Ni, este último en un menor porcentaje.

La demanda de producción de los nanotubos de carbono va en aumento actualmente supera las 1000 toneladas al año; sin embargo, el precio de ambos tipos de nanotubos (SWCNT y MWCNT) a granel sigue siendo muy costoso; siendo así 10 veces más costoso del que las fibras de carbono. Siendo unas variables que el proceso de producción a gran escala no se puede controlar la pureza y las propiedades de los NTC (Rao, 2001)

3.3.2. Deposición Quimica de Vapor

En proceso de síntesis de los NTC por este método trata de que el catalizador se deposita sobre el sustrato y luego de la activación del catalizador que se lleva a través de una sustancia química o recocido térmico, se coloca en un reactor tubular para el crecimiento. Se calienta el reactor a una temperatura de 600 a 1200°C (Rao, 2001), e ingresa una mezcla de un gas hidrocarburo (etileno, acetileno, metano, etc) y gas inerte (nitrógeno, hidrogeno, argón). En esta etapa comienza a reaccionar sobre la superficie

de los catalizadores por un periodo de 15 a 60 min; obteniendo así los NTC y dejando enfriar al sistema a temperatura ambiente.

UNIVERSIDAD

de santa maría

CATÓLICA

Fuente: (Shah KA, 2016)

3.3.3. Etapas del método CVD

En este estudio se da a conocer el proceso de síntesis para la obtención de nanotubos de carbono con el método de deposición química en fase vapor. Para ello se da a conocer las diferentes etapas que se realizan como se muestra en la figura 3-15

Figura 3- 15 Etapas para la síntesis de fibra de carbono. Fuente: Elaboración Propia

3.3.4. Etapas del método de Sintesis

- Etapa de Purga: En esta etapa se basa en extraer todas las impurezas presentes en el reactor; consiste en introducir un elevado flujo de nitrógeno a temperatura ambiente por un tiempo aproximado de 5 minutos; se debe tener en cuenta que para empezar este proceso el reactor debe de estar sellado y el catalizador dentro del reactor.
- 2. Etapa de Calentamiento: En esta etapa el catalizador se encuentra en un estado inactivo; se procede al incrementar la temperatura del horno gradualmente y con un flujo de nitrógeno programado para generar un ambiente inerte dentro del reactor.
- 3. Etapa de Activación de catalizador: En esta etapa el catalizador se reduce a su estado elemental esto se da a través de un proceso químico con H2 y a una temperatura elevada; de esta forma se tiene el catalizador activado que contiene partículas metálicas de forma activa para la producción de NTC.
- 4. Etapa de Crecimiento: Se calienta el reactor a una temperatura de 600 a 1200°C, e ingresa una mezcla de un gas hidrocarburo (etileno, acetileno, metano, etc.) y gas inerte (nitrógeno, hidrogeno, argón). En esta etapa comienza a reaccionar sobre la superficie de los catalizadores por un periodo de 15 a 60 min; obteniendo así los NTC
- 5. **Etapa de enfriamiento**: En esta etapa se hace enfriar el reactor de manera gradual hasta alcanzar la temperatura ambiente.

3.3.5. Parámetros que Influyen en el Proceso de Obtención de Nanotubos de Carbono

3.3.5.1. Temperatura de crecimiento de la fibra de carbono

La temperatura de crecimiento es un parámetro de suma importancia, la temperatura para la obtención de NTC oscila de 500 a 1200°C, a altas temperaturas se puede desactivar el catalizador y generar productos carbonosos que perjudican la producción de NTC. En la tabla3-7 se hizo un estudio de diferentes artículos de investigación para así generar la temperatura apropiada que se usara en esta investigación.

Tabla 3-7 Análisis teórico de Temperatura para la obtención de NTC

PAPER	REVISTA	Temperatura	
(Wenqin Shen, 2007)	Energy and Fuels (2007)	Calentamiento en modo rampa (2°C/min) hasta una temperatura de 700°C	
		500-650-700°C	
(A.S. Al-Fatesh, 2016)	International journal of Saudi Chemical society (2016)	500-800°C	
(Kim Yen Trana, 2006)	International journal of hydrogen energy (2006)	700°C	
(Mauricio Velasquez,	International journal of	600°C	
2016)	hydrogen energy (2016)	800-900°C	
(Ahmed. Sadeq Al-	Journal of The Chemical	500°C	
Fatesh, 2016)	Society Of Pakistan (2016)	700°C	
(J.L. Pinilla, 2011)	International journal of hydrogen energy (2011)	550°C	
	nyurogen energy (2011)	800°C	
(JW Seo, 2006)	Journal of Physics (2006)	680-700-720-740°C	
(V.I. Alexiadisa, 2010)	International journal of hydrogen energy (2010)	650°C	
(JF. Colomer, 2000)	International journal of hydrogen energy (2000)	1000°C	
(Morecoutton 2016)	International journal of	680-740°C	
(1viorassuttoa, 2010)	hydrogen energy (2016)	se incrementa la Temperatura en modo rampa a razón de 10°C/min	
(Y. Ouyanga, 2007)	International journal of hydrogen energy (2007)	700-750-800-850-900-950°C	

Fuente: Elaboración Propia

3.3.5.2. Tasa de flujo de los gases de reacción

Para la síntesis de NTC se debe tener en cuenta cuales son los flujos que deben ingresar al reactor en todas las etapas de este proceso; para ello se realizó un resumen de diferentes artículos científicos teniendo en cuenta el diámetro del reactor y las condiciones a operar como se muestra en la tabla 3-8

Tabla 3-8 Análisis teórico de Flujo de Gases para la obtenció	n de NTC
---	----------

		Síntesis de NTC		
PAPER	REVISTA	Gases	Caudal	Concentra ción
(Wongin Shop 2007)	Energy and Eucle (2007)	H2	50 ml/min	-
(wenqin Shen, 2007)	Energy and Fuers (2007)		10 ml/min	
(A.S. Al-Fatesh,	International journal of Saudi	H2	40 ml/min	-
2016)	Chemical society (2016)	CH4-N2	25 ml/min	1.5:1
		Не	2.23mmol/seg	-
(Kim Yen Trana, 2006)	International journal of hydrogen energy (2006)	Etileno/He	C2H4=0.0223 mmol/seg H2=0.521 mmol/seg	-
		H2	25ml/min	-
(Mauricio Velasquez, 2016)	International journal of hydrogen energy (2016)	Не	-	
_010)	njurogen energy (2010)	Etanol-Glicerol	0.05ml/min	2.:1
		N2	20ml/min	-
(Ahmed. Sadeq Al– Fatesh. 2016)	Society Of Pakistan (2016)	H2	40 ml/min	-
, ,	Society of Fukistan (2010)	CH4/N2	20ml/mi	3.:1
	International journal of	H2	-	-
(J.L. Pinilla, 2011)	hydrogen energy (2011)	CH4	1.5 dm3/h x 1g de catalizador	
(R Aghababazadeh, 2006)	Journal of Physics: Conference Series 26 (2006)	N2	Se hace pa purga con N2 para eliminar impurezas	-
		CH4	Con velocidades de 4,6,8 l/min	-
		N2	se continua con un flujo de N2 hasta alcanzar la temperatura ambiente	
(JW Seo, 2006)	Journal of physics d: applied physics (2006)	C2H2/N2	150mlmin-50ml/min	
(V.I. Alexiadisa, 2010)	International journal of hydrogen energy (2010)	Не	200 SCCM	-
		C2H4-He-H2	-	20-75-5%
(JF. Colomer 2000)	International journal of	H2	-	-
(, 2000)	hydrogen energy (2000)	CH4/H2	75ml/min-300ml/min	-
	International journal of	N2	50-100 ml/min	-
(Morassuttoa, 2016)	hydrogen energy (2016)	H2-N2	10ml/min-40ml/min	
		Etileno	50 ml/min	
(Y. Ouvanga 2007)	International journal of	Ar	200 ml/min	-
(1. Ouyaliga, 2007)	hydrogen energy (2007)	CH4	60 ml/min	

Fuente: Elaboración Propia

3.3.5.3. Catalizador

En la síntesis de CNT los catalizadores juegan un rol importante, esto se debe a que dependiendo de las características del catalizador mejora el rendimiento y la calidad de los CNT. Las partículas catalizadoras actúan como sitios de nucleación para el crecimiento de los NTC. Hay que tener en cuenta cual debe ser la cantidad de catalizador que se debe utilizar en el proceso, ya que de ello dependerá directamente cuanto de NTC se producirá al final del proceso. Hay que tener en cuenta el tipo de recipiente en que se colocara el catalizador para q no influya en la reacción del proceso, normalmente estos envases son de alúmina. En la Tabla 3-9 se muestra las cantidades de catalizador puestas en diferentes pruebas para la obtención de NTC:

		CATALIZADOR				
PAPER	REVISTA	Tipo	Método	Cantidad de Catalizador		
(Wenqin Shen, 2007)	Energy and Fuels (2007)	Ni- Fe/Mg(Al)O	Humedad incipiente	1 gramo		
(Mauricio Velasquez, 2016)	International journal of hydrogen energy (2016)	Ni-Fe/La2O3	Combustión Propia	50 mg		
(Ahmed. Sadeq Al–Fatesh, 2016)	Journal of The Chemical Society Of Pakistan (2016)	Fe/La2O3	Impregnación Húmeda	0.3g		
(JW Seo, 2006)	Journal of physics applied physics (2006)	FeCoO4	-	100 mg		
(V.I. Alexiadisa, 2010)	International journal of hydrogen energy (2010)	Fe2O3/A12O3	Combustión explosiva controlada	3mg		
(JF. Colomer, 2000)	International journal of hydrogen energy (2000)	Fe/MgO	Impregnación	1g		
(Y. Ouyanga, 2007)	International journal of hydrogen energy (2007)	Mo-Fe/MgO		100mg		

Tabla 3-9 Análisis teórico del tipo de catalizador para la obtención de NTC

Fuente: Elaboración Propia

3.3.6. Definición de los parámetros de síntesis

De acuerdo a la revisión del material bibliográfico, se definen los parámetros a utilizar en este proceso de obtención de los NTC como se muestra en la tabla 3-10

/ERSIDAD

SANTA MARÍA

Temperatura de	700°C
crecimiento	
Presión del reactor	Atmosférica
(bar)	
Tasa de flujo de gas	90 ml/min
(metano)	
Catalizador	0.2 gr

Tabla 3-10 Parámetros para la obtención de NTC

Fuente: Elaboración Propia

3.3.7. Procedimiento de síntesis de fibra de carbono

En el proceso de síntesis de los NTC se realiza mediante un reactor y tubo de cuarzo de forma horizontal; los controles de temperatura se dan mediante un controlador digital de temperatura y los flujos mediante controladores de flujo digitales. En la tabla 3-11, se definen todas las etapas en este proceso de obtención de los NTC, dando a conocer las temperaturas, los flujos y el tiempo usados en la obtención de NTC. Cada Proceso de obtención de nanotubos de carbono lleva un tiempo aproximado de 11 horas, el cual debe ser monitoreado de manera constante y registrado en los formatos establecidos en la investigación.

Tabla 3-11 Procedimiento de Síntesis de NTC

ETAPAS	GASES	TEMPERATURA	PRESIÓN	CAUDAL	TIEMPO
PURGA	N2	20°C	Atmosférica	250 mL/min	5 min
CALENTAMIENTO	N2	550°C	Atmosférica	150 mL/min	30 min
ACTIVACIÓN DEL	N2	550°C	Atmosférica	150 mL/min	120 min
CATALIZADOR	H2	550°C	Atmosférica	100 mL/min	120 11111
CRECIMIENTO DE NTC	N2	700°C	Atmosférica	67.5 mL/min	180 min
NIC .	CH4	700°C	Atmosférica	90 mL/min	
ENFRIAMIENTO	N2	20°C	Atmosférica	150 mL/min	240 min

Fuente: Elaboración Propia

3.3.8. Rediseño de procesos unitarios y sistema integrado a partir de evaluaciones.

Mediante los ensayos realizados se han definido los parámetros óptimos para la síntesis de nanotubos de carbono; los cuales se presentan en la tabla 3-12; también se debe tener en cuenta la programación de temperaturas realizadas en el horno, debido a que el horno presenta 3 zonas de calentamiento, se realizó la síntesis en la zona 2 programando las temperaturas en las diferentes etapas a seguir, para la zona 1 y 3 del horno se trabajó con una diferencia de 50°C para una mejor estabilización de temperatura en la zona 2, como se muestra en la tabla 3-13.

Tabla 3- 12 Parámetros de Programación de Flujo de Gases para la obtención de NTC

ЕТАРА	Temperatura	Presión	CH4	N_2	\mathbf{H}_2	At
	°C	bar	ml/min	ml/min	ml/min	min
Purga	0	0	0	250	0	5
Calentamiento	550	0	0	150	0	30
Homogenización	550	0	0	150	0	10
Activación	550	0	0	150	100	120
Calentamiento	550	0	0	150	0	25
Homogenización	700	0	0	150	0	10
Crecimiento	700	0	90	67.5	0	180
Enfriamiento	300	0	0	150	0	240

Fuente: Elaboración Propia

Tabla 3-13 Parámetros de Programación del Horno para la obtención de NTC

20						
	ZONA 1		ZONA 2		ZONA 3	
	(°C)	(min)	(°C)	(min)	(°C)	(min)
Purga	20	5	20	5	20	5
Calentamiento	500	30	550	30	500	30
Homogenizació n	500	10	550	10	500	10
Activación	650	120	700	120	650	120
Calentamiento	650	25	700	25	650	25
Homogenizació n	650	10	700	10	650	10
Crecimiento	650	180	700	180	650	180
Enfriamiento	20	240	20	240	20	240
Eventer Elshenseide Deserie						

Fuente: Elaboración Propia

3.3.9. Materiales y Reactivos

3.3.9.1. Reactivos

- o Metano (CH4)
- Hidrogeno (h2)
- o Nitrógeno (N2)

3.3.9.2. Materiales

- o Matraz
- Espátula de acero inoxidable

3.3.9.3. Instrumentos y Maquinaria

- o Balanza analítica
- Reactor horizontal
- Termocuplas

3.3.10. Metodología

3.3.10.1. Síntesis de Nanotubo de Carbono

Los NTC se sintetizaron a partir de dos tipos de catalizador uno a base de Fe y otro a base de Fe Y Ni, este último a una menor concentración; para ello se utilizó un reactor horizontal y teniendo como fuente precursora de carbono el metano se siguieron los siguientes pasos en el proceso de síntesis:

 Se inició el proceso pesando el catalizador (Fe50/Al2O3 o Fe40Ni10/Al2O3) en una balanza digital, como se informó anteriormente el peso del catalizador para las pruebas será de 0.2g; posteriormente para colocarlo encima del recipiente de alúmina, el cual se insertará dentro del reactor. Se debe tener en cuenta que el catalizador debe ser expandido en toda la superficie del recipiente de una manera homogénea cubriendo casi toda la superficie.

- Catalizador Fe50/Al2O3
- Catalizador
 Fe40Ni10/Al2O3

0

- Frasco de polipropileno
- Medidor de temperatura digital
- Flujometro digital (Alicat)

Los catalizadores sintetizados tienen un color rojizo y una superficie fina como se muestra en la imagen 3-16

Figura 3- 16 Catalizador Fe50/Al2O3 Fuente: Elaboración Propia

2. Luego de tener a los catalizadores en el recipiente se procede a insértalos dentro del reactor; se debe tener en cuenta que se debe de sellar correctamente el tubo de cuarzo para evitar fugas en el proceso; habiendo finalizado el aislamiento del reactor, se procede a programar el horno teniendo en cuenta todas las etapas del proceso como se detalló en la tabla 3-13

Figura 3- 17 Colocación de Catalizador dentro del Reactor Horizontal Fuente: Elaboración Propia

- 3. Al culminar la programación del horno se inicia la etapa de purga eliminando así todas las impurezas presentes dentro del tubo de cuarzo para poder empezar con el proceso. En esta etapa se programa el flujometro del N2 (Alicat) a un flujo de 250 mL/min por un tiempo de 5 minutos; esta etapa se realiza a temperatura ambiente.
- 4. Terminado la etapa de Purga se procede a la etapa de Calentamiento para la cual se da de forma gradual con una velocidad de calentamiento de 50°C/min hasta alcanzar una temperatura de 550 °C por un tiempo aproximado de 30 minutos. En esta etapa se reduce el flujo del nitrógeno a 150 mL/min.

Se debe tener en cuenta que se deja 10 minutos al mismo flujo y temperatura para permitir la estabilización del sistema.

- 5. Al término de la etapa de calentamiento se da inicio a la activación del catalizador habiendo alcanzado la temperatura de 550°C, para ello se introduce un flujo de hidrogeno a razón de 100 mL/min y se conserva el flujo de nitrógeno, por un tiempo de 2 horas.
- 6. Cuando el catalizador se encuentra activado se eleva la temperatura a 700°C, para dar inicio a la etapa de crecimiento de NTC, se corta el flujo del hidrogeno y se mantiene constante el flujo de nitrógeno; esta etapa se da por un tiempo de 25 minutos. En esta etapa se da un tiempo de 10 minutos igualmente para la estabilización del sistema.
- Posteriormente se inicia la etapa de crecimiento de los NTC a una temperatura de 700°C, se disminuye el flujo de nitrógeno a razón de 67.5 ml/min y se apertura el flujo de metano a razón de 90 mL/min por un tiempo de 3 horas.

Tener en cuenta que en todo el proceso se realiza un monitoreo constante de presión temperatura y flujos anotados en el formato de control del laboratorio de investigación dados en el Anexo 3

8. Al terminar el proceso de crecimiento de los NTC se procede a la etapa de enfriamiento. Cortando el flujo del metano y aumentando el flujo de Nitrogeno a 150 mL/min. En esta etapa se debe dejar enfriar el reactor a temperatura ambiente, este proceso dura un promedio de 4 horas.

9. Culminado todas las etapas se procede a la extracción de NTC; al abrir el reactor se mostró los nanotubos de carbono en una forma de polvo negro bastante voluminosa, y se procedió a su extracción. En todo momento se debe estar con los implementos de seguridad y un ambiente aislado para no contaminar la muestra.

Figura 3- 18 Obtención de NTC Fuente: Elaboración Propia

Figura 3- 19 Retiro de los NTC del Reactor Fuente: Elaboración Propia

10. Se procede el pesado de la muestra para su posterior almacenamiento y rotulado

Figura 3- 20 Pesado de la muestra de NTC Fuente: Elaboración Propia

50

 El proceso de síntesis de NTC se realizó de la mima manera para ambos tipos de catalizador siguiendo las mismas etapas.

VERSIDAD

SANTA MARÍA

3.3.10.2. Evaluación y validación de la operatividad y desempeño del sistema rediseñado.

Para la evaluación y validación de la operatividad y desempeño del sistema rediseñado se han realizado repeticiones de los ensayos cuyos resultados obtenidos se muestran en la Tabla N° 3-14

N°	Catalizador	Temperatura (°C)	Presión del Reactor	Cantidad de catalizador (g)	Tiempo de crecimiento (horas)	Obtencion de NTC (g)
1	Fe50	750	Atmosférico	0.2	3	0.7995
2	Fe50	700	Atmosférico	0.2	3	1.2821
3	Fe50	700	Atmosférico	0.2	3	1.075
4	Fe50	700	Atmosférico	0.2	3	0.929
5	Fe50	700	Atmosférico	0.2	3	0.901
6	Fe50	700	Atmosférico	0.2	3	0.8232
7	Fe50	700	Atmosférico	0.2	3	0.8664
8	Fe40 Ni10	800	Atmosférico	0.2	3	0.3895
9	Fe40 Ni10	700	Atmosférico	0.2	3	1.7644
10	Fe40 Ni10	700	Atmosférico	0.2	3	1.8759
11	Fe40 Ni10	700	Atmosférico	0.2	3	1.637
12	Fe40 Ni10	700	Atmosférico	0.2	3	1.5646

Tabla 3- 14 Condiciones y obtención de NTC por Ensayo

Fuente: Elaboración Propia

Se realizaron pruebas a diferentes temperaturas llegando a la conclusión que los catalizadores a una temperatura mayor de 750°C perdían su capacidad de síntesis de NTC, por lo que se estimó que la temperatura adecuada para el proceso era de 700°C como se puede ver en la tabla 3-14.

Se realizó la prueba con el catalizador Fe50 Al2O3 a 3 horas de crecimiento y a una variación de temperatura de 700°C a 750°C como temperatura de crecimiento y con un peso del catalizador de 0.2 g En el Figura 3-21 se observa que existe una variación en los pesos de nanotubo de carbono (NTC) obtenidos, siendo la mayor producción NTC a la temperatura de 700 °C.

Figura 3- 21 Deposición de NTC con el catalizador Fe50 Al2O3 Fuente: Elaboración Propia

Figura 3- 22 Muestra de NTC con el catalizador Fe50 Al2O3 Fuente: Elaboración Propia

Se realizó la prueba con el catalizador Fe40Ni10 Al2O3 a 3 horas de crecimiento y a una variación de temperatura de 700°C a 800°C como temperatura de crecimiento y con un peso del catalizador de 0.2 g

En la figura 3-23 se observa que existe una variación en los pesos de nanotubo de carbono (NTC) obtenidos, siendo la mayor producción NTC a la temperatura de 700 °C.

Figura 3- 23 Deposición de NTC con el catalizador Fe40Ni10 Al2O3 Fuente: Elaboración Propia

Figura 3- 24 Muestra de NTC con el catalizador Fe40Ni10 Al2O3 Fuente: Elaboración Propia

3.3.11. Caracterización de los Nanotubos de Carbono

3.3.11.1. Microscopia electrónica de barrido

En el análisis mostrado por el SEM nos muestra filamentos de carbono con presencia de metal en su composición. Las siguientes imágenes es el resultado de los NTC obtenidos en el laboratorio de la universidad Católica de Santa María comprobando la obtención de Nanotubos de carbono en este Proyecto.

Figura 3- 25 Imágenes SEM de los Nanotubos de Carbono con el catalizador Fe50 Al2O3 Fuente: Elaboración Propia

Figura 3- 26 Imágenes SEM de los Nanotubos de Carbono con el catalizador Fe50 Al2O3 Fuente: Elaboración Propia

Figura 3- 27 Imágenes SEM de los Nanotubos de Carbono con el catalizador Fe40Ni10 Al2O3 Fuente: Elaboración Propia

Figura 3- 28 Imágenes SEM de los Nanotubos de Carbono con el catalizador Fe40Ni10 Al2O3 Fuente: Elaboración Propia

Figura 3- 29 Imágenes SEM de los Nanotubos de Carbono Fuente: Elaboración Propia

56

3.3.11.2. Espectroscopia de Raman

La espectroscopia Raman confirma la presencia de los nanotubos de carbono. Para la deconvolución de las bandas, se utilizaron las curvas de ajustes Lorentziana y Gaussiana.

UNIVERSIDAD

DE SANTA MARÍA

CATÓLICA

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

Figura 3- 31 Ensayo de Espectroscopia de Raman del Catalizador Fe40Ni10 Al2O3 a 750°C Fuente: Elaboración Propia

Catalizador Fe50/Al2O3

Figura 3- 33 Ensayo de Espectroscopia de Raman del Catalizador Fe50/Al2O3 a 700°C

Figura 3- 34 Ensayo de Espectroscopia de Raman del Catalizador Fe50/Al2O3 a 750°C

Fuente: Elaboración Propia

3.4. Aplicación de los Nanoestructuras de Carbono como Reforzante

3.4.1. Materiales y Equipos

- 3.4.1.1. Equipos
 - o Brabender
 - o Prensa Brabender
 - Balanza analítica
 - Equipo de ensayos de tracción
- 3.4.1.2. Materiales
 - Crisoles
 - o Pinzas
 - o Espátula
 - o Frascos

3.4.2. Procedimiento

Las normas utilizadas para los distintos ensayos mecánicos fueron:

- Ensayo de tracción : Norma ASTM D 63 (Materials, "Standard Test Method for Tensile Properties of Plastics", 2003)
- Ensayo de Charpy: Norma ASTM D 256 (Materials, "Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics", 2005)
- Ensayo de Dureza: Norma ASTM D 2240 (Materials, "Standard Test Method for Rubber Property— Durometer Hardness", 2010)

Se prepararon 3 tipos de probetas normalizadas para la realización de los tres ensayos mecánicos seleccionados, así poder comparar las diferentes propiedades mecánicas de cada matriz polimérica. Los ensayos seleccionados fueron el ensayo de

- Equipo de ensayos de charpy
- Equipo de ensayos de dureza
- Vernier electrónico

- Pellets de PP virgen
 - Cera

 \cap

Alcohol Polivinilico

dureza, el ensayo de charpy y el ensayo de tracción; dando como resultado unas 28 probetas normalizadas como se muestra en la tabla.

		Mu	lestra		
Ensayos Mecánicos	РР	PP + NTC (Fe40 Ni10)	PP + NTC (Fe50)	PP + NFC	
		Probetas N	lormalizadas		Total
Tracción	3	3	3	3	12
Charpy	3	3	3	3	12
Dureza	1	1	1	1	4
$\neg \varphi$			Total de	probetas	28

Tabla 3-15	Numero de	Probetas	Normalizadas	para los ensa	vos mecánicos
				pm-m-00	

Fuente: Elaboración Propia

Se realizó la preparación del reforzante de NTC y NFC en una matriz de polipropileno con un porcentaje de 5% en peso. Se definió la metodología para la obtención de probetas normalizadas y posteriormente realizar los ensayos mecánicos de dureza, impacto y tracción.

3.4.3. Preparación de las probetas normalizadas:

Para la preparación de las probetas normalizadas, en primer lugar, se pesó las cantidades de muestra de NTC obtenida por los dos catalizadores sintetizados (Fe50/Al2O3 y Fe40Ni10/Al2O3), de NFC y de PP, para cada probeta normalizada.

Se realizaron 17 pruebas para la obtención de las 28 probetas normalizadas; las cuales nos generan una plancha de la mezcla ya establecida, ya sea en caso de Nanotubos con el polipropileno o nanofibras con el polipropileno para ello se realizó el siguiente procedimiento.

3.4.3.1. Procedimiento de obtención de la mezcla

Procedimiento de obtención de probetas para ensayo de tracción

En primer lugar, se pesó las diferentes cantidades de muestra para la obtención de las probetas en una balanza electrónica como se muestra en la figura 3-35. La primera con el PP virgen al 100% en peso; en la segunda, tercera y cuarta probeta se

utilizó una mezcla con una proporción de 5% de NTC o NFC y 95% de PP virgen según sea el caso.

Figura 3-35 Pesado de Muestras de NTC- NFC y Pellets PP puro Fuente: Elaboración Propia

Figura 3- 36 de Muestras de NTC y Pellets PP Fuente: Elaboración Propia

Luego de pesar las cantidades de muestra se pasó al equipo Brabender, este esquipo es un mezclador que trabaja a temperaturas programadas como se muestra en la figura 3-37. En el equipo Brabender se colocó las muestras de PP puro, los NTC y lo NFC, según sea la proporción de la mezcla de cada probeta, para poder realizar una mezcla homogénea a una temperatura de 195°C y por un tiempo establecido para cada caso. Se realizó el mismo Procedimiento para las cuatro tipas de probetas obtenidas, una con el PP virgen puro y las otras con los dos tipos de catalizadores sintetizados para NTC y las nanofibras de carbono obtenidas en el laboratorio.

Figura 3- 37 Equipo Brabender Fuente: Elaboración Propia

Figura 3- 38 Mezclado de Muestras de NTC y Pellets de PPpuro en el Equipo Brabender Fuente: Elaboración Propia

Al sacar la muestra del equipo brabender se mostró una mezcla homogénea de apariencia pastosa. En el caso de PP puro tenían un color blanco – Transparente, la mezcla de PPpuro y NFC un color negro – trasparente y la mezcla de PPpuro y NTC un color negro intenso como se puede ver en la figura 3-39.

Figura 3- 39 Mezcla de PPpuro y NTC Fuente: Elaboración Propia

Luego se pasa a la etapa de prensado en equipo de Prensa brabender que se muestra en la figura 3-40. Para realizar el prensado se usó dos planchas planas de acero inoxidable las cuales debieron ser preparadas en su superficie con alcohol polivinilico y cera, esto se debe para que la mezcla no se adhiera a la plancha al momento del prensado. El prensado se realizó a una temperatura de 195°C por un tiempo establecido. Se obtuvo una plancha delgada de aproximadamente 3 mm de espesor en cada caso como se muestra en la figura 3-42.

Figura 3- 40 Prensa Brabender Fuente: Elaboración Propia

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

Figura 3- 41 Planchas de acero inoxidable para prensado Fuente: Elaboración Propia

Figura 3- 42 Prensado de la mezcla PP+NTC(Fe40Ni10) Fuente: Elaboración Propia

66

3.4.3.2. Probeta normalizada para ensayo de Tracción:

Al obtener la plancha de la mezcla se utilizó una troqueladora con un molde normalizado para ensayos de tracción de plásticos, como se podrá ver en la figura 3-43. Obteniendo así las diferentes probetas para posteriormente realizar el ensayo.

Figura 3- 43 Probeta para ensayo de Tracción Mecánico Fuente: Elaboración Propia

Probeta de tracción de PP virgen:

Para la obtención de esta probeta se trabajó con 20.02g de PP virgen, con una temperatura del brabender de 185°C por un tiempo de 12 minutos para poder obtener una mezcla homogénea, posteriormente prensarla a una presión de 20 PSI y una temperatura de 195°C por un tiempo de 7 minutos; dando como resultado una plancha delgada de color blanquecino, aproximadamente de 3 mm de espesor, en algunas partes de la plancha se podía apreciar presencia de burbujas de aire, como se muestra en la figura 3-45.

REPOSITORIO DE TESIS UCSM

UNIVERSIDAD Católica De Santa María

Figura 3- 44 Peso de PP virgen puro Fuente: Elaboración Propia

Figura 3- 45 Plancha de PP virgen Fuente: Elaboración Propia

Al obtener la plancha delgada de PP virgen se utilizó el molde normalizado en la troqueladora como lo mencionamos anteriormente obteniéndose 3 probetas normalizadas, como se puede apreciar en la figura 3-46.

Figura 3- 46 Probetas de PP puro para el ensayo de Tracción Fuente: Elaboración Propia

Probeta de tracción de PP + NTC (Fe40 Ni10)

Para la obtención de esta probeta se trabajó con una proporción de 5 % en peso de la mezcla, lo que se peso fue 19.02g de PP virgen y 1g de NTC (Fe40 Ni10), con una temperatura del brabender de 195°C por un tiempo de 8 minutos se obtuvo una mezcla homogénea de superficie pastosa de color negro, posteriormente al prensarla a una presión de 20 PSI y una temperatura de 195°C por un tiempo de 7 minutos; dando como resultado una plancha delgada de estructura uniforme de color negro uniforme en su tonalidad, aproximadamente de 3 mm de espesor, como se muestra en la figura 3-48.

Figura 3- 47 Muestra de PP virgen y NTC (Fe40 Ni10) Fuente: Elaboración Propia

Figura 3- 48 Mezcla de PP virgen y NTC (Fe40 Ni10) Fuente: Elaboración Propia

Al obtener la plancha de la Mezcla de PP virgen y NTC (Fe40 Ni10) se utilizó el molde normalizado en la troqueladora, obteniéndose 3 probetas normalizadas, como se puede apreciar en la figura 3-49.

Figura 3- 49 Probetas de PP virgen y NTC (Fe40 Ni10) para el ensayo de Tracción Fuente: Elaboración Propia

Probeta de tracción de PP + NTC (Fe50)

Para la obtención de esta probeta se trabajó con una proporción de 5 % en peso de la mezcla, lo que se peso fue 18.99g de PP virgen y 1.01g de NTC (Fe50), con

una temperatura del brabender de 195°C por un tiempo de 8 minutos se obtuvo una mezcla homogénea de superficie pastosa de color negro, posteriormente al prensarla a una presión de 20 PSI y una temperatura de 195°C por un tiempo de 7 minutos; dando como resultado una plancha delgada de estructura uniforme de color negro intenso uniforme en su tonalidad, aproximadamente de 3 mm de espesor, como se muestra en la figura 3-51.

Figura 3- 50 Muestra de la mezcla de PP virgen y NTC (Fe50) salida del brabender Fuente: Elaboración Propia

Figura 3- 51 Mezcla de PP virgen y NTC (Fe50) Fuente: Elaboración Propia

Al obtener la plancha de la Mezcla de PP virgen y NTC (Fe50) se utilizó el molde normalizado en la troqueladora, obteniéndose 3 probetas normalizadas, como se puede apreciar en la figura 3-52.

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

Figura 3- 52 Probetas de PP virgen y NTC (Fe40 Ni10) para el ensayo de Tracción Fuente: Elaboración Propia

Probeta de tracción de PP + NFC (Ni50)

Para la obtención de esta probeta se trabajó con una proporción de 5 % en peso de la mezcla, lo que se peso fue 19.01g de PP virgen y 1.01g de NTC (Fe50), con una temperatura del brabender de 195°C por un tiempo de 8 minutos se obtuvo una mezcla homogénea de superficie pastosa de color negro, posteriormente al prensarla a una presión de 20 PSI y una temperatura de 195°C por un tiempo de 7 minutos; dando como resultado una plancha delgada de superficie lisa de color negro con pequeñas porosidades transparentes de color negro, aproximadamente de 3 mm de espesor, como se muestra en la figura 3-54.

Figura 3- 53 Muestra de PP virgen y NFC (Ni50) Fuente: Elaboración Propia

Figura 3- 54 Mezcla de PP virgen y NTC (Ni50) Fuente: Elaboración Propia

Al obtener la plancha de la Mezcla de PP virgen y NTC (Ni50) se utilizó el molde normalizado en la troqueladora, obteniéndose 3 probetas normalizadas, como se puede apreciar en la figura 3-55.

Figura 3- 55 Probetas de PP virgen y NTC (Ni50) para el ensayo de Tracción Fuente: Elaboración Propia

3.4.3.3. Probeta normalizada para ensayo de Charpy:

Procedimiento de obtención de probetas para ensayo de Charpy

Al igual que la obtención de las probetas de tracción se empieza pesando los materiales a las diferentes concentraciones de mezcla como ya se mencionó anteriormente.

Figura 3- 56 Pesado de Muestras de Pellets PP puro Fuente: Elaboración Propia

Luego de pesar las cantidades de muestra se pasó al equipo Brabender. En el equipo Brabender se colocó las muestras de PP puro, los NTC y lo NFC, según sea la proporción de la mezcla de cada probeta, para poder realizar una mezcla homogénea a una temperatura de 195°C y por un tiempo establecido para cada caso. El tiempo aproximado de la mezcla es de unos 8 minutos, al ver que la mezcla está completamente homogénea se pasa a retirarla para llevarla al molde para el ensayo de charpy.

universidad Católica De Santa María

Figura 3- 57 Equipo Brabender Fuente: Elaboración Propia

Figura 3- 58 Molde para ensayo de Charpy Fuente: Elaboración Propia

Luego se pasa a la etapa de prensado en equipo de Prensa brabender, para ello la mezcla obtenida en el bradender se va acomodando en el molde para posteriormente prensarla y obtener las probetas para el ensayo. Para realizar el prensado se usó dos planchas planas de acero inoxidable las cuales debieron ser preparadas en su superficie con alcohol polivinilico y cera, esto se debe para que la mezcla no se adhiera a la plancha al momento del prensado. El prensado se realizó en a una temperatura de 195°C por un tiempo 8 minutos. Se obtuvo unas probetas solidas de superficie lisa.

Figura 3- 59 Introducción de la mezcla a la matriz para ensayo de Charpy Fuente: Elaboración Propia

Probeta de Charpy de PP virgen:

Para la obtención de esta probeta se trabajó con 27g de PP virgen, con una temperatura del brabender de 210°C por un tiempo de 10 minutos para poder obtener una mezcla homogénea, posteriormente prensarla a una presión de 60 PSI y una temperatura de 210°C por un tiempo de 8 minutos; dando como resultado una probeta de color blanco transparente y una superficie lisa; con un peso aproximado por probeta de 14.5g. En esta probeta se puede apreciar una matriz que todos los pellets de PP no fueron completamente fundidos en el proceso como se muestra en la figura 3-60.

Figura 3- 60 Probetas de Charpy de PP puro Fuente: Elaboración Propia

Probeta de tracción de PP + NTC (Fe40 Ni10)

Para la obtención de esta probeta se trabajó con una proporción de 5 % en peso de la mezcla, lo que se peso fue 23.76 de PP virgen y 1.25g de NTC (Fe40 Ni10), con una temperatura del brabender de 195°C por un tiempo de 8 minutos se obtuvo una mezcla homogénea de superficie pastosa de color negro, posteriormente al prensarla a una presión de 60 PSI y una temperatura de 195°C por un tiempo de 8 minutos; dando como resultado una probeta solida con poca presencia de poros y de un color negro intenso.

Figura 3- 61 Probetas de Charpy de PP + NTC (Fe40 Ni10) Fuente: Elaboración Propia

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

Probeta de Charpy de PP + NFC (Ni50)

Para la obtención de esta probeta se trabajó con una proporción de 5 % en peso de la mezcla, lo que se peso fue 47.5g de PP virgen y 2.5g de NTC (Fe50), con una temperatura del brabender de 195°C por un tiempo de 8 minutos se obtuvo una mezcla homogénea de color negro, posteriormente al prensarla a una presión de 60 PSI y una temperatura de 195°C por un tiempo de 8 minutos; dando como resultado una probeta de color negro oscuro sin presencia de poros, de una superficie lisa.

Figura 3- 62 Probetas de Charpy de PP + NFC (Ni50) Fuente: Elaboración Propia

Probeta de Charpy de PP + NFC (Ni50)

Para la obtención de esta probeta se trabajó con una proporción de 5 % en peso de la mezcla, lo que se peso fue 47.5g de PP virgen y 2.5g de NTC (Fe50), con una temperatura del brabender de 195°C por un tiempo de 8 minutos, posteriormente al prensarla a una presión de 70 PSI y una temperatura de 195°C por un tiempo de 8 minutos; dando como resultado una probeta de superficie lisa de color negro de baja intensidad, sin porosidades.

3.4.3.4. Probeta normalizada para ensayo de Dureza:

Procedimiento de obtención de probetas para ensayo de Dureza

Se aplica en mismo procedimiento realizado ara las probetas de charpy y tracción; se inicia en preceso pesando las cantidades de la mezcla, como lo mencionamos anteriormente PP puro, y las mezclas al 5 % en peso de PP con nanotubos o nanofibras de carbono.

Luego de pesar las cantidades de muestra se pasó al equipo Brabender. En el equipo Brabender se colocó las muestras de PP puro, los NTC y lo NFC, según sea la proporción de la mezcla de cada probeta, para poder realizar una mezcla homogénea a una temperatura de 195°C y por un tiempo establecido para cada caso. El tiempo aproximado de la mezcla es de unos 8 minutos, al ver que la mezcla está completamente homogénea se pasa a retirarla para llevarla al molde de ensayo de Dureza

Luego se pasa a la etapa de prensado en equipo de Prensa brabender, para ello la mezcla obtenida en el bradender se va acomodando en el molde para posteriormente prensarla y obtener las probetas para el ensayo. Para realizar el prensado se usó dos planchas planas de acero inoxidable las cuales debieron ser preparadas en su superficie con alcohol polivinilico y cera, esto se debe para que la mezcla no se adhiera a la plancha al momento del prensado. El prensado se realizó en a una temperatura de 195°C por un tiempo 8 minutos. Se obtuvo unas probetas solidas de superficie lisa.

Figura 3- 63 Molde para ensayo de Dureza Fuente: Elaboración Propia

El prensado se realizo con una presion de 60 psi, subiendo la presion de manera graduada para poder eliminar la mayor cantidad de burbujas de aire que se presentan en el proceso.

En este proceso se obtuvo las distintas probetas para los ensayos mecanicos. Se obtuvo en total 9 probetas para el ensayo de tracción, 3 de cada mezcla reforzante (NTC-Fe50/Al2O3 y NTC-Fe40Ni10/Al2O3) y 3 de PP puro; igualmente 9 probetas para el ensayo de charpy y 3 probetas para el ensayo de dureza.

Las probetas se ensayaron en el laboratorio de Materiales de la universidad Católica de Santa María, los equipos utilizados se muestran en las siguientes figuras 3-64,3-65 y 3-66.

Se realizó 9 ensayos de tracción, 9 ensayos de Charpy y 9 ensayos de dureza

Figura 3- 64 Equipo para ensayos de Tracción Fuente: Elaboración Propia

Figura 3- 65 Equipo de ensayo de Charpy Fuente: Elaboración Propia

Figura 3- 66 Equipo para ensayo de Dureza Fuente: Elaboración Propia

3.4.4. Resultados de los Ensayos

3.4.4.1. Ensayo de Tracción:

Para el ensayo de tracción se usó el equipo mostrado en la figura 3-64, en el cual se ensayaron tres probetas por cada material reforzante y puro, obteniendo un promedio para obtener la resistencia a la tracción de los reforzantes.

🖽 D638 – 14

Figura 3- 67 Longitudes de la probeta según Norma ASTM D 63 Fuente: (Materials, "Standard Test Method for Tensile Properties of Plastics", 2003)

Ensay	o de Tracción (M	edida de I	Probeta	s)		
Material		Lo	D	W	Т	Unidad
	Probeta1	117.73	37.75	6.37	0.89	mm
PP Puro	Probeta 2	118.4	37.14	6.37	0.89	mm
	Probeta 3	118.2	39.24	6.57	0.83	mm
DD NTC(Cat Ea 50	Probeta1	117.73	39.68	6.31	0.74	mm
PP+NTC(Cat Fe 50)	Probeta 2	117.94	37.8	6.49	0.89	mm
A1203)	Probeta 3	116.79	36.49	6.37	0.76	mm
	Probeta1	118.42	38.38	6.46	0.93	mm
PP+NTC(Cat Fe 40) $Ni10 A12O3)$	Probeta 2	118.05	38.29	6.51	0.86	mm
1110 A1203)	Probeta 3	117.51	37.14	0.95	6.57	mm
	Probeta1	117.87	36.56	6.57	0.97	mm
PP+ NFC	Probeta 2	108.63	35.91	6.57	1.22	mm
	Probeta 3	117.75	36.53	6.65	0.9	mm

Tabla 3-16 Medidas de probetas de ensayo de Tracción

Fuente: Elaboración Propia

Tabla 3-17 Resultados de ensayo de Tracción

Ensayo de Tracción (MPA)										
Material	Probeta 1	Probeta 2	Probeta 3	Promedio	UNIDAD					
PP Puro	35.77	35.01	33.88	34.88	Mpa					
PP+ NTC(Cat Fe 50 Al2O3)	32.55	34.56	35.49	34.2	Mpa					
PP+ NTC(Cat Fe 40 Ni10 Al2O3)	24.75	30.06	23.82	26.21	Мра					
PP+ NFC	21.9	26.7	15.7	21.43	Mpa					

Fuente: Elaboración Propia

No.	Force @ Peak	Tensile Stress	Rp0.2	Elongation percentage	elongation percentage	elongation percentage	Young's modulus	
	(N)	(MPa)	(MPa)	(%)	(%)	(%)	(MPa)	
1	202.802	35.774	20.897	8.625	2.000	11.380	447.210	

Figura 3- 68 Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 1 – PP Puro Fuente: Elaboración Propia

No.	Force @ Peak	Tensile Stress	Rp0.2	Elongation percentage	Young's modulus		
	(N)	(MPa)	(MPa)	(%)	(%)	(%)	(MPa)
1	198.487	35.013	20.966	7.329	1.949	8.301	451.496

Figura 3- 69 Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 2– PP Puro Fuente: Elaboración Propia

No.	Force @ Peak	Tensile Stress	Rp0.2	Elongation percentage	Young's modulus		
	(N)	(MPa)	(MPa)	(%)	(%)	(%)	(MPa)
1	184.757	33.882	20.286	7.278	1.847	10.183	427.424

Figura 3- 70 Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 3– PP Puro Fuente: Elaboración Propia

No.	Force @ Peak	Tensile Stress	Rp0.2	Elongation percentage	elongation percentage	elongation percentage	Young's modulus
	(N)	(MPa)	(MPa)	(%)	(%)	(%)	(MPa)
1	139.648	21.912	18.527	2.412	1.693	2.760	-326.292

Figura 3- 71 Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 1– NFC Fuente: Elaboración Propia

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

No.	Force @ Peak	Tensile Stress	Rp0.2	Elongation percentage	elongation percentage	elongation percentage	Young's modulus
	(N)	(MPa)	(MPa)	(%)	(%)	(%)	(MPa)
1	213.785	26.673	18.745	4.152	1.843	6.043	-304.531

Figura 3- 72 Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 2– NFC Fuente: Elaboración Propia

No.	Force @ Peak	Tensile Stress	Rp0.2	Elongation percentage	Young's modulus		
	(N)	(MPa)	(MPa)	(%)	(%)	(%)	(MPa)
1	94.144	15.730	13.633	1.541	1.133	2.641	-16.619

85

No.	Force @ Peak	Tensile Stress	Rp0.2	Elongation percentage	elongation percentage	elongation percentage	Young's modulus
	(N)	(MPa)	(MPa)	(%)	(%)	(%)	(MPa)
1	152.592	32.550	22.676	3.780	1.689	5.325	-407.148

Figura 3- 74 Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 1– NTC(Cat Fe 50 Al2O3)

Fuente: Elaboración Propia

No.	Force @ Peak	Tensile Stress	Rp0.2	Elongation percentage	elongation percentage	elongation percentage	Young's modulus
	(N)	(MPa)	(MPa)	(%)	(%)	(%)	(MPa)
1	199.664	34.568	22.208	5.582	1.833	6.547	480.728

Figura 3- 75 Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 2– NTC(Cat Fe 50 Al2O3) Fuente: Elaboración Propia

86

Figura 3- 76 Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 3– NTC(Cat Fe 50 Al2O3)

Fuente: Elaboración Propia

No.	Force @ Peak	Tensile Stress	Rp0.2	Elongation percentage	elongation percentage	elongation percentage	Young's modulus
	(N)	(MPa)	(MPa)	(%)	(%)	(%)	(MPa)
1	148.670	24.745	21.220	2.538	1.845	3.486	-351.854

Figura 3- 77 Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 1– NTC(Cat Fe 40 Ni10 Al2O3)

Fuente: Elaboración Propia

No.	Force @ Peak	Tensile Stress	Rp0.2	Elongation percentage	Young's modulus		
	(N)	(MPa)	(MPa)	(%)	(%)	(%)	(MPa)
1	168.282	30.056	21.158	3.497	1.643	4.157	-384.837

Figura 3- 78 Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 2– NTC(Cat Fe 40 Ni10 Al2O3)

Fuente: Elaboración Propia

No.	Force @ Peak	Tensile Stress	Rp0.2	Elongation percentage	elongation percentage	elongation percentage	Young's modulus
	(N)	(MPa)	(MPa)	(%)	(%)	(%)	(MPa)
1	148.669	23.818	19.230	2.658	1.731	3.743	-336.044

Figura 3- 79 Diagrama Esfuerzo- Deformación ensayo de Tracción Probeta 3– NTC(Cat Fe 40 Ni10 Al2O3)

Fuente: Elaboración Propia

88

3.4.4.2. Ensayo de charpy

Para el ensayo de Charpy se usó el equipo mostrado en la figura 3-65, en el cual se ensayaron tres probetas por cada material reforzante y puro, obteniendo un promedio para obtener la resistencia a la tracción de los reforzantes

Ensayo de Charpy							
Material	Probeta1	Probeta 2	Probeta 3	Promedio	UNIDAD		
PP Puro	227.66	187.46	160.16	191.76	J/m		
PP+ NTC(Cat Fe 50 Al2O3)	235.15	203.23	161.61	200	J/m		
PP+ NTC(Cat Fe 40 Ni10 Al2O3)	186.67	177.47	210.56	191.57	J/m		
PP+ NFC	191.7	180.55	183.91	185.39	J/m		

Tabla 3-18 Resultados de ensayo de Charpy

Fuente: Elaboración Propia

3.4.5. Ensayo de Dureza

Para el ensayo de Dureza se uso el equipo mostrado en la figura 3-66, en el cual se ensayaron tres probetas por cada material reforzante y puro, obteniendo un promedio para obtener la resistencia a la tracción de los reforzantes

Tabla 3-19 Resultados de ensayo de Dureza

Ensayo de Dureza							
Material	Probeta1	Probeta 2	Probeta 3	Promedio	UNIDAD		
PP Puro	74	76.8	75	75.27	SHORE D		
PP+ NTC(Cat Fe 50 Al2O3)	90.4	87.8	86	88.07	SHORE D		
PP+ NTC(Cat Fe 40 Ni10 Al2O3)	81	80.5	79	80.17	SHORE D		
PP+ NFC	80	79.5	80	79.83	SHORE D		

Fuente: Elaboración Propia

CONCLUSIONES

- Se obtuvo dos tipos de catalizadores mediante el método de impregnación, el primer catalizador con una concentración de 50% de Fe en una matriz de alúmina, y el segundo catalizador compuesto de 40% de Fe, 10% de Ni en una matriz de alúmina; logrando obtener 9 gramos de cada catalizador.
- Se obtuvo nanotubos de Carbono mediante los dos tipos de catalizadores sintetizados, por el método de deposición química en fase vapor, usando como gas precursor el metano y a una temperatura de 700°C, prueba de ello son los resultados entregados a través del microscopio electrónico de barrido y el ensayo de espectroscopia de Raman de la figura 3-25 a la figura 3-34.
- Se demostró que, a mayor temperatura de crecimiento de los nanotubos, el catalizador se desactiva dando lugar a una poca producción de los NTC en el proceso de obtención, según la tabla 3-14
- La concentración de NTC y NFC en la matriz reforzante fue de 2% en peso, obteniendo así las probetas normalizadas mediante un proceso de fusión; para las cuales las normas usadas fueron: ASTM D63 (Ensayo de Tracción), ASTM D256 (Ensayo de Charpy) y ASTM D2240 (Ensayo de dureza).
- Las Propiedades Mecánicas en la mezcla de la matriz de PP + nanocompuestos de carbono no aumentaron significativamente; debido a la aparición de burbujas de aire dentro de las probetas a ensayar, por lo que se genera una concentración de esfuerzos, lo que perjudicaba drásticamente las propiedades de la matriz polimérica
- Se demostró que los Nanotubos obtenidos por el catalizador Fe50/Al2O3 presentan mejores propiedades mecánicas en la matriz polimérica ante las nanofibras de carbono y los nanotubos obtenidos por el catalizador Fe40Ni10/Al2O3, según las tablas 3-17, 3-18 y 3-19.

RECOMENDACIONES

- Se recomienda que después de la obtención de los catalizadores preservarlos en un balón de vidrio al vacío, debido a que ellos son hidroscopios y absorben rápidamente la humedad del ambiente; caso contrario realizar un proceso de secado a los catalizadores antes de realizar una prueba para la obtención de nanotubos de carbono.
- Se recomienda utilizar un método de fusión al vacío u otro método en la mezcla de los nanotubos con la matriz polimérica debido a que, en la fusión convencional, se presenta la aparición de burbujas de aire dentro de las probetas a ensayar, por lo que se genera una concentración de esfuerzos, lo que perjudicaba drásticamente las propiedades de la matriz polimérica.
- Se recomienda hacer una purificación de los NTC antes usarlos como reforzantes de una matriz; para prevenir una inadecuada mezcla entre el polímero y los Nanotubos de Carbono.
- Se recomienda aplicar un método de mezcla que permita una buena homogenización de la mezcla y que evite la formación de burbujas de aire.

BIBLIOGRAFÍA

- A. Rossoll, C. B. (1999). Mechanical aspects of the Charpy Impact Test. Nuclear Engineering and Desing.
- A.S. Al-Fatesh, A. F. (2016). Decomposition of methane over alumina supported Fe and Ni-Fe bimetallis catalyst: effect of preparatiom procedure and calcination temperature. International journal of Saudi Chemical society.
- Ahmad Aqel, K. M.-W. (2010). Carbon nanotubes, science and technology part (I) structure,.
- Ahmed. Sadeq Al–Fatesh, J. A.-D. (2016). Coproduction of Hydrogen and Carbon Filaments from Methane Decomposition over Fe/La2O3 Catalysts. Journal of The Chemical Society Of Pakistan.
- Caicedo Carolina, C. R. (2017). Propiedades Termo- mecanicas del Polipropileno Efectos durante el reprocesamiento. Ingenieria Investigación Y Tecnologia.
- Chesnokov, V. V. (s.f.).
- Chichkan, V. V. (2009). Production of hydrogen by methane ctalytic decomposition over Ni-Cu-Fe/Al2O3. International journal of hydrogen energy.
- Farias Carrillo, R. (2010). Hierrp comercial como sustrato y catalizador en la síntesis de nanotubos de carbono. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO.
- Gaowei Wang, Y. J. (2013). Production of Hydrogen and Nanocarbon from Catalytic . Energy and Fuels.
- o Ibrahim, K. S. (2013). Carbon nanotubes-properties and applications.
- Ignacio Martin Gullon, J. V. (2005). Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. International journal of hydrogen energy.
- Inpil Kang, Y. Y. (2006). Introduction to carbon nanotube and nanofiber smart materials.
- J.-F. Colomer, C. S. (2000). Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition CCVD/ method. International journal of hydrogen energy.
- J.L. Pinilla, R. U. (2011). Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor.
 J.L. Pinilla, R. Utrilla, M.J. Lázaro, R. Moliner, I. Suelves, A.B. García.
- o Jones, M. F.-D. (2008). Materiales para Ingenieria 1. REVERTE.
- JW Seo, A. M. (2006). Catalytically grown carbon nanotubes: from synthesis to toxicity.
 JOURNAL OF PHYSICS D: APPLIED PHYSICS.
- Kim Yen Tran, B. H.-P. (2006). Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe–Co/Al2O3 sol–gel catalysts.
- Kim Yen Trana, B. H.-F.-P. (2006). Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe–Co/Al2O3 sol–gel catalysts. International journal of hydrogen energy.
- López, C. E. (2006). Viabilidad para la producción de nanotubos de carbono en el estado de Cohaguila Zaragoza para uso como carga en matricces poliméricas.
- Materials, A. S. (2003). "Standard Test Method for Tensile Properties of Plastics". ASTM D 638-03.
- Materials, A. S. (2005). "Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics". ASTM D 256-05.
- Materials, A. S. (2010). "Standard Test Method for Rubber Property— Durometer Hardness". ASTM D2240 – 05.
- Mauricio Velasquez, C. B.-D. (2016). Synthesis of carbon nano-chains from glycerolethanol decomposition over Ni-Fe alloy catalys. International journal of hydrogen energy.
- Mohammad Hadi Dehghani, S. K. (2018). High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes.

- Morales, G. (2008). Procesado y Caracterización de materiales compuestos de matriz polimerica reforzados con nanofibras de carbono para aplicaciones tecnologicas. Madrid: Universidad Complutense de Madrid.
- Morassuttoa, R. T. (2016). Vertically aligned carbon nanotube field emitter arrays with Ohmicbase contact to silicon by Fe-catalyzed chemical vapor deposition. International journal of hydrogen energy.
- Morelo, A. H. (2015). Cuatificación de propiedades mecanicas y quimicas del polipropileno unsando espectroscopia de resonancia magnetica nuclear protonica. Cartagena: Universidad de Cartagena.
- N. Bayat, M. R. (2015). Methane Descomposition over NiFe/Al2O3 catalysts for production of COx-free hydrogen and carbon. Hydrogen Energy.
- Nima Bayat, M. R. (2015). Methane decomposition over NieFe/Al2O3 catalysts for production of COx-free hydrogen and carbon. International journal of hydrogen energy
- Ortega, Y. (2006). Prueba de Impacto: Ensayo Charpy. Revista Mexicana de Fisica, 51-57.
- R Aghababazadeh, A. R. (2006). Synthesis of carbon nanotubes on alumina-based supports with different gas flow rates by CCVD method. Journal of Physics: Conference Series 26.
- o Rao, S. A. (2001). Nanotubes.
- Shah KA, T. B. (2016). Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing.
- V.I. Alexiadisa, b. N. (2010). Influence of the composition of Fe2O3/Al2O3 catalysts on the rate of production. International journal of hydrogen energy.
- Vladimir V. Chesnokov, A. S. (2009). Production of hydrogen by methane ctalytic decomposition over Ni-Cu-Fe/Al2O3. International journal of hydrogen energy 34.

- Wenqin Shen, Y. W. (2007). Catalytic Nonoxidative Dehydrogenation of Ethane over Fe–Ni and Ni Catalysts Supported on Mg(Al)O to Produce Hydrogen and Easily Purified Carbon Nanotubes. Energy and Fuels.
- Wenqin Shen, Y. W. (2007). Catalytic Nonoxidative Dehydrogenation of Ethane over Fe–Ni and Ni Catalysts Supported on Mg(Al)O to Produce Hydrogen and Easily Purified Carbon Nanotubes. Energy and Fuels.
- Y. Ouyanga, L. C. (2007). A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo-Fe/MgO catalyst. International journal of hydrogen energy.
- Dresselhaus , Dresselhaus G, Avouris P. Carbon Nanotubes: Synthesis, Structure, Properties and Applications Berlin Heidelberg: Ed. Springer-Verlag; 2001.
- Méndez A, Freitas MMA, Figueiredo JL. Synthesis of carbon filaments and nanotubes on a graphitic substrate: optimization studies. Elsevier. 2006 Septiembre.
- Shah KA, Tali BA. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing. 2016.
- hah KA, Tali BA. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing. 2016.
- Ignacio Martin-Gullon, Jose Vera Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor ;2005
- Jimenez Cotillas V. Síntesis, activación química y aplicaciones de nanoestructuras de carbono. 2011 Noviembre.
- Kumar M, Ando Y. Controlling the diameter distribution of carbon nanotubes. Carbon.
 2005; 43: p. 533-540.
- Lopez D. AI,PI. Temperature effect on the synthesis of carbon nanotubes and core–shell
 Ni nanoparticle by thermal CVD. Diam. Relat. Mater. 2015;(52)

- Tanioku K, Maruyama T, Naritsuka S. Low temperature growth of carbon nanotubes on Si substrates in high vacuum. Diamond Rel Mat. 2008;: p. 589-593.
- Geohegan DB, Puretzk AA, Jackson JJ, Rouleau CM, Eres G, More KL. Fluxdependent growth kinetics and diameter selectivity in single-wall carbon nanotube arrays. ACS Nano. 2011
- Saito T, Ohshima S, Okazaki T, Ohmori S, Yumura M, Iijima S. Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis. J Nanosci Nanotechnol. 2008
- Picher M, Anglaret E, Arenal R, Jourdain V. Processes controlling the diameter distribution of single-walled carbon nanotubes during catalytic chemical vapor deposition. ACS Nano. 2011
- Chee T, Aziz M, Ismail A. J. Teknol. 2008
- W.H. Chiang RMS. Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth. Appl. Phys. Lett. 2007
- Duan X, Ji J, Qian G, Zhou X, Chen D. Recent advances in synthesis of reshaped Fe and Ni particles at the tips of carbon nanofibers and their catalytic applications. Catal. Today. 2015
- Wenqin Shen, Yuguo Wang Catalytic Nonoxidative Dehydrogenation of Ethane over Fe–Ni and Ni Catalysts Supported on Mg(Al)O to Produce Hydrogen and Easily Purified Carbon Nanotubes 2007
- A.S. Al-Fatesh, A.F. Fakeeha Decomposition of methane over alumina supported Fe and Ni-Fe bimetallis catalyst: effect of preparatiom procedure and calcination temperature, 2016
- Kim Yen Trana, Benoit Heinrichs Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe–Co/Al2O3 sol–gel catalysts, 2006
- Mauricio Velasquez, Catherine Batiot-Dupeyrat Synthesis of carbon nano-chains from glycerol-ethanol decomposition over Ni-Fe alloy catalyst, 2016

- Ahmed. Sadeq Al–Fatesh Coproduction of Hydrogen and Carbon Filaments from Methane Decomposition over Fe/La2O3 Catalysts, 2016
- J.L. Pinilla, R. Utrilla, M.J. Lázaro Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor, 2006
- R Aghababazadeh , A R Mirhabibi, Synthesis of carbon nanotubes on alumina-based supports with different gas flow rates by CCVD method, 2006
- W Seo, A Magrez, M Milas Catalytically grown carbon nanotubes: from synthesis to toxicity 2006
- V.I. Alexiadisa, b, N. Boukosc Influence of the composition of Fe2O3/Al2O3 catalysts on the rate of production and quality of carbon nanotubes, 2010
- J.-F. Colomer, C. Stephan, S. Lefrant Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition CCVD/ method, 200
- Morassuttoa, R.M. Tiggelaara Vertically aligned carbon nanotube field emitter arrays with Ohmicbase contact to silicon by Fe-catalyzed chemical vapor deposition Methane, 2016
- Y. Ouyanga,*, L. Chena A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo-Fe/MgO catalyst,2007.

ANEXO 01: FICHA TECNICA DE HORNO ELECTRICO Y REACTOR

ANEXO 02: FICHA TECNICA DE REGULADORES DE FLUJO Y DE PRESIÓN

ANEXO 03: FICHA TECNICA DE VALVULAS REGULADORAS DE PRESIÓN

ANEXO 04: FICHA TECNICA DE SISTEMA DE EXTRACCIÓN DE GASES

ANEXO 05: FICHA TECNICA DE GASES

ANEXO 06: FORMATOS DE LABORATORIO

HORNO ELECTRICO					
	Nan Yang Xinyu Furnaces Co				
Marca	LTD	Modelo	SK2C-5-12TPB		
	Dimonsiones	Serie	-		
	Dimensiones	Votaje/Frecuencia	220v/60 Hz		
Alto	92 cm	Potencia	7 KW		
		Temperatura			
Largo	44 cm	Máxima	1200°C		
Ancho	41cm	Amperaje	80 A		

Reactor					
Reacto	or de Quarzo	Reactor	de Acero Inoxidable		
Presión		Presión	5		
máxima	48 Mpa	máxima	10 atm		
Presión		Presión			
minima	<0.02 Mpa	minima	1E0-6 torr @ 800°C		
Dim	ensiones		Dimensiones		
Diametro	60 mm	Diametro	60 mm		
Largo	1200 mm	Largo	1200 mm		

99

REGULADORES O CONTROLADORES DE FLUJO							
Regulador de	e flujo Metano	flujo Hidrogeno	Regulador de flujo Nitrogeno				
Marca	Alicat	Marca	Alicat	Marca	Alicat		
	MC-100SCCM-		MC-200SCCM-		MC-500SCCM-		
Modelo	D-PCV03	Modelo	D-PCV03	Modelo	D-PCV03		
Serie	131448	Serie	131449	Serie	131450		
Voltaje	12 V - 30 V	Voltaje	12 V - 30 V	Voltaje	12 V - 30 V		
Amperaje	250 mA	Amperaje	250 mA	Amperaje	250 mA		
Flujo máximo	100 SmLPM	Flujo máximo	200 SmLPM	Flujo máximo	500 SmLPM		
Flujo minimo	0 SmLPM	Flujo minimo	0 SmLPM	Flujo minimo	0 SmLPM		
Presión	160 psig	Presión	160 psig	Presión	160 nsig		
máxima	100 0018	máxima	100 0018	máxima	100 0018		
Presión	0 psig	Presión	0 psig	Presión	0 psig		
minima	0 00.0	minima	- pe.8	minima	o bo:9		
Temperatura	50 °C	Temperatura	50 °C	Temperatura	50 °C		
máxima	50 0	máxima	50 0	máxima	56 6		
Temperatura	(-) 10 °C	Temperatura	(-) 10 °C	Temperatura	(-) 10 °C		
minima	()10 C	minima	()10 C	minima	()10 C		

REGULADORES O CONTROLADORES					
DEPRESION					
Marca	Alicat				
Modelo	PC-100PSIG-D				
Serie	131451				
Voltaje	12 V - 30 V				
Amperaje	250 mA				
Presión máxima	150 psig				
Presión minima	0 Bar				
Temperatura	S				
máxima	60 °C				
Temperatura					
minima	(-) 10 °C				

100

VÁLVULAS REGULADORAS DE PRESIÓN							
Metano Estac	ión 1 (en	Hidrogeno Esta	ición 1 (en	Nitrogeno Estación 1 (en			
laborato	rio)	laborato	rio)	laboratorio)			
Marca	Argenflow	Marca	Argenflow	Marca	Argenflow		
Codigo	AP602-3-A	Codigo	AP602-3-A	Codigo	AP602-3-A		
Presión de		Presión de		Presión de			
Entrada	10 bar	Entrada	10 bar	Entrada	10 bar		
Máxima		Máxima		Máxima			
Presion de salida	6 bar	Presion de salida	6 har	Presion de salida	6 har		
Máxima	0 bai	Máxima	0 bai	Máxima	0 bai		
Presión de	3 har	Presión de	7 8 har	Presión de	8 / har		
Entrada	5 041	Entrada	7.8 bai	Entrada	0.4 Dai		
Presión de salida	2.2 bar	Presión de salida	1.9 bar	Presión de salida	2.2 bar		
Metano Estación	2 (de balon	Hidrogeno Estació	n 2 (de balon	Nitrogeno Estación 2 (de balon			
en la cas	eta)	en la cas	eta)	en la caseta)			
Marca	Argenflow	Marca	Argonflow	Marca	Argonflow		
	, a germen		Aigennow	Iviarca	Aigennow		
	AP703-5-L-		AP703-5-H-		AP703-5-F-		
Codigo	AP703-5-L- 6-CGA350	Codigo	AP703-5-H- 6-CGA350	Codigo	AP703-5-F- 6-CGA350		
Codigo Presión de	AP703-5-L- 6-CGA350	Codigo Presión de	AP703-5-H- 6-CGA350	Codigo Presión de	AP703-5-F- 6-CGA350		
Codigo Presión de Entrada	AP703-5-L- 6-CGA350 300 bar	Codigo Presión de Entrada	AP703-5-H- 6-CGA350 300 bar	Codigo Presión de Entrada	AP703-5-F- 6-CGA350 300 bar		
Codigo Presión de Entrada Máxima	AP703-5-L- 6-CGA350 300 bar	Codigo Presión de Entrada Máxima	AP703-5-H- 6-CGA350 300 bar	Codigo Presión de Entrada Máxima	AP703-5-F- 6-CGA350 300 bar		
Codigo Presión de Entrada Máxima Presion de salida	AP703-5-L- 6-CGA350 300 bar	Codigo Presión de Entrada Máxima Presion de salida	AP703-5-H- 6-CGA350 300 bar	Codigo Presión de Entrada Máxima Presion de salida	Argennow AP703-5-F- 6-CGA350 300 bar		
Codigo Presión de Entrada Máxima Presion de salida Máxima	AP703-5-L- 6-CGA350 300 bar 6 bar	Codigo Presión de Entrada Máxima Presion de salida Máxima	AP703-5-H- 6-CGA350 300 bar 6 bar	Codigo Presión de Entrada Máxima Presion de salida Máxima	AP703-5-F- 6-CGA350 300 bar 6 bar		
Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de	AP703-5-L- 6-CGA350 300 bar 6 bar	Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de	AP703-5-H- 6-CGA350 300 bar 6 bar	Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de	Argennow AP703-5-F- 6-CGA350 300 bar 6 bar		
Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de Entrada	AP703-5-L- 6-CGA350 300 bar 6 bar 68 bar	Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de Entrada	AP703-5-H- 6-CGA350 300 bar 6 bar 109 bar	Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de Entrada	Argennow AP703-5-F- 6-CGA350 300 bar 6 bar 50 bar		
Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de Entrada Presion de salida	AP703-5-L- 6-CGA350 300 bar 6 bar 68 bar 3 bar	Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de Entrada Presion de salida	Argennow AP703-5-H- 6-CGA350 300 bar 6 bar 109 bar 7.8 bar	Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de Entrada Presion de salida	Argennow AP703-5-F- 6-CGA350 300 bar 6 bar 50 bar 8.4 bar		
Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de Entrada Presion de salida Tuberia de Acerco	AP703-5-L- 6-CGA350 300 bar 6 bar 68 bar 3 bar 9 Inoxidable	Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de Entrada Presion de salida Accesorios de ace	AP703-5-H- 6-CGA350 300 bar 6 bar 109 bar 7.8 bar ro inoxidable	Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de Entrada Presion de salida	Argennow AP703-5-F- 6-CGA350 300 bar 6 bar 50 bar 8.4 bar ro inoxidable		
Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de Entrada Presion de salida Tuberia de Acerco Diametro	AP703-5-L- 6-CGA350 300 bar 6 bar 68 bar 3 bar J hoxidable 1/4"	Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de Entrada Presion de salida Accesorios de ace Codo:	AP703-5-H- 6-CGA350 300 bar 6 bar 109 bar 7.8 bar ro inoxidable	Codigo Presión de Entrada Máxima Presion de salida Máxima Presión de Entrada Presion de salida presion de salida	Argennow AP703-5-F- 6-CGA350 300 bar 6 bar 50 bar 8.4 bar ro inoxidable		

101

SISTEMA DE EXTRACCIÓN DE GASES							
Marca	HNG	Mecanismo de Extraccion de Gases					
Modelo	-	Motor					
Serie	A6	Marca Raftamann					
Тіро	Acidos	Voltaje 220 V					
D	imensiones	Amperaje	10A				
Largo	170 cm	Potencia	1 HP				
Alto	240 cm	Tuberia de Extracción de gases					
Ancho	80 cm	Diametro	8"				
Espacio	CALU	ICA					
efectivo	149 x 54 cm	Longitud	2.5m				

102

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

	Formato de Control	FORM-LIM-002	
	Registro de control para la preparación de los	Versión 2 Página 1 de 2	

Fecha		Responsable	
Código de identificación			
Relacion Molar:		Tipo de catalizador	

A.- Preparación de las sales

ΕΤΑΡΑ	Fecha	DESCRIPCION		CONTROLES	Valor/ Si o No	OBSERVACIONES / POR QUÉ
SALES DE CO	BR	E				
Pesar sal		Pesar Cu(NO ₃) ₂ 3H ₂ O) ver	1	Peso del recipiente (gr)		
precursoras		tabla 02 de DOC.LIM01	2	Masa de la sal(gr)		
Disolver		Añadir agua destilada para disolver la sal.	1	Volumen de agua (mL)		
Reservar		Reservar la solucion hasta su utilización	1	Tiempo de reserva (Hr,min)		
SALES DE NIC	QUE	L				
Pesar sal		Pesar Ni (NO ₃) ₂ 6 H ₂ O ver	1	Peso del recipiente (gr)		
precursoras		labla 02 de DOC.LIMO I	2	Masa de la sal(gr)		
Disolver		Añadir agua destilada para disolver la sal.	1	Volumen de agua (mL)		
Reservar		Reservar la solucion hasta su utilización	1	Tiempo de reserva (Hr,min)		

B.- Preparación del catalizador

ΕΤΑΡΑ	Fecha	DESCRIPCION		CONTROLES	Valor/ Si o No	OBSERVACIONES / POR QUÉ
		Pesar (Valor or +0.01 or)	1	Peso recipiente (gr)		
Pesar alúmina seca		de alúmina seca y fría en una capsula de porcelana ver tabla 2.	2	Masa de sal (gr)		
Traslado		Trasvasar la alúmina a un matraz de fondo redondo	1	¿Hubo pérdidas en el traslado?		
Mazalar an al			1	Hora de inicio		
agitador		Mezclar en el agitador magnético a 70°C durante	2	Hora de fin		
magnético		tres horas a velocidad 2.	3	¿Hubo pérdidas?		
			1	Peso recipiente (gr)		
Verter la mezcla		Evaporar el agua de la	2	Hora de inicio		
Secar		5 horas.	3	Hora de fin		
			4	Peso final (gr)		
			1	Tiempo de molienda		
Moler		Moler la mezcla hasta	2	Aspecto del molturado		
wolei		tamaño homogéneo.	3	Color de la mezcla		
			4	Peso (gr)		

Formato de Control	FORM-LIM-002
Registro de control para la preparación de los catalizadores por el metodo de impregnacion	Versión 2 Página 2 de 2
	Formato de Control Registro de control para la preparación de los catalizadores por el metodo de impregnacion

		Calcinar a 350°C durante 3 horas, enfriar a temperatura ambiente y	1	Hora de inicio	
Calcinar			2	Hora de fin	
Calcinal			3	Color de la mezcla	
		pesar	4	Peso mezcla (gr)	
Traslado		Trasvasar la alúmina a un matraz de fondo redondo	1	¿Hubo pérdidas en el traslado?	
			1	Hora de inicio	
Mezclar en el		Mezclar en el agitador	2	Hora de fin	
agitador magnético		magnético a 70°C durante tres horas a velocidad 2.	3	¿Hubo pérdidas?	
			1	Fecha y hora inicio	
Reservar		En el balón reservar la solución durante 24 horas.	2	Fecha y Hora de fin	
			1	Peso recipiente (gr)	
Verter la mezcla		Evaporar el agua de la	2	Hora de inicio	
Secar		5 horas.	3	Hora de fin	
				Peso final (gr)	
			1	Tiempo de molienda	
Moler		Moler la mezcla hasta	2	Aspecto del molturado	
Molei		tamaño homogéneo.	3	Color de la mezcla	
			4	Peso mezcla (gr)	
		Calcinar a 450°C durante 4	1	Hora de inicio	
Calcinar		horas, enfriar a	2	Hora de término	
Galoinai		temperatura ambiente y	3	Color de la mezcla	
		pesar	4	Peso mezcla (gr)	
		Moler la mezcla hasta	1	Tiempo de molienda	
Moler		tamaño homogéneo.	3	Color de la mezcla	
		5	4	Peso mezcla (gr)	

OTRAS OBSERVACIONES

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

No. of Concession, State of Co	Formato de Control	FORM-LICMA-003
	Registro de control para programación de Temperatura flujos y presión del reactor CVD	Versión 2 Página 1 de 1

Fecha

Responsables:

A.- PROGRAMACIÓN DEL HORNO

Código:

	ZON	NA 1			ZON	NA 2		ZONA 3					
T(°C)	Tier	про	T(°C)	Tier	mpo	Т(°C)	Tiempo			
t1		C1		t1		C1		t1		C1			
t2		C2		t2		C2		t2		C2			
t3		C3		t3		C3		t3		C3			
t4		C4		t4		C4		t4		C4			
t5		C5		t5		C5		t5		C5			
t6		C6		t6		C6		t6		C6			
t7		C7		t7		C7		t7		C7			
t8		C8		t8		C8		t8		C8			
t9		C9		t9		C9		t9		C9			

B.- PROGRAMACION DE FLUJOS

	Duración	1	Т	Р	CH4	N2	H2	Δt
celular	Horno	min	°C	bar	ml/min	ml/min	ml/min	min

OBSERVACIONES:		

CATOLICA D		Formato de Control													FORM-LICMA-004					
	A A A A A A A A A A A A A A A A A A A			Reg	istro d	le dato	s de e	ensay	vo en	el react	or CVE)				Ver Págin	sión ź a 1 d	2 e 1		
Facha	1		0 ()											-						
recha			Cod	ligo						Re	spons	ables								
Hora	Tiempo		СН	4				N2			Р	T1 T2 T3 Tterm								
		ml/min	FV	PSIA	т°с	ml/min	FV	PSIA	T℃	NLPM	FV	PSIA	T°C	Bar	°C	°C	°C	°c		
	\vdash			-																
				<u> </u>																
				<u> </u>								<u> </u>								
OBSERVA	CION	ES:																		

CATOLICS	Formato de Control	FORM-LICMA-005
	Registro de pesos de catalizador	Versión 2 Página 1 de 1

Fecha

Responsables

A.- Pesos iniciales (Antes del Ensayo)

Código

	MASA DE	E LOS CRIS	SOLES		MASA CF	RISOL CON C	CAT .	mcat	m NiO	m CuO	m Al2O3	
N° Crisol	1	2	3	Prom	1	2	3	Prom	mcat		in cuo	III AI205

B.- Pesos Finales (Después del Ensayo)

MAS	A FINAL C	RISOL CO	N CAT	PES	SO TEÓRIO	CO REDUCCI	VARIACIÓN DE MASA					
N° Crisol	1	2	3	mNi	mCu	mteo cat		Prom	FIBRAef	g/gcat		

OBSERVACIONES:

	-
CODIA CONTROLADA DROVECTO CARRONO	

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

	PR.			Form	ato de Control				FORM-LICMA-007							
		Registro	o de inspec	ción sem	anal de la presiór gases	de l	os cilin	dros de	Versión 1 Página 1 de 1							
L		!							•							
		Presion	marcada en	el manome	etro			Presion	n marcada en el manometro							
		REGULADO	RES DE LOS C	ILINDROS				REGULAD	ORES DE LOS							
N°	Fecha	Hidrógeno	Nitrógeno	Metano	Responsable	N°	Fecha	Hidrógeno	Nitrógeno	Metano	Responsable					
1		, , , , , , , , , , , , , , , , , , ,				47		Ŭ								
2						48										
3						49										
4						50										
5						51										
6						52										
7						53										
8						54										
9						55										
10						56										
11						57										
12						58										
13						59										
14						60										
15						61										
16						62										
17						63										
18						64										
19						65										
20						66										
21						67										
22						68										
23						69										
24						70										
25						71										
26						72										
27						73										
28						74										
29						75										
30						76										
31						77										
32						78										
24						20										
25						00										
26						01										
30	•					83										
30						84										
30						04 Q5										
40						86										
40						87										
41						89										
42						20										
43						90										
45				<u> </u>		91										
46				<u> </u>		92										
10	1	1	1	1		52										

OBSERVACIONES:

OBSERVACIONES:

REPOSITORIO DE TESIS UCSM

Registro de monitoreo de cilindros y reguladores de presión 1 de los gases Presión 1 Página 1 de 1	Contractor of the second	Formato de Control	FORM-LICMA-006
	MARK	Registro de monitoreo de cilindros y reguladores de presión de los gases	Versión 1 Página 1 de 1

FECHA DE INSPECCIÓN

RESPONSABLE DE INSPECCION

FIRMA

	GASES EN USO								GASES ALMACENADOS									
ITEM INSPECCIONADO	н	IDRÓGENO NITRÓGENO METANO HIDRÓG				GENO	NI	TRÓ	GENO	ľ	ИЕТА	NO						
1. CILINDRO	SI	NO	CR*	SI	NO	CR*	SI	NO	CR*	SI	NO	CR*	SI	NO	CR*	SI	NO	CR*
Cortes				Γ			Γ											
Abolladuras																		
Exceso de corrosión externa																		
otras sustancias combustibles.																		
cilindro (etiqueta) y color de acuerdo con																		
protección?																		
de trabajo?																		
¿El cilindro está protegido del calor excesivo?																		
gorro cuando el cilindro no se usa?																		
		REG	ULAD	ORI	ES DE	E LOS	CILI	INDR	OS		REG	ULAD	ORI	ES DI	EL LAB	OR/	ATOF	RIO
REGULADORES DE PRESION	HI	DRÓ	GENO	N	TRÓ	GENO	I	META	ANO	HI	DRÓ	GENO	NI	TRÓ	GENO	2	ИЕТА	NO
	SI	NO	CR*	SI	NO	CR*	SI	NO	CR*	SI	NO	CR*	SI	NO	CR*	SI	NO	CR*
¿El regulador es apropiado para el tipo de gas y su capacidad de presión y flujo?																		
¿Están limpias, sin polvo ni partículas extrañas las conexiones del regulador?																		
¿Las conexiones del regulador y del cilindro están en buen estado y ajustan correctamente?																		
¿Las uniones, adaptadores y anillos de asiento en el regulador están en buen estado?																		
¿Están quebrados o dañados los vidrios de los manómetros o medidores?																		
¿Están limpias las esferas de los manómetros y sus números son legibles?																		
¿Hay escapes o fugas de gas?																		
¿El tornillo o mariposa de ajuste de presión del regulador gira libremente?																		
¿La presión de salida es estable, sin filtración ni aumento de presión al cerrarlo?																		
Presion marcada en el manometro				Γ											-		-	
CD*. 4. CDITICO, 2. ALTANACHTE CDITICO, 2. CUDEDCD	1710			-			-			-								

*: 1: CRITICO, 2: ALTAMENTE CRITICO, 3: SUPERCRIT

OBSERVACIONES: