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ABSTRACT 

 

 

The permanently dark deep-sea, located at oceanic water depths greater than 200 m, 

represents the largest potential habitat space on Earth. The physicochemical conditions of the 

planet’s largest biome are tightly coupled to the exchange of matter and energy from terrestrial 

and sea-floor end-members. In fact, global ocean and climate systems are significantly impacted 

by deep-sea processes. Seafloor vents and seeps appear to act as geologic exchange conduits, 

returning recycled materials to the hydrosphere to sustain another generation of life. Despite 

submarine seepage having control on global elemental cycling, it is estimated that less than 1% of 

the deep-sea has been mapped in detail sufficient to truly understand the spatial extent of regions 

of especially active material and energy exchange at regions of seafloor venting and seepage. 

Slow-flow discharge occurring at elevated temperatures (hydrothermal seepage) is suspected to 

exchange ~ 90% of the water required to balance heat budgets as compared to energetic vents. 

Deep-sea seepage occurring at ambient ocean temperatures (cold seeps), first discovered in the 

Gulf of Mexico, represents a second seepage environment where chemosynthetic primary 

production supports some of the most diverse biomes in the bathypelagic zones. However, methods 

and research directly applicable for understanding the rate of fluid discharge at low-flow 

submarine seepage sites are lacking, resulting in poorly constrained global chemical cycling 

estimates.  

This Dissertation provides a vertical exchange model designed to determine an effective 

fluid flux of porefluid from deep-sea environments. The vertical exchange model utilizes vertical 

distributions of aqueous 224Ra in porefluid recovered from regions impacted by hydrothermal and 

cold seepage and determines porefluid residence time related to radiogenic changes attributable to 

production and decay. The vertical exchange model is qualitatively tested whereby isotope proxy 
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estimates confirm seepage in areas where seepage is indicated by ancillary evidence and suggest 

porefluid transport into the sediments best explains vertical isotope distributions observed for 

Control core. The vertical exchange model is applied to a hydrothermal site in Guaymas Basin to 

test whether spatial associations between microbial mats and seepage rates exist. We identify 

spatial relationships between subsurface temperature range and fluid flux where white colored 

microbial colonies exist; however, fluid flux appears unrelated to subsurface temperature range 

where orange filaments are found. Fluid flux estimates for sampled regions within both sites were 

observed to be similar despite the unique thermal source present only at Guaymas Basin. This 

work offers a novel approach to quantify fluid flow both into and out of the sediments across a 

variety of deep-sea habitats where seepage moderates the success of unique benthic ecosystems.  
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CHAPTER 1 

INRODUCTION AND MOTIVATION 

 

1.1. General Overview 

 

Deep-sea regions, defined here as marine water depths greater than 200 m, are our planet’s 

largest potential living space (Orcutt et al., 2011).  This habitat, including the seabed regularly 

exchange mass and energy with terrestrial and atmospheric systems. Chemical processes that occur 

in the deep-sea are known to moderate biogeochemical cycles upon which many terrestrial species, 

including humans, depend (Armstrong et al., 2012). In other words, material and energy exchange 

between the deep-sea and the seafloor are relevant for life as we know it (Danovaro et al., 2016; 

Levin et al., 2016). In fact, these environments may have served as a critical refuge for marine life 

that was nearly annihilated in euphotic zones during historic global mass extinction events (Van 

Dover et al., 2002). 

Several exchange mechanisms have been recognized to support unique deep-sea habitats 

(e.g., Corliss et al., 1979; Paull et al., 1984) where entire ecosystems are sustained by bacterial 

communities which add new organic carbon to the otherwise carbon-poor environments. These 

microbes accomplish this metabolic process via chemosynthesis using hydrogen sulfide, methane, 

or heavy metals (e.g., iron) as energy sources to convert inorganic carbon into biomass (Little and 
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Vrijenhoek, 2003). Thus, compounds relevant to global climate (e.g., methane and carbon 

dioxide,) are moderated by these chemosynthetic communities (Judd et al., 2002). Similar genetic 

lineages and evolutionary histories have been found between invertebrate taxa associated with 

deep-sea seeps and appear across a variety of porefluid discharge habitats across a range of 

temperatures and fluid fluxes (Van Dover et al., 2002). 

In general, subsurface fluid will be transported from regions of high hydrodynamic and 

chemical potential to low potential as described by Bjørlykke (1993). A few common mechanisms 

are credited with instigating pressure and chemical gradients related to transport. At hydrothermal 

sites, porefluid transport may be driven by thermal convection whereby the thermal expansion of 

water establishes an inverse subsurface density gradient potentially causing layers of porewater to 

overturn (Bjørlykke, 1993). Fluid flow may also be driven by sediment compaction and subsequent 

dewatering (Bjørlykke and Høeg, 1997) or be related to the release of pressurized porefluids 

associated with rapid sedimentary loading or tectonic compression (Foucher et al., 2009). 

Additional mechanisms of fluid transport may include subsurface phase change and subsequent 

overpressurization (Sun et al., 2012). Such phase changes can be linked to hydrate stability, 

carbonate formation, and methanogenesis which may influence both permeability and porefluid 

composition. However, site specific factors including depth of fluid origination, rate of fluid flow, 

temperature of rock-water interaction, and tectonic framework may influence the geochemistry of 

the seeping fluids more so than the physical mechanisms acting to transport fluid. It is also 

recognized that in some cases, mechanisms of fluid flow (e.g., halite dissolution) could most 

greatly moderate the composition of discharged fluid. Such complex associations between 

geochemistry, fluid flux, and driving mechanism could be related to the many different marine 

environments associated with active seafloor seepage (Ramirez-Llodra et al., 2010). 
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It is estimated that less than 1% of the deep seafloor has been studied in detail toward a 

comprehensive understanding of the significance of deep-sea seepage (Ramirez-Llodra et al., 

2010), yet sites where such discharge has been identified are known to support some of the highest 

levels of biodiversity on Earth with significant mineral and biological resources including seafloor 

massive sulfides and manganese nodules (Lusty and Murton, 2018). Although it is difficult to 

know exactly how many deep-sea seepage environments exist globally (Bris et al., 2016), 

researchers suspected ~2% of global cold seeps have been sampled directly (Ramirez-Llodra et 

al., 2010). The term ‘cold seep’ describes an environment associated with/dependent upon the 

discharge of subsurface porefluid at or near ambient ocean temperatures. Similarly, only 10% of 

the hydrothermal vents globally have been directly sampled (Ramirez-Llodra et al., 2010). Here, 

‘hydrothermal site’ refers to the locations of communities dependent upon/directly influenced by 

the discharge of porefluid at temperatures greater than that of the ambient ocean. Likely because 

energetic venting of subsurface fluids has been easier to identify, much less is known about slow-

flow seepage sites where species richness is often higher and discharge rates are lower (Portail et 

al., 2016). Still, the relationship between seep-associated organisms and the rate of fluid flow is 

largely unknown, especially for slow flow, seepage sites (Sibuet and Olu, 1998). Although there 

have been several studies to address fluid seepage rates, water circulation, and porefluid transport 

rates, our understanding of these processes still remains limited (Suess, 2014), and presents 

challenges towards our ability to evaluate the ecosystem goods and services provided by these 

environments (Armstrong et al., 2012). While the discrepancy between understanding and effort 

is likely best explained by the vastness of the deep-sea, the need nonetheless exists to determine 

water and material transfer occurring at deep-sea cold and hydrothermal seeps (Suess, 2014; Levin 

et al., 2016). 
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The overarching objective of this dissertation is to develop a model for evaluation of deep-

sea fluid fluxes and apply it across a variety of sedimented seepage sites. Throughout we use the 

term fluid flux to represent a volumetric vertical porefluid flux, hereafter referred to as fluid flux 

for simplicity). Broadly, this work concerns the utility of geochemical profiles to evaluate fluid 

fluxes through cold seep and hydrothermal sites. This objective is satisfied through work detailed 

in a series of chapters, each organized around a set of secondary objectives. This dissertation 

details the development of a model used to quantify volumetric vertical fluid flux through shallow 

(decimeter scale) sediment sections recovered from seepage sites where both relatively large and 

small scale fluid transport mechanisms may influence transport quantities (Figure 1.1). 

Chapter 2 describes conditions and assumptions previously applied in coastal settings for 

using chemical proxies to estimate fluid flow rates. A series of parameters unique to deep-sea 

sediments are discussed as they may differ from coastal materials for which much of the referenced 

work was developed. Specifically, this chapter examines the assumptions applied by Krest and 

Harvey (2003), where the origins of the proposed deep-sea model were developed. Results are 

used toward the development of a vertical exchange model appropriate for determining porefluid 

flux in deep-sea seepage habitats. 

In Chapter 3, model performance is qualitatively evaluated by determining the effective 

fluid fluxes at suspected cold seep and control sites.  Model-based fluid fluxes are considered in 

the context of observational evidence as an indication of active seepage. Vertical exchange model 

results are also compared to those derived from a 1-dimensional advection-diffusion equation. This 

chapter serves as a proof of concept of the model using deep-sea sediments recovered from the 

Gulf of Mexico. 
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In Chapter 4, the vertical exchange model is employed to identify the range in fluid flux 

through hydrothermal sediments in Guaymas Basin, Gulf of California. An effective fluid flux is 

determined for a series of sediment cores associated with microbial indicators of seepage and 

results are compared to fluid fluxes determined for areas of inconspicuous sediment cover. We 

Figure 1.1. Schematic depicting common cold seep features associated with passive margin 

systems associated with large (A) and small spatial scales (B). Panel A is modified from Suess 

(2014) and panel B is inspired by Santos et al. (2012). Fluid migration pathways over large 

scales are associated with fracturing and often associated with subsurface salt, thermal, or gas 

reservoirs. Although hydrate is shown in the figure, for hydrothermal sites similar features 

could affect potential flowpaths as minerals precipitate. The red line indicates the relative 

vertical scale of the regions studied through this work. Panel B includes suspected mechanisms 

potentially contributing to the radium budget depicted in Figure 2.1. Note: the vertical and 

horizontal scale is not necessarily the same and that figures are not drawn to scale. Vertical 

scales correspond to spatial scales each mechanism is likely to act over. 
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sample across sediment cover type (i.e., different color microbial mats) and across various 

subsurface thermal regimes to ultimately discuss spatial associations between fluid flux, 

temperature, and sediment cover. 

Chapter 5 concludes this work with a brief comparison between fluid fluxes determined 

for a series of cores recovered from cold seeps in the Gulf of Mexico and hydrothermal 

environments in Guaymas Basin. This chapter offers a discussion of fluid flux magnitude 

determined using the vertical exchange model between the cold seep and hydrothermal sites 

studied.  

Ultimately, through development and application of a vertical exchange model, this 

dissertation offers a novel approach to evaluate fluid flow through deep-sea sediments that has 

been applied at two distinct seepage habitats.  
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CHAPTER 2 

THE VERTICAL EXCHANGE MODEL 

 

2.1. Introduction 

 

 A volume equivalent to the entire global ocean is thought to circulate through the oceanic 

crust every 105 to 106 years (Orcutt et al., 2011). Water enters the crust via lithospheric subduction, 

infiltration through basement outcrops (Fisher et al., 2001), and burial of oceanic sediments (Suess, 

2014) after which it may undergo chemical alterations due to high-temperature water/rock 

interactions, dissolution of geologic strata, and oxidation/reduction reactions. Subsequent 

discharge of this altered water occurs at highly localized zones of energetic advective flow 

(venting) and also over much larger regions of slower flow (seepage). High-temperature 

water/rock interactions and subsequent venting at hydrothermal regions are estimated to contribute 

significantly to global ocean Mg and Ca budgets (Seyfried and Bischoff, 1981) and also supply a 

significant fraction of iron and other trace metals to oceanic environments (Fitzsimmons et al., 

2014). 

Even at settings where such discharging water has not experienced high-temperature 

water/rock interactions (i.e., cold seeps), the vertical flow of subsurface water through geologic 

strata often mobilizes biogeochemical constituents (forms of C, N, P, and S) that support 

chemosynthetic ecosystems at the seafloor (Dekas et al., 2009; Suess, 2014). Endemic 
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communities of mussels/clams, worms, fishes, and other high-level benthic organisms associated 

with discharging subsurface water are generally supported by vast microbial populations and 

endosymbionts (Kennicutt II et al., 1985; Brooks et al., 1987). Seep products have even been 

spatially linked to elevated biomass in photic zones (D’souza et al., 2016) suggesting the impact 

of such discharge on the marine environment is far-reaching. Community structure and ecosystem 

complexity at these sites is thought to be inversely related to fluid discharge rates as sites of rapid 

venting are generally associated with lower species diversity and simpler food-web structures as 

compared to seepage sites characterized by slower flow (Portail et al., 2016). While energetic 

venting may be ecologically significant over global scales, localized seepage appears to exert 

greater control on an individual community.  

Diffuse seepage is often inferred from the presence of an oasis type community emerging 

from regions of otherwise inconspicuous sediment cover. Especially in deep-sea aphotic zones, 

seeping fluids sustain communities supported almost entirely by the relative enrichment of reduced 

compounds, an otherwise uncommon characteristic among nearby abyssal regions (Paull et al., 

1984; Fisher and Becker, 1991; Orcutt et al., 2011). Although it is not an objective of this work to 

identify specific mechanisms or even the relative importance of any one mechanism over another, 

many factors driving porefluid transport through deep-sea sediments have been proposed. For 

example, Fluid seepage through passive margin systems can occur at near-ambient ocean 

temperatures (cold seeps) as a result of increased pore-pressure related to the movement of buried 

evaporite deposits, subsurface oil/gas production, and/or sediment slumping (Orcutt et al., 2011). 

Exchange through surficial sediments may also be related to tidal, and topography-induced flow 

as well as several other potential mechanisms identified in Figure 1.1). Diffuse seepage can also 

occur at slightly elevated temperatures associated with exothermic chemical reactions (Kelley et 
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al., 2005) or remnant lithospheric heat (Wheat et al., 2004).  Even considering hydrothermal 

systems where intense venting represents a visually extraordinary form of subsurface discharge, 

diffuse seepage is thought to discharge 90% of the water mass circulated through oceanic crust 

(Orcutt et al., 2011). Such estimates are suggestive of the expansive magnitude of diffuse seepage, 

yet are also subject to a high degree of uncertainty as localized seepage rate estimates across a 

variety of geobiologic environments remain one of the least understood components of marine 

element cycling (Suess, 2014).  

Seepage rates may be evaluated via both direct and indirect measurement approaches. 

Direct approaches involve the placement of observational instrumentation on the seabed, which 

may limit feasibility due to logistical challenges of operating in the deep-sea. Indirect methods 

utilize distributions of conservative thermal and chemical proxies whereby spatial trends are often 

assessed as profiles through geologic strata and may be related to an advective velocity. However, 

indirect methods to evaluate seepage rates in deep-sea environments are largely only applicable 

under certain conditions (e.g., a sufficiently strong thermal gradient through sediments at 

hydrothermal settings and a strong ion gradient for brine seeps). Efforts to date suggest fluid 

transport rates range from 30 to 470 cm yr-1 for low-temperature hydrothermal sites (Fisher and 

Becker, 1991) and from 7 to 65 cm yr-1 for brine seeps (Lapham et al., 2008). Such velocities 

suggest that subsurface residence time in a 1 cm sediment depth-interval could then range from 

0.8 to 12 days near hydrothermal ridges and from 5 to 52 days near cold seeps.  

For any indirect means of evaluating subsurface fluid flow and discharge dynamics, the 

utilized proxy should be influenced by seepage-related mechanisms more strongly than other 

sources and sinks to minimize uncertainty. It should also be that an effective proxy is 

enriched/depleted in the seeping fluids relative to ocean waters and responds on time frames 
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appropriate to those of the process(es) being evaluated. The paucity of diffuse, seepage rate 

estimates across deep-sea sedimentary settings is due to the lack of robust tools that meet these 

criteria across the wide range of seepage environments. The development of additional tools to 

constrain seepage rates in deep-sea settings thus remains a strong area of research need. 

In this work, we explore whether 224Ra could serve as such a proxy for indirect assessment 

of porefluid flow through deep ocean sediments. With a half-life of 3.6 days, the effective dating 

range of this chemical proxy ranges from 1 to 21 days. Many authors have shown the utility of 

224Ra to provide fluid flux estimates (and assess geochemical controls) from coastal and shallow 

water systems (Krest and Harvey, 2003; Colbert and Hammond, 2008; Gonneea et al., 2008; Cai 

et al., 2012; Beck and Cochran, 2013).  However, the use of 224Ra to quantify 1-dimensional fluid 

fluxes through deep-sea sediments by evaluating porefluid tracer distributions in a vertical 

exchange model is novel. 

Krest and Harvey (2003) first described a vertical exchange model that utilizes 224Ra 

disequilibria to estimate porefluid flow rates in a freshwater marsh. Here, we use components of 

that model and the various assumptions behind it to determine effective flow rates through deep-

sea sediments where diffuse seepage rates are poorly constrained. In this chapter, we characterize 

various 224Ra sources and sinks to/from sedimentary porefluid and assess how measurements, and 

in some cases simplifications, of those sources/sinks may be used toward development of a model 

that would ultimately estimate porefluid residence times and resulting fluid flux. As is common 

with indirect approaches toward understanding a process, our estimates may include large error. 

We attempt to identify sources of potential error and consider the likely way(s) in which our fluid 

flux estimates may be affected by such uncertainties.  
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The goal of this work is to develop a vertical exchange model adequate to estimate 

porefluid residence time in deep-sea sediments based on that originally presented by Krest and 

Harvey (2003). From residence time, a rate of replacement (i.e., fluid flux) may be estimated for 

cold seep (Chapter 3) and hydrothermal (Chapter 4) environments. To meet that goal, we address 

the following objectives throughout this chapter: (1) identify potential sources and sinks of 224Ra 

within deep-sea porefluid; (2) experimentally characterize the relationship between aqueous 224Ra 

and associated sources and sinks; and (3) discuss the potential consequence(s) for residence time 

and subsequent fluid flux estimates if these source/sink terms are insufficiently constrained.   

 

2.2. Theory 

Radium-224 is a naturally-occurring radioisotope (T1/2 = 3.6 days) and a common proxy to 

study water mass mixing and porefluid exchange (Moore, 2000; Weber et al., 2016; Corbett et al., 

2017; Hong et al., 2017; Sadat-Noori et al., 2017). Soluble 224Ra in porefluid is generally sourced 

from decay of parent 228Th isotopes adsorbed to particle surfaces. Although a significant portion 

of 224Ra remains adsorbed to the grain surface when surrounded by sea water (Gonneea et al., 

2008), a considerable amount may also be dissolved in solution. The sum of 224Ra adsorbed to 

sediment surfaces that is available for desorption combined with that which is dissolved in 

porewater is termed ‘exchangeable’ 224Ra. 

Being a dissolved ion, radium may be transported via porefluids migration. Changes in 

porefluid radium activity with time thus represent a balance between dispersion, advection, 

production, decay, and exchange with sedimentary surfaces (from Krest and Harvey, 2003): 

𝑑𝐶

𝑑𝑡
= 𝐷

𝜕2𝐶

𝜕𝑍2
− 𝜔

𝜕𝐶

𝜕𝑍
+

�̂�𝜌

𝑓𝐾𝑑+(1−𝑓)
− 𝜆𝐶 +

𝜕𝐶∗

𝜕𝑡

𝜌

𝐾𝑑
                                                                  (2.1) 
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Equation. 2.1 is an adaptation of the standard advection-diffusion equation (Berner, 1980) and 

directly from Krest and Harvey (2003). Here, C is the number of dissolved atoms per volume of 

water, D is the hydrodynamic dispersion coefficient (with units of length2 per time), Z is depth 

below the sediment-water interface, 𝜔 is the porefluid advective vertical velocity (with units of 

length per time), �̂� is the production rate of exchangeable radium via parent isotope decay (with 

units of number of atoms per time per mass of bulk sediment),  is the porefluid density (with units 

of mass per volume), f is the mass of dry sediment per mass of bulk sediment, Kd is the radium 

distribution coefficient equal to the ratio of 224Ra atoms adsorbed to particle surfaces relative to 

those in solution,  is the decay constant of 224Ra (0.189 day-1), and C* is the number of 224Ra 

atoms adsorbed to particles per mass of dry sediment.    

 According to Krest and Harvey (2003), the following conditions must be met before 

estimating 𝜔 using Equation 2.1: (1) production and decay affecting dissolved 224Ra are unequal 

(i.e., a state of radioactive disequilibrium must exist); (2) 224Ra production rates are estimated and 

constant in space and time over the considered sediment column; and (3) the partition coefficient 

of 224Ra (Kd) is constant and uniform throughout the sediment column. The authors plainly state 

that layered systems or otherwise geochemically heterogeneous environments must account for 

changes in the rate of 224Ra production and subsequent distribution. This is likely because variables 

related to sediments (f) and 224Ra geochemistry (�̂�, Kd) are represented by a single term over the 

considered domain. Several papers have identified common factors influencing environmental 

levels of radium in solution and several researchers have posited many environmental controls on 

porefluid 224Ra activities, concluding that the influence of any one parameter on radium 

partitioning may be highly variable and so warrant evaluation in new environments before using 
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radium as a proxy for fluid transport (Rama and Moore, 1996; Gonneea et al., 2008; Beck and 

Cochran, 2013).  Additionally, vertical advective velocities are assumed to be significantly larger 

than horizontal advective velocities so that this equation may be simplified to one spatial 

dimension.  

 Prior to adapting the conceptual framework developed by Krest and Harvey (2003), we 

therefore need to explore the assumptions and potential controls on 224Ra in deep-sea porefluid as 

the original model was developed for a freshwater marsh system. We maintain the assumption that 

advective vertical velocities are significantly larger than horizontal velocities and simplify our 

approach as done by Krest and Harvey (2003) to 1-dimension.  We also evaluate the need to 

include additional terms that may be required for the deep-sea that were not needed in the marsh 

studied by Krest and Harvey (2003). For example, in-situ reactions involving chemical 

precipitation (e.g., barite formation) and oxidation/reduction alterations (e.g., iron and manganese 

(hydr)oxide formation) may scavenge 224Ra and thus represent another radium sink from the 

porefluids. In the following sections, we describe several laboratory experiments intended to 

characterize the various relationships between aqueous 224Ra and each identified source/sink term 

as they may change 224Ra distribution. We also explore how the logistical issues related to sample 

collection, preservation, and subsequent laboratory analysis may influence the suitability of 

applying these assumptions. Perhaps most importantly, we intend to eliminate the assumption of 

a constant production rate applied by Krest and Harvey (2003) in our vertical exchange model. 

Potential sources and sinks of 224Ra to porewater are presented in Figure 2.1 and serve to 

accommodate the coming sections as we test for effects of the potentially important mechanisms 

unique to the deep-sea. 
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2.3. Analytical Methods  

 

We describe several laboratory experiments used in the construction of our vertical 

exchange model. In this section, we describe methods common across all experiments to determine 

224Ra activities regardless of where or how the sample was collected.  Details unique to specific 

experiments are described in Section 2.4 as appropriate.  

Figure 2.1 Conceptual mass balance diagram where the activity of 224Ra dissolved in a 

defined volume of deep-sea porefluid (RaT; dpm L-1) is related to the fluid residence time in 

interstitial sediment spaces and several potential sources (+) and sinks (-). At radioactive 

equilibrium (where interstitial fluid residence time is ≥ 21 days), RaI
 equals RaT and the 

difference between production from 228Th decay (RaP) and decay of 224Ra (RaDecay) is zero. 

When the porefluid residence time is <21 days, dissolved 224Ra is advected into the box 

initially (RaI). Adsorption onto sediments (RaA) could remove 224Ra from solution while 

desorption (RaD) could be a source.  Radium precipitation into barite (RaB) could remove 

radium from solution as could the formation of metal-hydroxides and subsequent scavenging 

(RaM). The impact of each source and sink on RaT is explored throughout Chapter 2.It is 

assumed porewater leaving the box would contain a 224Ra activity equal to RaT. 

 



 
 
 

17 
 

Sediments were recovered from the deep-sea and coastal marine environments where 

materials were continuously bathed in seawater. In some instances, we use sediment cores 

collected from the Gulf of Mexico (GOM) and the Gulf of California (Guaymas Basin) obtained 

during research cruises spanning from June 2015 to November 2018 as well as grab samples 

recovered from South Carolina salt marshes (Table 2.1). Sediment cores were recovered from 

water depths >500 m using a shipboard multiple core deployment and recovery system, the human-

occupied vehicle (HOV) Alvin, or the remotely-operated vehicle (ROV) Odysseus. Sample 

porosity was determined by water mass loss upon drying at 60 °C and grain density was determined 

by volume displacement (Lambe, 1951).  

For analysis of dissolved 224Ra, porefluid/experimental seawater was recovered from 

sediment samples via centrifugation at 5,000 RPM for 15 min and subsequently filtered through a 

0.45 μm millipore filter to remove any suspended particles. ‘Porefluid’ is distinguished from 

‘experimental water’ in that it is environmental water recovered from recently obtained sediments, 

whereas experimental water refers to Ra-free seawater used to rehydrate sediments that is later 

recovered for analysis. All water recovered from sediments was diluted with 1L Ra-free seawater 

to facilitate processing and passed twice slowly (< 1 L min-1) over a 25 g aliquot of dry MnO2-

impregnated acrylic fiber to quantitatively adsorb dissolved Ra (Moore, 1976; Moore, 2008; 97.8 

± 1.3 % 224Ra sorption efficiency). Mn-fiber was then rinsed with Ra-free tap water to remove 

residual salt and dried using a compressed air stream until an optimal mass for analysis was 

achieved (Sun and Torgersen, 1998). Fibers were immediately analyzed on a Radium Delayed 

Coincidence Counter (RaDeCC; Moore and Arnold, 1996) and reanalyzed three weeks later to 

correct initial measurements for any contribution from dissolved 228Th (Porcelli and Swarzenski, 

2003). To determine the equilibrium activity of 224Ra in the dissolved phase associated with any 
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sediment source (Raeq), sediments were dried at 60 °C and rehydrated to in-situ porosity using Ra-

free seawater. Slurries were incubated for a >3 weeks and then experimental waters were separated 

via centrifugation and analyzed as discussed above.  

 

Table 2.1. Metadata for sediment samples used in vertical exchange model experiments. 

Experimental significance is related to sources and sinks identified in Figure 2.1. 

Experimental 

significance 

Text 

section 

Collection 

site$ 

Collection 

date & time 

(EST) 

Cruise ID; 

collection 

method 

Latitude and 

longitude 

Sample 

description 
 

RaA and RaD  

lab/at-sea 
2.4.1.1 

GOM-

GC767 

6/16/2015 

17:20 

EN559;  

multiple core 

27° 12.59’ N,                

91° 00.59’ W 

1 sediment 

core  

Temperature 

& RaA  and 

RaD 

2.4.1.1 
MYR-

WPS 

March, 

2016 
Sediment grab 

33° 45.845’ N,              

78° 46.930’ W 

Surficial 

sediment 

 

Depth & RaA 

and RaD 
2.4.1.2 

GOM-

GC600 

9/4/2018 

13:49 

PS 1905; ROV 

Odysseus 

pushcore 

27°22.1906’N, 

90°34.2668’W 

1 sediment 

core 
 

Porosity & 

RaA and RaD 
2.4.1.2 

GOM- 
#EcoGIG 

targets 

July-

August, 

2016 

EN586;  

multiple core 

27° 29.966’ N, 

91° 58.721’ W 

18 sediment 

cores 
 

 RaB 2.4.2.1 
GOM-

GC600 

9/4/2018 

13:41 

PS 1905; ROV 

Odysseus 

pushcore 

27°22.1906’N, 

90°34.2668’W 

1 sediment 

core 
 

 RaAds 2.4.2.2 
GOM-

OC26 

8/6/2016   

8:31 

EN586;  

multiple core 

28°41.503’N, 

88°22.770’W 

2 sediment 

cores 

  

 RaAds 2.4.2.2 GY-CH 

11/20/2018 

15:07 & 

14:20 

AT45-02; 

HOVAlvin 

pushcore 

27°00.6726’N, 

111°24.2613’W 

2 sediment 

cores 

  

Change in 

activity, RaP, 

and RaD  

2.4.3 
MYR-

WPS 

March, 

2016 
Sediment grab 

33° 45.845’ N,              

78° 46.930’ W 

Surficial 

sediment 
 

$ Site acronyms: GOM- Gulf of Mexico; GC- Green Canyon; GY Guaymas Basin; MYR- Myrtle 

Beach, SC; WPS-White Point Swash; CH-Cathedral Hill 

* Location presented as a range of coordinates encompassing collection sites for all considered 

samples. 
#EcoGIG targets refers to a series of previously identified seepage sites determined using a 

variety of direct observational evidence and also indirect means including acoustic imaging.  
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Ra-226 was measured on each Mn-fiber to serve as a stable (i.e., non-decaying) isotope 

proxy for 224Ra.  For 226Ra analysis, fibers were stored in air-tight cartridges to allow the radiogenic 

daughter, 222Rn, to grow in toward equilibrium.  After at least 1 week (~75 % ingrown), the activity 

of 222Rn was analyzed on a radon emanation line (following Peterson et al., 2009). When dissolved 

228Ra activities are reported, they were measured by analyzing the Mn-fibers on the RaDeCC again 

after ~ 1 year as per Moore (2008). Activities of grain-adsorbed 224Ra were determined following 

methods outlined by Cai et al. (2012). In short, a slurry was prepared using 150 mL of Ra-free tap 

water and recently collected sediments. The slurry was pH adjusted by adding 5-10 drops of NH3-

OH followed by 1 mL of 19 mM KMnO4 and 1 mL of 40 mM MnCl2 solutions to precipitate any 

224Ra that may have entered the dissolved phase following the addition of Ra-free tap water (Cai 

et al., 2012). Solids were vacuum filtered onto preweighed 47 mm GFF filters and the filtration 

was terminated when water drops no longer passed into the filtrate reservoir. Sediment-covered 

filters were then dried completely and analyzed on the RaDeCC twice, where any difference 

between the first and second measurement indicates a deviation from equilibrium and suggests an 

additional supply/removal of 224Ra that would affect the 224Ra in solution. 

 

2.4. Radium Model Component Evaluation 

 

Here, we consider the potential control several common sources/sinks of 224Ra in coastal 

and shallow water and deep-sea systems (Figure 2.1). We have organized the text into distinct 

sections to address each source and sink term potentially affecting interstitial porefluid 224Ra 

activities. Our intention is, through experimentation, to identify which parameters may be relevant 
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to incorporate into a model to determine porefluid flux using 224Ra profiles recovered from deep-

sea seepage systems.  

 

2.4.1. Exchange with Sedimentary Surfaces  

 

The activity of 224Ra adsorbed to particle surfaces (RaA) is related to that present in solution 

(RaD) by the distribution coefficient (Kd; Figure 2.1). The relationship between adsorption and 

desorption can then be evaluated by experimentation by a series of methods (e.g., Rama and 

Moore, 1996; Colbert and Hammond, 2008; Gonneea et al., 2008; Beck and Cochran, 2013). 

Although it is unclear which factors in deep-sea environments predominantly control 224Ra 

distribution (e.g., Gonneea et al., 2008; Beck and Cochran, 2013), the effect of changing salinity 

on solid-aqueous distribution is known to exert consistent control across many environment types 

(Kraemer and Reid, 1984; Webster et al., 1995). Because we focus on shallow sections (< 50 cm 

below the seafloor; cmbsf) of deep-sea sediment where salinity change is minimal, localized 

parameters such as grain size and charge, sediment geochemistry (e.g., metals and organics), 

temperature, porosity, and redox potential may be important considerations. We evaluate the net 

effect many of these parameters (e.g., grain size and change) may have on 224Ra partitioning by 

measuring aqueous 224Ra activities produced under contrasting treatment conditions associated 

with homogenous subsamples of larger marine sediments.  

Two distinct instances exist in which a change in radium partitioning occurring over time 

and space may influence our ability to use 224Ra to determine deep-sea fluid transport rates. The 

first is through our measurement of the dissolved equilibrium 224Ra activity (Raeq) in contact with 

specific sediments, principally the effect of drying and rehydrating samples for later analysis in 



 
 
 

21 
 

the laboratory at room temperature. We consider this a change in time, potentially related to sample 

handing procedures.  The second opportunity for 224Ra partitioning to influence radium in solution 

includes a change in distribution over space. Specifically, a change in Kd vertically, between 

adjoining sediment layers could appear indistinguishable from a change in 224Ra activity related to 

fluid transport. To evaluate radium distribution, we performed serial extraction experiments to 

examine Kd associated with different handling protocols, and vertically adjoining sediment 

sections. 

 To determine how the exchangeable pool of 224Ra is distributed between the surface-sorbed 

and dissolved fractions (Kd), we completed a series of consecutive fluid replacement experiments 

similar to those described by Colbert and Hammond (2008). Briefly, a known mass of aged 

sediment (Ms) was combined with a volume of Ra-free seawater (VT). The slurry was briefly 

agitated and held for 10 minutes to achieve sorption equilibrium before the dissolved 224Ra activity 

(Ci) was measured by removing an aliquot of water (ΔV). Following removal, an equivalent volume 

of Ra-free seawater was added to maintain VT and held again for 10 minutes before additional 

removals and replacements occurred. Radium partitioning may then be estimated by the following 

relationship (from Colbert and Hammond, 2008): 

1

𝑀𝑠
(Δ𝑉 ∑ 𝜆𝐶𝑖−1 + 𝑉𝑇𝜆𝐶𝑖) = −𝐾𝑑𝜆𝐶𝑖 + 𝐸                                                                                                    (2.2) 

 where E represents the 224Ra emanation rate and λCi-1 is equal to the sum of the dissolved 224Ra 

activity removed prior to removal step i. Here, the 224Ra partition coefficient is the slope of a line 

characterizing the relationship between the adsorbed 224Ra activity (calculated) and the dissolved 

224Ra sorbed to Mn-fiber as determined via RaDeCC analysis. Although the 224Ra distribution 

coefficient and emanation rate were central to the work which originally developed Equation 2.2 
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(Colbert and Hammond, 2008), we apply this model for the sole purpose of identifying the partition 

coefficient and so focus discussion exclusively on Kd.  

 

2.4.1.1. Temporal Changes in Distribution  

 

We determine the dissolved equilibrium 224Ra activity (Raeq) by incubating sediment with 

seawater at ambient porosity. Throughout, we use the term equilibrium, to indicate secular 

equilibrium, where the rate of 224Ra production is equal to the rate of 224Ra decay and the activity 

of 224Ra (both in solution and adsorbed to particulate surfaces) therefore remains unchanged. This 

procedure is done in the laboratory following the cruise during which sediment cores were 

collected, sectioned, centrifuged, and preserved. To determine Raeq, we dry and then rehydrate 

marine sediments to perform the incubations. As demonstrated by Beck and Cochran (2013), no 

significant effect on radium partitioning is expected from such sample handling protocols provided 

that drying is achieved at temperatures at or below 60 °C. However, it is worth noting that drying 

the sediments could have altered organic materials associated with the sediment matrix, which 

may have a considerable effect on partitioning (Rama and Moore, 1996).  Here, we evaluate 

whether the application of laboratory based methods to determine Raeq alters 224Ra distribution 

between particulate and aqueous phases. 

We tested for the potential effect of sample handling on 224Ra distribution in two ways. 

The first experiment compared porefluid radium activities measured at sea to those measured at 

equilibrium following ~ 1 year of storage, drying, and subsequent rehydration to examine the 

potential effects on radium distribution. For this experiment, we use 226Ra as an indicator of 

potential 224Ra sensitivity to our sample handling protocols. Because the half-life of 226Ra is 
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sufficiently long (T1/2 = 1602 years), we expect distributions of the isotope to be a consequence of 

sorption equilibrium (Kd) and geochemistry rather than ingrowth or decay as 226Ra activities are 

not expected to vary between the two measurement periods. Although we do not need to assume 

the distribution coefficient for 224Ra and 226Ra is equal, we do assume that a change in dissolved 

activity between our at-sea and laboratory evaluations of 226Ra is indicative of a change in the 

distribution coefficient of 226Ra. We then assume that a change in solid:aqueous distribution for 

226Ra is indicative of a change in 224Ra solid:aqueous distribution. Similarly, if no discernable 

change in 226Ra partitioning is observed between at-sea and laboratory measurements, then 

changes to 224Ra partitioning related to sample handling protocols are assumed negligible.   

To experimentally evaluate if changes in radium sorption could be identified between 

measurements made at sea and in the lab, we collected a sediment core from the Gulf of Mexico 

(Table 2.1). Sediments were sectioned 4 cm thick slabs from which porefluid was recovered and 

analyzed for dissolved radium according to methods previously described. Each 4 cm thick 

sediment slab was archived for later rehydration and incubation with Ra-free seawater at ambient 

porosity. Comparing dissolved 226Ra activities recovered after core collection with those measured 

in the lab during the equilibrium experiments among 12 samples through a sediment core (Figure 

2.2A), no difference beyond error was observed between 226Ra recovered from porefluid and 

experimental fluid (t-test; p = 0.49). Because the two measurements yield similar patterns and 

magnitudes in activity, it is likely that the 226Ra initially recovered from the sediment core had a 

residence time significantly less than 1602 years and so porefluid 226Ra activities are related to 

sediment geochemistry and radium partitioning. While it is possible that the change in radium 

distribution as a consequence of storage and handling could explain equal activities for all layers 
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measured at each interval, it is much more reasonable that this result indicates that no change in 

radium partitioning was observed beyond error and can therefore be considered negligible. 

  

Figure 2.2.  (A) Aqueous 226Ra activities measured at sea (filled circles) and in 

the lab after materials were aged for several weeks (open circles). (B) Aqueous 
224Ra activities at equilibrium for replicate (a and b) temperature storage 

treatments. Error bars represent ±1σ analytical uncertainty determined by standard 

error propagation of counting statistics.  
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Our second experiment tested for an effect of storage temperature on radium distribution. 

To address this, we held sediments at ambient porosity at three different storage temperatures for 

two weeks and subsequently measured the dissolved 224Ra activity associated with each 

temperature treatment group. Sediments were tested with a porosity of 0.52 in duplicate with 

temperature treatments including frozen, room temperature, and 60 °C. We did not observe an 

apparent effect between dissolved equilibrium 224Ra activities with storage temperature (Figure 

2.2B) as equilibrium activities were not observed to be different beyond error across temperature 

treatments. Although isotope activities have been observed to correlate with temperature related 

to seasonal trends (e.g., Bollinger and Moore, 1993; Rama and Moore, 1996; Hughes et al., 2015), 

there is also evidence to suggest radium distribution may be unaffected by temperatures ranging 

from 2°C to 60°C for a variety of sediment sizes and compositions as per laboratory manipulations 

(Beck and Cochran, 2013). It is likely that external forcings such as changes in groundwater flow 

rate and precipitation could explain the connection between seasonal temperature fluctuations and 

groundwater 224Ra activities observed in the environment. Although organic content may have 

been altered during processing (Rama and Moore, 1996), the effects on 224Ra of such change are 

not evident by these experiments. Although sediments used for this experiment were not recovered 

from the deep-sea, the organic content of these sediments was likely greater than that of deep-sea 

sediments and so the effects of storage temperature on samples with less organic material is 

expected to be less effected by such change (Rama and Moore, 1996; Hughes et al., 2015). 
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2.4.1.2. Spatial Changes in Distribution 

 

Potential vertical changes in Kd were evaluated using material recovered at sea (Table 2.1), 

archived in 4 cm thick samples, and aged for >3 weeks such that aqueous 224Ra reached equilibrium 

with those sediments. Solid-aqueous partitioning for each sediment section was determined via 

serial extraction experiments (Equation 2.2; Colbert and Hammond, 2008). By evaluating the 

partition coefficient vertically through a sediment core, we can estimate how any potential 

redistribution would affect the dissolved 224Ra activity through porefluids  

We did not observe a depth-dependent trend on 224Ra solid-aqueous partitioning for the 

material tested (Pearson correlation; p = 0.16). Although the 224Ra distribution coefficient was 

observed to be fairly consistent from 4 to 20 cmbsf (ranging from 53.0±32.7 to 64.3±13.0 L kg-1) 

distribution coefficients for 0-4 cmbsf and 20-24 cmbsf sediment sections were quite different 

(160.7±117.4 and 205.6±51.2 L kg-1, respectively). However, with the exception of the 20-24 

cmbsf section, no difference in Kd beyond error is resolvable (Figure 2.3A). It was expected that 

radium partitioning associated with 0-4 cmbsf could be most distinct as organic content/grain size 

may exert significant control over 224Ra distribution (Beck and Cochran, 2013). Factors most 

greatly controlling 224Ra distributions including distinct geochemical properties are most likely 

present in the shallow sediments especially as redox boundaries are expected to exist here creating 

conditions unique to the shallow-most sediment section relative to sediments deeper in the column. 

Due to such large error associated with Kd estimated for sediments recovered from 0-4 cmbsf, it is 

unknown if significant deviations with depth occur between surficial sediments and those 

recovered from 5-20 cmbsf. Despite the large uncertainties, our results indicate that if Kd changes 

with depth, the difference appears to be less than the error associated with the experimental 
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approach. As we did not identify evidence to the contrary we assume vertical changes in solid-

aqueous 224Ra distribution from 0 to 20 cmbsf is negligible.   

It is important to note that we used a constant porosity for the serial extraction experiments 

used to determine Kd for each sediment section although in-situ porosities did decrease somewhat 

with increased depth into the sediments. While we did maintain the sediment:water ratio suggested 

by Colbert and Hammond (2008; ~0.80 to 0.95, depending on grain density), this porosity is higher 

than that normally found >4 cmbsf in deep-sea sediments. This potential problem is discussed by 

Beck and Cochran (2013) with the conclusion that much of the literature presents distribution 

experiments with similar proportions although it is recognized that experimental porosities are 

greater than those expected in-situ, quick processing with such small recovery volumes is not 

reasonably possible. While changes in porosity may influence partitioning, high experimental 

porosities are required to recover sufficient water volumes from the slurries while still maintaining 

experimental times below ~ 40 min so that influences from production/decay are limited. Yet, the 

lack of a depth-dependent trend in Kd (at a constant porosity) suggests no systematic grain size or 

geochemical control on 224Ra distribution with depth.  
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Figure 2.3. (A) Results of the serial extraction experiments using vertically 

adjoining sediment sections. Linear regression lines are shown for each experiment. 

Depth intervals are presented in cmbsf. (B) In-situ porosity (gray symbols and solid 

line) and 224Ra distribution coefficients (Kd; green symbols) derived from the slope 

of each experimental regression line. Units of Kd are simplified from dpm kg-1 

divided by dpm L-1. Error bars represent (A) ±1σ analytical uncertainty determined 

by standard error propagation of counting statistics and (B) the standard error of the 

slope for each linear model. 
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To examine the control of porosity on Kd, we measured dissolved activities of 226Ra in 

porefluid recovered from 18 deep-sea sediment cores (Table 2.1).  Because 226Ra has such a long 

half-life, changes in activity related to production or decay are minimal, and a relationship between 

deep-sea porefluid 226Ra activities and in-situ porosities could indicate a spatial association 

between Kd and porosity down core.   

226Ra will usually diffuse into overlying ocean waters as seawater activities are typically 

lower than those contained within interstitial porefluid. For this reason, we only include data ≥ 8 

cmbsf (Figure 2.4) where the effects of diffusion are assumed to be minimal and a substantial range 

in porosity is still observed down core. Although we observed a significant relationship between 

porosity and radium partitioning in deep-sea sediments based on regressing the absolute activities 

against porosity, (r=-0.46, p < 0.05), the relatively low correlation coefficient suggests a weak 

relationship and the effect of porosity on partitioning is therefore considered negligible. Because 

of the relative enrichment of organic material in seep sediments relative to non-seep affected sites, 

the range of possible distribution coefficients could be reduced and the variability in Kd is therefore 

expected to be small. This relationship between organic-rich sediments and radium partitioning 

was described by Hughes et al (2015). Although organic content is not expected to be as high in 

deep-sea sediments as that for the coastal marsh studied by Hughes et al. (2015), organic matter is 

often present at elevated levels at diffuse deep-sea seepage sites (MacDonald et al., 1989; Paull et 

al., 1992; Joye et al., 2004; Pohlman et al., 2011), so the natural range in Kd values as a function 

of variable porosity in these sediments could be relatively narrow. 
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2.4.2. Particulate Radium  

 

2.4.2.1. Incorporation into Barite 

 

 Co-precipitation of radium into a barite matrix in marine sediments can act a sink of radium 

from the exchangeable pool under certain conditions (Doerner and Hoskins, 1925; Figure 2.1). 

Fluids emanating from energetic hydrothermal vents as well as mud volcanoes at cold seep are 

commonly enriched in barium, radium, and sulfate, and as such, may favor this mineral 

precipitation (Feng and Roberts, 2011; Núñez-Useche et al., 2018). Enrichments in dissolved 

Figure 2.4. Aqueous porefluid 226Ra activities recovered from 18 GOM cores 

(n=96) plotted against porosity. Error bars represent ±1σ analytical uncertainty 

determined by standard error propagation of counting statistics. Results of the 

linear regression model are depicted as a solid line. Symbol color denotes 

distinct samples as many symbols overlap. 
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barium can precipitate as barite with a Ra/Ba co-precipitation to Ba(Ra)SO4 (Aharon et al., 2001). 

Although barite formation is most commonly associated with highly saline water (Cl- 

concentrations > 2000 mM), significant halite deposits beneath the GOM (Land et al., 1988) and 

Guaymas Basin (Miller and Lizarralde, 2013) suggest past evaporative conditions may have acted 

as a radium sink (Rosenberg et al., 2018). This potential sink, if occurring during sampling and 

unaccounted for in the model, may render Ra ineffective as a proxy for porefluid flow at brine 

seeps. For this reason, we test for radium removal via radium-barium co-precipitation (RaB) via 

experiments detailed in here.  

This radium removal mechanism was evaluated experimentally by monitoring gaseous 

daughter products of radium isotopes following methods presented by Chanoytha et al. (2016). 

The general premise behind this experiment is that monitoring of gaseous 222Rn using a closed-

loop continuous measurement system (Chanoytha et al., 2016) may be used to identify any radium 

removal occurring in freshly collected material. If radium becomes incorporated into a barite 

lattice, gaseous radon would not easily escape the solid matrix so concentrations in water (and 

therefore air) would decrease over time. For this experiment, a sediment core was recovered 

fromGC600 in the GOM, a site of prolific natural hydrocarbon seepage (Table 2.1). Roughly 200 

g of sediment was placed in a 500 mL glass reaction flask and Ra/Rn-free seawater was added to 

achieve a slurry volume of 400 mL. Sediments from 2 to 8 cmbsf were used, as continued contact 

with overlying seawater may have encouraged barite formation under favorable conditions prior 

to analysis. A bubbler was used to degas radon from the overlying water in the reaction flask and 

circulate this headspace to a commercial radon detector. Measurements were integrated 

continuously over 10 minute intervals for 45 hours to observe 222Rn activity in air through time. 

Before the sample was placed in the analysis loop, the 222Rn background was reduced by flushing 
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the ambient air in the analysis loop through a closed system including desiccant and activated 

charcoal for at least 1 hour. A valve system was used to bypass the charcoal loop and incorporate 

the reaction flask containing the sample once measurements began (Chanoytha et al., 2016). 

We compare measured 222Rn activities over time to those that would result from production 

(via decay of parent isotope 226Ra) and radioactive decay. Isotope activities are estimated using a 

standard radioactive ingrowth equation (Bateman, 1910 reported by Faure and Mensing, 2005): 

𝐴𝑑 =
𝜆𝑝𝜆𝑑

(𝜆𝑑−𝜆𝑝)

𝐴𝑝
0

𝜆𝑝
(𝑒−𝜆𝑝𝑡 − 𝑒−𝜆𝑑𝑡) + 𝐴𝑑

0 𝑒−𝜆𝑑𝑡                                                                                (2.3)           

where the activity of a daughter isotope (Ad) is estimated as a function of ingrowth time (t), initial 

daughter activity present at t=0, parent activity present at t=0, and daughter (λd) and parent (λp) 

decay constants (see Appendix for more details). This equation can be modified specifically to 

predict how 222Rn activity in air would change (difference between 222Rnt and 222Rn0) from 0 to 45 

hours (t) toward equilibrium with the supporting parent activity (222Rneq) using the decay constants 

of 222Rn (Rn-222: 1.81x10-1 day-1)  and 226Ra (Ra-226: 1.17x10-6 day-1). 

 

               (2.4) 

 

Equilibrium 222Rn activities (222Rneq) were measured by incubating the same sediments 

with Ra/Rn-free seawater at the same sediment:water ratio described above in an air-tight reaction 

flask for ~4 weeks. Analysis procedures were identical to those utilized during the initial 

measurement. Measurements of  222Rn in air were made from 0 to 23 hours and this time we noticed 

a significantly different time dependent relationship as the 222Rn activity reached a sustained 

maximum after ~7 hours of measurement as secular equilibrium between 222Rn and 226Ra was 
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achieved. This equilibrium activity of 85.4 Bq m-3 (222Rneq) is then used to estimate 222Rnt where t 

varies from 0 to 45 hours using Equation 2.4 (Figure 2.5A).  

We assume an initial activity of 222Rn in air equal to the average recorded during our first 

hour of measurements at sea (so 222Rn0 = 3.76 Bq m-3). If no incorporation of radium into barite is 

occurring, we would expect our measured 222Rn activities during the initial experiment (222Rnt
*) to 

overlie those predicted (222Rnt) based on ingrowth toward 222Rneq (Figure 2.5). Thus, a difference 

between measured and predicted values could indicate a change in the desorbable radium 

inventory. Such a change would best be explained by a removal of Ra only after sediments 

containing significant quantities of Ra and Ba have been exposed to seawater sulfate. This process 

would affect our equilibrium activities by removing 226Ra capable of supporting 222Rn, thus 

lowering our equilibrium activity to that affecting our initial measurement. Subsequently, we 

would then predict lower activities (t = 0 to 23 hours) compared to those measured.   
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For this experiment, a few important assumptions were considered. (1) We assume 

temperature was constant between the first and second measurement. Temperature affects gas 

Figure 2.5. 222Rn activity in air (purple symbols) estimated using the initial activity 

measured at sea (222Rnt
*; orange symbols) and at equilibrium (black symbols). (A) 

Shaded region corresponds to time depicted in B where 222Rn activities measured 

in air at sea (222Rnt) are compared to those predicted as a function of time. Thin 

black line depicts regression line for observed activities. Error bars represent ±1σ 

analytical uncertainty determined by standard error propagation of counting 

statistics. 
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solubility and therefore presents an additional experimental variable. Because the detector can only 

monitor radon-in-air levels, aqueous 222Rn is derived empirically using a calculated solubility 

based on the water temperature. At sea, the sediments warmed to room temperature over the course 

of the 45 hour experiment, given such long analysis times at room temperature, we believe that 

this is an appropriate assumption. (2) We also assume the air-water distribution of 222Rn remained 

constant. By maintaining constant laboratory conditions (e.g., sediment surface area, diffusion 

loop volume, and detector efficiency) we minimized change in 222Rn distribution.   

We did not observe a discernable deviation of predicted 222Rn activities compared to those 

measured (Figure 2.5), although we cannot completely discredit the potential effect of Ra-removal 

via incorporation into barite minerals due to significant error associated with the 222Rn 

measurements. However, these results suggest that if RaB is a sink for radium in solution, the 

subsequent reduction in radium activities were not resolvable beyond our analytical error 

associated with the analysis procedure. While error associated with individual 222Rn measurements 

was often >30%, a slightly lower slope through time characterizes measured 222Rn compared to 

predicted activities (Figure 2.5B). This effect is most evident at t > 10 hours. This difference is 

opposite what we would expect for barite formation to remove Ra. Barite formation and resulting 

Ra removal is a slow process with maximum removal occurring after 200 to 350 days without the 

additions of heat or strong acid (Brandt et al., 2015). Mechanisms of barite formation and 

subsequent radium removal vary widely depending on barite structure, Ra concentration, and 

RaSO4 solubility (Brandt et al., 2015; Weber et al., 2017; Heberling et al., 2018). Although there 

is no evidence to indicate that surfacing the sediments and diluting with Ra-free seawater for 

processing immediately removes exchangeable radium, it is possible that in-situ barite formation 

and sufficiently long porefluid residence times could act as a significant radium sink. Therefore, it 
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is advised that additional tracers of fluid transport be used to verify model results for sediments 

collected with particularly high ionic strength porefluid.  

 

2.4.2.2. Oxidation-Reduction and Sorption 

 

  In general, molecular oxygen (O2) concentrations are greatly reduced a few mm below the 

sediment-water interface in seep sediments, leaving a reducing environment in the interstitial 

sediment spaces. This is evidenced by recovered porefluid often enriched in reduced carbon, 

nitrogen, and sulfur species relative to non-seep porefluid (Joye et al., 2010). Local enrichments 

of dissolved (reduced) iron and manganese associated with seepage (Lemaitre et al., 2014) can 

also moderate activities of dissolved 224Ra (Mott et al., 1993; Gonneea et al., 2008). In the absence 

of molecular O2, these metals would not affect the dissolved pool of Ra as they remain soluble in 

their reduced oxidation states. However, once sediment cores are surfaced and exposed to ambient 

atmospheric conditions, iron and manganese could oxidize and form metal (hydr)oxide precipitates 

which effectively scavenge 224Ra from the dissolved pool (Beck and Cochran, 2013; RaM). Unlike 

barite co-precipitation, this mechanism would remove 224Ra from solution by adsorbing onto 

newly formed particulate surfaces, temporarily affecting solid-aqueous partitioning until the 

unsupported 224Ra decayed away.  Unlike radium co-precipitation into barite, metal scavenging 

cannot be detected by gaseous daughter monitoring as daughter products are not trapped within a 

mineral matrix. Instead, radiogenic gases remain free to exchange into surrounding fluid medium.  

 To test for a potential effect of porefluid exposure to atmospheric conditions during sample 

collection, recovery, and handling on aqueous 224Ra, we collected duplicate sediment cores from 

deep-sea locations (Table 2.1) and exposed them to contrasting environments during sediment 
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extrusion. Cores recovered from the GOM were sectioned into 4 cm thick slabs from 0 to 14 cmbsf 

under oxidizing (air) and reducing (He) conditions. All materials used for processing under non-

oxidizing conditions were purged with He and the core was sectioned under a He-filled gas bag to 

minimize potential oxidation until solids were separated from the recovered porefluid. Following 

centrifugation and filtration, porefluid was processed with 224Ra and 226Ra activities measured 

according to methods previously described (Section 2.3). Particle filters were also analyzed for 

excess 224Ra as metal scavenged 224Ra would not be supported by 228Th and so would initially 

appear in excess on the filters. 

We compare aqueous 224Ra activities recovered from each of these cores to those measured 

at equilibrium (Figure 2.6A).  By evaluating initial dissolved activities associated with air and He 

treatments in the context of the equilibrium activity, we remove the potential for differences due 

to geochemical heterogeneities in the sediment cores. We compare the slope characterizing the 

relationship between observed aqueous 224Ra and that observed at equilibrium. We find ~40% of 

the maximum desorbable 224Ra activity present in solution for the He treatment (r2= 0.9985) 

compared to ~50% in solution for the atmospheric treatment (r2= 0.9976) when excluding the 

sample having an equilibrium activity >40 dpm L-1 (Figure 2.6A). Although we observed a 

difference in the slope between treatments, this trend is opposite than one we would expect if Mn 

and Fe oxides had removed Ra from solution. The higher dissolved 224Ra for the air treatment 

could be indicative of a longer porefluid residence compared to that of the He treatment, but this 

cannot be determined independently. We also cannot explain the deviation from a linear 

relationship observed for the He treatment (sample depth 12 to 16 cmbsf) as no difference beyond 

error in 226Ra activities for both the He and air treatments were observed(Figure 2.6B). Although 

our small sample size limited statistical evaluation, 226Ra activities do not appear to be substantially 
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influenced by processing environment. Further, excess particulate 224Ra activities measured on 

porefluid filters did not exhibit behavior consistent with effects of scavenging onto metal 

(hydr)oxide precipitates and therefore the He treatment sample (12 to 16 cmbsf) was excluded 

from the regression analysis (Table 2.2; Figure 2.6A).  

 

Table 2.2 Excess particulate 224Ra activities associated 

with redox experiments from Gulf of Mexico sediment 

cores. 

Core ; 

treatment 

Depth 

(cmbsf) 

Excess 224Ra 

(dpm g-1) 

Uncertainty                   

(dpm g-1) 

He    

 2  1.4 0.2 

 6 -0.2 0.1 

 10 -1.6 0.4 

 14 -0.6 0.1 

Air    

 2 -0.5 0.1 

 6 -1.9 0.8 

 10  3.3 0.7 

 14 -1.4 0.8 

 



 
 
 

39 
 

 

Figure 2.6. (A) Dissolved 224Ra activities at equilibrium versus those observed at sea, 

recovered from vertically adjoining sediment sections (0 to 16 cmbsf). Linear regression 

lines are shown for air (circle) and He (square) treatments. (B) Aqueous 226Ra activities 

measured at sea for each treatment. Error bars represent ±1σ analytical uncertainty 

determined by standard error propagation of counting statistics. Sediments recovered from 

the Gulf of Mexico. 
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We similarly tested for the effect of redox condition on aqueous 224Ra activities using 

sediment cores recovered from Guaymas Basin (Table 2.1). Here, ambient air interactions were 

prevented using Ar, a dense inert gas (as compared to He). A steady stream of Ar was used to fill 

an extraction well during sediment processing. For the Ar treatment, porefluid was separated from 

sediments according to procedures described above while extreme care was taken to minimize 

atmospheric exposure including Ar purged laboratory equipment. Dissolved 224Ra activities were 

compared to a ‘duplicate’ core processed under ambient atmospheric conditions (air treatment). 

No particulate filters were collected for analysis via this procedure from Guaymas Basin. 

We again observed a linear relationship between 224Ra activity in porefluids relative to 

dissolved equilibrium activities for both treatments (Ar: r2=0.997; air: r2=0.996; Figure 2.7). 

However, unlike interstitial 224Ra recovered from Gulf of Mexico cores, initial measurements were 

in excess of aqueous equilibrium 224Ra activities supported by recovered sediments. If exposure to 

ambient air during processing was affecting radium distribution by scavenging onto precipitated 

metal (hydr)oxides, we would expect a lower slope for the air core as compared to the argon core 

in Figure 2.7. However, more 224Ra was present in solution for the air treatment as compared to 

the Ar treatment suggesting the differences between aqueous 224Ra activities cannot be explained 

by redox related radium scavenging by iron and manganese (hydr)oxides alone at Guaymas Basin. 
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The excess in dissolved 224Ra activities observed initially relative to what could be 

supported at equilibrium for all treatments can be explained in two ways. It could be that 

although iron and manganese scavenging did not appear to affect our initial measurements, 

oxidation of these metals occurred later during our laboratory incubations used to determine 

equilibrium activities effectively reducing maximum aqueous activities. However, because the 

ratio of dissolved 224Ra measured at sea relative to that observed at equilibrium was greater for 

the Air treatment, oxidation of such metals likely did not occur so as to influence 224Ra. This 

result suggests that if present, reduced metals would have remained in solution and would have 

therefore been removed following initial porefluid extraction. There is no existing mechanism to 

Figure 2.7. Dissolved 224Ra activities at equilibrium versus those observed at sea, 

recovered from vertically adjoining sediment sections (0 to 12 cmbsf). Error bars 

represent ±1σ analytical uncertainty determined by standard error propagation of 

counting statistics. Linear regression lines are shown for air (circle) and Ar (triangle) 

treatments. Sediment cores recovered from Guaymas Basin. 
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support the occurrence of such variable scavenging behavior and so it is more likely that an 

additional source of dissolved 224Ra such that 𝐴𝑑
0  > Ad (Equation 2.3) affected our observations. 

These enrichments indicate fluid (and 224Ra) transport from a source region characterized by 

significantly larger production rates could have been occurring during core recovery since 

observed activities cannot be sustained by in-situ production rates associated with sediments 

from which the porefluid was extracted. Because the symbols shown in Figure 2.7 represent 

discrete sampling depths within the sediment column (0 to 12 cmbsf), the strong linear trends 

suggest 224Ra mass is conserved with depth across the sampled areas for both Guaymas Basin 

sediments tested.  

 

2.4.3. 224Ra Production (P) and Decay (D)  

 

 A change in dissolved 224Ra activity observed over time or space may be related to the 

production and/or decay of the radiogenic nuclide. Such isotopic change can be used to estimate 

the contact time (t) required to change an initial isotope activity (𝐴𝑑
0 ) into that observed in solution 

(Ad) based on the equilibrium activity (Raeq) specific to a particular sediment sample. We illustrate 

this concept to estimate contact time between sediment and experimental fluid by manipulating 

the incubation period and evaluating the resulting effect on dissolved 224Ra activities. ‘Contact 

time’ is defined here as the isotopically-derived time required to change an initial activity into that 

observed in solution, whereas ‘incubation time’ is defined here as the manipulated time elapsed 

since sediment hydration. If contact time and incubation time are equal, then the net effect of 

production and decay can be shown to exert significant control on the dissolved activity of 224Ra 

where t>0.  
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Contact time is determined using a modified form of the standard ingrowth equation (from 

Equation 2.3) as: 

 

                          (2.5) 

where Th-228 is the 228Th decay constant (9.99 x 10-4 day-1) and Ra-224  is the 224Ra decay constant 

(0.189 day-1).   

To ensure dissolved 224Ra isotope enrichments are predictable through time, dried and 

homogenized sediments (see Table 2.1) were incubated with Ra-free seawater over ten different 

time points ranging from 1 to 46 days (13% to 99% ingrown toward equilibrium-Raeq; Equation 

2.5).  Homogenized, dry sediment (3 kg) was bathed in 10 L of Ra-free seawater and subsequently 

centrifuged to remove a significant fraction of the desorbable 224Ra. This step ensured that 

porefluid and sediments were not already equilibrated with respect to exchangeable 224Ra so that 

time dependent change of dissolved 224Ra could be evaluated as a function of production and decay 

(Equation 2.3). 

We take the dissolved equilibrium 224Ra activity as the mean of the incubation periods ≥ 

19.8 days (7.7±0.6 dpm L-1). However, the sediment bath and subsequent porefluid removal 

appears to have also removed some 228Ra, the parent of 228Th, resulting in a temporary excess of 

unsupported 228Th (Table 2.3). This occurrence is evidenced by dissolved 224Ra activities being 

more enriched than 228Ra throughout the experiment as 224Ra activities would return to equilibrium 

much faster than 228Ra activities. It is still likely that our dissolved 224Ra equilibrium activity is at 

secular equilibrium with the exchangeable portion of 224Ra produced by decay of surface-sorbed 

228Th, however, this activity would be decreasing over time. For this reason, we adjust our 

equilibrium activity for decay occurring during the 6 week incubation period (~6% correction) to 
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represent the 224Raeq activity present at the experimental onset (t=0). Contact time (t) is then 

estimated for all measured 224Rat activities (Equation 2.5) where 224Rai is a constant (taken as 

incubation period = 0 days; 3.7±0.2 dpm L-1). A significant linear relationship was identified 

between isotopically-derived contact time estimates and manipulated incubation period indicating 

estimated times changed predictably and consistently relative to incubation period (Pearson 

correlation; r=0.926, p ≤ 0.1; Figure 2.8), confirming isotopic ingrowth/decay theory that time 

required to generate observed change in dissolved 224Ra activities can be accurately estimated. 

 

Table 2.3. Results from laboratory-based contact time experiments. 

Incubation 

period (days) 

*Contact 

 time (days) 

224Ra activity 

(dpm L-1) 

$Variable type  

(Eq. 2.5) 

228Ra activity 

(dpm L-1) 

0 - 3.7 ± 0.2 224Rai 0.6 ± 0.0 

0.8 0.6 ± 0.3 4.1 ± 0.2 224Rat  0.9 ± 0.1 

1.7 2.1 ± 0.4 5.1 ± 0.2 224Rat  0.7 ± 0.1 

2 2.7 ± 0.4 5.3 ± 0.2 224Rat  0.7 ± 0.0 

5.7 3.0 ± 0.5 5.5 ± 0.3 224Rat  0.9 ± 0.1 

11.8 8.5 ± 3.3 7.0 ± 0.3 224Rat  0.7 ± 0.1 

13.7 16.4 ± 3.9 7.6  ± 0.6 224Rat  0.8  ± 0.1 

19.8 - 7.4 ± 0.7 !224Raeq 1.0 ± 0.1 

34.8 - 7.1 ± 0.5 ! 224Raeq 1.1 ± 0.1 

45.7 - 8.0 ± 0.5 !224Raeq 0.7 ± 0.0 
    

 

*Contact time is determined using measured isotope activities and error is determined by 

standard error propagation of uncertainties associated with 224Ra terms (224Rai,
 224Rat, and 

224Raeq; Equation 2.5) 
$To estimate contact time associated with several incubation periods, Rai and Raeq are taken 

as constants while Rat  is substituted over incubation periods ranging from 0.8 to 13.7 days 

to solve for contact time (t) using Equation 2.5. 
!Raeq is taken as the average activity measured at incubation periods ranging from 19.8 to 

45.7 days (~97 to 99 % ingrown toward equilibrium) 
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Figure 2.8. (A) Aqueous 224Ra activities measured across several contact times (open 

symbols) compared to predicted activities (pink symbols) estimated from an initial (dark 

pink symbol) and an equilibrium (black symbols) activity. Error bars represent standard 

error propagation using counting statistics. (B). Effective residence time estimated for 

each treatment using a standard ingrowth equation compared to known incubation 

durations. Error bars represent ±1σ standard deviation of all estimates determined using 

standard propagation of error related to counting statistics for each Ra term (Equation 

2.5). 
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2.5. Synthesis 

 

2.5.1. Vertical Exchange Model 

 

As a dissolved substance, 224Ra in interstitial porefluid would be distributed as a 

consequence of vertical fluid transport. Upon core collection, any ongoing flow would be disrupted 

and 224Ra distributions subsequently archived for analysis. We utilize this behavior by applying a 

modified version of an existing model (Krest and Harvey, 2003) to estimate 224Ra vertical transport 

through sediments via diffusive and advective transport mechanisms for the deep-sea. While this 

work has focused efforts for model development on deep-sea applications, the concepts are 

generally applicable provided all 224Ra sources and sinks are accounted for. Whereas Krest and 

Harvey (2003) solved the advection-dispersion equation for an advective velocity by assuming a 

constant rate of 224Ra production down core, our model computes a residence time required to 

produce the observed change in dissolved activity as a function of isotopic production and decay. 

Notably, we find aqueous 224Ra activities at equilibrium to vary by as much as an order of 

magnitude over a sampling interval of 12 cm vertically (Figure 2.6A and Figure 2.7). Such a result 

suggests that considering a constant rate of production for all recovered sediments is not suitable 

for materials analyzed here  

Our vertical exchange model, shown in Equation 2.5, estimates contact time between 

sediments and interstitial fluid by calculating progress toward the equilibrium 224Ra activity 

expected under a given rate of production. As such, we use the observed difference between Raeq 

and Rat to solve for porefluid residence time (t) within each sediment section. The initial activity 

(Rai) is equal to that of the porefluid recovered from the source layer situated above (i+1) or below 
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(i-1) that of the receiving layer (i). Raeq is equal to the dissolved 224Ra activity measured at 

equilibrium for the receiving layer such that Rai under active transport would equal Raeq when 

t≥21 days. Functionally, we then estimate Rat for t from 0 to 21 days (at 6 min resolution) for a 

given transport direction scenario. Porefluid residence time is then is optimized by selecting the 

value of t for which the calculated Rat value most closely matches that of our measured 224Ra 

activity recovered from the source layer. If model conditions are not solvable or yield contact times 

in excess of 21 days, it can be determined that the approach is not suitable to determine vertical 

fluid flow rates at these sites. Notably, the slowest theoretical vertical velocity resolvable by this 

utilizing this model are 0.2 cm day-1assuming a 20 day residence time associated with a 4 cm thick 

sediment section from which porewater was recovered and residence time was determined.  

Porefluid transport direction is assessed by imposing an initial directional condition and 

subsequently testing for a possible solution. For example, if the 224Ra equilibrium activity (Raeq) 

is greater than the observed activity of the source layer (Rai), any appreciable porefluid contact 

time with host sediments would increase the dissolved 224Ra activity such that Rai < Rat < Raeq  

(Figure 2.9A).  If the reverse is true, in which the equilibrium 224Ra activity (Raeq) is lower than 

the observed activity of the source layer (Rai), the unsupported 224Ra would decay faster than it 

would be produced (Figure 2.9B), and so the activity would decrease as Rai > Rat > Raeq. In some 

cases, a solution to Equation 2.5 is not possible under certain flow direction scenarios.  For 

example, if Raeq > Rat < Rai, no solution is possible, indicating the imposed 224Ra transport 

direction is not supported by the data and is therefore eliminated from consideration. Because we 

test for possible fluid transport into and out of the sedimetns, numerically eliminating one trasport 

direction often reduces uncertanty associated with our fluid flux estaimtes. 
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Figure 2.9. Theoretical dissolved 224Ra (A) ingrowth and (B) decay as a function of 

time. Predicted change in aqueous 224Ra activity (thick dashed line) from an initial 

condition (square) and a known equilibrium activity (thick gray line). Theoretically, 

the precise ingrowth/decay time may be determined for any activity measured at 

time t (circle). Error bars represent ±1σ standard deviation of all estimates 

determined using standard propagation of error related to counting statistics of 224Ra 

analysis. 
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The time required to support dissolved 224Ra activities observed in porefluid recovered 

from sediment cores is referred to herein as the porefluid residence time. Notably, this time is 

determined by the same approach used to estimate the isotopically derived contact time (Section 

2.4.3), but distinct in that it represents the amount of time required for porefluid to migrate through 

a sediment section (i.e., the residence time of porefluid within a particular sediment section). 

Measured activities (Rat, Raeq, and Rai) each have inherent analytical uncertainties.  In an effort to 

fully encompass the error associated with our estimated residence times, we solve for t by 

considering the analytical uncertainty associated with each Rax term individually (Equation 2.5). 

Error is then equal to the 1σ standard deviation of the range in residence times estimated by 

applying the maximum uncertainty associated with each term. Briefly, we estimate an error for t 

by applying the uncertainty associated with each radium term considered in Equation 2.5. For all 

possible combinations of Rat, Raeq, and Rai by adding, subtracting or not applying the uncertainty 

to each Ra term. This results in 27 different numeric combinations for which t can be estimated. 

We take the 1-σ standard deviation of all 27 possible solutions for t as the error associated with 

our estimates of porefluid residence time. This error estimate is reduced by an average of 30% by 

taking the standard deviation of all t estimates when also evaluating t by applying 50% and 25% 

of the uncertainty to each Ra term. This approach to estimating error does not account for a normal 

distribution of errors and therefore offers a maximum range of potential residence time estimates 

from which we compute the standard deviation. From our estimates of residence time within any 

particular sediment layer, we determine an effective volumetric fluid flux by computing the water 

volume within that layer (as sediment volume times porosity), and dividing that quantity by the 

surface area of the sediment core and by the residence time (mL cm-2 day-1). 
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Applications of the vertical exchange model will be detailed in Chapter 3 for the Gulf of Mexico 

and Chapter 4 for Guaymas Basin before a discussion concerning fluid fluxes determined for cold 

seeps and hydrothermal sties is presented in Chapter 5. Because we apply the vertical exchange 

model to deep-sea sediment cores collected near regions of documented seepage, we describe the 

interstitial medium as ‘porefluid’ as these fluids may contain appreciable hydrocarbon 

concentrations and other unique constituents (Suess 2014).  

 

2.5.2. Radiotracer Corrections 

 

Due to the radioactive nature of our chosen chemical proxy, changes in measured activities 

may manifest purely as a consequence of elapsed time between collection and analysis and so 

require correction. This discussion is included here as it applies specifically to the application of 

the vertical exchange model and will be included in the data processing procedures utilized in the 

forthcoming chapters. One additional correction beyond those discussed in this section was applied 

only to evaluate porefluid exchange at Guaymas Basin and so will be discussed where appropriate 

in Chapter 4.  

Our initial 224Ra measurement is reflective of not only the 224Ra present due to 

environmental conditions (e.g., radium partitioning, radium production rate, and fluid flow), but 

is also influenced by the time elapsed between sample acquisition and analysis. In order to resolve 

disequilibria in 224Ra between aqueous and particulate phases at the time of sampling, we must 

account for any changes in our initial measurement due to continued sediment:water contact time 

after core collection. Conceptually, if no fluid is actively exchanging through the sampled 

sediments, our initial measurement will be equal to our equilibrium measurement (i.e., porefluid 
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224Ra will be in equilibrium with exchangeable sediment-supported 224Ra levels) and no correction 

is required. This condition effectively means the 224Ra produced on the grain surface by 228Th 

decay and subsequently subject to desorption into porefluid is in steady state with the amount of 

porefluid 224Ra decay, so therefore the 224Ra activity remains unchanged. However, if vertical fluid 

transport is occurring at the time of sampling, such transport may remove some 224Ra dissolved in 

porefluid and a disequilibrium scenario would be observed after collection. This effect can be 

significant as samples collected using the HOV Alvin include supplemental mission/vehicle 

recovery time as well as time for core description and may be in excess of several hours. Under 

such a circumstance, the activity of porefluid 224Ra may either be in excess (relative to the amount 

of 224Ra supported at equilibrium) or deficient (to the equilibrium activity) and therefore would be 

subject to change simply as a result of prolonged sediment:water contact time. To determine if - 

and in what way - our initial measurement may have been subject to change by this process, we 

must first determine the rate of exchangeable 224Ra production supported by particulate 228Th 

associated with each sample (this correction is detailed below).  

Our equilibrium measurement of dissolved 224Ra activity associated with each discrete 

sediment sample represents the maximum porefluid activity supported by the recovered materials. 

These measurements must also be corrected for time-dependent change by correcting for 228Th 

decay that may have occurred over the duration of the equilibrium experiment. This correction 

assumes that 228Th is in excess of sedimentary 228Ra (due to the soluble nature of radium isotopes; 

Rama and Moore, 1996) and thus our measured equilibrium activity is lower than the hypothetical 

activity present before 228Th decay occurs. For this enrichment to occur, a sink of 228Ra must have 

existed in the environment prior to collection, rendering 228Th in relative excess. Although we 

cannot know for sure at the time of sampling, active fluid seepage could be the cause of such 
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excess as dissolved 228Ra would be transported out of the system. While minimal, this correction 

is necessary because the time to complete the equilibrium experiments commonly exceeded 50 

days. In general, this correction resulted in a minimal adjustment of ~3-5 % of the measured 

activity. We assume a linear relationship between elapsed time and percent decayed to estimate 

the correction factor (c): 

𝑐 = (
0.5

𝑇1/2
) ∆𝑑                                                                                                                                 (2.6)  

where 0.5 is decayed fraction of 228Th over its half-life (T1/2 = 697.7 days) and ∆𝑑 represents the 

time elapsed (in days) between the first and second filter measurement. This correction factor is 

then used to determine the fraction of 228Th activity lost to decay between the two measurements 

and the measured activity is subsequently adjusted for this loss. A linear approximation is 

appropriate over short time scales (1-2 months) as a linear relationship adequately describes 

isotopic ingrowth/decay during very early stages of time-dependent exponential change (~5% 

change in 228Th over this time period estimated using Equation 2.3; r2=0.996). This correction is 

applied to the data provided in the Appendix (Table A.5). 

Corrected 224Ra equilibrium measurements are thus representative of the maximum 

possible exchangeable 224Ra supported by the sediments at the time of sampling. This value is 

equal to the rate of 224Ra production that would influence our initial 224Ra measurement via 228Th 

decay. Because we know the parent activity (i.e., the corrected equilibrium measurement; 𝐴𝑃
0 ) and 

the activity of porefluid 224Ra measured after contact with sediments (i.e., the uncorrected at-sea 

activity; (𝐴𝑑) determined after the porefluid samples remained in contact with sediments for time 

(t) after collection and before centrifugation, we can estimate the porefluid 224Ra activity (corrected 

initial measurement; (𝐴𝑑
0 ) present during sample collection (Equation 2.3) Here, 𝜆𝑃 and 𝜆𝐷 
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represent the decay constants of 228Th (6.90x10-7 min-1) and 224Ra (1.34x10-4 min-1), respectively. 

A schematic diagram of the corrections applied to model data is included in the Appendix (Figure  

A1.). Lastly, we applied a 3 point boxcar filter over isotope activities associated with 3 vertically 

adjoining sediment sections to filter out the effect that small differences between consecutive 

isotope measurements might have on our estimated fluid fluxes. Because of the exponential 

relationship between dissolved 224Ra activity and residence time, this effect is most significant at 

greater residence times (approaching equilibrium). 

 

2.5.3. Model Assumptions 

 

We explored the potential effects of a changing radium distribution coefficient (Kd), 

removal from the desorbable pool via incorporation into barite, and removal from the dissolved 

phase via adsorption onto metal (hydr)oxides (Section 2.4) on dissolved 224Ra activities. A variety 

of materials was used (Table 2.1) to identify which potentially important 224Ra sources and sinks 

should be considered in a vertical exchange model. A review of mass balance terms and statement 

of potential 224Ra effect is provided below for each source/sink term (Figure 2.1). 

 

2.5.3.1. Adsorption and Desorption 

 

Spatially or temporally variable Kd values were not observed to control distributions of 

dissolved 224Ra activities under the conditions tested and have therefore not been included in the 

vertical exchange model for deep-sea sediments. Vertical 224Ra distributions appeared unrelated 

to collection depth below the sediment-water interface, suggesting Kd is constant over the depths 



 
 
 

54 
 

sampled (0 to 20 cmbsf; Figure 2.2A and Figure 2.3B). The most compelling evidence warranting 

inclusion of a Kd parameter in the vertical exchange model was indicated only by a weak 

relationship between dissolved 226Ra activities and in-situ porosity (Figure 2.3). Although 224Ra 

distribution may be related to porosity, the change in fluid volume from one layer to the next is 

often minimal and therefore porosity related change in 224Ra is assumed insignificant. On average, 

porosity change between layers observed throughout our field sampling (Chapters 3-4) is ~ 4%. 

Assuming a change in radium of equal proportion, this effect is well within our analytical 

uncertainty. Further, since at-sea and equilibrium measurements were conducted under the same 

porosity, Kd effects on Rat and Raeq measurements should be equivalent.  

Our experimental results confirm drying sediments ≤ 60°C and subsequently rehydrating 

the materials to in-situ porosity had no effect on dissolved radium activities beyond error as 

previously observed (Beck and Cochran, 2013). Furthermore, when isotopic disequilibrium is 

measured, it cannot be explained solely by a redistribution of 224Ra as dissolved 224Ra would 

equilibrate with Kd moderated activities supported by host sediments. This finding suggests that 

when disequilibrium is observed it is either attributable to a 224Ra transport mechanism or some 

unknown sink. 

Although we could not identify evidence for an effect on dissolved 224Ra activities related 

to redistribution as a function of spatially and temporally variable Kd values, it is worth considering 

how such a process could influence our residence time (and subsequent fluid flux) estimates. If 

dissolved 224Ra activities in any layer of porefluids changed as a consequence of a different Kd 

value, such an impact would lead to an over estimation in residence time (Equation 2.5). 

Regardless of the relative change in Kd, a difference would always cause a change in dissolved 

224Ra faster than would otherwise be attributed to production and decay, so our approach to 
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estimating residence time without considering any variable Kd would lead to over estimations of 

residence time and therefore provide conservative fluid flux estimates. For this reason, by 

assuming uniform Kd values throughout a sediment core (as also assumed by Krest and Harvey 

(2003), a change in 224Ra due exclusively to isotopic production and decay (excluding changes 

attributable to sorption/desorption) offers conservative estimates of porefluid residence time and 

fluid flux.  

 

2.5.3.2. Barite Incorporation 

 

Radium removal via incorporation into barite as Ba(Ra)SO4 could act as a sink of 224Ra 

from not only the dissolved phase, but also the desorbable pool entirely. This effect could be 

especially problematic as measured values of Raeq would be reduced relative to in-situ Raeq 

activities and ultimately misrepresent true porefluid residence time. Because radium is expected 

to co-precipitate with any barite matrix formed (Doerner and Hoskins, 1925), time-series 

monitoring of radiogenic daughter products can facilitate comparison between predicted activities 

and those measured. Predictions assume the only changes in gaseous 222Rn are related to the initial 

and equilibrium activities of 222Rn as a function of production and decay (Equation 2.4).  

Although measured 222Rn activities did deviate slightly from those predicted, this effect 

was not significant over typical sediment core processing times of a few hours (Figure 2.5). While 

the error associated with initial 222Rn measurements was large, we did not find compelling 

evidence to support including a Ba(Ra)SO4 removal term in our vertical exchange model. Even 

though several sites across the Gulf of Mexico have been the focus of barite formation at cold 

seeps (e.g., Feng and Roberts, 2011), we did not see evidence of this process affecting 224Ra 
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associated with sediments recovered from a natural hydrocarbon seep within the Gulf of Mexico.  

However, if such a sink were affecting aqueous radium activities, the removal of 224Ra 

would result in a reduced Raeq) activity at a later time (t) as compared to that present at collection. 

The potential consequence of this underestimation depends on the relationship between Raeq and 

Rai. If Raeq>Rai, this scenario would cause an overestimation in the time required to achieve Rat 

via Equation 2.5 yielding conservative fluid flux estimates. However, if Raeq<Rai, this scenario 

would cause an underestimation in the time required to achieve Rat via Equation 2.5. To 

specifically avoid complications in constraining RaB we do not consider samples from sites where 

barite chimneys or brine lakes have been identified for Guaymas Basin or the Gulf of Mexico 

(Feng and Roberts, 2011; Núñez-Useche et al., 2018). Importantly, we only evaluated the potential 

for barite incorporation of Ra from GOM sediments and assume this finding also holds true for 

Guaymas Basin as equipment was not available for immediate analysis of materials recovered 

from this site. We did not sample areas within Guaymas Basin where chimneys were present and 

avoided sites identified by Núñez-Useche et al. (2018) as regions where barite precipitation was 

confirmed. 

 

2.5.3.3. Sorption onto Metal Hydr(oxides) 

 

As conditions in deep-sea pore spaces may be largely devoid of oxygen over our target 

depths below the sediment-water interface at seep sites, sample processing under ambient 

atmospheric conditions could oxidize otherwise reduced metals and potentially scavenge dissolved 

224Ra from porefluid (Figure 2.1). To examine the potential consequence of this process on 

dissolved 224Ra activities, we processed duplicate sediment cores recovered from the Gulf of 
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Mexico and Guaymas Basin under ‘normal’ and inert atmospheric conditions. For Gulf of Mexico 

cores, only two of eight particulate filters contained measurable amounts of excess 224Ra (Table 

2.2), although excess activity was observed for both air and He treatments suggesting the 

processing atmosphere alone cannot explain this result. Furthermore, when normalized to Raeq, 

slightly more 224Ra was present in solution for ambient air treatments as compared to the inert 

sampling treatments for both Gulf of Mexico (Figure 2.6) and Guaymas Basin (Figure 2.7) 

sediments. Because this trend is counter to that which we would expect if metal scavenging of 

224Ra onto metal (hydr)oxide precipitates was controlling the distribution of 224Ra, we concluded 

that the effect of metal scavenging on dissolved 224Ra was negligible  for the materials tested. 

Strong linear trends between aqueous 224Ra observed at sea and  Raeq from these 

experiments suggest that although disequilibrium was observed (i.e., Ra at sea ≠Raeq), the relative 

abundance of dissolved 224Ra at-sea (as compared to as determined at equilibrium) remained 

constant with depth regardless of processing environment (Figure 2.6A and Figure 2.7). Therefore, 

scavenging of 224Ra to metal (hydr)oxides formed as a result of our sample handling protocols is 

assumed to be negligible for both the Gulf of Mexico and Guaymas Basin sites. Such a trend 

suggests if scavenging was influencing our observations, all layers for both cores recovered from 

each site were effected equally. In other words, the effects of metal scavenging are either negligible 

on the aqueous 224Ra inventory or constant with depth meaning ay radium measured at-sea and at 

equilibrium will be a result of a constant sink and does not effect the net inventory of radium we 

observe for a given sediment core.  

If we have underestimated the removal of 224Ra due to redox related scavenging, we expect 

that Raeq would remain unaffected as scavenged 224Ra would be unsupported by resident grains. 

However, Rat and Rai could be reduced depending on factors including iron and manganese 
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concentrations and speciation (Mott et al., 1993). Although no experimental evidence in support 

of Ra scavenging related to processing environment was observed, predicting the impacts of such 

a process on our fluid flux outcomes is complicated as change could affect Rat and Rai by different 

amounts as the concentrations of dissolved metals may vary down-core and as such affect each Ra 

term differently.  

 

2.5.3.4. Isotopic Production and Decay  

 

 When a change in dissolved 224Ra activity is observed through time, and the dissolved 

equilibrium activity between a saline solution (porefluid or experimental fluid) and host sediments 

is known, contact time between the materials can be determined (Figure 2.8). Through a series of 

laboratory incubations, it was demonstrated that discrete isotopic sampling can be used to 

determine sediment-water contact time when no changes in solid-aqueous partitioning (Kd) are 

dominating aqueous 224Ra distributions.  

To understand fluid exchange through deep-sea sediments, we need to consider changes in 

space concurrently with changes in time (as isotopic production and decay). The strong linear 

relationship between dissolved 224Ra activities recovered from porefluid and associated 

equilibrium activities (Section 2.4.2) is suggestive of three key points: (1) disequilibrium was 

consistently observed between dissolved 224Ra activities and equilibrium activities supported by 

host sediments from 0 to 16 cmbsf (Gulf of Mexico) and 0 to 12 cmbsf (Guaymas Basin); (2) the 

square of the linear correlation coefficient (all ≥0.997) suggests residence time between recovered 

porefluid and host sediments within each sediment section is conserved vertically (Figures 2.6A 

and 2.7); and (3) the ratio of dissolved 224Ra to equilibrium 224Ra is conserved vertically (e.g., 
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vertical continuity of radium mass). These observations serve as the foundation on which our 

vertical exchange model, modified from Krest and Harvey (2003) for deep-sea sediments and 

utilized throughout the following chapters is developed. The efficacy of our vertical exchange 

model will be qualitatively evaluated in Chapter 3. 
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CHAPTER 3 

 

ESTIMATING SUBSURFACE POREFLUID RESIDENCE TIME AND FLUID FLUX AT 

COLD SEEPS IN THE GULF OF MEXICO 

 

3.1. Introduction 

 

The Gulf of Mexico (GOM) seafloor is arguably one of the most active of all modern 

passive margins underlying a marine basin. The unique geologic history of the GOM has led to 

abundant seafloor seepage sites which host diverse seep-dependent ecosystem assemblages 

(Cordes et al., 2007). Paull et al. (1984) first termed ‘submarine cold seep’ to describe these benthic 

ecological oases supported by an enriched supply of reduced compounds via subsurface fluid 

seepage occurring at near-ambient ocean temperatures. Although much remains to be understood 

about seep biota, submarine seeps are regarded as one of the most physically and chemically 

diverse biomes on Earth with several new seep species being discovered annually (Bris et al., 

2016). 

Discharge of seep fluids is most often caused by overpressurization, commonly resulting 

from rapid deposition of low permeability sediments (Talukder, 2012), which prohibits uniform 

dewatering and ultimately results in suprahydrostatic levels within interstitial sediment spaces 

(Osborne and Swarbrick, 1997). Evaporite deposits throughout the subsurface lithology of the 

GOM have responded to the overburden by flowing upward as diapirs, forcing fissures, faults, and 
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folds into strata along ascension. Consequently, subsurface fluids can migrate along fault lines 

from thousands of meters below the seafloor. Conversely, cold seep fluids can originate a few 

centimeters below the sediment-water interface (e.g., sediment dewatering) and travel along small 

compensation faults (Roberts and Carney, 1997). Commonly, gas accumulation associated with 

thermogenic organic matter breakdown as well as microbially moderated biogenic transformations 

of carbon will migrate towards the seafloor resulting in subsurface fluid transport (Judd et al., 

2002).  While the physical driver and depth of fluid origination may influence the geochemistry of 

the seeps, both geochemical concentration and rate of fluid transport are thought to moderate 

resulting ecosystem dynamics. 

The stages of cold seep development are qualitatively related to the distribution of seafloor 

bio-geological and geochemical processes (Macelloni et al., 2013), however the presence of 

particular seepage features alone is not sufficient to estimate the rate of fluid transport. Ubiquitous 

cold seep features including mud volcanoes, carbonate chimneys, asphalt seeps, and methane 

plumes (Suess, 2014) provide obvious indicators of flow and visual markers to target sampling 

efforts. Although several indicators of seafloor seepage exist, hydrocarbon sheens at the sea 

surface are commonly used to identify cold seeps as they can be observed directly and via satellites 

(Garcia-Pineda et al., 2010). However, persistent and intermittent oil sheens are most commonly 

associated with vigorous seafloor seepage of oil-rich fluids (Johansen et al., 2017), so relying on 

methods exclusively effective under only high flow conditions may bias our understanding of cold 

seeps. While biologic communities are often associated with cold seep discharge sites, it has been 

hypothesized that some sites of especially active seafloor seepage remain uncolonized because 

common inhabitants are physically blown from the sediment surface and are therefore unable to 

exist in dense colonies (Teske et al., 2016). 
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Across the GOM, natural hydrocarbon seepage is prolific with well over one thousand 

seafloor seep formations suspected, but most sites remain unexplored by scientists (MacDonald, 

2011). Seepage at these sites is not restricted to hydrocarbon discharge and may also include 

formation fluids and entrained porefluid which have proven more challenging to study (Suess, 

2014). Existing efforts to quantify rates of diffuse seafloor seepage in the deep-sea often involve 

in-situ instrumentation (Solomon et al., 2008) with costly deployment and recovery demands or 

the use of chemical proxies (e.g., Cl- gradients) that rely on specific conditions, such as the 

presence of hypersaline fluids (Lapham et al., 2008).  

Although sites of active seepage out of the sediments may be relatively easy to identify by 

the presence of discrete biological assemblages and physical seafloor manifestations (e.g., 

chimneys, mounds, and volcanoes), fluid transport must either be occurring at significant rates or 

for sufficient time to physically change the shape of the seafloor. However, seepage likely occurs 

in many places at much lower rates than those that influence seafloor topography. For example, 

cold seep communities appear to exist far beyond the immediate proximity of an obvious 

subsurface fluid source with bacterial mats extending tens of meters from direct evidence of active 

seepage (Suess, 2014). In-situ sensors have recorded material concentrations and estimated fluid 

transport through mat-covered sediments (Solomon et al., 2008) affirming that dense microbial 

communities are associated with seafloor seepage. Given the wide range of seepage rates in these 

environments, the development of additional tools to measure such processes represents a strong 

need among the research community. 

Here, we test the suitability of the vertical exchange model developed in Chapter 2 to 

ultimately determine porefluid fluxes through deep-sea sediments. The objective of this work is to 

determine if the vertical exchange model yields reasonable fluid flux estimates between seep and 
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control sites. To accomplish this, we collect sediment cores from two active seepage sites and one 

control site and determine subsurface porefluid residence time and an effective fluid flux required 

to support 224Ra porefluid profiles observed. To satisfy our objective, we compare our observations 

of dissolved 224Ra activities to equilibrium activities in order to determine porefluid residence time. 

Importantly, sites selected for this research are not areas where seepage was directly observed. 

Rather, cores were recovered from areas where seepage proxies were identified but flow rates were 

unknown.  

 

3.2.Methods 

 

3.2.1. Gulf of Mexico Study Site 

 

The Gulf of Mexico contains deep carbonate and salt deposits of Mesozoic age buried 

under significant sediment reserves which have contributed to salt fluidization resulting in 

diapirs and domes (Judd and Hovland, 2009). Salt tectonics has created fractures and faults often 

acting as many fluid migration pathways along which hydrocarbons, brine, and porefluid may be 

transported (Kennicutt et al., 1998). Migration of subsurface fluids towards the seafloor has 

resulted in extensive areas of natural hydrocarbon seepage with estimates of more than 19,000 

individual seeps located within a region just offshore of Texas alone (Watkins and Worzel, 

1978). The northern margin of the Gulf is especially active where free gas is a ubiquitous feature 

of shallow sediments with gas-charged sediment regions extending up to 500 m in length 

(Anderson and Bryant, 1990).  
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Throughout the Gulf of Mexico, deep-sea seeping fluids are ubiquitous in association 

with vestimentiferan tubeworms (Young et al., 1996), bathymodiolus mussels (Smith et al., 

2000), and lucinid and vesicomycid clams (MacDonald et al., 1990). Here, community structure 

is dependent upon the availability of compounds necessary for chemosynthesis and as such the 

fluid flux from the subsurface determines the success of deep-water communities within the Gulf 

of Mexico (Judd and Hovland, 2009). 

Because the GOM is characterized by expansive regions of active seafloor seepage, we 

recovered sediment cores from fluid exchange and near-by control sites as an opportunity to 

qualitatively test our vertical exchange model (Chapter 2). Sediment cores were recovered from 

three sites within the Gulf of Mexico (Figure 3.1) to serve as proof of concept for the vertical 

exchange model. Although submarine seepage throughout the Gulf of Mexico can be broadly 

classified by seep fluid chemistry (i.e., methane- or sulfide-rich) or discharge conduit (i.e., barite 

chimney or mud volcano), we consider seep sites to be distinct from our control site. In other 

words, we do not measure methane or sulfide concentrations, but rather target areas where visual 

indicators of seepage through soft sediments were present. Here, our control site is defined as 

lacking visual indications of seepage. Specifically, no water column density anomalies were 

detected here and no conspicuous microbial mat cover was observed upon visual inspection of the 

recovered sediment core.  
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Our seep sites are located within Green Canyon (GC) lease block 600 (GC600), a site of 

well documented natural hydrocarbon seepage (e.g., D’souza et al., 2016; Wang et al., 2016; 

Johansen et al., 2017). Regions of the GC600 seafloor have been described as being biologically 

and geologically complex, with massive cold seep carbonates, bacterial mats, gorgonians, 

cnidarians, vesicomycid clams, and vestimentiferan tubeworms identified (Roberts et al., 2010). 

Figure 3.1. Gulf of Mexico field sampling stations integrated with BOEM’s deepwater 

bathymetry grid (https://www.boem.gov/Gulf-of-Mexico-Deepwater-Bathymetry). 

Filled symbols indicate sampling locations for Mat (red) and Seep (yellow) cores within 

the GC600 domain. Control core (green symbol) recovered from GC699. Location of 

Deepwater Horizon spill site (DWH) shown for reference. Figure best viewed in color. 
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In contrast, our control site (Green Canyon lease block 699-GC699) is located 42 km and 

55 km SE of Seep and Mat core recovery sites, respectfully. The region has a similar maximum 

water depth ~1300 m and was targeted as a nearby control as no seepage indicators including 

microbial mat and acoustic water column density anomalies were identified during sampling and 

core recovery.  

 

3.2.2. Core Collection and Sample Processing 

 

Sediment cores were collected during research cruises aboard the R/V Atlantis (cruise 

AT26-13) in 2014 and aboard the R/V Endeavor (cruise EN586) in 2016. Two cores were obtained 

from distinct regions within GC600 where independent evidence of active fluid transport was 

observed (‘Mat’ and ‘Seep’ cores; Table 3.1). Samples were collected as pushcores using the HOV 

Alvin (Mat core) and also as multicores using a shipboard multiple core (Seep core and Control 

core). Push core tubes had a 6.4 cm inner-diameter and multiple core tubes had a 9.5 cm diameter 

inner-diameter.  Subsamples for porosity and bulk density were placed in pre-weighed glass vials. 

Porosity was determined by mass loss upon drying and converted to a volumetric parameter using 

the bulk density determined by volume displacement (Lambe, 1951). 

Porefluid was extracted and processed for 224Ra following methods descried in Chapter 2. 

In short, porefluids for 224Ra analysis (Rai and Rat; Equation 2.5) were extracted from sediment 

cores sectioned at 4 cm intervals following centrifugation at 5,000 RPM for 15 minutes and 

subsequent filtration through 0.45 μm syringe filters. Recovered porefluid was then passed twice 

over a 25 g aliquot of dry MnO2 impregnated acrylic fiber to quantitatively adsorb dissolved Ra 
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(Moore, 1976; Moore, 2008).  Fibers were rinsed and partially dried using a compressed air stream 

(Sun and Torgersun, 1998) and analyzed using a Radium Delayed Coincidence Counter (RaDeCC) 

as per Moore and Arnold (1996). Initial measurements were later corrected for dissolved 228Th 

contributions (Moore, 2008). We determined aqueous equilibrium 224Ra activities (Raeq; Equation 

2.5) by creating an experimental slurry using the original sediment sections from which porefluid 

was initially extracted. Slurries were retained in reaction flasks for three weeks with until 

terminations occurred following similar 224Ra extraction methods to those described above.  

 

Table 3.1. Metadata for sediment cores analyzed in for Chapter 3.  

Core  

 

Site 

 

Collection 

year 

Latitude, 

Longitude 

Water 

depth (m) 

 

*Porosity 

$Bulk density 

(g cm-3) 

Mat GC600 2014 27° 22.174’ N, 

90° 34.289’W 

1225 **0.65 - 

0.83 

1.3 -1.4 

       

Seep GC600 2014 27° 25.644’N, 

90° 26.092’W 

1203 **0.65 - 

0.83 

2.5 – 2.8 

       

Control GC699 2016 27° 17.499’N, 

90° 02.425’ W 

1370 0.75 -

0.80 

2.2 – 2.5 

* Porosity is presented as a range throughout the core 
** Taken as averages from sediment cores collected during a 2016 cruise from a similar 

GC600 location. 
$ Bulk density is presented as a range throughout the core  

 

3.2.2.1. Core Descriptions 

Mat core was collected through a white bacterial mat of Beggiatoa sp. (Figure 3.2) during Alvin 

dive 4691. The total core was 19 cm in length, with a white, fibrous microbial mat covering the 

sediment surface. The upper 2 cm appeared marbled black and tan and from 2 to 9 cmbsf, the 

sediments appeared dark brown with a few oily patches. The remaining sediments appeared tan 

with oil pockets. Evidence of oil occupying the interstitial pore spaces was confirmed using a UV 
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light and likely explains the unusually low bulk density of Mat core sediments (Table 3.1). A total 

of 0.24 L of overlying core-top water was recovered and immediately processed for dissolved 

224Ra.  

Seep core was collected approximately 15 km west of Mat core (Figure 3.1). This region 

was of interest because water column acoustic (density) anomalies were detected from the ship-

based multibeam sonar system suggesting active seepage (Figure 3.3). Seep core was collected 

central to the multibeam survey area and totaled 24 cm in length with the upper 4 cm appearing 

darker in color than the remaining sediments. Although no oily pockets were observed, a slight 

sheen and hydrocarbon odor was noted following centrifugation of sediments ca. 20 cmbsf. 

Overlying core-top water was recovered (0.95 L) and was immediately processed for dissolved 

224Ra.  
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Figure 3.2. Sampling site of Mat core recovered from GC600. (A) Mat situated within a 

depression surrounded by olive-green sediments and shell hash. Arrows indicate (B) Mat core 

recovery site and (C) dark, reducing sediment exposed after sampling. Scale bars correspond 

to (A, B) 10 cm and (C) 5 cm. 
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We collected Control core where no independent indicators of active fluid seepage were 

present to understand how the vertical exchange model and advective 224Ra flux estimates may 

apply to a variety of environmental conditions (Table 3.1). Control core totaled 64 cm in length 

and was notably distinct in color from Mat and Seep cores. Sediments appeared tan in color in 

contrast to the gray/black reducing sediments recovered from GC600. No obvious structural or 

color changes were observed upon recovery or processing of Control core. Sediment texture was 

also distinct in that material was much coarser than material typically retrieved form water depths 

>1000 m located hundreds of kilometers from shore. A total of 5.4 L of overlying core-top water 

was recovered. Notably, porosity increased modestly down core as compared to a more typical 

profile where fluid volume decreases with depth (e.g., Figure 2.3B; Table 3.1) 

 

 

Figure 3.3. Sonar generated image depicting 1 km2 of GC600 seafloor including the 

region where Seep core was collected. Anomalous water column sounding (red feature) 

suggests active fluid expulsion from the sediments during the time of sampling. 

Anomalous water column feature estimated to extend ~50 m into overlying ocean. 

Image courtesy of Rich Viso. 
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3.2.3. Advective Fluid Flux Calculations  

 

We determine the effective fluid flux through sediments using the vertical exchange model 

developed in Chapter 2 and compare these results to vertical fluid transport rates independently 

estimated using a 1-dimensional advection-diffusion model. The arrangement of solutes in space 

can be explained by both a diffusive and advective property of transport. To separate these effects, 

we use a modified steady-state 1-dimensional advection-diffusion equation (Equation 3.1) based 

on Craig (1969) to determine the advective vertical velocity of fluid out of the sediments (into the 

overlying water). Assuming the only factors controlling 224Ra activity in time are the generation 

and decay of 224Ra, we rearrange the equation and solve for the advective vertical velocity (ω) in 

a given sediment layer (i) for upward fluid flow through sediments (+z): 

 

𝜔 =

[
(Φ𝑖+1/2𝐷𝑠𝑒𝑑𝑖+1/2

𝐶𝑖+1−𝐶𝑖
𝑍𝑖+1−𝑍𝑖

)−(Φ𝑖−1/2𝐷𝑠𝑒𝑑𝑖−1/2

𝐶𝑖−1−𝐶𝑖
𝑍𝑖−1−𝑍𝑖

)

(𝑧𝑖+1−𝑧𝑖−1)/2
+𝑅𝑛𝑒𝑡(𝑧)]

𝐶𝑖+1−𝐶𝑖
𝑧𝑖+1−𝑧𝑖

                                               (3.1) 

 

where the index (i) increases with depth, Φ is porosity, C is the number of dissolved 224Ra atoms 

in a layer of porefluid, Dsed is the effective diffusion coefficient (Equation 3.2), z is depth in cm 

below seafloor (cmbsf), and Rnet is the difference between the production of 224Ra into the water 

via sediment supply and the isotopic decay of 224Ra. Rnet is applied as an average over the interval 

i-1/2 to i+1/2. At radioactive equilibrium, Rnet would equal 0. This approach can only be used if 

the sedimentary supply of 224Ra source is constant in time, an assumption often applied when using 

Ra isotopes to estimate environmental transport times (Moore, 2000; Peterson et al., 2008). That 
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is, the production rate 224Ra (by way of 228Th decay) is constant. Fluid (and therefore 224Ra) supply 

from horizontal transport is possible, but assumed minimal and is therefore not included in this 

calculation. This assumption is also applied in the vertical exchange model and is revisited in 

section 3.2 of this chapter.  

The diffusion coefficient of 224Ra through a semi-porous matrix (Dsed) is defined as 

(Boudreau 1997): 

      𝐷𝑠𝑒𝑑 =
𝐷𝑎𝑞

1−2ln (Φ)
                                                                                  (3.2) 

where the molecular diffusion coefficient of Ra in an aqueous solution (Daq) is constant and equal 

to 4.65x10-10 m2 s-1 at 5°C (Schulz 2000).  

 

3.3. Results and Discussion 

 

3.3.1.Porefluid Residence Time and Advective Transport 

 

Porefluid contact time with sediments and 224Ra transport rates were determined for three 

sediment cores collected from the Northern Gulf of Mexico. The presence of bacterial 

communities and acoustic water column density anomalies suggested active fluid transport out of 

the sediments at the Mat and Seep core sampling locations, respectively. Yet, these types of 

qualitative visual and geophysical evidence are not sufficient to quantify fluxes. As such, we seek 

to corroborate results from the vertical exchange model with qualitative data types, and also to 

determine an advective 224Ra transport rate and associated fluid flux required to support estimated 

porefluid residence time. 
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3.3.1.1. Mat Core 

 

Lush bacterial mats are relatively common overlying sediments within the GC region in 

concert with oil stained sediments (Figure 3.2; Sassen et al., 1993). Beggiatoa are dependent upon 

CO2 generated by bacteria oxidizing seeping hydrocarbons and can even directly oxidize 

hydrocarbon products to fulfill energy needs (Nikolaus et al., 2003). Abundant mat-covered 

sediments are suggestive of active hydrocarbon seepage during the time of sampling (Joye et al., 

2004). Although it has been suggested that mat color may be useful to categorize flow in a 

qualitative manner (e.g., diffusive or advective), mat color or size alone cannot be used to estimate 

fluid flux as porefluid geochemistry greatly controls mat success (Gilhooly et al., 2007).  

Mat core was sectioned into four equal sediment sections of 129 cm3 from 0 to 16 cmbsf. 

An average porefluid volume of 33 ± 19 mL was recovered from each section after centrifugation. 

Dissolved porefluid 224Ra activities ranged from 2.0 ± 0.3 dpm L-1 to 19.6 ± 1.3 dpm L-1 with 2.3 

± 0.2 dpm L-1 observed in the core-top water. Raeq values determined via laboratory incubations 

were greater than porefluid activities extracted from the sediment core and ranged from 36.2 ± 2.8 

dpm L-1 to 63.4 ± 3.2 dpm L-1 (Figure 3.4A).  

Model results suggest porefluid residence time within each 4 cm vertical section ranged 

from 0.4 ± 0.1 days to 2.6 ± 0.3 days with fluid transport possible in both directions for the 

shallow-most layer (i = 2 cm). For example, it is mathematically possible that Rat at 2 cmbsf 

could have been supplied by upward flow (assuming Rat at 6 cmbsf represents Rai) or downward 

flow (assuming overlying core-top water represents Rai). The vertical exchange model inherently 

assumes that production and decay of 224Ra are the only sources and sinks of radium influencing 
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our measurements. While we think this assumption is reasonable in the subsurface, it is very 

likely that dilution with ambient ocean water acts as an additional sink of 224Ra in the overlying 

water. Thus, a solution assuming a downward flow of water into the sediments is almost always 

possible at the sediment-water interface using the core-top end-member as Rai with no way of 

objectively knowing how representative this result is in representing active fluid exchange. 

However, to conserve mass with respect to depth, it cannot be that this is actually occurring at 

Mat core where all other depths suggest radium and fluid transport direction is out of the 

sediments. For these reasons, residence time estimates assuming 224Ra transport into the 

sediments for the shallow-most sediment layer are excluded from our analysis here and 

throughout. 

We solve Equation 3.1 to estimate the advective transport rate required to support the 

vertical distribution of 224Ra activities observed in Mat core porefluid. The average advective 

transport rate for each 4 cm section is estimated to be 7.2 ± 2.4 cm day-1 (Figure 3.5). These results 

suggest an advective term (36.3 atoms cm-3 day-1) two orders of magnitude larger than the diffusive 

term (0.2 atoms cm-3 day-1) of 224Ra over the sampling interval. To compare this approach to 

estimate porefluid transport with results from the vertical exchange model, we divide our sampling 

interval by the average residence time of 0.6 ± 0.2 days for each 4 cm vertical section (Figure 

3.4B).  
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Figure 3.4. (A) Aqueous 224Ra depth profiles measured at sea (Rai and Rat; triangles) and at 

equilibrium (Raeq; circles) for Mat core. Error bars represent ±1σ standard deviation of all 

estimates determined using standard propagation of error related to counting statistics of 224Ra 

analysis. (B) Porefluid residence time where solutions were only possible imposing a +z 

transport direction. The solid line represent the depth-averaged mean and dashed lines 

illustrate the mean ± 1σ standard deviation. X-axis scales set to match those in Figures 3.6 

and 3.7 to facilitate direct comparison. 
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This approach yields an identical average advective transport term of 7.2 ± 2.4 cm day-1 

(Figure 3.5). While the depth averaged fluid transport rates are equal, the estimates generated via 

the vertical exchange model for any particular layer are often slightly greater than those 

determined via the advection-diffusion equation, although well within error or one another. 

Because the difference in flux estimates generated using the 1-d advection-diffusion equation 

and the vertical exchange model is well within our analytical error for each estimate, it would 

seem model results agree where advective transport dominates. Furthermore, the vertical 

exchange model is entirely dependent upon using disequilibrium to evaluate porefluid residence 

time. Similar velocities suggest Rnet must dominate ω as determined via the 1-D advection-

diffusion model. The similarity of these results is not surprising as both approaches consider the 

similar data, however when using the vertical exchange model, data from only two sediment 

sections is used at a time as compared to three with Equation 3.1. The similarity in rates as 

determined by the two approaches supports the assumption of vertical fluid transport (and 

therefore 224Ra transport) over the sampled domain. Fluid transport rates are likely supported by 

exchange mechanisms specifically affecting shallow porewater and could be supplemented by a 

supply of more deeply sourced porewater transported by entirely separate mechanisms (see 

Figure 1.1). The time-scale associated with the fluid transport that 224Ra and the vertical 

exchange model is sensitive to has been referred to as the ‘memory effect’ of the isotope (Rama 

and Moore, 1996). This idea was posited to explain fluid flow estimates which varied by an order 

of magnitude or more between estimates determined using different isotopes of radium (223Ra, 

224Ra, 226Ra, and 228Ra; Rama and Moore, 1996). Although the exact cause of these discrepancies 

appears to be unknown, fluid flow rates determined using short-lived radium isotopes (223Ra, T1/2 
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= 11.4 days  and 224Ra, T1/2 = 3.6 days) were observed to yield faster rates as compared to the 

longer lived isotopes (228Ra T1/2 = 5.8 days  and 226Ra, T1/2 = 1602 years).    

Interestingly, porefluid residence time in this core decreased with depth (Figure 3.4B). 

We suspect the decreased residence time with depth is due to the decreased porosity down core. 

Under a constant vertical velocity, a reduction in pore space would the then lead to a reduced 

residence time. Upward 224Ra transport through the sediments is shown consistently both 

implicitly via the vertical exchange model and explicitly via the 1-D advection-diffusion 

equation and suggests that a modest subsurface supply of porefluid and dissolved materials may 

explain the presence of mat covered sediments at this location.    

Although porosity was not be measured directly for Mat core, but taken as an average  using 

other GC600 sediment cores recovered from the region, it is likely that differences in porefluid 

volume recovered were a consequence of changing porosity (i.e., compaction) as the total volume 

of each mud sample remained constant. Within these porefluid samples, Rat values were 

consistently lower than corresponding Raeq values measured at similar porosities, suggesting that 

contact times were never long enough to achieve equilibrium within any particular sediment layer. 

Our 224Ra-derived advective transport rates are consistent with the presence of mat-covered 

sediments as both suggest an active flow of materials out of the seafloor was occurring during 

collection. 
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 3.3.1.2. Seep Core 

 

Seep core was sectioned into six samples, each with a total mud volume of 285 cm3 

representing 4 cm thick sediment sections representing depths of 0 to 24 cmbsf. An average 

porefluid volume of 59 ± 16 mL was recovered from the six sediment samples and contained 

dissolved 224Ra activities ranging from 14.3 ± 1.4 to 318.2 ± 19.3 dpm L-1 (Figure 3.6A). Within 

the core-top waters, dissolved 224Ra activities were 1.1 ± 0.1 dpm L-1. Interestingly, Raeq values 

Figure 3.5.  Mean advective velocities required to support aqueous interstitial porefluid 
224Ra distributions. Velocities are estimated using the 1-D advective transport equation 

(Equation 3.1; shaded bars) and by dividing our sampling interval by the porefluid residence 

time determined using the vertical exchange model (Equation 2.5; hatched bars). Effective 

fluid flux (open squares; right-hand Y-axis) is plotted for each core using contact times 

generated using the vertical exchange model, sampled area, and porosity (see section 3.2). 

Error bars represent ±1σ standard deviation of estimates determined via standard 

propagation of error related to counting statistics for each 224Ra term. Positive values 

indicate transport in the +z direction (out of sediments) and negative values indicate 

transport in the –z direction (into sediments). 
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ranged from 15.0 ± 0.8 to 73.5 ± 3.1 dpm L-1 and were substantially lower than Rat values. This 

result suggests that, similar to Mat core, some mechanism was acting to maintain disequilibrium 

of porefluid 224Ra activities with sediment geochemistry. However, as our at-sea 224Ra activities 

were greater than Raeq, our observations were influenced by a source of 224Ra beyond parent 

production from host sediments. Regardless, porefluid residence time can be estimated via the at 

sea 224Ra activity returning to equilibrium in a net decay scenario (Figure 2.9B, Chapter 2).  

Enrichments in our at sea observations of 224Ra may be related to hydrocarbons in the 

deepest section of the core. Peterson et al. (2013) noted the co-occurrence of 224Ra enrichments 

and elevated fluorometry values in the water column at GC600 and suggested seepage associated 

with hydrocarbons may be especially elevated in 224Ra. While this does not explain 224Ra activities 

associated with Mat core that contained abundant oil coated sediments, it is likely that site-specific 

geochemistry and porefluid source exert significant control on dissolved 224Ra activities and the 

presence or absence of hydrocarbons is not a reliable predictor of isotope activity. Nonetheless, 

the additional supply of 224Ra beyond the equilibrium activities supported by Seep core sediments 

can be used to quantify porefluid residence time via Equation 2.5. 

Seep core porefluid contact times ranged from 0.9 ± 0.6 to 8.6 ± 1.3 days for each 4 cm 

sediment section, with an average of 4.2 ± 3.0 days (Figure 3.6B).  Again, porefluid residence time 

decreased with increased depth below seafloor as porefluid volume and porosity decreased.   

To evaluate the likelihood of active fluid transport being the mechanism that maintains 

porefluid residence time below 21 days, we applied Equation 3.1 to estimate a 224Ra-derived 

advective transport rate. For all layers, the observed 224Ra porefluid distribution could be explained 

by an advective transport out of the sediments at rates ranging from 3.8 to 0.5 cm day-1 for each 4 

cm section with an average of 1.7 ± 1.4 cm day-1 (Figure 3.5). As was the case for Mat core, we 
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divided the sampling interval by our porefluid residence times generated via the vertical exchange 

model and again received identical results (average transport rate of 1.7 ± 1.4 cm day-1).  Although 

specific layer solutions varied, again the average transport rate of 224Ra (and porefluid) was equal 

for both approaches. While these approaches are based on the same observational data, their 

mathematical treatments are independent of each other, so the similarity in average core conditions 

provides confidence in the model results. 

While the advective 224Ra flux at Seep core is not as significant as that for Mat core, the 

advective component of transport (Equation 3.1) of 84.6 atoms cm-3 day-1 is still an order of 

magnitude larger than the radium diffusion term (1.5 atoms cm-3 day-1). Although acoustic water 

column density anomalies may be used to identify bubble plumes (Pohlman et al., 2017), we did 

not directly sample the associated feature as no obvious indications of gas or oil enrichments 

were observed in the sediment column. It is not surprising that our transport estimates are 

considerably less than one might expect given the ancillary evidence of seepage. Because our 

approach to sample the seafloor feature (situated in ~1200 m water depth) utilized a shipboard 

multiple core deployment and recovery system, it is likely that we sampled across some 

‘background sediment’ as opposed to entirely over the discharge area. However, the difference in 

vertical fluid velocities between Mat and Seep core is not beyond error (Figure 3.5). Either way, 

224Ra advective transport estimates independently support the suggestion of effluxing porefluid 

producing the large scale seepage identified via multibeam imaging and appear distinct from 

fluid flux estimates determined for Control core.  
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Figure 3.6. (A) Aqueous 224Ra depth profiles measured at sea (Rai and Rat; triangles) and 

at equilibrium (Raeq; circles) for Seep core. Error bars represent ±1σ standard deviation of 

all estimates determined using standard propagation of error related to counting statistics 

of 224Ra analysis.  (B) Porefluid residence time where solutions were only possible 

imposing a +z transport direction. The solid line represent the depth-averaged mean and 

dashed lines illustrate the mean ±1σ standard deviation. Scales set to match those in Figures 

3.4 and 3.7 to facilitate direct comparison. 
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3.3.1.3. Control Core 

 

Control core was sectioned into nine sediment samples, each with a total volume of 285 

cm3 representing 4 cm sections from 0 to 36 cmbsf. The core-top water recovered from Control 

core contained a dissolved 224Ra activity of 0.32 ± 0.03 dpm L-1, and was an order of magnitude 

lower than overlying water at Mat core. An average porefluid volume of 70 ± 12 mL was recovered 

from nine sediment sections and contained dissolved 224Ra activities ranging from 4.6± 0.5to 43.0 

± 4.3 dpm L-1 (Figure 3.7A). Raeq estimates obtained via incubation experiments were, on average, 

a factor of 2 larger than those observed at-sea and ranged in activity from 9.4± 0.5 to 104.1± 5.4 

dpm L-1 where isotope activities at equilibrium were observed to increase with increased depth 

below the sediment water interface (0 to 36 cmbsf) and activities measured at-sea increased with 

increased depth below the SWI (0 to 14 cmbsf) until activities appear unrelated to depth circa 14 

cmbsf. 

Porefluid residence time estimated by imposing a +z (upward) transport direction resulted 

in a  porefluid residence time of ≥21 days for the 0 to 4 cmbsf sediment sample whereas no solution 

was possible for greater depths below seafloor under this transport condition. This result is 

supported by the isotope activities recovered from the shallow porewater where the at-sea activity 

was observed to be nearly equal to the equilibrium activity indicating the residence time equal to 

or greater than the time required to generate radioactive equilibrium between dissolved 224Ra and 

the fraction of the 228Th parent required to support the radium. However, the at-sea activities 

decrease closer to the SWI. Because the equilibrium activity is still higher than the activities 

measured at-sea, production rate > decay rate and so a decrease of 224Ra must indicate a dilution 

of 224Ra in porewater by the transport of low end-member water (assuming all sinks have been 
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accurately constrained; Figure 3.7A). Assuming 224Ra was transported downward (-z), porefluid 

residence time ranged from 1.6 ± 0.4 to 2.1 ± 0.3 days (Figure 3.7). Importantly, the residence time 

of interstitial porefluid recovered from Control core is often at or beyond our ability to determine 

for fluid transport occurring in the +z, but an average of 1.8 ± 0.4 days assuming transport of fluid 

was occurring down core. Due to the half-life and radioactive nature of our chosen proxy, the 224Ra 

activity will not change after reaching equilibrium. We simply report this as a residence time 

greater than or equal to 21 days as we have no way of isotopically distinguishing a residence time 

of 21 days from anything > 21 days.  

Layer specific residence times were converted into an advective transport rate required to 

sustain observed 224Ra distributions. Using the 1-D advection/diffusion equation (Equation 3.1), 

we find that fluid transport and 224Ra distribution is most influenced by the advective velocity 

(1039.9 atoms cm-3 day-1) as compared to the mean diffusive term (20.6 atoms cm-3 day-1) for 

Control core sediments. We find the average advective velocity as determined by Equation 3.1 to 

equal -1.9±1.3 cm day-1. For comparison, we divided our sampling interval by the residence time 

estimated for each 4 cm section (Equation 2.5) to yield an average vertical velocity of -1.7±1.3 cm 

day-1 (equivalent to an estimated total transport of 1468.4 atoms cm-3 day-1). For Control core, we 

identify fluid transport to be occurring in the –z direction suggesting the dominant transport 

direction is into the sediments (from 0 to 14 cmbsf) (Figure 3.5). 

Despite having observed similar Raeq for all three cores, differences in the Rat values 

resulted in unique solutions to residence times and advective porefluid transport rate and 

direction. For Control core, we suspect that having observed 224Ra activities at equilibrium (i.e., 

Rat= Raeq) suggests that no significant advective transport mechanism was adding or removing 

224Ra to/from the interstitial inventory in the shallow most layer, however disequilibrium 
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observed at depth (below 4 cmbsf) could only be explained by a dilution of 224Ra in porefluid. 

We estimate an average residence time of porefluid within each 4 cm section of 6.6±0.3 days. 

While the average residence time of Control core porefluid is larger than the average identified 

for Mat and Seep cores, large error associated with Seep core suggests that the residence times 

obtained for Control and Seep core cannot be distinguished beyond error. However, it is 

noteworthy to mention that Control core was the only sediment core recovered where transport in 

the –z was supported by the isotope data for any layers. While we do not expect that the isotopic 

disequilibrium supported by an apparent –z transport direction for Control core porewater 

represents the fluid exchange condition for much of the Gulf of Mexico seafloor. Rather, we 

think this result can be supported by several proposed mechanisms acting to exchange fluids 

through shallow sediments, bioirrigation, bubble-driven exchange, topography driven exchange, 

and/or density driven exchange (Figure 1.1) 
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Figure 3.7. (A) Aqueous 224Ra depth profiles measured at sea (Rai and Rat; 

triangles) and at equilibrium (Raeq; circles) for Control core. Error bars represent 

±1σ standard deviation of all estimates determined using standard propagation of 

error related to counting statistics of 224Ra analysis. (B) Porefluid residence time 

assuming–z transport direction where residence time estimated for 2 cmbsf equals 

21 days assuming a +z transport direction. Solid lines represent the depth-averaged 

mean while dashed lines illustrate the mean ± 1σ standard deviation. Scales set to 

match those in Figures 3.4 and 3.6 to facilitate direct comparison. 
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3.3.2. Effective Fluid Fluxes 

 

Of the three cores analyzed, interstitial porefluid residence time was identified by applying 

a vertical exchange model (Equation 2.5) similar to that first described by Krest and Harvey 

(2003). We identified three regions where porefluid residence times were significantly less than 

21 days within each 4 cm interval (0.6 days for Mat core and 4.2 days for Seep core and 6.6 days 

for Control core). Such short residence times must be maintained by a vertical transport rate of 

5.9, 1.4 cm day-1, and 1.7 cm day-1, respectively. To estimate the volumetric rate of transport for 

our cold seep sites, we divide the porefluid volume in each sediment section by the estimated 

contact time. We thus estimate a rate of replacement that must be maintained to support the 

estimated sediment-water contact time over the volume of interstitial water present in each 

sediment section. The vertical volumetric fluid flux estimated for Mat core is greatest (150 ± 55 

mL day-1) compared to Seep core (71 ± 74 mL day-1) and Control core (97 ± 60 mL day-1). 

Assuming the entire surface area sampled is exchanging fluid evenly, we can normalize to the 

surface area sampled to estimate the volume of porefluid exchanged per cm2 of seafloor for each 

region. By this approach, we can compare each core directly as the area sampled for Mat core was 

nearly half that of Seep and Control cores (32 cm2 and 71 cm2, respectively). Just as the estimated 

advective transport term was larger for Mat core, the volumetric flux per area of seafloor is greatest 

outward for Mat core (4.6 mL cm-2 day-1) and inward for Control core (-1.3 mL cm-2 day-1; Figure 

3.5). This result is supported by the dissolved 224Ra activity measured in the core-top waters for 

each sample.  

We observed the highest 224Ra activities in the overlying water of Mat core where the 

greatest rate of 224Ra supply was occurring (2.3 dpm L-1; 178 mL day-1), a moderate amount of 
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224Ra in the core-top waters recovered from Seep core (1.1 dpm L-1; 84 mL day-1), and the lowest 

was associated with Control core (0.3 dpm L-1; 97 mL day-1 –fluid influx to sediments) where the 

effective fluid flux to the overlying water was lowest. Although the amount of 224Ra detected in 

the overlying water is likely influenced by more than just the 224Ra supply rate (e.g., different 

amounts of mixing with lower activity ocean water), the measured 224Ra within the core-top water 

does support the relative magnitude of fluid flux and flow direction estimated for each core. 

Because the distribution of 224Ra is redox sensitive, we oxidized all samples to enable 

comparison between field and laboratory results (see Chapter 2 for a more detail regarding the 

vertical exchange model and oxidation/reduction conditions). Although we were careful to avoid 

hypersaline porefluids in this assessment, black, reducing sediments are a common feature of cold 

seep systems such as those scattered throughout the GOM and often identified in very shallow 

sediments (Figure 3.2). Comparing dissolved 224Ra activities generated from reducing sediments 

with those associated with the oxidized form of the same sediments could affect our residence time 

estimates as oxidized forms of Mn and Fe can be significant radium sinks (Beck and Cochran, 

2013). Krest and Harvey (2003) applied a 1-D advection/diffusion model to estimate a single 

uniform 224Ra production rate (similar to Raeq) to avoid potential redox complications associated 

with porefluid extraction.  

Tamborski et al. (2017) used a similar approach to that here where sediment incubations 

were conducted to determine the equilibrium 224Ra activity. However, in that work, KD moderated 

production rates (Raeq) were optimized and treated as a constant following Krest and Harvey 

(2003). While such an assumption is reasonable, we observed an eleven-fold difference in the 

maximum exchangeable 224Ra activity throughout Control core (Figure 3.7A). Even if redox 

controls moderated the absolute activity of exchangeable radium, the relative range remains 
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independent of this effect as all samples were handled identically. Regardless of how the 

production rate (Raeq) is applied, residence time may still be estimated, although site-specific 

considerations including geochemical heterogeneity may favor one approach over another.  

It is important to address the inherent model assumption that radium transport (e.g., mass) 

is primarily vertical as a consequence of vertical fluid transport and geochemical processes 

illustrated in Figure 2.1. Although in-situ measurements by Solomon et al. (2008) suggest some 

horizontal fluid transport may occur at cold seep sites, flow was predominately occurring in the 

vertical direction. Vertical chemical and pressure gradients if not uniform in space or time, could 

promote horizontal gradients (which transport would act to remove), however sediment 

compaction makes the effect minimal and detection extremely unlikely (Lloyd et al., 2010) 

meaning advective vertical velocities are significantly larger than advective horizontal gradients.  

Furthermore, we compare our flow estimates to similar values from cold seep sites within the 

GOM that have an identified range of –161 to 273 cm yr-1 (Solomon et al., 2008). Similar to the 

convention applied here, negative values indicate flow into the sediments and positive values 

suggest outward, effluxing flow. For comparison, we identified rates of -679 to 2170 cm yr-1.  

However, because the utility of 224Ra and the vertical exchange model is restricted to processes 

causing radioactive disequilibrium (1 to 21 days), applying velocities identified here over yearly 

time-scales hardly seems appropriate. As implied by the conceptual diagram presented in Chapter 

1 (Figure 1.1), our fluid flux and velocity estimates likely represent a composite result of multiple 

mechanisms including bioirrigation and tidal exchange which would not present as constant 

drivers of exchange over yearly time scales. Solomon et al. (2008) detailed a reversal in fluid flow 

direction after having observed persistent outward flow over hundreds of days near a gas vent in 



 
 
 

95 
 

the GOM. We believe this tool is useful for short-term flow conditions which may vary over hourly 

to daily scales but do not result in porefluid residence time in excess of 21 days. 

Although seepage sites are known to exhibit temporal variability (Johansen et al., 2017), 

transport estimates in this study demonstrate the comparability of the geochemical vertical 

exchange model with in-situ detectors for sites of slow, diffuse flow. Well-studied sites within the 

GC600 region capable of generating persistent surface sheens exhibit transport rates on the order 

of hundreds of cubic meters per year (Johansen et al., 2017), roughly three orders of magnitude 

higher than the maximum rates identified in this work. Although Johansen et al. (2017) did not 

normalize to seepage area, it is known that the seepage face is no larger than 1 m2 (Rick Peterson, 

personal communication). It is not surprising that subsurface fluid transport rates identified in this 

study are less than those occurring at sites of vigorous seepage capable of creating persistent oil 

sheens. Instead our effective fluid flux estimates appear closer to rates reported for other chemical 

proxy approaches used to estimate vertical transport rates (Torres et al., 2002; Lapham et al., 2008; 

Solomon et al., 2008).  

While fluid transport rates over the sampled sediment surface appear modest, Larkin et al. 

(1994) noted GOM bacterial mat sizes to range from 0.02 to 100 m2. Applying our volumetric 

porefluid flux estimate for Mat core (4.6 mL cm-2 day-1) across these areas suggests a range of 0.9 

to 4,500 L of porefluid per day is discharged across the entire mat surface. Even more surprisingly, 

if we apply our volumetric porefluid flux determined for Seep core to the same range in area, we 

estimate 0.2 to 1,000 L of porefluid are discharged from uncolonized sediments each day. 

Although such upscaling may not be entirely accurate as our sampled area (from 3.2x10-3 to 

7.1x10-3 m2) was an order of magnitude smaller than the smallest documented microbial mat size, 

it could provide useful boundary conditions for similar bacterial mats and deep-sea seepage 
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habitats. Notably, this work documents seepage rates associated with cold seep features and 

demonstrates that porefluid 224Ra activities may be used in either a 1-D advection-diffusion 

equation (Equation 3.1) or this vertical exchange model (Equation 2.5) to estimate characteristics 

of porefluid transport.  

The presented approach is effective over a range of fluid transport rates corresponding to 

porefluid residence times between 0.1 and 21 days over the sampling interval. Application of the 

vertical exchange model described throughout is related to site-specific parameters including 

mineral geochemistry, 224Ra partition coefficients, sediment porosity, and sediment-porefluid 

contact time. Evaluating fluid flow via 224Ra distributions may prove useful where existing 

methods are not appropriate because transport rates are too slow for detection via alternative 

methods. Although similar discharge rate estimates are available through chloride analyses (e.g., 

Lapham et al., 2008), such techniques are only useful in regions where porefluid chloride 

concentrations are supersaturated and may therefore limit application. Because hypersaline sites 

are often associated with the formation of barite, which serves as a dissolved radium sink (Aharon 

et al., 2001), the method described here should be used with caution or modified appropriately 

under such circumstances as we did not test the efficacy of the detailed approach in hypersaline 

environments. The vertical exchange model therefore extends the environments to determine fluid 

flow via geochemical proxy for deep-sea seepage systems. 
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3.4. Conclusions  

 

Geochemical profiles of dissolved 224Ra activities were examined relative to equilibrium 

224Ra activities to determine porefluid residence time for two cold seep sites and a control site. A 

vertical exchange model was applied to evaluate these residence times relative to a control core 

collected in the Gulf of Mexico. To explain the range in porefluid residence times throughout the 

sampling region, we estimate the advective transport rate required to support our observations.  

Porefluid residence times suggest significant differences in the rates of subsurface fluid 

transport for collected sediment cores. The depth averaged residence time of 0.6 ± 0.2 days for 

each 4 cm section of sediment for a core collected through a bacterial mat (Mat core) was much 

less than that for Seep core (4.2 ± 3.0 days) where acoustic anomalies detected in the region 

suggested active seepage near the sample collection site. Both cold seep cores (Mat core and Seep 

core) recovered from GC600 had much lower porefluid residence times than that of porefluid 

recovered from Control core at site GC699 (mean = 6.6 ± 9.6 days for each 4 cm section).  

An average advective transport term two orders of magnitude larger than that of the average 

diffusive term is required to explain dissolved 224Ra distributions in Mat core (36.3 atoms cm-3 

day-1 as compared to 0.2 atoms cm-3 day-1). This result suggests that 4.6 ± 4.1 mL cm-2 day-1 is 

supplied to the microbial mat each day and ultimately the overlying ocean. Comparatively, 1.0 ± 

0.3 mL of porefluid per cm2 of seafloor per day was supplied to the overlying water through Seep 

core sediments. Notably, no obvious microbial mat cover was present on Seep core sediments. 

Perhaps the absence of obvious microbial mat could be explained by the lower seepage rate 

estimated for Seep core as opposed to Mat core. However, because we did not measure any other 
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solute concentrations this could also be explained by the porefluid geochemistry or perhaps the 

material flux. It is also possible that the advective velocities associated with Mat and Seep cores 

are more similar than they appear considering the especially large error associated with Mat core 

velocities.  

We compared porefluid flow estimates for samples recovered from GC600 to our Control 

core where porefluid residence time estimates and porefluid distributions of 224Ra are best 

explained via vertical advective velocities acting in the –z direction, ultimately transporting water 

into the sediments presumably from the overlying ocean. We estimate an average effective fluid 

flux of -1.3 ± 0.3 mL cm-2 day-1. Mechanisms to support fluid flow into the sediments over surficial 

sediment scales (decimeters) are shown in Figure 2.1 and can include bioirrigation as well as 

bubble, tidal, density, and topography driven exchange (Santos et al., 2012). 

Results for our GC600 cores agree well with prior fluid flow estimates for similar diffuse 

seepage sites. Of the regions studied, porefluid transport rates are modest, but significant either in 

magnitude or composition relative to non-seep sediments such that seep sediments support 

significantly higher cell numbers as compared to non-seep sediments (Pop Ristova et al., 2015). 

Diverse seep communities often exist in a proximal region to outward fluid transport as defined 

by the seepage footprint. As such, lower transport rates of unique solutes may be of great 

significance to the dense ecological communities associated with cold seeps. Our vertical exchange 

model offers volumetric fluid flux estimates supported by visual evidence of seepage and control 

conditions with rates similar to those in the literature. As such, the work here qualitatively 

demonstrates the applicability of the vertical exchange model to determine an effective fluid flux. 
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CHAPTER 4 

SPATIAL ASSOCIATIONS BETWEEN FLUID FLUX, TEMPERATURE, AND MICROBIAL 

MAT IN GUAYMAS BASIN  

 

4.1. Introduction 

Submarine seeps represent a unique network of ecological oases that are sustained by a 

supply of highly concentrated reduced compounds which support chemosynthesis (Orcutt et al., 

2011). Seep communities are almost exclusively dependent upon the conversion of inorganic 

compounds into organic carbon (Nelson et al., 1989). While much remains to be understood about 

seep biota, submarine seeps are regarded as one of the most diverse biomes on Earth (Takai and 

Nakamura, 2010) with an average of 25 new species having been discovered annually from 2002 

to 2010 (Bris et al., 2016). Seeps support functionally distinct chemosynthetic communities and 

generate higher levels of biomass than any other bathypelagic environment (Schuster, 2008). To 

date, scientists largely agree the biological oases associated with submarine seeps are highly 

endemic with common heritage at the family, genus, and species level (Kiel, 2009). Such 

relatedness suggests a feature common to cold and hydrothermal seepage environments is present 

(e.g. flow rate, seepage geochemistry). Despite the known dependency of endemic seep 

communities on the supply of reduced compounds via seeping fluids, the magnitude of fluid fluxes 

across a variety of geobiologic environments remains one of the least understood components of 

these systems (Suess, 2014). 
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Microbial life associated with submarine seeps not only supports an entire higher order 

ecosystem, but also acts to moderate the quantity and speciation of solutes transported into the 

overlying ocean. Bacterial communities often exploit unique seepage products to fix carbon 

dioxide and to oxidize methane and other hydrocarbons (Nelson et al., 1989; Teske et al., 2014). 

For seeps driven by high temperature convection associated with plate rifting and hydrothermal 

circulation, microbial community structure is influenced both by thermal tolerance as well as 

carbon and energy supply (Holler et al., 2011; Dowell et al., 2016; McKay et al., 2016). In fact, 

species richness has been shown to decline with increasing temperatures with an upper limit on 

life reported at 122°C (Clark, 2014) suggesting these hydrothermal communities are dependent 

upon a precarious balance between thermal driven flow, geochemistry, temperature, and survival. 

Guaymas Basin is one of only a few modern rift systems that contain significant sediment 

deposits above magmatic intrusions, the heat from which drives fluid circulation through the 

subsurface and supports seep communities (Garfunkel et al., 1981; Gieskes et al., 1982). Here, 

conspicuous microbial mat forming colonies dominated by giant Beggiatoa spp. are found in areas 

of seepage emanation (Guendersen et al., 1992). Bacterial mats may thus provide a qualitative 

seepage indicator, as spatial distributions of Beggiatoa spp. have been linked to elevated sediment 

surface temperatures averaging 8 to 12°C as compared to bare sediment (3 to 4°C) (McKay et al., 

2012).  

Few attempts have been made to convert qualitative seepage indications like the observed 

presence of microbial mat into quantitative flow estimates in Guaymas Basin. In the nearly 40 year 

history of Guaymas Basin research, hydrothermal fluid transport investigations have involved heat 

flow surveys, distributions of helium-3 and manganese, and transfer estimates of water and carbon 

resulting from the initial doloritic sill intrusion (Teske et al., 2016). Deep-tow heat flow surveys 
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conducted in the area estimated basin-wide (~4 by 8 km survey area including 128 survey lines 

across the southern trough) low-temperature seepage velocities may range from 1x10-8 m s-1 to 

15x10-8 m s-1 (Fisher and Becker, 1991). While the resolution of these efforts is much too coarse 

to identify spatial relationships between fluid flux and specific microbial mats, they provide 

important constraints on expected seepage rates for regions within the southern trough of the 

Guaymas Basin seafloor depression (Figure4.1). Given that Beggiatoa spp. are dependent upon 

active seepage and are spatially linked to high subsurface temperatures (McKay et al., 2016), it 

would seem then that fluid flux may be a critical component to support these chemosynthetic 

colonies. While it is accepted that an advective flow of sulfide is needed to sustain dense (several 

cm thick) mat dominated by Beggiatoa (Gundersen,et al., 1992), such spatial associations 

identified by McKay et al. (2016) would suggest fluid flux could be at least equally as important 

in predicting mat presence as porefluid geochemistry could be.   

 Beggiatoa appear as the visually dominant species forming microbial mats around deep-

sea submarine seepage habitats (Bernhard et al., 2000). Beggiatoa color has been observed to vary 

from orange to yellow to white filaments with orange filaments often occupying the central mat 

space (Teske et al., 2016). Microbial mats within Guaymas Basin often contain both orange and 

white filaments within a single conspicuous sediment cover feature. Evidence suggests orange 

Beggiatoa (Candidatus Maribeggiatoa) are distinct from white filaments by the abundance of an 

orange cytochrome and proteomic evidence of possible sulfide oxidation with nitrate as the 

electron receptor (MacGregor et al., 2013b). Although curious spatial distinctions between mat 

and non-mat covered sediments as well as white and orange mat zonation have been observed, a 

pure culture has yet to be obtained and so the physiological role of the distinction remains 

speculative but possibly related to carbon dioxide, oxygen, sulfide, and  hydrocarbon content 
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(MacGregor et al., 2013a). Although mat color has been spatially associated with subsurface 

temperature gradients (McKay et al., 2012), it remains undocumented as to how vertical 

volumetric fluid flux, mat presence, and subsurface temperature characteristics are spatially 

associated in Guaymas Basin sediments. 

In this chapter, we seek to constrain rates of fluid flux associated with specific microbial 

mats dominated by orange and white Beggiatoa to determine whether fluid flux and mat presence 

in Guaymas Basin are spatially associated as was first suspected by Guendersen et al. (1992). The 

quantification of fluid fluxes over spatial scale similar to discrete microbial mat colonies of ~1m 

(estimated by personal observation) in this region represents a novel contribution of this work. We 

expand on observations first made by McKay et al. (2012) who evaluated spatial relationships 

between microbial mat color and elevated subsurface temperature. By comparing effective fluid 

flow direction and magnitude across categories of sediment cover and subsurface thermal gradient, 

we seek to identify relationships between mat color and quantitative fluid flux estimates as 

determined by our geochemical exchange model (Equation 2.5). To date, it is known that orange 

Beggiatoa are spatially related to larger subsurface temperature gradients than white filaments; 

yet, it remains unknown whether thermal gradients are the associated with the dominant flow 

mechanism and therefore may be used to qualitatively estimate fluid flux magnitude.  

Conceptual models have suggested that food-web complexity and species richness 

decreases with increasing hydrothermal discharge velocities in Guaymas Basin (Portail et al., 

2016). The basis of this assertion is derived from porefluid methane concentrations used as a proxy 

for seepage intensity (Portail et al., 2016). In a broader sense, highest biomass concentrations 

associations with low-temperature, diffuse flow is a common observation among hydrothermal 

systems (German et al., 2011). These sites are not only biologically unique, but cooler temperature 
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seepage, presumably at off-axial sites, is thought to support 90% of the total mass flux from 

hydrothermal systems globally (Orcutt et al., 2011). Therefore, the development of a tool to 

evaluate diffuse, low-temperature seepage rates would be broadly applicable beyond Guaymas 

Basin. 

 

4.2. Methods 

 

Our sampling approach focuses on shallow sections of deep-sea sediments to quantify rates 

of fluid flow through a variety of sites associated with hydrothermal activity and microbial mats. 

We utilize geochemical characteristics to quantify fluid flow across shallow sediments and 

consider how these rates may relate to regional biogeography. For this assessment, we focus 

primarily on three factors: (1) presence of visual bacterial colonization; (2) porefluid and related 

sedimentary geochemistry; and (3) subsurface temperature. The following sections describe our 

approach to quantifying essential factors for understanding linkages between fluid flux magnitude 

and bacterial mat characteristics. 

 

4.2.1. Site and Core Descriptions  

 

Guaymas Basin is the largest submarine depression located along the boundary between 

the Pacific and North American plates and is thought to have formed during the late Miocene (~10 

million years before present; Miller and Lizarralde, 2013). Guaymas Basin has two distinct sub-

basins (Figure 4.1). The northern trough is characterized by a relatively shallow doloritic intrusion 

with associated hydrothermal fluids having temperatures <200°C, whereas the southern trough is 
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marked by a much larger igneous intrusion at greater subsurface depths into terrigenous sediments 

causing hydrothermal temperatures in excess of 300°C (Gieskes et al., 1982). In both regions, 

borehole studies reveal that porefluid chemistry at depths greater than ~180 m is similar to 

hydrothermal vent water emanating from mid-ocean ridge environments (Gieskes et al., 1982). 

Above the subsurface sill, a significantly decreased porosity, the presence of pyrite and k-feldspar 

minerals, and porefluid geochemical constituents all suggest that contact metamorphism drives 

upward flow of interstitial water (Gieskes et al., 1982).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. (A, B) Northern and Southern troughs within Guaymas Basin, Gulf of 

California. Collection sites integrated with bathymetric and DEM models provided by 

NOAA’s NCEI (https://maps.ngdc.noaa.gov). Symbol color indicates sediment cover 

characteristic (brown: inconspicuous; white: white mat; orange: orange mat) (C) Core 

recovery sites within the Southern trough indicated by dive radius integrated with 

multibeam data obtained using the ROV Sentry. Numbers shown in C indicate HOV 

Alvin dive number. 
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We analyzed a total of 19 sediment cores and 32 subsurface temperature profiles during a 

2016 R/V Atlantis cruise in the Gulf of California (AT37-06) to evaluate the rate of fluid flow 

through surficial sediments throughout Guaymas Basin. Samples obtained during the AT37-06 

cruise are briefly compared to those acquired in 2018 (cruise AT45-02) in Section 3. All AT42-

05 sediment cores were recovered from the Southern trough in similar sampling areas.  Sediment 

push cores were collected by the HOV Alvin from a variety of regions within Guaymas Basin. 

Sediment cores were collected from 27° 00.42’ N to 27° 30.39’ N and 111° 23.10’ W to 111° 

40.87’ W (Figure 4.1) during Alvin dives 4861 through 4872. In total, 10 sediment cores were 

recovered from microbial mat (4 white and 6 orange), 8 cores were collected through non-

colonized sediments (Table 4.1), and 1 core was collected through a mineral crust. Sediment core 

lengths ranged from 16 to 55 cm, although sampling artifacts including gaps in layered sediment 

and melted core tubes often affected sediments circa 20 cm below the seafloor (cmbsf) and 

below. For this reason, we only consider samples recovered from 0 to 12 cmbsf in this analysis. 

As we use vertical geochemical gradients to evaluate fluid transport between layers, we do not 

consider sediment layers which directly adjoin those that may have been compromised during 

recovery. 

Subsurface temperature profiles were measured at the coring locations using a 0.6 m 

Heatflow probe that includes a linear heater and five thermistors spaced 10 cm apart and is housed 

in a heat-resistant titanium shield. The thermistor array measures vertical subsurface temperature 

gradients when inserted into soft sediment.  

Porosity was determined by mass loss for most sites and converted from mass to volume 

using measured sediment bulk density and seawater density (Lamb, 1951). Due to restrictions on 

supplies at sea, we categorized porosity by sample type to determine representative values for sites 
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where no direct measurements were possible. Porosity was measured directly for 40% of the 

samples collected with the supplies available at sea and we use a linear interpolation to estimate 

porosity changes with depth where porosity measurement were not feasible. Some sediment cores 

were collected from previously sampled and named sites including Megamat and Cathedral Hill 

which have porosities reported in a variety of scientific papers (e.g., Biddle et al., 2012; McKay et 

al., 2012; Ruff et al., 2015; Teske et al., 2016). 

 

4.2.2. Geochemical Methods 

 

From Fisher and Becker (1991), it is estimated that seepage velocities throughout Guaymas 

Basin may range from 1x10-8 m s-1 to 15x10-8 m s-1. Over a 2 cm sediment sampling interval, 

porefluid residence time is thus estimated to range between 1.5 and 23 days per 2 cm section. 

Considering this expected range, we utilize 224Ra as its radioactive half-life (3.6 days) corresponds 

to processes occurring over 1 to 21 day time scales and sample sediment cores at 2 cm intervals 

unless otherwise noted. Our approach to evaluate fluid flow through soft sediments utilizes a 

vertically-exchanging 224Ra mass-balance approach (as detailed in Chapter 2). After considering 

potential vertical porefluid flow direction, we account for changes due to radioactive production 

and decay to estimate the time required to account for any remaining isotopic disequilibrium in 

224Ra between sediment surfaces and interstitial porefluid. 

 After recovery of each sediment core, samples were visually described (sediment structure 

and cover) and then processed following methods described by Cai et al. (2012). In short, sediment 

cores were sectioned into 2 to 4 cm intervals and a slurry was prepared using 150 mL of Ra-free 

tap water and a subsample of sediments (about ¼ of total volume from each 2-4 cm thick sediment 
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slab). The slurry was pH adjusted by adding 5-10 drops of NH3-OH after which 1 mL of 19 mM 

KMnO4 and 1 mL of 40 mM MnCl2 solutions were added to precipitate any 224Ra that may have 

entered the dissolved phase following the addition of Ra-free tap water (Cai et al., 2012). Solids 

were vacuum filtered onto preweighed 47 mm GFF cellulose filters and the filtration was 

terminated when filtrate drops were no longer observed entering the filtrate reservoir. Sediment-

covered filters were then dried completely and analyzed for 224Ra via a Radium Delayed 

Coincidence Counter (RaDeCC; Moore and Arnold, 1996). To determine the total surface-sorbed 

224Ra activity associated with the sediments, filters were analyzed several weeks later after 224Ra 

had equilibrated with surface-bound 228Th. Any discernable difference in 224Ra activity between 

the two measurements thus represents a disequilibrium between surface-sorbed 224Ra and 228Th.  

Aqueous phase analyses of 224Ra reported herein were made by passing a water sample 

(core-top water and porefluid recovered by centrifugation) slowly through 25 g aliquots of dry 

acrylic fibers impregnated with MnO2 (Moore, 1976; Moore, 2008). These fibers were then rinsed 

with Ra-free tap water, dried to an optimal moisture content (as per Sun and Torgersen, 1998), and 

similarly counted on the RaDeCC which has been calibrated with a fiber containing a known 

activity of a NIST-traceable 232Th standard (containing all daughters in equilibrium) and has been 

verified through routine QA/QC checks. 

 

4.2.2.1. Calibrations 

 

 We followed the approach detailed by Cai et al. (2012) as ‘the method of standard addition’ 

to calibrate our RaDeCC systems for the sediment-coated filters. Five slurries were prepared, with 

each containing 20 g dry, aged deep-sea sediment, 80 mL of Ra-free tap water, 1 mL of 19 mM 
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KMnO4 solution, and 1 mL of 30 mM MnCl2 solution. The pH was adjusted to 6-7 using a 1% 

NH4OH solution. A NIST-traceable 232Th standard solution with all daughters in equilibrium 

(6.4296 dpm mL-1) was added in aliquots of 0, 1, 2, 3, and 4 mL for each of the five standards. 

Slurries were then filtered onto pre-weighed 47 mm cellulose filters (0.45 μm) and filters were 

dried completely to allow determination of recovered sediment mass. Filters were then 

subsequently analyzed on the RaDeCC.  System efficiency is determined by regressing dry 

standard filter 224Ra measurements (cpm) against known 232Th addition (dpm). Filtrate from each 

replicate was recovered, combined, and analyzed to monitor breakthrough levels. Calibration 

results are provided in the Appendix (Figure A.2 and Figure A.3) 

According to Cai et al. (2012), optimal emanation of radon daughters on sediment-coated 

filters occurs at a water:sediment mass ratio of 0.5. However, precisely determining the mass of 

moist filters is not feasible at sea where measurements are unreliable due to the motion of the ship. 

Furthermore, the moisture content associated with a filter is likely to change as a function of 

measurement time, which would potentially influence detection and calibration. While this effect 

can been managed by controlling analysis time, we often see dramatic differences in the time 

required to achieve < 10 % analytical uncertainty (> 100 counts) via RaDeCC analysis of Mn-

impregnated fibers containing dissolved 224Ra from deep-sea porefluid (with count times ranging 

from 2 to >12 hours). In light of these conflicting issues, we concluded that evaluating 224Ra 

activities emanating from dry sediment-coated filters would yield the most reproducible calibration 

and analytical results, albeit at a slightly lower efficiency than could be attained using moist filters.  
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4.2.2.2. Radiotracer Corrections 

 

 In addition to correcting the data according to the procedure detailed in Chapter 2 (section 

2.5.1.1), we convert measured 224Ra activities adsorbed onto the sediment-coated filters into 

corresponding aqueous activities using an average partition coefficient identified for Guaymas 

Basin. By dividing the 224Ra activity measured on the sediment-coated filters by 1 plus the partition 

coefficient (1+Kd), we convert each corrected sediment-sorbed 224Ra activity into a corresponding 

dissolved 224Ra activity. We then used the dissolved activity of 224Ra to estimate volumetric fluid 

flux (Equation 2.5). The effect of this correction is included in Table A2 (Appendix) and is unique 

to the sample acquisition and 224Ra extraction procedure applied at Guaymas Basin.  

 

4.2.2.3. Radium Partitioning 

 

Because a significant portion of 224Ra associated with marine sediments may enter the 

dissolved phase and therefore become subject to transport, we also measure the dissolved 224Ra 

activity contained within the core-top supernatant waters. These aqueous samples were 

concentrated onto Mn-fibers and analyzed according to techniques described in Chapter 2 Section 

3. To use these data in concert with results of sediment-coated filters, we convert from sedimentary 

224Ra activity to that expected in the dissolved phase based on a series of experiments which 

evaluated 224Ra partitioning between the solid and dissolved phases. We evaluated the distribution 

of 224Ra between the particle sorbed and dissolved phases via a series of consecutive fluid 

replacement experiments similar to those described by Colbert and Hammond (2008) and also 

described in Chapter 2 Section 4.1. Briefly, a known mass of sufficiently aged sediment was 
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combined with a defined volume of Ra-free seawater. The slurry was briefly agitated and then held 

for 10 minutes to achieve sorption equilibrium before the dissolved 224Ra activity was measured 

by removing an aliquot of water. Following removal, an equivalent volume of Ra-free seawater 

was added to maintain VT and this process was repeated several times.  

Vertical distributions of corrected, dissolved 224Ra activities were then used in the vertical 

exchange model (Equation 2.5) to determine the effective residence time of porefluid within 

discrete layers of Guaymas Basin sediments. Volumetric fluid transport was estimated by dividing 

the volume of water contained within each sediment section by the isotopically-derived residence 

time. Fluid volume is defined as total volume of each sediment segment multiplied by its porosity. 

Dividing each volumetric fluid transport rate by the sampled area then yields an effective fluid 

flux (reported here as mL cm-2 day-1).  

 

4.3. Results and Discussion 

 

This work seeks to identify the rate of fluid transport occurring across a variety of sediment 

cover types in Guaymas Basin. We first discuss the observed 224Ra patterns across all sediment 

cores, followed by residence time results and resulting fluid fluxes. We then examine these 

parameters within subgroups categorized by sediment cover characteristics (e.g., microbial mat 

presence/absence and color) and temperature regime. These groupings allow us to explore any 

relationships between flow condition and microbial mat characteristics.  
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4.3.1. Radium Distribution  

 

Kd values are required to convert 224Ra activities from the solid phase to aqueous phase. 

Radium partitioning was evaluated using a series of serial extraction experiments on separate 

sediment samples recovered during different cruises (Table 4.1). As discussed in Chapter 2, we 

have not observed a significant depth dependence of 224Ra partitioning and thus homogenized 

material to obtain a sample most representative to the depths over which we are estimating 

porefluid residence time to complete these experiments. Partitioning experiments were conducted 

following sediment:water proportions similar to those described by Colbert and Hammond (2008). 

A dry mass (Ms) of 1120 g was used for the AT37-06 experiment with 150 mL recovered for each 

analysis step (ΔV) and subsequently returned to maintain a constant volume of 647 mL (VT). For 

the AT45-02 experiment, 45 g of dry sediment was incubated with a total volume of 325 mL and 

76  mL was recovered for each 224Ra analysis step. 

 

Table 4.1. Compilation of metadata concerning material used in the 224Ra solid:aqueous phase 

partitioning (Kd) experiments.  

Cruise Site name 
Alvin dive;  

core number 

Collection 

date/time (EST) 

Sediment depth 

(cmbsf) 

Latitude and 

longitude 

AT37-

06 
Megamat II 4861; 28 12/12/2016 15:40 

1-4, 7-10, 13-

16, 19-22 

27o 00.4427’ N  

111o 24.5243’ W 

AT45-

02 

Aceto 

balsamico 
4998; 45 11/23/2018 16:46 28 - 32 

27o 00.4435’ N 

 111o 24.4394’ W 

 

Dissolved 224Ra activities during these serial extraction experiments ranged from 2.0 ± 

0.2 to 4.5 ± 0.2 dpm L-1 for AT37-06 sediments with an estimated surface-sorbed activity 

ranging from 25.8 ± 1.3 to 71.9 ± 2.6 dpm kg-1 (Figure 4.2A). Uncertainties associated with 
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dissolved 224Ra activities represent an analytical uncertainty dependent upon total counts logged 

(a function of counting time and sample activity). AT45-02 samples were counted for an average 

of 23.2 hours during which an average of 392 counts were logged in the 220 window of the 

RaDeCC and AT37-06 samples were counted for an average of 17.3 hours logging an average of 

264 counts per sample.  We estimate a partition coefficient of 18.7 ± 4.7 L kg-1
 for the AT37-06 

sediments (see the slope of the regression line between dissolved and particulate radium 

activities; Figure 4.2A; r2 = 0.888). The 224Ra partition coefficient for AT45-02 material was 

estimated to be 154.3 ± 22.6 L kg-1
 (Figure 4.2A; r2 = 0.959). The two solid:aqueous partition 

coefficients determined for 224Ra (slopes shown in Figure 4.2A) were averaged to yield a single 

Kd value of 86.5 ± 23.1 L kg-1. This value is used throughout this chapter to estimate the 

dissolved 224Ra activity associated with measured grain-sorbed activities of 224Ra.   

 While the depth of sediment recovery was different between Kd experiments (Table 4.1), 

so too was the subsurface temperature regime (Figure 4.2B). Although average temperatures were 

most similar at 10 cmbsf (15.7°C and 7.1°C), the range was much larger at the AT37-06 sampling 

site (15.6°C to 54.1°C) than for the AT45-02 site (4.8°C to 22.7°C). Because we cannot know if 

the higher grain affinity of the AT45-02 sediments is a consequence of temperature, geochemistry, 

or grain surface charge/texture, we used both to identify a best representative Kd value for Guaymas 

Basin. 

Chapter 2 presents results of an experiment which revealed no apparent depth related trends 

in radium partitioning, but Kd results suggest 224Ra distribution may vary by nearly an order of 

magnitude across sites. It is likely that grain surface area, charge potential, and/or metal content 

(via hydrothermal alteration) could explain these observations although such effects were not the 

focus of this work. Rather, we acknowledge this uncertainty in Kd as a potential limitation of the 
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approach and discuss the consequence of this limitation on errors associated with our effective 

fluid flux estimates in Chapter 2.  

 

Figure 4.2. (A) Results from serial volume extraction experiments used to determine 
224Ra distribution coefficient (Kd) for samples collected during AT37-06 (green) and 

AT45-02 (blue). Standard error propagation using ±1σ analytical uncertainties was used 

to determine uncertainties associated with each estimated term (B) Subsurface 

temperature profiles measured in-situ for each sample. 
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In an effort to determine the accuracy of our Kd estimate, we compare porefluid activities 

of dissolved 224Ra derived from sediment-covered filter analysis divided by (Kd +1) from the 

AT37-06 cruise (data presented in this chapter) to dissolved activities measured directly using Mn-

coated fibers during the AT45-02 cruise. By averaging all dissolved 224Ra activities estimated 

using sediment-coated filters and comparing them to dissolved activities determined using Mn-

coated fibers for each depth to 10 cmbsf, we observe no difference beyond error for each depth 

with the exception of samples below 9 cmbsf (Figure 4.3). Although it is unlikely that two data 

sets representing distinct and unique sampling locations would yield identical depth dependent 

trends, this comparison indicates close agreement between average profile shape and 224Ra activity 

range determined via two distinct methods. Moreover, since the vertical exchange model considers 

the relative change in 224Ra with depth, and since all data used through this chapter are treated 

identically with respect to Kd, this potential artifact should have no consequence on the resulting 

fluid transport estimates.  
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4.3.2. General Overview  

A total of 19 sediment cores were collected during 10 Alvin dives and subsequently 

processed to measure vertical distributions of surface-sorbed 224Ra (Table 4.2). Sediment cover 

and environmental characteristics (including large bacterial mats, towering chimneys, Riftia 

gardens, and bare sediment) varied substantially across the sampling regions. A full list of 

measured values for all discussed cores is presented in the Appendix (Table A.5).  

Figure 4.3. Depth-averaged aqueous porefluid 224Ra activities (circles) 

estimated using sediment-coated filters (open symbols; AT37-06 cruise, this 

study; n=19) and Mn-fibers (filled symbols; AT45-02 cruise; n=16). Shown 

are mean dissolved 224Ra activity in overlying water (squares) determined 

using Mn-fibers for AT37-06 cores (open) and AT45-06 cores (filled). Error 

bars represent ±1σ standard deviation of activities determined using standard 

error propagation of counting statistics. 
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Table 4.2. Site metadata for sediment cores collected during the AT37-06 cruise from which fluid 

flow rate and direction are evaluated.  

Site  
Alvin dive; 

core number  
   Latitude, longitude  Sediment cover 

Megamat II / Twin Peaks 4861; 21  27° 0.4440 'N, 111° 24.5231 'W      Bare sediment 

Megamat II / Twin Peaks 4861; 12 27° 0.4444 'N, 111° 24.5243 'W      Bare sediment 

Smoker "x"/Marker 22 4862; 29 27° 0.4424 'N, 111° 24.5921 'W      Bare sediment 

Smoker "x"/Marker 22 4862;27 27° 0.4635 'N, 111° 24.5565 'W      Orange mat 

Smoker "x"/Marker 22 4862; 6 27° 0.4543 'N,111° 24.5698 'W      White mat 

Ring Vent/ Mound 1 4864; 16 27° 30.3733 'N, 111° 40.8938 'W      Bare sediment 

Ring Vent/9a 4866; 12 27° 28.1766 'N, 111° 28.4014 'W      Bare sediment 

Octopus Mound 4867; 31 27° 28.2339 'N, 111° 28.3875 'W      Bare sediment 

Ultra Mound 4868; 9 27° 0.4377 'N, 111° 24.5217 'W      White mat 

Ultra Mound 4868; 18 27° 0.4377 'N, 111° 24.5217 'W      Orange mat 

Ultra Mound 4869; 19 27° 0.4504 'N, 111° 24.5399 'W      Orange mat 

Ultra Mound 4869; 1 27° 0.4504 'N, 111° 24.5399 'W      White mat 

Aceto balsamico 4870; 22 27° 0.4699 'N, 111° 24.4361 'W      Yellow crust 

Survey Site 1 4871; 25 27° 2.6641 'N, 111° 23.0814 'W      Orange mat 

Survey Site 1 4871; 11 27° 2.6642 'N, 111° 23.0817 'W      Orange mat 

Survey Site 1 4871; 9 27° 2.6633 'N, 111° 23.0817 'W      Bare sediment 

Cathedral Hill 4872; 15 27° 0.6836 'N, 111° 24.2659 'W      Orange mat 

Cathedral Hill 4872; 3 27° 0.6836 'N, 111° 24.2659 'W      White mat 

Cathedral Hill 4872; 2 27° 0.6836 'N, 111° 24.2659 'W      Bare sediment 
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We first compare our sediment-sorbed 224Ra activities with those previously reported for 

the region. The average surface-sorbed 224Ra activity for all 19 sediment cores was 3.0 ± 0.2 dpm 

g-1 with an average equilibrium activity of 4.2 ± 0.2 dpm g-1. For comparison, we determine the 

average 228Th activity (dpm g-1) on Guaymas Basin particles using data reported by Smoak et al. 

(1999) who examined sinking particles within the Gulf of California intercepted by a series of 

sediment trap deployments. The average 228Th activity of sinking particles should be higher than 

that what which we measure in shallow sediments for two reasons. First, our study only measures 

the exchangeable fraction of 224Ra available for dissolution which is substantially less than the 

total grain activity (total surface-sorbed + imbedded in the mineral matrix). Second, we expect that 

228Th will initially be in excess of 228Ra supported by the particle surfaces as 228Th is scavenged 

by sinking particles (Clegg and Whitfield, 1991). Therefore, equilibrium surface-sorbed 224Ra 

activities are expected to be less than even the fraction of 228Th sorbed to grain surfaces. Because 

an average activity of 12.5 dpm g-1 can be estimated from the work by Smoak et al. (1999), our 

data are reasonable relative to the literature. 

In general, dissolved 224Ra activities associated with interstitial porefluid exhibited a 

minimum activity of 1.6 ± 0.4 dpm L-1 and a maximum of 403.8 ± 108.1 dpm L-1 and were 

generally found to decrease with depth below the sediment-water interface (Figure 4.4A). Despite 

considerable differences in dissolved 224Ra activities associated with the upper sediment sections, 

224Ra activities were much more similar at depth. This behavior could be related to excess 228Th 

scavenged by sinking particles which initially supports a higher dissolved 224Ra activity in the 

shallow sediment column. With a sedimentation rate of 1 cm per decade (Curray et al., 1979), 

however, if such deposition alone explained the high surficial activities, we would expect no 

differences in activity at or below 1 cmbsf as 228Ra would also be growing toward equilibrium 
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with surface-sorbed 232Th and so would not be able to support such high 228Th activities. It is not 

surprising that differences in dissolved 224Ra activities remain at depth across sites as changes in 

exchangeable 224Ra production may also explain some of the inter-site variability (Figure 4.4B).  

Subsurface residence time was determined using dissolved 224Ra activities via the vertical 

exchange model as described in Chapter 2. Transport is evaluated in both the +z and –z directions 

using time dependent isotopic change. For flow estimates out of the sediments (+z), subsurface 

fluid residence time in each 2 cm section ranged from 0.06 to ≥ 21 days, whereas interstitial fluid 

residence time assuming transport into the sediments (-z) covered identical time scales (Figure 

4.4C). However, mean residence time was significantly less for all samples under a dominant 

upward (+z) transport direction as compared to -z (4.4 and 16.1 days, respectively). Although a 

wide range in interstitial fluid residence times was observed for both transport directions, the 

majority of possible residence time estimates require active transport from depth and appear 

consistent with depth and across site with over 70% of subsurface residence times being < 4 days 

and only 3%  of observations reaching ≥ 21 days for all 19 cores (Figure 4.4C).  In comparison, 

~18% of residence times under a –z transport direction were < 4 days and ~65% were ≥ 21 days. 

For all sampled sediment cores, a transport direction out of the sediments, toward the overlying 

ocean (+z direction) more than twice as commonly explained vertical dissolved 224Ra gradients as 

compared to transport into the sediments (–z direction). Because transport direction is not 

necessarily related to thermal gradient, but instead appears as a general characteristic of the data 

set, this could be related to largescale hydrothermalism affecting the basin scale (kilometers) as 

compared to highly localized flow features. 
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Figure 4.4. Depth profiles of aqueous 224Ra 

activities in porefluid (A) observed at sea and 

(B) at equilibrium for all sediment cores. (C) 

Depth-dependent interstitial porefluid 

residence time for all sediment cores and 

corresponding (D) effective fluid fluxes. (C, 

D) Estimates separated by assumed –z (open 

symbols; n=45) and +z (filled symbols; 

n=100) transport direction. Median values are 

indicated by a horizontal line and 25th and 

75th percentiles are indicated by box edges. 

The remaining 50% of the data are indicated 

by error bars and circles denote outliers. Note 

that median residence times for most –z 

transport directions are ≥ 21 days. (E) In-situ 

subsurface temperatures of all sampled sites. 
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Similar ranges in fluid flux were observed irrespective of transport direction (±0.7 to ±37 

mL cm-2 day-1) (Figure 4.4D). Mean fluid fluxes were comparable for all sites across subsurface 

depth and effective transport direction (+z: 2.9 mL cm-2 day-1; -z: -1.7 mL cm-2 day-1), although 

mean fluid flux out of the sediments (+z) was nearly a factor of 2 larger. Because >90% of 

subsurface temperature profiles showed differences in temperature with depth, this result could 

suggest thermal gradients are driving fluid discharge from sediments in the areas sampled. Positive 

fluid flux estimates suggest a greater fluid flux magnitude is required to explain observed 224Ra 

distributions as compared to a negative flux (+z: 73% greater than 1 mL cm-2 day-1; -z: 13% greater 

than 1 mL cm-2 day-1).  Minimum discernable flow rates correspond to a porefluid residence time 

of 21 days or longer. Here, we cannot resolve isotopic disequilibria at or beyond 21 days of 

continued production so our detection limits are ~ 1 L m-2 day-1. Maximum fluid flux estimates are 

related mostly to the sorption equilibrium requiring ~10 min of porefluid contact with sediments. 

In theory, our maximum detectable fluid flux is thus ~350 L m-2 day-1.  

 

4.3.3. Temperature and Fluid Transport 

 

Subsurface temperature ranges between sites and with depth showed considerable 

variability (Figure 4.4E). Because we observed near ambient ocean temperature (~3 °C) in the 

overlying seawater, a few decimeters above the sediment-water interface an elevated subsurface 

temperature is indicative of a thermal gradient across the sediment-water interface. Minimum 

recorded subsurface temperature was 2.2°C measured 10 cmbsf and our maximum recorded was 

108.1°C at 50 cmbsf. Vertical temperature gradients also varied across sites from non-existent to 

linear to non-linear. Although some subsurface profiles retained ambient temperatures throughout, 
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other cores were collected where temperatures at depth approached the known limits of life 

(Clarke, 2014).  

To test for a potential relationship between thermal gradient across the sediment-water 

interface and effective fluid flux, sediment cores were grouped based on the maximum temperature 

recorded during sampling (<10°C, 10<40°C, 40<80°C, and >80°C). Often, maximum temperature 

was observed at the greatest subsurface depth where both observed and equilibrium 224Ra activities 

are similar across group type suggesting the largest thermal gradient was associated with these 

sites (Figures 4.5A and 4.5B). Mean 224Ra activities in uppermost sediment layers were distinct 

across temperature groups whereas equilibrium activities were much more similar (Figures 4.5A 

and 4.5B). These observations suggest in-situ temperature does not greatly affect 224Ra production 

although correlations have been observed elsewhere (e.g., Rama and Moore, 1996). However, 

lower maximum temperatures were associated with lower mean 224Ra activities while higher 

temperatures were associated with higher mean dissolved 224Ra activities for all subsurface 

samples, except for temperatures > 80°C which were often associated with lower average initial 

224Ra activities. Because the equilibrated activities associated with this temperature group do not 

follow a similar pattern, it would seem as though maximum subsurface temperature is related to 

the 224Ra inventory when the temperature is between 10°C and 80°C. 
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 Interstitial porefluid residence time for each sediment section determined using the vertical 

exchange model for +z and –z transport directions are similarly grouped by temperature (Figure 

4.5C). In general, -z effective transport directions yield longer effective residence time for all 

temperature groups. For all depths, lower temperatures were associated with longer and more 

variable porefluid residence times whereas warmer temperatures were associated with shorter and 

Figure 4.5. (A) Average aqueous porefluid 224Ra activity depth profile measured at sea and (B) at 

equilibrium grouped by maximum subsurface temperature category. Error bars depict the average 

analytical uncertainty. (C)  Interstitial porefluid residence time and (D) effective fluid flux for -z (open 

symbols) and +z (filled symbols) transport directions grouped by maximum observed temperature. Error 

bars represent ±1σ standard deviation. 
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less variable residence times (Figure 4.5C). Although we find more instances where the effective 

transport of 224Ra is occurring in +z for all thermal groups, the proportion of solutions possible 

assuming a –z to those assuming a +z direction decreases with higher temperature. This finding 

suggests that the likelihood of fluid transport into the sediments at temperatures ≥ 40°C is 

significantly less than for regions of lower temperatures. Because thermal driven convection is the 

likely mechanism controlling fluid transport through sediments in regions of elevated subsurface 

temperature, this result seems intuitive. However, in areas of no/low thermal anomaly (<4°C), 

224Ra distributions may be explained almost equally by +z and –z effective transport directions. 

Because the natural abundance of 224Ra is relatively low in marine waters compared to porefluid, 

224Ra would naturally diffuse into the overlying ocean from the subsurface regardless of transport 

direction. Although it is not expected that this process alone would result in sustained 

disequilibrium, we do not distinguish between diffusive and advective transport modes in the 

model output and so a vertical gradient with lower dissolved 224Ra activities in the shallow 

subsurface could be explained by the competing effects of diffusion (+z) and advection (-z). 

In general, effective fluid flux was found to increase with increased maximum subsurface 

temperature, regardless of transport direction (Figure 4.5D). However, a +z effective fluid flux 

direction was nearly 6 times more likely to explain observed trends in dissolved 224Ra activities 

for cores where subsurface temperature was > 80°C as compared to a –z direction for subsurface 

depths between 3 and 12 cmbsf. This further suggests that vertical thermal gradients over ~1 m 

across the sediment-water interface may either be a predominant factor controlling fluid flux or 

presenting as a consequence of fluid flux magnitude. As we did not seek to discern specific 

mechanisms, it is unclear at this time as to whether observed thermal gradients are the driver or 

the consequence of fluid flow. Although greater maximum subsurface temperatures appear related 
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to both more common instances of fluid flux out of the sediments and larger flux magnitudes, such 

high temperatures often limit species richness (Clarke, 2014). Since submarine seeps represent an 

oasis type of environment in the deep-sea, the combined effects of fluid flux magnitude and 

temperature may exert control on microbial success. 

 

4.3.4. Fluid Flux and Microbial Colonies 

 

 We further categorize cores according to sediment cover characteristics (no mat, white mat, 

and orange mat) to evaluate any potential relationship between fluid flux and microbial mat 

presence (see Table 4.2). For this analysis, we do not include the core recovered from Aceto 

balsamico as it was covered in a mineral deposit and was neither bare nor covered in filaments. 

Sediment cores with no visible mat presence were further divided by temperature into two groups 

(<10°C maximum temperature and ≥10°C maximum temperature). Coincidently, this grouping 

also distinguished cores recovered just outside a mat from those collected ≥ 1 m from microbial 

mat. This grouping resulted in four environmental conditions represented by a similar number of 

cores (cold and bare: 4 cores; warm and bare: 4 cores; white mat: 4 cores; orange mat: 6 cores). 

Here, we considered effective transport direction, porefluid residence time, and fluid flux over 

surficial sediment depths ranging from 0 to up to 16 cmbsf to evaluate an average condition for 

entire cores as compared to specific depths below SWI. Error is presented as the absolute value of 

the mean uncertainty of all parameter estimates. 

Effective fluid flux magnitude and microbial mat presence appear to be related with greater 

effective fluid fluxes more commonly associated with mat covered sediments than bare sediments 
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(Figure 4.6A). Furthermore, fluid flux through orange mat was found to be higher than that for 

white mat, though much more variable with depth. Mat presence and color appear unrelated with 

subsurface temperature at 10 cmbsf (Figure 4.6B) although orange mats were associated with the 

highest temperatures measured at this depth. However, not all orange mats were associated with 

high surficial temperature (Figure 4.6B), suggesting that high temperatures may not be a 

requirement for orange Beggiotoa but rather that these bacteria exploit an opportunistic niche. Our 

data appear to support the hypothesis suggested by McKay et al. (2012) that orange Beggiatoa 

may be more thermotolerant than white filaments by comparing temperature measured at 10 and 

50 cmbsf to mat presence/absence. We find a spatial association between orange and white 

filaments and subsurface temperature at 50 cmbsf (Figure 4.6C) with all mat covered sediments 

recovered from regions where temperature were ≥ 50°C at depth. In fact, with the exception of one 

bare sediment core, Figure 4.6C indicates a clear threshold where no microbial mats are found 

with temperatures at 50 cmbsf below 50°C and no bare sediments are found above that 

temperature. The temperature profile associated with the one bare sediment exception to this 

distinction was collected within a white mat ~1 m away, so this temperature may not be 

representative of the sediments collected by the core. However, we only considered material to be 

‘mat covered’ if a visible mat occupied the surface of recovered sediments rather than considering 

proximity to nearest microbial mat. Data presented in Figure 4.6 represent several cores from 

distinct regions and conspicuous bacterial mat suggesting a subsurface temperature of ≥ 50°C at 

depth is a common feature below Beggiotoa mats in Guaymas Basin.  
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Figure 4.6. (A) Mean effective fluid flux grouped by sediment cover. Mean effective net fluid 

flux versus in-situ subsurface temperature at (B) 10 cmbsf and (C) 50 cmbsf. Color indicates 

sediment cover variable as established in A.  
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We suspect this lack of thermal relationship is a consequence of temporally variable flow 

and even flow direction reversals through sediments covered by microbial mat. Such reversals 

were speculated by Gundersen et al. (1992) exclusively for sediments colonized by orange 

Beggiatoa where permeability was increased by precipitation of materials at the SWI and overlying 

water temperatures were recorded at ambient temperature over the mat whereas subsurface 

temperatures were elevated. This hypothesis is further supported by McKay et al. (2016) with 

significant temperature fluctuations of ~ 20°C at 10 cmbsf (ranging from 40 to 60°C) recorded 

over the scale of hours beneath orange Beggiatoa. Such temperature fluctuations were not 

observed beneath white mat (situated around the periphery of the orange mat) and outside of the 

mat (‘bare’ sediment). Because McKay et al. (2016) observed relatively constant subsurface 

temperature 20cmbsf and below, the change in temperature appears to be a consequence of the 

periodic inflowing of seawater and not supported by a change in the subsurface thermal end-

member. From this, we conclude that forces other than thermally-driven pressure gradients are 

more significant in controlling rates of porefluid flux through sediments colonized with orange 

filaments.  
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Our fluid flux estimates represent a single instance in time in an environment where 

seepage is expected to be variable on ~ decadal scales, although research in Guaymas Basin is 

fairly nascent (Teske et al., 2016). While we suspect the geochemical constituents evaluated here 

would respond rapidly to a change in subsurface transport, bacterial abundance may either lag 

changes in flow condition or perhaps even require variable flow as has been suggested 

specifically for orange Beggiatoa in Guaymas Basin (Gundersen et al., 1992). Although these 

Figure 4.7. Effective fluid flux versus temperature range (°C at 50 cmbsf – °C at10 cmbsf) for (A) 

all cores excluding orange mat sediment cover, (B) white mat, (C) inconspicuous sediment cover, 

and (D) orange mat. Linear correlation function and square of the correlation coefficient are plotted 

for each relationship. Where possible, symbols match those in Figure 4.6 and indicate data are 

from the same sediment core. 
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data only represent an instance in time, it is possible that we sampled over a variety of flow 

conditions and can consider our results as indicators of a temporally variable process. However, 

to truly identify a relationship between orange Beggiatoa and temporally variable fluid flux as 

compared to white Beggiatoa, time-series flow measurements would be a necessary 

observational approach. For now, the strong correlation between white mat and bare sediment 

with subsurface temperature range and lack thereof for orange mat remains intriguing as the 

sample size is relatively small and therefore limits the conclusions we are able to draw about 

general characteristics across mat color.  

 

4.3.5. Potential for Fluid Recharge 

 

Our data largely reflect either stagnant (no flow) or outward porefluid flux conditions, 

though such observations are likely a product of sampling bias having used the submersible to 

target interesting seafloor features for coring. As is generally the case with hydrothermal 

circulation, seawater inflow conditions must occur to supply the continued hydrothermal discharge 

across the region. Here, we consider a few hypothetical scenarios of Guaymas Basin recharge 

required to balance the range of discharge rates we report here. The following scenarios are 

intended to discuss the conditions that would be required if the discharged fluid is not replenished 

to ultimately argue that some amount of fluid recharge must be occurring to sustain the observed 

discharge rates in time.  

As discussed throughout this work, it is estimated that anywhere from 1 to 10 mL cm-2 day-

1 of porefluid are discharged from the subsurface. Given that the depth of the axial magma chamber 

is located between 0.7 to 1 km (Lonsdale and Becker, 1985) below the sediment-water interface 
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and considering a series of oversimplified assumptions, we estimate the length of time required to 

expel the entire volume of water within the 1 km thick sediment column and estimate the degree 

of subsidence that would result if that void volume is not replenished by infiltrating seawater. We 

consider the following assumptions: (1) no resupply of water either laterally or from depth, (2) that 

porosity is constant with depth (at 0.4), and (3) that fluid flux is constant in time and space 

(considering a 1 m2 area of seafloor). Considering a fluid flux range of 3.65 to 36.5 m3 m-2 yr-1 

(based on converting flux estimates in this study), we estimate that the entire volume of interstitial 

porefluid would be expelled in 11 to 110 years. This estimate is in line with observations by 

Campbell et al. (1988) suggesting several localized hydrothermal sites have been active for at least 

the past 10 years. However, such a phenomenon would result in a sediment compaction rate (and 

subsequent subsidence) of 3 to 36 m yr-1 assuming the effects of thermal expansion are ignored. 

Although several slump and crater features have been associated with hydrothermal chimneys 

(Ondréas et al., 2018), the occurrence of such features has not been documented in Guaymas Basin. 

Instead, relative seafloor position would have to be balanced by sedimentation under active 

discharge conditions. Although substantial, the rate of sedimentation to the region (1 – 1.2x10-3 m 

yr-1; Curray et al., 1979) is far too low to maintain position over 11 to 110 years. Therefore, it 

seems reasonable that some amount of fluid recharge is necessary to sustain our observations of 

outflow. Furthermore, because entire hydrothermal sites are hypothesized to persist for 104 years 

(Campbell et al., 1988), a mechanism to sustain such extensive lifetimes must include fluid 

recharge as the rates identified in this work represent ‘slow’ flow features and do not even consider 

chimney type ‘fast’ flow features.  
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Figure 4.8 (A) Seafloor topography near Aceto balsamico (star). Spatial data obtained via 

sonar surveys during cruise AT37-06 using ROV Sentry. (B) In-situ subsurface temperature 

measured through Aceto balsamico. (C) Framegrabber image of the mineral crust at Aceto 

balsamico. Scale bar corresponds to 10 cm. Location details available in Table 4.3. 
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The concept of fluid recharge is certainly not unique to this work and has been previously 

suggested for Guaymas Basin (e.g., Fisher and Becker, 1991) and for other hydrothermal 

environments (Mottl and Wheat, 1994; Walker et al., 2008; Lauer et al., 2018). It has been 

proposed that recharge can occur locally through high permeability outcrops (Lauer et al., 2018) 

and through subsurface faults associated with low profile abyssal hills (Fisher et al., 2001).  While 

we did estimate a modest net fluid flux into the sediments of -0.2 ± 0.75 mL cm-2 day-1 for a core 

with bare sediment cover, we also sampled a mat at Aceto balsamico targeted for having peculiar 

subsurface geochemical profiles including sulfur data that suggest either a sulfur-depleted 

subsurface fluid source or incomplete sulfur cycling (Teske et al., 2016). This region is 

characterized by an unusual yellow crust/mat presumed to have obtained color from extensive 

sulfur deposits staining the sediments (Figure 4.8). This sediment core deserves separate 

consideration from those described above as the effective fluid flux estimate indicates a 

hydrothermal recharge rate of -3.4 ± 1.7 mL cm-2 day-1 (Table 4.3).  

 

Table 4.3. Core metadata for the Aceto balsamico core. Collection date/time is in EST, 224Ra 

activities are given in dpm L-1 and residence time is presented in days.  

Alvin dive; 

core number 

Collection 

date/time  

Latitude,           

longitude 

Observed  
224Ra activity  

Equilibrium  
224Ra activity 

 Residence  

time  

4870; 12/22/2016 27° 0.4699' N,               19.8 28.1 9.97 

22 11:35 111° 24.4361' W ± 5.6 ± 7.9 ± 2.19 

 

Although we have no independent evidence to corroborate these estimates, our observed 

224Ra profile at this site may be explained by either an additional sink of 224Ra or a dilution of the 

subsurface 224Ra pool via recharge of seawater. The yellow crust could be indicative of radium 

removal via solid precipitation and incorporation into barium sulfate as 224Ra is co-precipitated 

with barium (Aharon et al., 2001). Alternatively, the yellow crust may remain after removal by 
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seawater recharge into the sediments. Although we do not have sufficient ancillary data to support 

either conclusion, the unusual yellow crust does appear along the base of a modest abyssal hill 

(Figure 4.8) where shimmering water has been observed emanating from the top of the seafloor 

protrusion ~5 m from our core collection site. The presence of shimmering water is often 

suggestive of active hydrothermal discharge occurring at high temperatures and could support the 

hypothesis of recharge occurring at the base of abyssal hills near areas of active discharge through 

a thermal convection like circulation pattern (a phenomenon described by Fisher et al., 2001). To 

date, however, this observation remains unverified and would require a more intensive sampling 

effort to characterize the flow condition.  

 

4.4. Summary and Conclusions 

 

We evaluated 224Ra profiles recovered from 19 sediment cores to identify spatial 

relationships between subsurface fluid flux and microbial mat presence. We targeted orange and 

white bacteria mats dominated by Beggiatoa to determine if fluid flux magnitude was spatially 

related to mat color. To do so, we measured surface-sorbed 224Ra activities of sediment sections 

and determined the equilibrium activities for these same sediments. Measurements were converted 

into dissolved activities such that conditions of disequilibrium from the sediments could be 

assessed.  

A vertical exchange model where radioactive production and decay represent the only 

sources and sinks of 224Ra to the porefluid inventory was used to determine an effective flux 

through mat covered sediments. Fluid flux estimates were then determined as the rate of fluid 

transport that would be required to replace the porefluid volume over the estimated residence time. 
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Net transport is taken as the average flux from 0 to 12 cmbsf. Effective fluid flux estimates ranged 

from 0.02 ± 1.16 to 10.26 ± 4.66 mL cm-2 day-1 for mat covered sediments as compared to seepage 

rates estimated for non-mat covered sediments (0.07 ± 2.90 to 2.04 ± 1.66 mL cm-2 day-1). In many 

instances, the error associated with a given flux estimate is large suggesting the change in 224Ra as 

a consequence of environmental residence time is close to the analytical error associated with each 

isotope activity. This similarity is primarily due to the uncertainty associated with our 224Ra 

partition coefficient and the associated consequence on dissolved 224Ra activities. Unfortunately, 

results were limited by complications related to at-sea sampling. This approach will be modified 

in the future and error can be reduced by ~30% if dissolved 224Ra is measured directly via pre-

concentration onto Mn-fibers or perhaps by evaluating Kd using the method of standard addition 

(Rama and Moore, 1996). 

Highest fluid flux estimates were spatially associated with orange mat, however this result 

was inconsistent as some of the lowest fluid flux estimates were determined for orange mat covered 

sediment cores. The association between orange mat and high subsurface temperature has been 

previously observed (McKay et al., 2012) and is supported by data presented here. It is suspected 

that the stronger compression of isotherms and metabolic zones associated with greater subsurface 

temperatures can explain the distribution of orange/white mat in this region and we demonstrate 

that the mechanism to support vertical compression could be fluid fluxes ≥ 4 mL cm-2 day-1 for 

orange mat (as compared to ≤ 2 mL cm-2 day-1 for white mat) although exceptions to this 

simplification were observed. With a few exceptions, orange and white mat were only observed in 

regions where the subsurface temperature at 50 cmbsf exceeded 40°C. To our knowledge there is 

no evidence to support a particular temperature condition as a requirement for the Beggiatoa of 
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Guaymas Basin, although irrespective of mat color and sampling site, we only observed significant 

mat colonies where subsurface temperature at 50 cmbsf was less than 40°C.  

In general, maximum subsurface temperature and net effective fluid flux were related 

where greater subsurface temperature maxima were associated with higher fluid fluxes regardless 

of sediment cover. Subsurface temperature gradients were found to have a strong linear 

relationship to fluid fluxes associated with white mat and appear unrelated to fluid flux associated 

with orange mat. This lack of association may be related to a variable flux suspected for localized 

hydrothermal seeps. For example, distributions of dissolved compounds would respond quickly to 

an instantaneous change in flow whereas mat and subsurface temperature may require additional 

time to adjust. This idea is supported by additional evidence specifically for orange Beggiatoa and 

high subsurface temperatures (> 80°C) (Gundersen et al., 1992; McKay et al., 2016). Estimates 

presented here represent single instances in time and are not adequate to determine temporal 

variability  

 To support the estimated range in subsurface fluid flux presented here, it is likely that 

seawater recharge is occurring as sedimentation alone cannot maintain relative seafloor position. 

Such a process would have to be supported by an underpressured basement relative to local 

hydrostatic conditions (Fisher et al., 2001). Although we did not measure, nor can we verify the 

presence of an underpressured basement, we did find fluid recharge conditions for two sediment 

cores, one with a significant fluid flux of -3.4 ± 1.7 mL cm-2 day-1. While intriguing, we cannot 

disregard the potential that these results could be attributed to the presence of an additional 224Ra 

sink. This site has been identified as unique relative to other mat-covered Guaymas Basin 

sediments observed as of 2017 (Teske et al., 2016) and happens to be situated at the base of an 

abyssal hill where fluid recharge is more likely (Fisher et al., 2001). It is unclear from this work 
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which explanation is appropriate until additional chemical profiling during a later cruise (AT 42-

05) can be evaluated.  
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CHAPTER 5 

GULF OF MEXICO AND GUAYMAS BASIN FLUID FLUXES 

 

5.1. Gulf of Mexico and Guaymas Basin Revisited 

The deep-sea is used here to describe water depths greater than 200 m, and is considered 

to be our planet’s largest potential living space (Orcutt et al., 2011). In this region, life is either 

linked to the surface ocean by utilizing organic carbon generated by photosynthesis or decoupled 

from the surface, thriving on deep ocean chemosynthesis (Jannasch and Wirsen, 1979). 

Chemosynthetic communities utilize methane and sulfate to generate ‘new’ organic carbon. In the 

deep-sea, the reduced compounds are of lithogenic origin and only made available to these 

communities by upward fluid migration through sediments (Ramirez-Llodra et al., 2010). Such 

fluid transport may arrive at the seafloor with subsequent discharge occurring vigorously (venting) 

or diffusely (seepage) with greater macrofaunal density and diversity associated with seepage 

rather than venting (Portail et al., 2015). 

 Submarine seepage, regardless of driving force, has been found to support communities 

with similar classifications at genera and family levels, including bacterial mats and symbiont-

hosting invertebrates like siboglinid tubeworms, vesicomycid clams, and mytilid mussels 

(Tunnicliffe et al., 1998; Duperron et al., 2013). Enrichments of inorganic carbon and sulfide 

support chemosynthetic communities associated with fluid discharge similarly between ambient 

ocean (cold seep) and elevated (hydrothermal seep) temperature waters, although the fluid flux 
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supplying those chemicals may differ in space and time (Levin et al., 2016). It is generally 

understood that community distribution can be dependent upon fluid flux (Gundersen et al., 1992; 

Sibuet and Olu 1998; Levin, 2005) with greater methane and sulfide concentrations often 

characteristic of seep compared to non-seep sediments. However, gradients distinguishing seep-

affected areas (i.e., the seepage footprint) are poorly constrained and thus warrant further 

exploration (Suess, 2014; Levin et al., 2016).  

Despite the suspected dependency of these communities on materials supplied via seeping 

fluid, seepage rates remain poorly constrained (Armstrong et al., 2012; Suess, 2014; Levin et al., 

2016; Teske et al., 2016). To address the need for fluid flux studies across seepage habitat types, 

we have presented a conceptual model designed to study deep-sea fluid transport through surficial 

sediments recovered from regions characteristic of cold and hydrothermal seeps. This vertical 

exchange model was subsequently tested using three sediment cores recovered from cold seep and 

control sites within deep-sea regions of Gulf of Mexico. Effective fluid flux estimates were then 

evaluated and spatial associations between microbial mat, subsurface temperature were identified 

for Guaymas Basin, a site impacted by hydrothermal activity.  

 Our vertical exchange model, modified from Krest and Harvey (2003), evaluates fluid flux 

through deep-sea sediments by utilizing a soluble radioisotope, 224Ra, which is distributed 

throughout interstitial porefluid of vertically adjoining sediment layers as fluid migration occurs. 

The activity of aqueous 224Ra in any layer relative to that in a neighboring layer may be used to 

determine porefluid residence time if the equilibrium activity of porefluid 224Ra in contact with 

those sediments is known. Accuracy of the model is qualitatively evaluated using sediments 

recovered from both the Gulf of Mexico and the Gulf of California where cold and hydrothermal 
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seepage, respectively, has been observed regionally but fluid exchange rates through sediments 

have traditionally been inferred (e.g., Joye et al., 2004; Teske et al., 2016, McKay et al., 2012). 

 Our vertical exchange model is first tested in areas of suspected seepage within the Gulf of 

Mexico. Seepage indicators included a water column feature detected via multibeam sonar imaging 

and a bacterial mat observed using the HOV Alvin. We identify a range in porefluid residence 

times of 0.6 to 4 days for sites for suspected seepage sites. Such short residence times are explained 

by 1 dimensional advective transport velocities of 5.9 and 1.4 cm day-1 and 1-dimensional vertical 

volumetric fluid fluxes of 4.6 and 1.0 mL cm-2 day-1, respectively. We demonstrate that results 

from the vertical exchange model are equal to those determined via a 1-D advection/diffusion 

equation (e.g., Krest and Harvey, 2003). In comparison, average porefluid residence time from 0 

to 16 cmbsf per 4 cm sediment layer in our control core was 6.6 days, with an average advective 

vertical velocity of -1.7 cm day-1 and a fluid flux estimate of -1.3 mL cm-2 day-1. From this effort, 

we have drawn the following conclusions: (1) model results of effective fluid flux out of the 

sediments are reasonable and supported by ancillary observational data; and (2) the effective fluid 

flux magnitudes determined using the vertical exchange model are within the range reported in the 

literature and are reasonable with what is to be expected, especially between control and seepage 

sites.  

 We supplement our qualitative model evaluation by applying the vertical exchange model 

to 224Ra profiles recovered from Guaymas Basin, a hydrothermal discharge site within the Gulf of 

California. Although logistical constraints required modification of the approach utilized in the 

Gulf of Mexico, fluid flux estimates using the vertical exchange model were successfully derived. 

The total exchangeable pool of 224Ra was evaluated and subsequently converted into aqueous 

fractions after a regional assessment of radium partitioning was complete and Kd was determined. 
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One advantage of such approach was the removal of any potential uncertainty in 224Ra partitioning 

with a changing porosity. Spatial relationships between fluid flux and microbial mat cover were 

found for Guaymas Basin sediments with higher average fluid fluxes associated with mat-covered 

sediments than fluid fluxes through inconspicuous sediment cover. This result, again, provides 

qualitative verification for the model as these communities are known to be associated with greater 

supply rates of reduced compounds relative to surrounding sediment (Gundersen et al., 1992).  We 

identify both a higher maximum fluid flux through orange microbial mat as well as a larger 

variability across different orange mats compared to white mat.  Although subsurface temperature 

range was greater associated with orange mat, a significant direct relationship between white mat 

fluid flux and temperature was observed (Pearson’s correlation; r= 0.98). Temporally variable flow 

under orange Beggiatoa mats as has previously been suggested for especially high subsurface 

temperatures (>40°C) (McKay et al., 2016) may have led to the lack of such a relationship between 

orange mat fluid flux and temperature. Results from this work suggest: (1) fluid flux estimates for 

sediment cores recovered from a hydrothermal setting are consistent with expectations that higher 

fluid fluxes are associated with bacterial mat compared to inconspicuous sediment cover; (2) 

spatial associations between subsurface temperature range and fluid flux through white mat 

suggest fluid flux may be moderated most greatly by the subsurface thermal gradients. (3) Fluid 

flux through orange mat appears unrelated to subsurface thermal gradients although orange 

filaments and subsurface temperature appear related. This may be explained by a mechanism other 

than thermal convection predominantly controlling fluid flux through some of the sediment cores 

recovered from ocean mat areas.  

 We attempt to draw comparisons between deep-sea seepage habitats as a summary of this 

work. To do so, we have synthesized porefluid isotope data from three cruises in the Gulf of 
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Mexico to determine the effective fluid flux across 14 sites. Sample collection efforts supporting 

this comparison did not control for a variety of factors including number of sediment cores and, 

perhaps more importantly, the number of cores where seepage is expected relative to the number 

of non-seep cores. Such a comparison is not intended to broadly characterize conditions across an 

entire seep habitat as sample collection from Guaymas Basin was not random and instead focused 

on microbial mat covered sediments. In contrast, most sediment cores recovered from the Gulf of 

Mexico were collected using a shipboard deployment and recovery system and represent a less 

precise core sampling method. Nonetheless, there is value in discussion on effective fluid flux 

estimated for deep-sea sediments recovered from the Gulf of Mexico and Guaymas Basin. As a 

precursor to this effort, we first introduce all fluid flux observations for the Gulf of Mexico. 

 

5.2. Gulf of Mexico Fluid Flux Observations 

 

In total, 35 sediment cores were collected from the Gulf of Mexico during three cruises 

from 2014 through 2016 (Figure 5.1; Table A.1), including the 3 cores previously described in 

Chapter 3. Recovered cores were no more than 50 cm in length and represent areas ranging from 

Deepwater Horizon oil spill impact sites, to natural oil and gas seeps, to deep-water control sites. 

Fluid flux was determined by applying our vertical exchange model to aqueous porefluid 224Ra 

distributions (0 to 20 cmbsf) in interstitial water recovered via centrifugation and concentrated 

onto Mn-fiber (Chapter 2 and Chapter 3; Table A.2).  

We first consider local-scale variability in effective fluid flux from one seepage site where 

sampling was most frequent across GOM cruises. Green Canyon lease block 600 (GC600) is a 

well-studied natural hydrocarbon seep site (e.g., Krajewski et al., 2018; Rogener et al., 2018). 
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Sediment cores recovered from this site were consistently oil-rich with dark oil patches found 

before and after centrifugation for most sampled depths. For this site, effective fluid flux ranged 

from -24.0 ± 7.5 to 30.4 ± 7.9 mL cm-2 day-1 (Figure 5.2). Although fluid flux through cold seep 

sediment may exhibit tidal periodicity (e.g., Torres et al., 2002; Solomon et al., 2008; Johansen et 

al., 2017), fluid flux and tidal stage for all cores recovered from GC600 (Figure 5.2) were not 

significantly related (Pierson’s correlation; r=-0.179, n=8; p>0.05). Instead, the variability in fluid 

flux may be indicative of heterogeneity across the region with differences in effective fluid flux 

that are consistent with highly localized seafloor seepage communities. Although the magnitude 

of effective fluid flux was not found to be related to tidal stage alone, it has been shown that deep-

sea seepage can be irregular so our estimated rates may not apply longer time scales (e.g., years) 

as is a common for seepage studies ( Torres et al., 2002).  

While downward flow into the sediments has been suggested for a variety of cold seeps 

across the globe, we do not believe that mechanism can necessarily be invoked to explain our large 

negative value for Core number 1.  This core was unique in that active fizzing, bubbling, and 

apparent discharge was observed to be occurring even after recovering the core onto the ship’s 

deck. The overlying core-top water was oily, leaving all sampling material coated in a film of 

sticky, tar-like oil. While this phenomenon may not be unique to Core number 1, it has not been 

observed to that degree for any other core described here. The effective fluid flux suggests a strong 

fluid transport into the sediments, but we do not believe this finding was characteristic of the 

conditions occurring at the seafloor and instead attribute this result to an artifact of recovery. We 

speculate that these particularly gas-charged sediments substantially out-gassed during core ascent 

and recovery. Gas ebullition through sediments can result in porefluid transport, but the magnitude 
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and directionality may be more related to gas bubble migration than that of the porefluids 

themselves (Klein, 2006).   

 

  

Figure 5.1. (A) Core recovery region within the Gulf of Mexico.  (B) Suspected oil-rich 

(black), non-oil-rich (gray) seepage, and control (white) sampling sites integrated with 

BOEM bathymetry data. Samples were recovered during cruises AT26-13 (square), EN559 

(triangle), and EN586 (circle). 
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If this explanation is appropriate for Core number 1, it would seem that the vertical 

exchange model may significantly underestimate any sedimentary gas flux if the size of each 

mixing cell is smaller than the sampling resolution. In this situation, over a sampled area, the flow 

condition could be both into (-z) and out of (+z) the sediments. Because we are evaluating the net 

circumstance of 224Ra transport, we would not detect the true volumetric flux from such localized 

exchange areas. However, limiting integrating over time and/or space is in this application, it is an 

unfortunate circumstance of evaluating flow using chemical proxies, including chloride, methane, 

and calcium. However, in-situ bubble driven circulation may be distinguished from significant gas 

ebullition as a consequence of ascent by evaluating the sediment interface and the clarity of the 

overlying water. Gas discharge occurring post-collection may cause resuspension of bottom 

sediments, resulting in cloudy overlying water. This occurrence has been observed throughout 

these cruises, so cores with these characteristics were not used here. Excluding Core number 1, we 

estimate an average effective fluid flux through GC600 sediments of 8.6 ± 2.7 mL cm-2 day-1 

(Figure 5.2). We will not further consider Core number 1 in our discussion.  
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The Gulf of Mexico is known to contain seepage sites that discharge not only oil-rich fluid, 

but also fluids enriched in methane and sulfide (Joye et al., 2004). To examine any potential 

differences between effective fluid flux and porefluid characteristics, we categorize our suspected 

seepage sites into two groups: oil-rich and non-oil-rich. These are only qualitative groupings of 

the samples as hydrocarbon concentrations were not measured for these specific cores; for some 

cores, we did confirm hydrocarbon presence via optical fluorescence under a UV light, but this 

approach still only provides a qualitative assessment. We define oil-rich cores as those in which 

oil was observed either before or after centrifuging, whereas non-oil-rich cores are those from 

seepage sites where sediments cores did not exhibit UV fluorescence and no oil was observed 

before or after centrifuging.   

Figure 5.2. Effective fluid flux for all sediment cores recovered from prolific 

natural oil seep site (GC600) within the GOM. Core numbers are arbitrary, but 

consistent with Figures5.3 and 5.4, Table A.1, and Table A.2.  
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Overall, 21 sediment cores were recovered from suspected seepage sites, including 13 from 

oil-rich sites (Taylor Energy, GC600, MC118, MC253; Figure 5.3A) and 8 from non-oil-rich sites 

(GC574, GC185, and GC767; Figure 5.3B). We estimate an average effective fluid flux of 8.4 ± 

4.2 mL cm-2 day-1 for oil-rich sites compared to an average of 1.1 ± 2.0 mL cm-2 day-1 for non-oil 

cores. Although no obvious discharge indicators (e.g., cloudy overlying water) were noted for non-

oil-rich cores, the lower effective fluid flux determined for these cores could indicate complicated 

circulation patterns. For example, water driven out of the sediments by rising gas bubbles may be 

replaced by down-flowing overlying water as suggested by recharge occurring up to 10 cmbsf 

(O’hara et al., 1995; Zimmerman et al., 1997). However, this explanation is purely speculative as 

ancillary data to support this process for these specific sediment cores does not exist. Unlike Core 

number 1, this process would not be indicative of a sampling artifact and rather could indicate 

complicated fluid circulation surrounding highly localized gas seeps.  
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Figure 5.3. Effective fluid flux for suspected seepage sites distinguished by (A) 

oil-rich and (B) non-oil-rich porefluid characteristics for sediment cores 

recovered from the Gulf of Mexico. (A) Hatched bars designate data associated 

with Taylor Energy (MC20), a shallow water site situated in water depths of 

~120m. All other sampling sites are located at depths >200 m.  
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We collected 3 sediment cores from the Taylor Energy site where 21 hydrocarbon 

extraction wells were broken off and buried under a mud flow during Hurricane Ivan (Kaiser, 

2015). These wells continue to leak oil through overlying sediments and into the water column. 

Fluid fluxes estimated for sediment cores recovered from the Taylor Energy site (core numbers 5, 

17, and 32; Figure 5.3A) show a full range of fluid transport conditions, from recharge at -0.3 ± 

1.8 mL cm-2 day-1 to discharge at 13.9 ± 3.4 mL cm-2 day-1. These data are especially intriguing as 

recent reporting has reinvigorated discussion regarding remediation strategies for the failed 

structure as chronic discharge persisting for more than a decade has been ongoing (Asl et al., 2016). 

Here, we have some indication that vertical fluid transport was occurring in one of three cores 

recovered from this site. 

 

5.3. Gulf of Mexico and Guaymas Basin Comparison 

 

A similar range in fluid flux was identified for both the Gulf of Mexico and Guaymas Basin 

(Figure 5.4). Notably, relative uncertainties are much lower for Gulf of Mexico estimates due to 

the additional error associated with the Kd value needed to convert to aqueous 224Ra activities from 

solid phase activity measurements from Guaymas Basin. Error could be reduced by evaluation of 

aqueous 224Ra directly as was done for Gulf of Mexico samples, but this approach was not possible 

for Guaymas Basin samples due to logistical issues with equipment. Yet, an advantage to solid 

phase extraction is a higher sampling resolution because less sediment volume is required to 

achieve desired counting statistics (≤ 10% uncertainty). In fact, if distribution coefficients can be 

better constrained, solid phase extractions may allow sampling intervals of 1 cm (Cai et al., 2012) 

as compared to 4 cm necessary for aqueous 224Ra evaluation (Chapter 3). This modification could 



 
 
 

158 
 

support studies to better test the assumption of no lateral flow by increasing vertical resolution 

without necessarily increasing the error. Furthermore, because we take the advective velocity to 

equal the sampling interval divided by the residence time, sampling over smaller intervals allows 

detection of slower flow rates by as much as a four-fold decrease (assuming a 21 day residence 

time and a change in sampling interval from 1 to 4 cm). 

For both the GOM and Guaymas Basin, fluid flux out of the sediments was identified at 

higher rates for sediment cores recovered from areas where seepage was suspected. This 

qualitative verification supports our approach to studying deep-sea fluid fluxes through surficial 

sediments despite the fact that seepage indicators varied between habitat types, primarily because 

of the different core recovery methods. For example, all sediment cores from Guaymas Basin were 

collected using the HOV Alvin, so we could target specific microbial mats to retrieve sediment 

cores where seepage was suspected. These cores are compared to cores recovered from 

inconspicuous sediment cover regions. The seepage footprint affecting surficial sediments may 

vary (Suess, 2014) as microbial mats range in size from <1 m2 to 20 m2 (Torres et al., 2002; Teske 

et al., 2016). Sampling at this precision using a ship-based platform was not possible for most 

GOM cruises.  

Fluid flux determined for these cores is compared to the effective fluid flux determined for 

control cores where seepage is not expected. Despite the expected heterogeneity of seafloor 

seepage expressions, we observed greater fluid flux estimates for sites where seepage was 

suspected compared to control/non-seep sites for the GOM (Figure 5.4A) and for Guaymas Basin 

(Figure 5.3B). We find an average fluid flux for sampled areas within the Gulf of Mexico of 5.6 ± 

3.3 mL cm-2 day-1 for all sites where seepage was suspected and an average of -5.9 ± 3.8 mL cm-2 

day-1 for 13 non-seep sites. Similarly, in Guaymas Basin, mat covered sediments where seepage is 
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suspected show an average fluid flux of 3.5 ± 4.8 mL cm-2 day-1 compared to non-mat covered 

cores with fluxes averaging 0.0 ± 1.8 mL cm-2 day-1.  

Our highest estimated fluid flux among all sediment cores was recovered from a cold seep 

in the Gulf of Mexico. While this result may be surprising, it likely does not indicate a fundamental 

difference between the two sites. Broad comparisons between the Gulf of Mexico and Guaymas 

Basin cannot be made as different sampling styles and seepage indicators were used for each basin. 

Yet, an identical species of bacteria has been identified at both sites (Jannasch et al., 1989; Zhang 

et al., 2005). We did recover two sediment cores from the GOM where bacterial filaments were 

similar to the white Beggiatoa within Guaymas Basin. Although the sample size is far too small 

for meaningful statistical assessment, fluid flux ranged from 0.4 ± 0.7 mL cm-2 day-1 to 4.6 ± 4.1 

mL cm-2 day-1 for GOM mat-covered sediments and 1.2 ± 4.4 mL cm-2 day-1 to 6.0 ± 3.3 mL cm-2 

day-1 for Guaymas Basin mat sediments. The lower fluid flux through GOM mat is interesting as 

fluid flux through white mat in Guaymas Basin was strongly related to subsurface temperature 

range. While fluid flux out of the sediments was observed in the both seepage habitats, control 

sites also exhibited similarities between sites. Here, ‘control’ is used to describe areas where no 

bacterial mat was observed and/or no indication of seepage is known for the region. While we did 

identify a few sediment cores where fluid flux was near zero, especially in the Gulf of Mexico, we 

occasionally estimate fairly significant downward fluid flux into the upper sediments. Although 

not all estimates are beyond the associated analytical error, we identified 16 of 35 sediment cores 

with a downward (negative) effective fluid flux (Figure 5.4). While this frequency appears 

significant, flow reversal mechanisms for muddy sediments have been proposed and additional 

indications of such phenomena have been observed at deep-sea seepage sites where inflow into 

the sediments can last hours to months (Henry et al., 1992; Linke et al, 1994; Zimmerman et al., 
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1997; Torres et al., 2002; Levin, 2005). It has even been suspected that the average rate of flow 

driven by compaction is less than subsidence and balanced by the incorporation of seawater in the 

uppermost sediments (Bjørlykke, 1993). Another reasonable mechanism to explain these results 

may be a decreased localized sub-pressure where gas venting occurs which effectively decreases 

porefluid pressure below hydrostatic leading to the downward flow of interstitial water near 

discharge zones (Solomon et al., 2008). We suspect this process was not observed for Guaymas 

Basin because of sampling bias targeting mat sediments. Also, hydrothermal recharge may be more 

restricted because of elevated subsurface temperatures and may occur primarily through abyssal 

hills and other porous outcrops (Fisher et al., 2001; Lauer et al., 2018). 

 



 
 
 

161 
 

  

Figure 5.4. Effective fluid flux for sediment cores recovered from (A) Guaymas 

Basin and (B) Gulf of Mexico. Negative fluxes indicate a net –z transport 

direction while positive fluxes indicate a +z direction. Non-mat and non-seep 

cores (denoted by color bars) indicate sites where seepage was not expected.   
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We have identified spatially variable fluid flux conditions where traditional indicators of 

seepage (oil/bubble plumes and bacterial mats) were associated with higher fluid fluxes for both 

the Gulf of Mexico and Guaymas Basin. However, in some instances, fluid flux out of the 

sediments was required to explain aqueous porefluid 224Ra distributions for sediment cores where 

no supporting evidence of active seepage was identified – such results may suggest recent 

activation of porefluid flow at these sites. Control sites, especially where subsurface temperature 

was not elevated in Guaymas Basin, did not appear to exhibit a significant fluid flux. Fluid recharge 

may be occurring though sediments of both the Gulf of Mexico and Guaymas Basin, although 

exact mechanisms are unknown. Targeted sampling of bacterial mats (Beggiatoa spp.) between 

Gulf of Mexico and Guaymas Basin may allow a more quantitative comparison between the 

seepage habitats in future studies as comparing fluid flux across a common sediment cover 

characteristic could elucidate potential flow thresholds required for significant colonization.  
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CHAPTER 6 

CLOSING REMARKS 

 

6.1. Synthesis and Significance 

 

This work presents a novel approach toward evaluating deep-sea fluid fluxes through shallow 

sediment sections. This dissertation outlines the motivation toward evaluating fluid flow through 

sites where seepage may be especially active including cold and hydrothermal fluid discharge sites. 

While chemical and thermal distributions measured in the subsurface and overlying water (e.g., 

Lapham et al., 2008; Fisher and Becker, 1991), as well as flux chambers (e.g., Solomon et al., 

2008) have been used to estimate fluid transport rates through sediments, studies concerning fluid 

seepage remain one of the least understood components of global seepage studies (Suess, 2014).   

The conceptual framework for the vertical exchange model developed as a part of this work 

was modified slightly from Krest and Harvey (2003) and adapted for deep-sea sedimentary 

systems. While deep-sea sediments are the subject of this work, this approach may likewise be 

modified for use in shallow water and coastal systems provided all source and sinks of 224Ra to 

porefluid was be accurately constrained. Importantly, Chapter 2 details several potential factors 

affecting aqueous 224Ra distributions in deep-sea seepage sediments and the approach to identify 

factors of significance toward development of the vertical exchange model presented as the 

foremost contribution of this work. This model is specifically advantageous over that proposed by 
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Krest and Harvey (2003) as we eliminate the assumption that 224Ra production is constant with 

depth by experimental determination for the aqueous 224Ra equilibrium activity for all recovered 

materials. Significant differences in the maximum exchangeable 224Ra activity associated with 

sediments recovered in vertical sequence were found to exhibit an 11-fold increase from 0 to 16 

cmbsf and are related to the 224Ra production rate. 

A few assumptions are considered in applying the vertical exchange model. Perhaps most 

importantly, it is assumed that lateral flow is insignificant in controlling porefluid distributions of 

224Ra and instead assume any identified transport is occurring in the vertical direction (either 

positive or negative z) It is also assumed that all sources and sinks (Figure 2.1) have been 

accurately accounted for as it concerns samples used in this work. The vertical exchange model 

was not utilized in areas where removal mechanisms including Ra-Ba co-precipitation into barite 

were believed to occur so as to present as a sink of 224Ra, although process is known to act as a 

radium sink where chimney formation is active (Moore and Stakes, 1990). Brine seeps are also not 

recommended as changes in salinity may influence grain adsorption and desorption (Webster et 

al., 1995). This approach then compliments existing geochemical methods which model flow rates 

using chloride gradients measured in brine-filled porespaces (e.g., Lapham et al., 2008).  

Although the applicability of this method to evaluate brine transport and regions where active 

barite precipitation is occurring was not tested, this approach is not dependent on thermal alteration 

or dye release and recovery techniques and so is available to evaluate fluid flow in regions 

previously inaccessible to such research. Minimum and maximum vertical advective velocity 

resolution limits are related to the residence time of the porefluid within each sediment section and 

the sediment sampling interval. We recovered porewater from 4 cm thick sediment sections to 

acquire ~30 to 100 mL per section and found this reasonable for processing. We consider 1 day to 
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be our minimum detectable residence time and 21 days to be our maximum residence time (~0.3 

to 6 half-lives of 224Ra ; T1/2=3.6 days). This results in a range of discernable vertical velocities 

from ~0.19 to 4 cm day-1 although changing the sampling interval could influence the minimum 

and maximum detectable vertical velocities.  

The vertical exchange model was first qualitatively tested in a cold seep environment where 

volumetric fluid flux was previously unreported. In the Gulf of Mexico, fluid flux from seepage 

sites ranged from 1 to 4 mL cm-2 day--1 as compared to a control site (-1 mL cm-2 day-1) where no 

seepage indicators were identified (Chapter 3). The second environmental evaluation of the 

vertical exchange model considered fluid flux across sediment cover data using cores recovered 

from Guaymas Basin. Here, statistically significant relationships between subsurface temperature 

range and volumetric fluid flux were identified for sediment cores recovered through conspicuous 

white bacterial mat cover as well as for apparently uncolonized sediments. The correlation between 

fluid flux and temperature gradient is considered as the second environmental confirmation that 

the vertical exchange model may be used to evaluate deep-sea fluid transport through sediments 

(Chapter 4).  

This work posits a novel approach to evaluate fluid flux through deep-sea systems described 

throughout as the vertical exchange model. This method facilitated direct comparison of fluid flux 

magnitude between a cold seep and hydrothermal seepage system where average fluid flux for 

cold seep sediments sampled (5.6 mL cm-2 day-1) was similar to the average fluid flux identified 

for hydrothermal sediments sampled (3.5 mL cm-2 day-1; Chapter 5). 
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APPENDICIES 

 

Appendix I. 

 

This section contains data relevant to samples discussed throughout the Dissertation. 

Contents include five data tables and three figures. Contents are organized by the order in which 

they may supplement material presented in the Dissertation. Figure A.1 presents a conceptual 

diagram concerning correcting isotope activities for use in the vertical exchange model. Table A.1 

contains collection details for the 35 sediment cores recovered from the Gulf of Mexico used for 

this work. These data supplement the content presented in Chapter 3 and Chapter 5. Table A.2 

offers a list of measured and corrected porefluid 224Ra activities and empirically derived from the 

35 sediment cores recovered from the Gulf of Mexico. These data supplement the work presented 

in Chapter 3 and Chapter 5. Table A.3 details residence time and Table A.4 lists volumetric flux 

results for each sediment section discussed in the dissertation obtained from the Gulf of Mexico. 

These data are especially relevant for Chapter 5. Figure A.2 and Figure A.3 depict calibration 

curves for sediment-coated filters first discussed in Chapter 4 and Chapter 5. Table A.5 includes a 

list of measured and corrected isotope activities measured and empirically derived for all 19 

sediment cores recovered from Guaymas Basin during cruise AT37-06 concerning data presented 

in Chapters 4 and 5. Tables A.6 and A.7 include porefluid residence time and volumetric flux 

estimates for sediment sections recovered from Guaymas Basin and supplement concepts 

discussed in Chapter 4 and  Chapter 5.  
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Appendix II. 

 

Leigha Peterson’s curriculum vitae.  

 

 

 

Appendix III. 

 

Derivation of standard radioactive ingrowth equation (Equation 2.3). 
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APPENDIX I. 

  

Figure A.1. Conceptual diagram illustrating the process of correcting 224Ra 

activities to estimate porefluid residence time using the vertical exchange model. 

Here, ‘equilibrium and ‘at-sea 224Ra boxes indicate data in need of correcting. 

Equations used to correct data have been placed in large horizontal arrows with 

the corrected data indicated by gray boxes. Note the corrected equilibrium 

activity is used to correct the ‘at-sea activity. Corrected data (gray boxes) serve 

as inputs to the vertical exchange model (Equation 2.5) to estimate porefluid 

residence time (red box). See Chapter 2.for a description of data corrections. 
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Table A.1 Metadata for sediment cores recovered from the Gulf of Mexico. Site name refers to 

that designated by the Bureau of Ocean Energy Management (BOEM) and core number refers to 

the fluid flux rank variable used in Chapter 5 (Fig. 5.2, Fig. 5.3, and 5.4). Collection date and 

time are given in Eastern Standard Time (EST) and seep condition indicates characteristics of 

the sampling region.  

Site name;     

core number 
Cruise Latitude and Longitude  

Collection date        

& time 

Seep 

condition 

GC600; 1 EN586  27° 21.940 'N, 90° 33.807 'W      7/28/16 11:48 Oil seep 

OC26; 2 EN559  28° 41.87 'N, 88° 21.92 'W      6/20/15 21:07 Impact 

OC26; 3 EN559  28° 45.870 'N, 88° 23.650 'W      5/29/15 22:30 Impact 

BP463; 4 EN559  28° 30.84 'N, 88° 36.03 'W      6/19/15 17:25 Impact 

^Taylor; 5 EN559  28° 54.75 'N, 88° 53.33 'W      6/9/15 21:05 ^Oil seep 

OC26; 6 EN559  28° 42.90 'N, 88° 21.54 'W      6/20/15 18:33 Impact 

BP444; 7 EN559  28° 34.50 'N, 88° 32.26 'W      6/19/15 19:30 Impact 

GC574; 8 EN586  27° 21.090 'N, 90° 49.202 'W      8/8/16 21:00 Gas seep 

MC253; 9 AT26-13  28° 38.040 'N, 88° 10.200 'W      4/2/14 8:25 Oil seep 

GC574; 10 EN559  27° 21.44 'N, 91° 49.25 'W      6/14/15 10:00 Gas seep 

OC26; 11 EN586  28° 41.503 'N, 88° 22.770 'W      8/6/16 8:31 $Impact 

OC26; 12 EN586  28° 41.503 'N, 88° 22.770 'W      8/6/16 8:31 Impact 

BIP17; 13 EN586  28° 38.287 'N, 88° 31.183 'W      8/1/16 9:35 Impact 

GC186; 14 EN559  27° 45.43 'N, 91° 26.02 'W      6/5/15 13:20 Control 

GB480; 15 EN586  27° 29.966 'N, 91° 58.721 'W      7/26/16 19:45 Control 

$GC699; 16 EN586  27° 17.498 'N, 90° 02.422 'W      8/13/16 21:47 Control 

GC699; 17 EN586  27° 17.499 'N, 90° 02.425 'W      7/31/16 19:45 Control 

GC185; 18 EN586  27° 47.28 'N, 91° 30.44 'W      7/26/16 3:39 Gas seep 

^Taylor; 19 EN586  28° 56.251 'N, 88° 58.175 'W      8/2/16 3:23 ^Oil seep 

GC600; 20 EN559  27° 21.922 'N, 90° 33.819 'W      6/1/15 17:00 Oil seep 

GC767; 21 EN559  27° 12.54 'N, 91° 00.86 'W      6/18/15 16:50 Gas seep 

BIP24; 22 EN586  28° 46.219 'N, 88° 22.989 'W      8/1/16 20:50 Impact 

GC767; 23 EN586  27° 12.619 'N, 91° 01.556 'W      8/10/16 19:13 Gas seep 

$Control core, !Seep Core, *Mat core (Chapter 3) 

^Sediment cores recovered from a shallow water site (~120 m) near 21 buried well pipes actively 

conveying oil into shallow sediments from a deep geologic reservoir. This is distinguished from 

other seeps by water depths < 200 m and by known buried infrastructure. 
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Table A.1 Continued 

Site name;     

core number 
Cruise Latitude and Longitude  

Collection date        

& time 

Seep 

condition 
!GC600; 24 AT26-13  27° 25.644 'N, 90° 26.092 'W      4/8/14 12:45 !Oil seep 

GC600; 25 EN559  27° 21.903 'N, 90° 33.802 'W      5/30/15 21:00 Oil seep 

GC600; 26 AT26-13  27° 22.174 'N, 90° 34.289 'W      4/5/14 12:31 Oil seep 

*GC600; 27 AT26-13  27° 22.174 'N, 90° 34.289 'W      4/5/14 12:00 *Oil seep 

GC767; 28 EN586  27° 12.599 'N, 91° 01.548 'W      7/30/16 20:47 Gas seep 

GC767; 29 EN559  27° 12.59 'N, 91° 00.59 'W      6/16/15 17:20 Gas seep 

GC185; 30 EN559  27° 46.984 'N, 91° 30.446 'W      6/3/15 18:00 Oil seep 

MC118; 31 EN586  28° 51.112 'N, 88° 29.463 'W      8/14/16 14:07 Oil seep 

^Taylor; 32 EN559  28° 55.40 'N, 88° 55.64 'W      6/9/15 22:30 ^Oil seep 

GC600; 33 EN586  27° 22.202 'N, 90° 34.191 'W      7/27/16 21:09 Oil seep 

GC600; 34 EN586  27° 21.952 'N, 90° 33.787 'W      8/12/16 21:42 Oil seep 

MC118; 35 EN586  28° 51.112 'N, 88° 29.463 'W      8/14/16 14:07 Oil seep 

$Control core, !Seep Core, *Mat core (Chapter 3) 
^Sediment cores recovered from a shallow water site (~120 m) near 21 buried well pipes 

actively conveying oil into shallow sediments from a deep geologic reservoir. This is 

distinguished from other seeps by water depths < 200 m and by known buried infrastructure. 
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Table A.2. Aqueous porefluid 224Ra activities recovered from cores collected within the Gulf 

of Mexico. Site name refers to that designated by BOEM and core number refers to the fluid 

flux rank variable used in Chapter 5 (Fig. 5.2, Fig. 5.3, and 5.4) and Table A.1. Initial 

activities are those measured at-sea and equilibrium activities are those measured in solution 

following a 21 day incubation. 
Site        Depth         ?Initial                        **Initial                   ?Equilibrium                 **Equilibrium      

core;     (cmbsf)        (dpm L-1)                    (dpm L-1)              (dpm L-1)                       (dpm L-1) 

GC600; 

1 
                

 2 16.7 ± 1.4  18.8 ± 1.4  21.5 ± 1.7  33.4 ± 1.8 

 6 21.7 ± 1.9  19.1 ± 1.8  42.8 ± 2.7  36.7 ± 2.8 

 10 20.3 ± 2.0  21.6 ± 1.9  41.4 ± 2.5  47.2 ± 2.6 

 14 24.9 ± 2.5  22.1 ± 2.4  51.9 ± 3.6  46.6 ± 3.7 

 18 23.3 ± 2.3  23.3 ± 2.2  41.0 ± 2.1  48.3 ± 2.2 

OC26; 2                 

 2 1.5 ± 0.2  6.0 ± 0.1  5.3 ± 0.4  39.1 ± 0.5 

 6 13.5 ± 1.2  7.2 ± 0.9  61.0 ± 6.0  47.2 ± 7.0 

 10 12.3 ± 0.7  10.9 ± 0.6  53.6 ± 5.3  62.7 ± 6.3 

 14 14.2 ± 0.8  12.3 ± 0.7  44.8 ± 4.5  51.2 ± 5.3 

 18 15.8 ± 1.0  13.5 ± 0.9  31.8 ± 3.2  45.2 ± 3.7 

OC26; 3                 

 2 1.2 ± 0.2  2.8 ± 0.2  34.5 ± 2.7  55.4 ± 3.3 

 6 7.5 ± 1.0  5.6 ± 0.6  58.0 ± 2.9  62.9 ± 3.4 

 10 14.5 ± 2.0  10.3 ± 1.5  65.1 ± 6.3  73.3 ± 7.5 

 14 17.7 ± 1.6  12.8 ± 1.4  60.5 ± 6.0  76.3 ± 7.2 

BP463, 

4 
                

 2 0.4 ± 0.1  3.6 ± 0.0  2.5 ± 0.2  18.7 ± 0.3 

 6 8.3 ± 0.8  8.1 ± 0.7  29.4 ± 2.6  53.2 ± 3.1 

 10 22.0 ± 2.2  14.8 ± 1.7  103.7 ± 7.3  95.8 ± 8.6 

 14 25.6 ± 2.5  17.5 ± 2.0  111.0 ± 7.3  109.6 ± 8.6 
^Taylor; 

5 
                

 2 8.5 ± 0.8  8.0 ± 0.7  28.2 ± 2.5  43.1 ± 2.9 

 6 10.7 ± 1.1  10.7 ± 0.9  46.7 ± 3.9  47.3 ± 4.4 

 10 17.9 ± 1.8  12.4 ± 1.6  48.6 ± 4.6  53.0 ± 5.3 

 14 14.3 ± 1.0  14.3 ± 0.8  43.1 ± 4.2  52.7 ± 4.9 

OC26; 6                 

 2 0.8 ± 0.2  3.1 ± 0.1  4.1 ± 0.3  13.6 ± 0.4 

 6 6.4 ± 0.4  4.2 ± 0.4  19.0 ± 0.8  25.6 ± 0.9 
?Measured 224Ra activities; **Corrected 224Ra activities. Corrections described in Chapter 2. 
$Control core, !Seep Core, *Mat core (Chapter 3) 
^Sediment cores recovered from a shallow water site (~120 m) See Table 1.A for more details 

concerning this site. 
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Table A.2. Continued  

Site            Depth            ?Initial                        **Initial                   ?Equilibrium                 **Equilibrium      

core;          (cmbsf)        (dpm L-1)                    (dpm L-1)                   (dpm L-1)                       (dpm L-1) 

 10 8.4 ± 0.7  6.9 ± 0.5  42.0 ± 3.9  43.7 ± 4.7 

 14 11.0 ± 0.6  9.7 ± 0.5  50.1 ± 3.7  52.4 ± 4.4 

 18 15.6 ± 0.8  11.3 ± 0.7  41.1 ± 3.0  53.8 ± 3.6 

BP444; 

7 
                

 2 0.0 ± 0.0  4.1 ± 0.0  2.1 ± 0.2  23.8 ± 0.2 

 6 9.9 ± 1.0  6.7 ± 0.8  38.2 ± 3.8  33.8 ± 4.5 

 10 13.8 ± 1.4  10.7 ± 1.2  45.7 ± 4.5  54.6 ± 5.3 

 14 14.7 ± 1.5  12.5 ± 1.2  54.9 ± 5.5  57.9 ± 6.4 

 18 15.5 ± 1.5  12.9 ± 1.3  46.8 ± 4.5  59.9 ± 5.3 

GC574; 

8 
                

 2 1.4 ± 0.2  1.1 ± 0.2  0.5 ± 0.1  0.4 ± 0.1 

 6 0.9 ± 0.1  1.1 ± 0.1  0.3 ± 0.1  0.5 ± 0.1 

 10 1.1 ± 0.2  1.4 ± 0.2  0.7 ± 0.1  0.7 ± 0.1 

 14 2.2 ± 0.3  2.4 ± 0.3  0.9 ± 0.1  1.8 ± 0.1 

 18 3.9 ± 0.5  3.1 ± 0.5  3.7 ± 0.3  2.4 ± 0.3 

MC253; 

9 
                

 2 15.5 ± 1.0  9.8 ± 0.6  39.9 ± 2.8  67.0 ± 2.9 

 6 26.8 ± 1.5  14.3 ± 0.6  91.7 ± 4.1  73.5 ± 4.2 

 10 36.0 ± 2.6  20.4 ± 1.7  85.0 ± 4.1  86.2 ± 4.2 

 14 38.2 ± 2.7  28.4 ± 1.9  77.5 ± 4.3  72.2 ± 4.3 

 18 37.7 ± 2.3  31.0 ± 2.1  50.3 ± 3.1  65.0 ± 3.1 

GC574; 

10 
                

 2 0.8 ± 0.1  0.2 ± 0.1  9.0 ± 0.5  8.9 ± 0.5 

 6 0.3 ± 0.1  1.0 ± 0.0  6.2 ± 0.4  7.3 ± 0.5 

 10 2.7 ± 0.3  1.7 ± 0.3  3.6 ± 0.3  9.9 ± 0.4 

 14 3.2 ± 0.4  4.9 ± 0.3  15.6 ± 0.7  28.2 ± 0.8 

OC26; 

11 
                

 2 0.7 ± 0.1  1.3 ± 0.1  0.5 ± 0.1  1.2 ± 0.1 

 6 1.9 ± 0.2  4.6 ± 0.2  1.8 ± 0.1  7.9 ± 0.2 

 10 11.5 ± 1.1  7.7 ± 1.1  20.7 ± 0.6  22.3 ± 0.6 

 14 10.8 ± 1.1  14.0 ± 1.0  42.0 ± 2.8  35.8 ± 2.9 
?Measured 224Ra activities; **Corrected 224Ra activities. Corrections described in Chapter 2. 
$Control core, !Seep Core, *Mat core (Chapter 3) 
^Sediment cores recovered from a shallow water site (~120 m) See Table 1.A for more details 

concerning this site. 
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Table A.2. Continued 

Site            Depth            ?Initial                        **Initial                   ?Equilibrium                 **Equilibrium      

core;          (cmbsf)        (dpm L-1)                    (dpm L-1)                   (dpm L-1)                       (dpm L-1) 

 18 22.1 ± 2.2  15.4 ± 2.1  40.8 ± 2.6  42.9 ± 2.7 

OC26; 

12 
                

 2 2.1 ± 0.2  4.4 ± 0.2  0.3 ± 0.0  6.7 ± 0.0 

 6 6.9 ± 0.5  6.3 ± 0.5  12.6 ± 0.8  11.8 ± 0.8 

 10 10.8 ± 1.1  9.5 ± 1.0  21.2 ± 1.4  20.8 ± 1.4 

 14 12.5 ± 1.2  11.0 ± 1.2  26.5 ± 1.7  24.7 ± 1.8 

BIP17; 

13 
                

 2 0.9 ± 0.1  4.2 ± 0.1  0.7 ± 0.1  6.3 ± 0.1 

 6 7.8 ± 0.9  5.9 ± 0.8  11.4 ± 1.0  13.5 ± 1.0 

 10 10.9 ± 0.9  10.0 ± 0.8  26.7 ± 1.9  27.8 ± 2.0 

 14 15.9 ± 1.3  11.3 ± 1.1  41.9 ± 2.8  35.7 ± 2.9 

GC186; 

14 
                

 2 0.2 ± 0.0  4.1 ± 0.0  2.3 ± 0.2  7.0 ± 0.2 

 6 8.2 ± 0.8  8.4 ± 0.8  9.6 ± 1.0  26.7 ± 1.1 

 10 19.4 ± 1.9  14.3 ± 1.7  56.3 ± 5.2  52.0 ± 6.1 

GB480; 

15 
                

 2 2.8 ± 0.3  2.3 ± 0.3  3.1 ± 0.2  3.9 ± 0.2 

 6 1.9 ± 0.2  4.2 ± 0.2  4.4 ± 0.3  12.5 ± 0.3 

 10 8.4 ± 0.9  9.2 ± 0.8  29.0 ± 0.8  26.6 ± 0.8 

 14 18.8 ± 1.9  15.6 ± 1.8  44.1 ± 2.5  42.0 ± 2.6 
$GC699; 

16 
                

 2 2.5 ± 0.2  3.0 ± 0.2  4.9 ± 0.3  5.7 ± 0.3 

 6 3.6 ± 0.3  3.2 ± 0.3  6.2 ± 0.4  6.5 ± 0.4 

 10 3.5 ± 0.5  3.4 ± 0.5  7.8 ± 0.4  6.4 ± 0.5 

 14 3.3 ± 0.5  3.3 ± 0.5  4.4 ± 0.3  6.3 ± 0.3 

GC699; 

17 
                

 2 4.6 ± 0.5  7.4 ± 0.5  9.4 ± 0.5  10.5 ± 0.5 

 6 10.3 ± 1.0  11.1 ± 1.0  10.8 ± 0.8  20.7 ± 0.8 

 10 18.8 ± 1.9  20.4 ± 1.8  39.9 ± 1.9  39.1 ± 2.0 

 14 33.2 ± 3.3  31.0 ± 3.3  62.7 ± 4.5  60.8 ± 4.7 

 18 43.0 ± 4.3  37.4 ± 4.2  73.7 ± 4.2  70.5 ± 4.4 
?Measured 224Ra activities; **Corrected 224Ra activities. Corrections described in Chapter 2. 
$Control core, !Seep Core, *Mat core (Chapter 3) 
^Sediment cores recovered from a shallow water site (~120 m) See Table 1.A for more details 

concerning this site. 
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Table A.2. Continued 

Site            Depth            ?Initial                        **Initial                   ?Equilibrium                 **Equilibrium      

core;          (cmbsf)        (dpm L-1)                    (dpm L-1)                   (dpm L-1)                       (dpm L-1) 

GC185; 

18 
                

 2 0.0 ± 0.0  0.2 ± 0.0  3.1 ± 0.2  2.6 ± 0.2 

 6 0.4 ± 0.1  0.8 ± 0.1  1.9 ± 0.1  2.7 ± 0.1 

 10 2.0 ± 0.3  3.2 ± 0.3  2.7 ± 0.2  4.5 ± 0.2 

 14 7.3 ± 0.7  8.2 ± 0.7  8.7 ± 0.7  12.5 ± 0.8 

 18 15.9 ± 1.4  11.4 ± 1.4  25.0 ± 1.7  17.3 ± 1.8 
^Taylor; 

19 
                

 2 12.1 ± 0.8  17.5 ± 0.7  31.2 ± 0.8  39.7 ± 0.8 

 6 23.2 ± 1.2  20.6 ± 1.2  45.2 ± 0.9  37.4 ± 1.0 

 10 27.0 ± 2.6  23.5 ± 2.5  31.6 ± 1.6  38.9 ± 1.6 

 14 20.7 ± 1.7  21.2 ± 1.6  35.5 ± 1.8  27.3 ± 1.8 

 18 16.0 ± 1.1  18.3 ± 1.1  11.6 ± 0.8  24.5 ± 0.8 

GC600; 

20 
                

 2 6.4 ± 0.6  5.6 ± 0.6  5.5 ± 0.5  6.2 ± 0.6 

 6 4.9 ± 0.5  5.7 ± 0.5  5.3 ± 0.4  5.6 ± 0.5 

 10 5.7 ± 0.5  6.8 ± 0.5  3.7 ± 0.3  5.2 ± 0.4 

 14 9.6 ± 0.8  11.1 ± 0.8  4.6 ± 0.4  5.7 ± 0.4 

 18 17.2 ± 1.2  13.7 ± 1.2  6.6 ± 0.5  6.5 ± 0.6 

GC767; 

21 
                

 2 3.0 ± 0.3  2.8 ± 0.3  3.0 ± 0.2  2.9 ± 0.3 

 6 2.7 ± 0.4  2.7 ± 0.4  2.0 ± 0.2  4.2 ± 0.2 

 10 2.5 ± 0.3  5.3 ± 0.3  5.6 ± 0.4  19.8 ± 0.5 

 14 12.8 ± 1.3  6.4 ± 1.1  43.0 ± 3.9  40.3 ± 4.6 

 18 8.8 ± 0.9  8.5 ± 0.6  54.4 ± 3.2  57.2 ± 3.7 

BIP24; 

22 
                

 2 44.2 ± 3.0  41.0 ± 3.0  0.7 ± 0.1  15.1 ± 0.1 

 6 37.6 ± 2.4  27.5 ± 2.4  28.3 ± 1.9  25.4 ± 2.0 

 10 0.7 ± 0.1  16.4 ± 0.1  44.2 ± 3.0  38.2 ± 3.1 

 14 11.4 ± 1.0  5.7 ± 0.9  37.6 ± 2.4  42.6 ± 2.5 

GC767; 

23 
                

?Measured 224Ra activities; **Corrected 224Ra activities. Corrections described in Chapter 2. 
$Control core, !Seep Core, *Mat core (Chapter 3) 
^Sediment cores recovered from a shallow water site (~120 m) See Table 1.A for more details 

concerning this site. 
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Table A.2. Continued 

Site            Depth            ?Initial                        **Initial                   ?Equilibrium                 **Equilibrium      

core;          (cmbsf)        (dpm L-1)                    (dpm L-1)                   (dpm L-1)                       (dpm L-1) 

 2 2.0 ± 0.2  2.1 ± 0.2  2.7 ± 0.2  2.7 ± 0.2 

 6 2.2 ± 0.2  2.6 ± 0.2  2.5 ± 0.2  2.8 ± 0.2 

 10 3.6 ± 0.5  2.4 ± 0.5  2.7 ± 0.2  2.7 ± 0.2 

 14 1.6 ± 0.3  2.3 ± 0.3  2.7 ± 0.2  2.9 ± 0.2 

 18 1.8 ± 0.2  1.6 ± 0.2  3.1 ± 0.2  3.0 ± 0.2 
!GC600; 

24 
                

 2 14.4 ± 1.4  28.9 ± 1.4  13.1 ± 0.7  19.9 ± 0.7 

 6 41.7 ± 3.7  53.0 ± 3.8  26.1 ± 1.1  21.4 ± 1.1 

 10 93.8 ± 5.6  105.7 ± 6.0  24.1 ± 1.5  31.5 ± 1.5 

 14 159.8 ± 14.5  169.1 ± 15.7  42.9 ± 2.2  41.6 ± 2.2 

 18 215.6 ± 19.2  203.0 ± 20.8  55.8 ± 2.5  50.1 ± 2.5 

GC600; 

25 
                

 2 36.4 ± 2.7  25.8 ± 2.7  33.3 ± 3.2  37.7 ± 3.7 

 6 16.4 ± 1.6  19.5 ± 1.5  31.8 ± 3.1  46.7 ± 3.6 

 10 9.5 ± 0.9  12.2 ± 0.6  55.9 ± 5.5  62.8 ± 6.3 

 14 17.9 ± 1.8  13.0 ± 1.5  74.7 ± 6.0  75.5 ± 7.0 

 18 20.4 ± 1.5  16.1 ± 1.3  64.9 ± 5.4  80.9 ± 6.3 

GC600; 

26 
                

 2 23.3 ± 2.2  15.6 ± 2.3  18.3 ± 0.5  31.6 ± 0.5 

 6 12.7 ± 1.4  13.2 ± 0.8  43.9 ± 0.9  42.1 ± 0.9 

 10 8.6 ± 1.3  6.8 ± 1.3  62.1 ± 1.3  54.2 ± 1.3 

 14 12.6 ± 2.1  8.9 ± 0.8  53.8 ± 4.2  54.7 ± 4.2 

 18 18.5 ± 1.7  9.0 ± 1.2  45.6 ± 3.3  50.5 ± 3.3 
*GC600                 

; 27                 

 2 21.5 ± 1.4  18.7 ± 1.3  31.0 ± 2.4  36.7 ± 2.4 

 6 19.9 ± 1.8  15.5 ± 1.6  41.2 ± 2.8  42.8 ± 2.8 

 10 14.5 ± 1.8  9.6 ± 1.1  54.4 ± 2.7  50.6 ± 2.8 

 14 8.9 ± 1.5  5.9 ± 0.5  54.0 ± 3.4  55.0 ± 3.5 

GC767; 

28 
                

 2 2.8 ± 0.3  2.5 ± 0.3  3.2 ± 0.2  3.6 ± 0.2 
?Measured 224Ra activities; **Corrected 224Ra activities. Corrections described in Chapter 2. 
$Control core, !Seep Core, *Mat core (Chapter 3) 
^Sediment cores recovered from a shallow water site (~120 m) See Table 1.A for more details 

concerning this site. 
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Table A.2. Continued 

Site            Depth            ?Initial                        **Initial                   ?Equilibrium                 **Equilibrium      

core;          (cmbsf)        (dpm L-1)                    (dpm L-1)                   (dpm L-1)                       (dpm L-1) 

 6 2.2 ± 0.2  2.0 ± 0.2  3.7 ± 0.2  3.5 ± 0.2 

 10 1.1 ± 0.1  1.4 ± 0.1  3.2 ± 0.2  3.2 ± 0.2 

 14 1.1 ± 0.1  1.4 ± 0.1  2.3 ± 0.2  2.9 ± 0.2 

 18 1.9 ± 0.3  1.5 ± 0.3  3.0 ± 0.2  2.7 ± 0.2 

GC767; 

29                 

 2 2.3 ± 0.2  1.9 ± 0.2  6.7 ± 0.4  6.3 ± 0.5 

 6 1.9 ± 0.2  1.3 ± 0.2  4.1 ± 0.3  6.6 ± 0.4 

 10 0.6 ± 0.1  5.8 ± 0.0  6.2 ± 0.5  16.6 ± 0.5 

 14 16.5 ± 1.6  9.1 ± 1.5  32.2 ± 3.2  41.5 ± 3.8 

 18 14.7 ± 1.5  13.5 ± 1.1  67.5 ± 6.6  58.6 ± 7.8 

GC185; 

30 
                

 2 6.7 ± 0.7  6.0 ± 0.6  8.2 ± 0.7  8.5 ± 0.8 

 6 5.6 ± 0.6  5.8 ± 0.6  6.4 ± 0.6  8.2 ± 0.7 

 10 5.4 ± 0.7  5.7 ± 0.7  6.4 ± 0.4  6.7 ± 0.5 

 14 6.2 ± 0.7  5.8 ± 0.7  4.6 ± 0.3  6.7 ± 0.4 

 18 5.8 ± 0.7  6.0 ± 0.7  6.1 ± 0.5  6.3 ± 0.6 

MC118; 

31 
                

 2 10.8 ± 1.1  11.5 ± 1.1  18.1 ± 1.6  18.6 ± 1.6 

 6 12.5 ± 0.8  11.1 ± 0.8  18.9 ± 0.5  24.0 ± 0.5 

 10 10.9 ± 1.0  11.6 ± 1.0  34.5 ± 3.1  33.6 ± 3.1 

 14 13.1 ± 1.2  12.3 ± 1.1  46.9 ± 1.0  42.7 ± 1.0 

 18 15.3 ± 1.5  13.2 ± 1.4  46.1 ± 1.0  46.7 ± 1.0 
ˆTaylor; 

32 
                

 2 8.4 ± 0.8  12.5 ± 0.8  10.7 ± 0.4  32.2 ± 0.5 
 6 18.4 ± 1.8  12.9 ± 1.7  45.3 ± 4.5  40.8 ± 5.2 
 10 15.7 ± 1.5  14.0 ± 1.3  50.3 ± 4.8  51.0 ± 5.6 

 14 13.2 ± 1.3  12.7 ± 1.2  37.5 ± 3.7  50.5 ± 4.3 

GC600; 

33 
                

 2 9.4 ± 0.6  11.3 ± 0.6  19.3 ± 1.8  31.2 ± 1.9 

 6 14.0 ± 1.4  10.5 ± 1.4  40.6 ± 2.8  34.4 ± 2.9 

 10 9.8 ± 0.9  10.9 ± 0.8  39.3 ± 2.6  39.2 ± 2.7 
?Measured 224Ra activities; **Corrected 224Ra activities. Corrections described in Chapter 2. 
$Control core, !Seep Core, *Mat core (Chapter 3) 
^Sediment cores recovered from a shallow water site (~120 m) See Table 1.A for more details 

concerning this site. 
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Table A.2. Continued 

Site            Depth            ?Initial                        **Initial                   ?Equilibrium                 **Equilibrium      

core;          (cmbsf)        (dpm L-1)                    (dpm L-1)                   (dpm L-1)                       (dpm L-1) 

 14 11.2 ± 1.0  10.4 ± 1.0  33.2 ± 2.3  46.2 ± 2.4 

 18 13.3 ± 1.2  11.0 ± 1.0  60.9 ± 3.1  48.9 ± 3.2 

GC600; 

34 
                

 2 7.1 ± 0.7  10.5 ± 0.7  11.4 ± 0.4  15.4 ± 0.4 

 6 14.0 ± 1.4  10.4 ± 1.4  18.4 ± 4.9  19.3 ± 5.1 

 10 10.5 ± 1.0  10.5 ± 1.0  25.9 ± 2.6  24.2 ± 2.7 

 14 7.8 ± 0.8  10.7 ± 0.8  25.6 ± 2.2  26.3 ± 2.3 

 18 15.0 ± 1.7  11.0 ± 1.6  24.6 ± 2.4  26.0 ± 2.5 

MC118; 

35 
                

 2 18.1 ± 1.8  14.8 ± 1.8  25.1 ± 1.8  38.3 ± 1.8 

 6 13.5 ± 1.3  14.7 ± 1.2  51.1 ± 3.3  42.7 ± 3.4 

 10 16.0 ± 1.5  13.4 ± 1.4  51.3 ± 2.8  52.3 ± 2.9 

 14 16.0 ± 1.5  12.6 ± 1.4  53.6 ± 1.2  58.2 ± 1.2 

 18 12.8 ± 1.3  11.8 ± 1.0  68.8 ± 3.7  61.6 ± 3.7 
?Measured 224Ra activities; **Corrected 224Ra activities. Corrections described in Chapter 2. 
$Control core, !Seep Core, *Mat core (Chapter 3) 
^Sediment cores recovered from a shallow water site (~120 m) See Table 1.A for more details 

concerning this site. 
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Table A.3. Porefluid residence time and porosity for sediment samples associated with sediment 

cores recovered from the Gulf of Mexico. Residence time is estimated by assuming transport 

toward the overlying ocean (+z) and also into the sediments (-z).Site name refers to that 

designated by BOEM and core number refers to the fluid flux rank variable used in Chapter 5 

(Fig. 5.2, Fig. 5.3, and 5.4) and Table A.1 and Table A.2 and Table A.4. 
Site             Depth           Porosity             Residence time +z          Residence time -z                                      

core;           (cmbsf)                                           (days)                            (days) 

GC600; 

1 
                

 2 0.82  - ± -  n/a ± n/a  

 6 0.74  - ± -  0.1 ± 0.2 

 10 0.72  - ± -  0.5 ± 0.3 

 14 0.67  - ± -  0.1 ± 0.2 

 18 0.73  n/a ± n/a   0.2 ± 0.2 

OC26; 

 2 
                

 2 0.86  - ± -  n/a ± n/a  

 6 0.82  - ± -  0.2 ± 0.1 

 10 0.80  - ± -  0.4 ± 0.1 

 14 0.78  - ± -  0.2 ± 0.1 

 18 0.80  n/a ± n/a   0.2 ± 0.1 

OC26; 

 3 
                

 2 0.86  - ± -  n/a ± n/a  

 6 0.82  - ± -  0.2 ± 0.0 

 10 0.80  - ± -  0.4 ± 0.1 

 14 0.78  n/a ± n/a   0.2 ± 0.1 

BP463; 

 4 
                

 2 0.86  - ± -  n/a ± n/a  

 6 0.82  - ± -  0.5 ± 0.1 

 10 0.80  - ± -  0.4 ± 0.1 

 14 0.78  n/a ± n/a   0.1 ± 0.1 

Taylor; 

 5 
                

 2 0.87  - ± -  n/a ± n/a  

 6 0.81  - ± -  0.4 ± 0.1 

 10 0.78  - ± -  0.4 ± 0.1 

 14 0.80  n/a ± n/a   0.2 ± 0.1 

OC26; 

 6 
                

 2 0.86  - ± -  n/a ± n/a  

Residence time is not determined for the bottom-most sediment section (+z transport direction) and for 

the top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘ symbol. 
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Table A.3. Continued 

Site        Depth               Porosity             Residence time +z          Residence time -z                                      

core;     (cmbsf)                                                (days)                            (days) 

 6 0.82  - ± -  0.3 ± 0.1 

 10 0.80  - ± -  0.4 ± 0.1 

 14 0.78  n/a ± n/a   0.3 ± 0.1 

BP444; 

 7 
                

 2 0.86  - ± -  n/a ± n/a  

 6 0.82  - ± -  0.5 ± 0.1 

 10 0.80  - ± -  0.5 ± 0.1 

 14 0.78  - ± -  0.2 ± 0.1 

 18 0.80  n/a ± n/a   0.0 ± 0.1 

GC574; 

 8 
                

 2 0.83  - ± -  n/a ± n/a  

 6 0.80  2.0 ± 0.8  0.1 ± 0.7 

 10 0.77  4.5 ± 0.9  - ± - 

 14 0.71  4.1 ± 1.9  20.3 ± 1.4 

 18 0.70  n/a ± n/a   6.6 ± 4.7 

MC253; 

 9 
                

 2 0.84  - ± -  n/a ± n/a  

 6 0.76  - ± -  0.4 ± 0.0 

 10 0.75  - ± -  0.5 ± 0.1 

 14 0.71  - ± -  0.9 ± 0.2 

 18 0.70  n/a ± n/a   0.4 ± 0.2 

GC574; 

 10 
                

 2 0.83  - ± -  n/a ± n/a  

 6 0.80  - ± -  0.6 ± 0.0 

 10 0.77  - ± -  0.4 ± 0.1 

 14 0.71  n/a ± n/a  0.7 ± 0.1 

OC26; 

 11 
                

 2 0.84  16.7 ± 2.0  n/a ± n/a  

 6 0.82  - ± -  3.5 ± 0.2 

 10 0.78  - ± -  1.0 ± 0.2 

 14 0.77  - ± -  1.3 ± 0.2 

 18 0.80  n/a ± n/a   0.2 ± 0.2 

OC26;           

Residence time is not determined for the bottom-most sediment section (+z transport direction) and for 

the top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘ symbol. 
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Table A.3. Continued 

Site        Depth               Porosity             Residence time +z          Residence time -z                                      

core;     (cmbsf)                                                (days)                            (days) 

12                 

 2 0.84  - ± -  n/a ± n/a  

 6 0.82  - ± -  1.5 ± 0.3 

 10 0.78  - ± -  1.3 ± 0.3 

 14 0.77  n/a ± n/a  0.5 ± 0.3 

BP17; 

 13 
                

 2 0.88  18.9 ± 1.4  n/a ± n/a  

 6 0.82  - ± -  4.6 ± 0.7 

 10 0.78  - ± -  0.5 ± 0.2 

 14 0.79  n/a ± n/a  0.6 ± 0.1 

GC186; 

 14 
                

 2 0.84  21.0 ± 0.0  n/a ± n/a  

 6 0.82  - ± -  1.1 ± 0.1 

 10 0.80  n/a ± n/a  0.7 ± 0.2 

GB480; 

 15 
                

 2 0.81  21.0 ± 0.0  n/a ± n/a  

 6 0.75  - ± -  1.0 ± 0.1 

 10 0.71  - ± -  1.3 ± 0.1 

 14 0.72  n/a ± n/a  1.1 ± 0.2 

GC699; 

 16 
                

 2 0.78  21.0 ± 0.0  n/a ± n/a  

 6 0.78  - ± -  1.6 ± 0.3 

 10 0.75  - ± -  2.1 ± 0.3 

 14 0.80  n/a ± n/a  1.6 ± 0.4 

GC699; 

 17 
                

 2 0.72  - ± -  n/a ± n/a  

 6 0.71  - ± -  0.2 ± 0.3 

 10 0.67  0.2 ± 0.5  0.4 ± 0.5 

 14 0.65  - ± -  - ± - 

 18 0.72  n/a ± n/a  - ± - 

GC185; 

 18 
                

 2 0.84  - ± -  n/a ± n/a  

Residence time is not determined for the bottom-most sediment section (+z transport direction) and for 

the top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘ symbol. 
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Table A.3. Continued 

Site        Depth               Porosity             Residence time +z          Residence time -z                                      

core;     (cmbsf)                                                (days)                            (days) 

 6 0.82  21.0 ± 0.0  1.4 ± 0.1 

 10 0.80  21.0 ± 0.0  5.2 ± 0.7 

 14 0.83  - ± -  4.0 ± 0.6 

 18 0.80  n/a ± n/a   2.1 ± 0.9 

Taylor; 

 19 
                

 2 0.87  - ± -  n/a ± n/a  

 6 0.81  - ± -  0.9 ± 0.2 

 10 0.78  0.7 ± 0.4  0.8 ± 0.4 

 14 0.80  1.9 ± 0.9  - ± - 

 18 0.79  n/a ± n/a  - ± - 

GC600; 

 20 
                

 2 0.84  - ± -  n/a ± n/a  

 6 0.76  18.4 ± 5.3  7.7 ± 5.2 

 10 0.73  7.2 ± 1.5  - ± - 

 14 0.68  2.2 ± 0.7  - ± - 

 18 0.66  n/a ± n/a  - ± - 

GC767; 

 21 
                

 2 0.85  4.5 ± 5.1  n/a ± n/a  

 6 0.81  21.0 ± 0.0  - ± - 

 10 0.77  - ± -  - ± - 

 14 0.79  - ± -  0.2 ± 0.1 

 18 0.78  n/a ± n/a  0.2 ± 0.1 

BP24; 

 22 
                

 2 0.87  - ± -  n/a ± n/a  

 6 0.79  21.0 ± 3.2  11.4 ± 4.3 

 10 0.80  2.0 ± 0.2  - ± - 

 14 0.74  n/a ± n/a  - ± - 

GC767; 

 23 
                

 2 0.84  - ± -  n/a ± n/a  

 6 0.81  2.7 ± 5.5  6.1 ± 5.1 

 10 0.77  1.8 ± 5.2  - ± - 

 14 0.78  3.4 ± 1.6  - ± - 

 18 0.78  n/a ± n/a  - ± - 

Residence time is not determined for the bottom-most sediment section (+z transport direction) and for 

the top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘ symbol. 
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Table A.3. Continued 

Site        Depth               Porosity             Residence time +z          Residence time -z                                      

core;     (cmbsf)                                                (days)                            (days) 

GC600; 

 24 
                

 2 0.84  7.0 ± 0.6  n/a ± n/a  

 6 0.76  5.2 ± 0.4  - ± - 

 10 0.73  3.3 ± 0.4  - ± - 

 14 0.68  1.3 ± 0.5  - ± - 

 18 0.66  n/a ± n/a  - ± - 

GC600; 

 25 
                

 2 0.84  2.1 ± 0.9  n/a ± n/a  

 6 0.76  0.2 ± 0.2  - ± - 

 10 0.73  - ± -  - ± - 

 14 0.68  - ± -  0.1 ± 0.1 

 18 0.66  n/a ± n/a  0.2 ± 0.1 

GC600; 

 26 
                

 2 0.84  0.7 ± 0.4  n/a ± n/a  

 6 0.76  1.0 ± 0.1  - ± - 

 10 0.73  - ± -  - ± - 

 14 0.68  - ± -  0.2 ± 0.1 

 18 0.66  n/a ± n/a  0.0 ± 0.1 

GC600; 

 27 
                

 2 0.84  0.8 ± 0.3  n/a ± n/a  

 6 0.76  1.0 ± 0.2  - ± - 

 10 0.73  0.4 ± 0.1  - ± - 

 14 0.68  - ± -  - ± - 

GC767; 

 28 
                

 2 0.86  1.8 ± 0.8  n/a ± n/a  

 6 0.80  1.6 ± 0.5  - ± - 

 10 0.76  0.3 ± 0.2  - ± - 

 14 0.79  - ± -  - ± - 

 18 0.78  n/a ± n/a  0.6 ± 0.6 

GC767; 

 29 
                

 2 0.85  0.6 ± 0.2  n/a ± n/a  

 6 0.81  - ± -  - ± - 

Residence time is not determined for the bottom-most sediment section (+z transport direction) and for 

the top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were not 

solvable results are indicated by a ‘-‘ symbol. 



188 
 

Table A.3. Continued 

Site        Depth               Porosity             Residence time +z          Residence time -z                                      

core;     (cmbsf)                                                (days)                            (days) 

 10 0.77  - ± -  1.8 ± 0.1 

 14 0.79  - ± -  0.5 ± 0.1 

 18 0.78  n/a ± n/a  0.5 ± 0.1 

GC185; 

 30 
                

 2 0.84  0.5 ± 0.8  n/a ± n/a  

 6 0.82  0.2 ± 0.8  - ± - 

 10 0.80  - ± -  - ± - 

 14 0.83  - ± -  0.4 ± 5.2 

 18 0.80  n/a ± n/a  2.5 ± 5.6 

MC118; 

 31 
                

 2 0.87  0.3 ± 0.4  n/a ± n/a  

 6 0.78  - ± -  - ± - 

 10 0.74  - ± -  0.1 ± 0.1 

 14 0.70  - ± -  0.1 ± 0.1 

 18 0.69  n/a ± n/a  0.1 ± 0.1 

Taylor; 

 32 
                

 2 0.87  0.2 ± 0.4  n/a ± n/a  

 6 0.81  0.5 ± 0.3  - ± - 

 10 0.78  - ± -  - ± - 

 14 0.80  n/a ± n/a  0.6 ± 0.4 

GC600; 

 33 
                

 2 0.84  0.2 ± 0.1  n/a ± n/a  

 6 0.75  - ± -  - ± - 

 10 0.73  0.1 ± 0.1  0.1 ± 0.1 

 14 0.64  - ± -  - ± - 

 18 0.68  n/a ± n/a  0.1 ± 0.1 

GC600; 

 34 
                

 2 0.87  0.1 ± 0.5  n/a ± n/a  

 6 0.78  - ± -  - ± - 

 10 0.74  - ± -  0.0 ± 0.2 

 14 0.72  - ± -  0.1 ± 0.2 

 18 0.58  n/a ± n/a  0.1 ± 0.2 

MC118;           

Residence time is not determined for the bottom-most sediment section (+z transport direction) and for 

the top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were not 

solvable results are indicated by a ‘-‘ symbol. 
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Table A.3. Continued 

Site        Depth               Porosity             Residence time +z          Residence time -z                                      

core;     (cmbsf)                                                (days)                            (days) 

35                 

 2 0.81  0.2 ± 0.2  n/a ± n/a  

 6 0.73  0.1 ± 0.1  - ± - 

 10 0.76  0.1 ± 0.1  - ± - 

 14 0.72  0.1 ± 0.1  - ± - 

 18 0.72  n/a ± n/a  - ± - 

Residence time is not determined for the bottom-most sediment section (+z transport direction) and for 

the top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were not 

solvable results are indicated by a ‘-‘ symbol. 

 

  



190 
 

Table A.4. Vertical volumetric porefluid flux determined for sediment samples associated with 

sediment cores recovered from the Gulf of Mexico. Fluid flux is estimated by assuming transport 

toward the overlying ocean (+z) and also into the sediments (-z).Site name refers to that 

designated by BOEM and core number refers to the fluid flux rank variable used in Chapter 5 

(Fig. 5.2, Fig. 5.3, and 5.4) and Table A.1 and Table A.2 and Table A.3. 
Site                       Depth                        Fluid flux +z                              Fluid flux -z                                      

core;                    (cmbsf)                      (mL cm-2 day-1)                          (mL cm-2 day-1) 

GC600; 

1 
                

 2   - ± -  n/a ± n/a  

 6   - ± -  -38.4 ± 9.6 

 10   - ± -  -6.2 ± 6.8 

 14   - ± -  -27.3 ± 6.7 

 18   n/a ± n/a   -12.3 ± 3.2 

OC26; 

 2 
                

 2   - ± -  n/a ± n/a  

 6   - ± -  -20.5 ± 29.8 

 10   - ± -  -9.1 ± 2.0 

 14   - ± -  -17.5 ± 6.4 

 18   n/a ± n/a   -16.0 ± 12.3 

OC26; 

 3 
                

 2   - ± -  n/a ± n/a  

 6   - ± -  -13.1 ± 1.9 

 10   - ± -  -8.8 ± 2.4 

 14   n/a ± n/a   -15.3 ± 7.6 

BP463; 

 4 
                

 2   - ± -  n/a ± n/a  

 6   - ± -  -6.7 ± 0.7 

 10   - ± -  -7.8 ± 1.5 

 14   n/a ± n/a   -21.3 ± 18.8 

Taylor; 

 5 
                

 2   - ± -  n/a ± n/a  

 6   - ± -  -8.9 ± 3.4 

 10   - ± -  -8.5 ± 3.3 

 14   n/a ± n/a   -14.8 ± 6.2 

OC26; 

 6 
                

 2   - ± -  n/a ± n/a  

Fluid flux is not determined for the bottom-most sediment (+z transport direction) and for the top-most 

sediment section (-z transport direction) where initial 224Ra activities are potentially sourced outside of 

the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were not 

solvable results are indicated by a ‘-‘ symbol. 
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Table A.4. Continued 
Site                         Depth                      Fluid flux +z                              Fluid flux -z                                      

core;                      (cmbsf)                   (mL cm-2 day-1)                          (mL cm-2 day-1) 

 6   - ± -  -12.6 ± 3.2 

 10   - ± -  -8.8 ± 1.5 

 14   n/a ± n/a   -9.6 ± 1.7 

BP444; 

 7 
                

 2   - ± -  n/a ± n/a  

 6   - ± -  -7.1 ± 1.7 

 10   - ± -  -7.0 ± 2.0 

 14   - ± -  -15.5 ± 11.0 

 18   n/a ± n/a   -78.7 ± 24.6 

GC574; 

 8 
                

 2   - ± -  n/a ± n/a  

 6   1.6 ± 0.7  -60.3 ± 16.7 

 10   0.7 ± 0.2  - ± - 

 14   0.7 ± 0.4  -0.1 ± 0.0 

 18   n/a ± n/a   -0.4 ± 0.4 

MC253; 

 9 
                

 2   - ± -  n/a ± n/a  

 6   - ± -  -8.0 ± 1.0 

 10   - ± -  -6.5 ± 1.3 

 14   - ± -  -3.3 ± 0.8 

 18   n/a ± n/a   -7.6 ± 6.2 

GC574; 

 10 
                

 2   - ± -  n/a ± n/a  

 6   - ± -  -5.1 ± 0.3 

 10   - ± -  -7.1 ± 2.6 

 14   n/a ± n/a  -4.3 ± 0.4 

OC26; 

 11 
                

 2   0.2 ± 0.0  n/a ± n/a  

 6   - ± -  -0.9 ± 0.0 

 10   - ± -  -3.2 ± 0.9 

 14   - ± -  -2.4 ± 0.4 

 18   n/a ± n/a   -12.9 ± 17.1 

OC26;           

Fluid flux is not determined for the bottom-most sediment (+z transport direction) and for the top-most 

sediment section (-z transport direction) where initial 224Ra activities are potentially sourced outside of 

the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were not solvable 

results are indicated by a ‘-‘ symbol. 
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Table A.4. Continued 
Site                        Depth                      Fluid flux +z                              Fluid flux -z                                      

core;                      (cmbsf)                    (mL cm-2 day-1)                          (mL cm-2 day-1) 

12                 

 2   - ± -  n/a ± n/a  

 6   - ± -  -2.1 ± 0.5 

 10   - ± -  -2.5 ± 0.7 

 14   n/a ± n/a  -6.0 ± 6.9 

BP17; 

 13 
                

 2   0.2 ± 0.0  n/a ± n/a  

 6   - ± -  -0.7 ± 0.1 

 10   - ± -  -6.0 ± 5.8 

 14   n/a ± n/a  -5.2 ± 1.4 

GC186; 

 14 
                

 2   0.2 ± 0.0  n/a ± n/a  

 6   - ± -  -3.0 ± 0.4 

 10   n/a ± n/a  -4.3 ± 1.1 

GB480; 

 15 
                

 2   0.2 ± 0.0  n/a ± n/a  

 6   - ± -  -3.0 ± 0.4 

 10   - ± -  -2.2 ± 0.3 

 14   n/a ± n/a  -2.6 ± 0.6 

GC699; 

 16 
                

 2   0.1 ± 0.0  n/a ± n/a  

 6   - ± -  -1.9 ± 0.5 

 10   - ± -  -1.5 ± 0.2 

 14   n/a ± n/a  -2.1 ± 0.6 

GC699; 

 17 
                

 2   - ± -  n/a ± n/a  

 6   - ± -  -16.0 ± 16.9 

 10   17.5 ± 5.7  -6.1 ± 6.7 

 14   - ± -  - ± - 

 18   n/a ± n/a  - ± - 

GC185; 

 18 
                

 2   - ± -  n/a ± n/a  

Fluid flux is not determined for the bottom-most sediment (+z transport direction) and for the top-most 

sediment section (-z transport direction) where initial 224Ra activities are potentially sourced outside of the 

sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were not solvable results 

are indicated by a ‘-‘ symbol. 
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Table A.4. Continued 

Site                         Depth                       Fluid flux +z                              Fluid flux -z                                      

core;                      (cmbsf)                     (mL cm-2 day-1)                          (mL cm-2 day-1) 

 6   0.2 ± 0.0  -2.3 ± 0.2 

 10   0.2 ± 0.0  -0.6 ± 0.1 

 14   - ± -  -0.8 ± 0.1 

 18   n/a ± n/a   -1.5 ± 0.8 

Taylor; 

 19 
                

 2   - ± -  n/a ± n/a  

 6   - ± -  -3.7 ± 1.7 

 10   4.5 ± 3.3  -3.7 ± 1.6 

 14   1.7 ± 0.8  - ± - 

 18   n/a ± n/a  - ± - 

GC600; 

 20 
                

 2   - ± -  n/a ± n/a  

 6   0.2 ± 0.6  -0.4 ± 1.1 

 10   0.4 ± 0.1  - ± - 

 14   1.2 ± 0.8  - ± - 

 18   n/a ± n/a  - ± - 

GC767; 

 21 
                

 2   0.8 ± 0.4  n/a ± n/a  

 6   0.2 ± 0.0  - ± - 

 10   - ± -  - ± - 

 14   - ± -  -18.8 ± 9.2 

 18   n/a ± n/a  -14.5 ± 14.4 

BP24; 

 22 
                

 2   - ± -  n/a ± n/a  

 6   0.2 ± 0.1  -0.3 ± 0.1 

 10   1.6 ± 0.1  - ± - 

 14   n/a ± n/a  - ± - 

GC767; 

 23 
                

 2   - ± -  n/a ± n/a  

 6   1.2 ± 0.3  -0.5 ± 0.7 

 10   1.8 ± 0.5  - ± - 

 14   0.9 ± 0.8  - ± - 

 18   n/a ± n/a  - ± - 

Fluid flux is not determined for the bottom-most sediment (+z transport direction) and for the top-most 

sediment section (-z transport direction) where initial 224Ra activities are potentially sourced outside of the 

sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were not solvable results 

are indicated by a ‘-‘ symbol. 
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Table A.4. Continued 

Site                       Depth                        Fluid flux +z                              Fluid flux -z                                      

core;                     (cmbsf)                     (mL cm-2 day-1)                          (mL cm-2 day-1) 

GC600; 

 24 
                

 2   0.5 ± 0.0  n/a ± n/a  

 6   0.6 ± 0.1  - ± - 

 10   0.9 ± 0.1  - ± - 

 14   2.2 ± 1.0  - ± - 

 18   n/a ± n/a  - ± - 

GC600; 

 25 
                

 2   1.6 ± 1.3  n/a ± n/a  

 6   2.5 ± 0.6  - ± - 

 10   - ± -  - ± - 

 14   - ± -  -42.4 ± 46.9 

 18   n/a ± n/a  -11.0 ± 22.8 

GC600; 

 26 
                

 2   4.9 ± 3.2  n/a ± n/a  

 6   2.9 ± 0.4  - ± - 

 10   - ± -  - ± - 

 14   - ± -  -11.8 ± 5.8 

 18   n/a ± n/a  -164.4 ± 42.1 

GC600; 

 27 
                

 2   4.1 ± 9.9  n/a ± n/a  

 6   3.1 ± 0.8  - ± - 

 10   6.5 ± 1.5  - ± - 

 14   - ± -  - ± - 

GC767; 

 28 
                

 2   1.9 ± 1.1  n/a ± n/a  

 6   2.0 ± 1.1  - ± - 

 10   11.9 ± 2.9  - ± - 

 14   - ± -  - ± - 

 18   n/a ± n/a  -5.2 ± 8.9 

GC767; 

 29 
                

 2   5.9 ± 3.6  n/a ± n/a  

 6   - ± -  - ± - 

Fluid flux is not determined for the bottom-most sediment (+z transport direction) and for the top-most 

sediment section (-z transport direction) where initial 224Ra activities are potentially sourced outside of 

the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were not 

solvable results are indicated by a ‘-‘ symbol. 
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Table A.4. Continued 

Site                      Depth                        Fluid flux +z                                   Fluid flux -z                                      

core;                     (cmbsf)                     (mL cm-2 day-1)                              (mL cm-2 day-1) 

 10   - ± -  -1.7 ± 0.1 

 14   - ± -  -6.4 ± 2.5 

 18   n/a ± n/a  -6.5 ± 2.7 

GC185; 

 30 
                

 2   7.2 ± 4.7  n/a ± n/a  

 6   17.1 ± 6.8  - ± - 

 10   - ± -  - ± - 

 14   - ± -  -8.8 ± 35.2 

 18   n/a ± n/a  -1.3 ± 1.3 

MC118; 

 31 
                

 2   12.8 ± 2.9  n/a ± n/a  

 6   - ± -  - ± - 

 10   - ± -  -27.1 ± 5.8 

 14   - ± -  -26.0 ± 7.0 

 18   n/a ± n/a  19.2 ± 6.0 

Taylor; 

 32 
                

 2   20.9 ± 4.7  n/a ± n/a  

 6   6.9 ± 2.2  - ± - 

 10   - ± -  - ± - 

 14   n/a ± n/a  -5.8 ± 70.0 

GC600; 

 33 
                

 2   17.6 ± 3.2  n/a ± n/a  

 6   - ± -  - ± - 

 10   27.8 ± 7.5  -38.6 ± 8.4 

 14   - ± -  - ± - 

 18   n/a ± n/a  -30.1 ± 7.4 

GC600; 

 34 
                

 2   30.4 ± 7.9  n/a ± n/a  

 6   - ± -  - ± - 

 10   - ± -  -84.7 ± 22.8 

 14   - ± -  -38.4 ± 43.5 

 18   n/a ± n/a  -24.7 ± 6.0 

MC118;           

Fluid flux is not determined for the bottom-most sediment (+z transport direction) and for the top-most 

sediment section (-z transport direction) where initial 224Ra activities are potentially sourced outside of 

the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were not 

solvable results are indicated by a ‘-‘ symbol. 
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Table A.4. Continued 

Site                    Depth                           Fluid flux +z                                   Fluid flux -z                                      

core;                 (cmbsf)                        (mL cm-2 day-1)                              (mL cm-2 day-1) 

35                 

 2   83.8 ± 21.6  n/a ± n/a  

 6   12.8 ± 44.3  - ± - 

 10   30.3 ± 7.7  - ± - 

 14   30.8 ± 12.8  - ± - 

 18   n/a ± n/a  - ± - 

Fluid flux is not determined for the bottom-most sediment (+z transport direction) and for the top-most 

sediment section (-z transport direction) where initial 224Ra activities are potentially sourced outside of 

the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were not 

solvable results are indicated by a ‘-‘ symbol. 
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Figure A.2. Calibration curves and counting efficiency (slope) for RaDeCC analysis of 

sediment-coated filters. Standards were prepared using the method of standard addition for 

systems (A) 1, (B) 2, (C) 3, (D) 4. Note that calibrations were applied only for sediment-coated 

filter analysis relevant to analysis discussed in Chapter 4 and Chapter 5. Separate calibrations 

were performed for analysis of Mn-fibers. 
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Figure A.3. Calibration curves and counting efficiency (slope) for RaDeCC analysis of 

sediment-coated filters. Standards were prepared using the method of standard addition for 

systems (A) 5, (B) 6, (C) 7, (D) 8. Note that calibrations were applied only for sediment-coated 

filter analysis relevant to analysis discussed in Chapter 4 and Chapter 5. Separate calibrations 

were performed for analysis of Mn-fibers. 
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Table A.5. Surface-sorbed 224Ra and aqueous activities measured at sea and at equilibrium 

for samples recovered from Guaymas Basin. Dive number refers to the HOV Alvin dive 

number during cruise AT37-06 and core number refers to the fluid flux rank variable used 

in Chapter 5 (Figure 5.4).  
Site;    Depth              ?Initial                           **Initial                   ?Equilibrium             **Equilibrium      

core   (cmbsf)           (dpm g-1)                        (dpm g-1)                  (dpm L-1)                      (dpm L-1) 

4870;  

1 
                

 1 2.6 ± 0.3  16.0 ± 7.7  3.2 ± 0.3  31.5 ± 10.5 

 3 0.8 ± 0.1  16.2 ± 1.2  2.2 ± 0.2  32.3 ± 7.1 

 5 1.8 ± 0.2  17.0 ± 4.7  2.8 ± 0.2  24.5 ± 9.3 

 7 2.3 ± 0.2  26.3 ± 8.4  1.2 ± 0.1  31.3 ± 4.0 

 9 3.1 ± 0.3  23.0 ± 9.1  3.9 ± 0.4  23.3 ± 12.9 

 12 0.6 ± 0.1  14.4 ± 1.9  0.8 ± 0.1  21.1 ± 2.7 

4864; 

 2 
 

 1 3.9 ± 0.2  32.3 ± 12.1  3.9 ± 0.2  35.6 ± 12.3 

 3 1.8 ± 0.2  42.0 ± 5.6  2.1 ± 0.2  41.1 ± 7.1 

 5 5.3 ± 0.5  31.7 ± 17.2  4.4 ± 0.4  29.7 ± 14.6 

 7 1.2 ± 0.1  28.3 ± 3.8  1.0 ± 0.1  24.0 ± 3.3 

 9 0.9 ± 0.1  10.4 ± 2.8  0.7 ± 0.0  9.9 ± 2.3 

 12 0.7 ± 0.1  7.8 ± 2.2  0.8 ± 0.1  7.9 ± 2.7 

 16 0.5 ± 0.1  6.8 ± 1.6  0.5 ± 0.0  7.8 ± 1.6 

4869;  

3 
                

 1 5.0 ± 0.2  38.1 ± 14.4  6.1 ± 0.1  46.7 ± 19.2 

 3 1.9 ± 0.1  28.9 ± 6.1  1.8 ± 0.1  36.5 ± 5.8 

 5 1.0 ± 0.1  16.1 ± 2.9  1.4 ± 0.1  18.9 ± 4.3 

 7 1.4 ± 0.1  11.3 ± 4.4  1.7 ± 0.2  16.4 ± 5.6 

 9 0.8 ± 0.1  12.4 ± 2.3  1.1 ± 0.1  16.6 ± 3.7 

 12 1.2 ± 0.1  9.7 ± 3.8  1.4 ± 0.1  12.8 ± 4.7 

 16 0.7 ± 0.1  10.5 ± 2.1  0.7 ± 0.0  12.5 ± 2.3 

4861;  

4 
                

 1 4.8 ± 0.7  36.5 ± 14.9  5.7 ± 0.5  45.5 ± 18.5 

 3 2.0 ± 0.3  28.8 ± 7.1  2.0 ± 0.2  33.2 ± 6.7 

 5 1.1 ± 0.2  14.6 ± 4.0  0.7 ± 0.1  14.1 ± 2.4 

 7 0.7 ± 0.2  10.8 ± 2.5  0.8 ± 0.1  9.3 ± 2.7 

 9 1.0 ± 0.2  8.2 ± 3.8  0.8 ± 0.1  9.7 ± 2.7 

 12 0.6 ± 0.1  8.4 ± 1.7  0.8 ± 0.1  10.2 ± 2.6 

 16 0.8 ± 0.1  6.7 ± 2.3  0.9 ± 0.1  10.4 ± 3.0 
?Activities of 224Ra measured using sediment-coated filters; **Corrected aqueous 224Ra activities. 

Corrections described in Chapter 2.  
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Table A.5. Continued 

Site;    Depth              ?Initial                           **Initial                   ?Equilibrium             **Equilibrium      

core   (cmbsf)           (dpm g-1)                        (dpm g-1)                  (dpm L-1)                      (dpm L-1) 

4867;  

5 
                

 1 11.6 ± 0.6  74.9 ± 34.8  12.3 ± 0.5  83.0 ± 38.8 

 3 1.8 ± 0.1  53.1 ± 5.6  1.7 ± 0.2  57.9 ± 5.6 

 5 0.8 ± 0.1  12.8 ± 2.7  0.6 ± 0.1  12.6 ± 2.1 

 7 0.8 ± 0.1  9.6 ± 2.4  0.9 ± 0.1  9.7 ± 2.9 

 9 0.9 ± 0.1  8.2 ± 2.9  1.0 ± 0.1  9.5 ± 3.2 

 12 0.5 ± 0.0  7.4 ± 1.5  0.6 ± 0.0  8.5 ± 1.9 

 16 0.5 ± 0.1  5.7 ± 1.7  0.6 ± 0.0  7.0 ± 1.9 

4866;  

6 
                

 1 3.0 ± 0.2  25.4 ± 8.9  3.7 ± 0.1  33.5 ± 11.5 

 3 1.7 ± 0.2  21.2 ± 5.0  2.0 ± 0.1  25.0 ± 6.4 

 5 1.0 ± 0.1  13.1 ± 3.6  0.7 ± 0.0  14.3 ± 2.2 

 7 0.8 ± 0.1  9.7 ± 2.4  1.0 ± 0.1  9.2 ± 3.1 

 9 0.7 ± 0.1  8.1 ± 2.1  0.7 ± 0.1  9.2 ± 2.3 

 12 0.7 ± 0.1  7.3 ± 2.2  0.7 ± 0.0  7.5 ± 2.1 

 16 0.6 ± 0.1  7.1 ± 1.8  0.5 ± 0.0  7.2 ± 1.7 

4862;  

7 
                

 1 8.0 ± 0.8  52.1 ± 24.6  9.3 ± 0.8  63.7 ± 30.4 

 3 1.5 ± 0.2  38.0 ± 5.1  1.5 ± 0.1  46.5 ± 5.0 

 5 0.9 ± 0.1  11.3 ± 2.8  1.0 ± 0.1  13.2 ± 3.4 

 7 0.7 ± 0.1  8.4 ± 2.1  0.8 ± 0.1  10.2 ± 2.6 

 9 0.7 ± 0.1  7.3 ± 2.3  0.8 ± 0.1  8.5 ± 2.5 

 12 0.6 ± 0.1  7.7 ± 2.1  0.6 ± 0.1  7.6 ± 2.0 

 16 0.7 ± 0.1  7.6 ± 2.4  0.6 ± 0.0  6.9 ± 1.8 

4861; 

 8 
                

 1 5.2 ± 0.5  47.8 ± 14.4  8.0 ± 0.5  68.3 ± 25.3 

 3 3.9 ± 0.4  36.5 ± 12.8  3.6 ± 0.3  53.5 ± 11.7 

 5 1.4 ± 0.2  25.9 ± 4.3  2.0 ± 0.2  28.1 ± 6.6 

 7 1.7 ± 0.4  12.9 ± 6.6  1.5 ± 0.2  21.2 ± 5.2 

 9 0.8 ± 0.2  10.0 ± 2.1  1.9 ± 0.2  21.1 ± 6.1 

 12 0.8 ± 0.2  6.6 ± 1.7  2.0 ± 0.2  22.6 ± 6.5 

 16 1.0 ± 0.2  7.2 ± 2.8  1.9 ± 0.1  22.8 ± 5.9 

4862; 

 9 
                

?Activities of 224Ra measured using sediment-coated filters; **Corrected aqueous 224Ra activities. 

Corrections described in Chapter 2. 
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Table A.5. Continued 

Site;    Depth              ?Initial                           **Initial                   ?Equilibrium             **Equilibrium      

core   (cmbsf)           (dpm g-1)                        (dpm g-1)                  (dpm L-1)                      (dpm L-1) 

 1 8.3 ± 0.6  108.8 ± 26.3  7.5 ± 0.4  154.7 ± 23.8 

 3 12.8 ± 1.2  91.1 ± 33.8  18.7 ± 1.3  125.3 ± 60.1 

 5 5.1 ± 0.3  74.3 ± 15.0  5.6 ± 0.5  115.3 ± 18.5 

 7 4.3 ± 0.2  42.5 ± 12.4  5.0 ± 0.5  51.3 ± 16.6 

 9 2.3 ± 0.2  35.1 ± 7.1  2.4 ± 0.2  44.4 ± 7.9 

 12 3.3 ± 0.3  28.3 ± 9.4  3.9 ± 0.3  33.6 ± 12.5 

 16 2.3 ± 0.2  29.7 ± 7.1  2.2 ± 0.2  36.0 ± 7.4 

4872;  

10 
                

 1 4.3 ± 0.4  22.4 ± 11.3  6.0 ± 0.6  44.9 ± 20.1 

 3 0.8 ± 0.1  17.1 ± 1.4  1.5 ± 0.0  32.3 ± 4.8 

 5 0.6 ± 0.1  4.9 ± 1.8  0.6 ± 0.0  11.8 ± 2.0 

 7 0.5 ± 0.0  4.0 ± 1.0  0.8 ± 0.0  8.8 ± 2.6 

 9 0.4 ± 0.0  2.7 ± 0.6  0.8 ± 0.0  10.6 ± 2.5 

 12 0.5 ± 0.0  4.1 ± 0.7  1.1 ± 0.1  9.9 ± 3.4 

 16 0.7 ± 0.1  5.0 ± 2.1  0.6 ± 0.0  10.1 ± 2.1 

4872;  

11 
                

 1 6.7 ± 0.5  42.5 ± 20.0  6.9 ± 0.4  53.5 ± 22.1 

 3 1.4 ± 0.1  30.0 ± 3.2  2.1 ± 0.2  38.3 ± 6.9 

 5 0.5 ± 0.0  7.9 ± 1.3  0.7 ± 0.0  13.5 ± 2.2 

 7 0.6 ± 0.0  4.7 ± 1.9  0.6 ± 0.0  10.9 ± 2.1 

 9 0.7 ± 0.0  4.4 ± 0.5  1.4 ± 0.1  10.4 ± 4.6 

 12 0.4 ± 0.0  3.8 ± 1.1  0.5 ± 0.0  11.5 ± 1.8 

 16 0.7 ± 0.0  4.7 ± 1.5  0.9 ± 0.0  8.7 ± 2.9 

4869; 

12 
                

 1 1.8 ± 0.2  14.0 ± 4.2  3.2 ± 0.3  26.1 ± 10.5 

 3 1.2 ± 0.1  13.2 ± 3.6  1.3 ± 0.1  22.9 ± 4.1 

 5 1.1 ± 0.1  11.0 ± 3.2  1.4 ± 0.1  13.9 ± 4.6 

 7 0.8 ± 0.1  9.4 ± 2.4  0.9 ± 0.1  12.1 ± 2.9 

 9 0.7 ± 0.1  7.1 ± 2.3  0.8 ± 0.1  9.6 ± 2.7 

 12 0.5 ± 0.0  6.4 ± 1.3  0.7 ± 0.1  9.0 ± 2.4 

4871; 

 13 
                

 1 3.0 ± 0.3  20.6 ± 8.8  3.5 ± 0.1  28.9 ± 10.9 

 3 1.1 ± 0.1  15.2 ± 2.8  1.4 ± 0.1  26.2 ± 4.4 

 5 0.9 ± 0.1  7.7 ± 1.2  1.7 ± 0.1  21.2 ± 5.6 
?Activities of 224Ra measured using sediment-coated filters; **Corrected aqueous 224Ra activities. 

Corrections described in Chapter 2. 
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Table A.5. Continued 

Site;    Depth                ?Initial                           **Initial                   ?Equilibrium             **Equilibrium      

core   (cmbsf)              (dpm g-1)                       (dpm g-1)                 (dpm L-1)                      (dpm L-1) 

 7 1.3 ± 0.1  6.7 ± 2.5  2.2 ± 0.2  22.0 ± 7.2 

 9 1.0 ± 0.1  7.9 ± 2.0  1.6 ± 0.1  22.4 ± 5.2 

 12 1.1 ± 0.1  7.4 ± 2.1  1.8 ± 0.1  20.4 ± 5.9 

4868;  

14 
                

 1 4.3 ± 0.4  26.8 ± 10.8  8.0 ± 0.7  71.1 ± 26.1 

 3 2.0 ± 0.2  23.6 ± 4.2  4.0 ± 0.1  55.3 ± 12.6 

 5 1.6 ± 0.2  13.3 ± 4.8  2.0 ± 0.1  28.0 ± 6.3 

 7 0.8 ± 0.1  10.1 ± 2.1  1.1 ± 0.1  15.0 ± 3.4 

 9 0.6 ± 0.0  7.9 ± 1.5  0.7 ± 0.1  12.7 ± 2.4 

 12 1.1 ± 0.1  7.4 ± 2.9  1.4 ± 0.1  11.4 ± 4.6 

 16 0.6 ± 0.1  8.4 ± 1.7  0.7 ± 0.0  12.7 ± 2.4 

4871;  

15 
                

 1 2.8 ± 0.3  27.3 ± 5.3  6.0 ± 0.5  63.3 ± 19.5 

 3 3.6 ± 0.3  25.7 ± 10.0  4.7 ± 0.3  61.9 ± 15.1 

 5 2.8 ± 0.3  23.9 ± 6.3  5.0 ± 0.4  47.2 ± 16.1 

 7 1.5 ± 0.1  16.5 ± 3.8  2.2 ± 0.2  38.3 ± 7.5 

 9 1.5 ± 0.2  11.2 ± 3.8  2.5 ± 0.2  22.4 ± 8.0 

 12 0.7 ± 0.1  8.3 ± 1.9  1.0 ± 0.1  22.0 ± 3.2 

 16 0.9 ± 0.1  5.6 ± 1.3  2.1 ± 0.2  18.3 ± 7.0 

4868;  

16 
                

 1 3.6 ± 0.4  17.0 ± 3.4  10.2 ± 0.4  73.4 ± 32.3 

 3 2.0 ± 0.1  15.7 ± 6.0  2.2 ± 0.1  54.3 ± 6.9 

 5 1.2 ± 0.1  14.0 ± 3.5  1.4 ± 0.1  17.1 ± 4.4 

 7 0.7 ± 0.1  9.3 ± 1.8  0.8 ± 0.0  11.8 ± 2.6 

 9 0.8 ± 0.1  7.3 ± 2.2  0.8 ± 0.1  9.7 ± 2.7 

4872;  

17 
                

 1 3.3 ± 0.3  12.8 ± 4.9  8.6 ± 0.4  67.2 ± 27.1 

 3 1.2 ± 0.1  9.8 ± 2.2  2.8 ± 0.1  49.1 ± 8.7 

 5 0.5 ± 0.1  7.4 ± 1.0  1.1 ± 0.1  24.8 ± 3.4 

 7 1.3 ± 0.1  6.2 ± 2.9  2.4 ± 0.2  17.2 ± 7.8 

 9 0.6 ± 0.1  5.5 ± 1.4  0.9 ± 0.1  18.9 ± 2.8 

 12 0.5 ± 0.1  4.5 ± 0.4  1.5 ± 0.1  14.6 ± 4.8 

 16 0.8 ± 0.1  4.3 ± 2.0  1.3 ± 0.0  16.8 ± 4.2 

4862;                  
?Activities of 224Ra measured using sediment-coated filters; **Corrected aqueous 224Ra activities. 

Corrections described in Chapter 2. 
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Table A.5. Continued 

Site;    Depth                ?Initial                           **Initial                   ?Equilibrium             **Equilibrium      

core   (cmbsf)              (dpm g-1)                       (dpm g-1)                 (dpm L-1)                      (dpm L-1) 

18                 

 1 2.3 ± 0.2  11.8 ± 2.4  5.1 ± 0.5  40.5 ± 16.9 

 3 1.5 ± 0.1  10.7 ± 4.3  1.8 ± 0.1  30.5 ± 5.5 

 5 0.8 ± 0.1  10.2 ± 2.4  0.9 ± 0.1  13.6 ± 2.8 

 7 0.7 ± 0.1  7.2 ± 2.0  0.8 ± 0.1  9.3 ± 2.7 

 9 0.6 ± 0.1  6.8 ± 1.7  0.7 ± 0.0  9.0 ± 2.1 

 12 0.7 ± 0.1  6.7 ± 2.1  0.8 ± 0.1  8.7 ± 2.6 

4871; 

 19 
                

 1 4.0 ± 0.4  18.8 ± 6.2  8.9 ± 0.2  76.5 ± 27.9 

 3 2.1 ± 0.2  16.9 ± 4.3  4.0 ± 0.2  61.7 ± 12.7 

 5 1.6 ± 0.2  15.4 ± 3.7  2.7 ± 0.1  36.5 ± 8.5 

 7 1.9 ± 0.2  15.1 ± 5.0  2.5 ± 0.2  25.6 ± 8.4 

 9 1.3 ± 0.1  11.9 ± 4.1  1.2 ± 0.1  17.3 ± 3.9 

 12 0.4 ± 0.0  7.2 ± 1.0  0.6 ± 0.0  10.7 ± 2.0 

 16 0.5 ± 0.1  3.5 ± 1.0  0.9 ± 0.1  8.7 ± 2.8 
?Activities of 224Ra measured using sediment-coated filters; **Corrected aqueous 224Ra activities. 

Corrections described in Chapter 2. 
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Table A.6. Porefluid residence time and porosity for sediment samples associated with 

sediment cores recovered from Guaymas Basin. Residence time is estimated by assuming 

transport toward the overlying ocean (+z) and also into the sediments (-z).Dive number refers 

to the HOV Alvin dive number during cruise AT37-06 and core number refers to the fluid flux 

rank variable used in Chapter 5 (Figure 5.4).  

Site             Depth           Porosity             Residence time +z          Residence time -z                                      

core;           (cmbsf)                                           (days)                            (days) 
 

4870;  

1 
                

 1   0.87  - ± -  n/a ± n/a     

 3   0.87  - ± -  0.1 ± 10.9     

 5   0.83  21.0 ± 0.3  0.5 ± 1.7     

 7   0.83  2.5 ± 0.4  5.2 ± 1.7     

 9   0.81  14.4 ± 1.4  21.0 ± 0.6     

 12   0.80  4.1 ± 0.3  21.0 ± 2.4     

4864; 

 2 
 

 1   0.86  21.0 ± 0.6  n/a ± n/a     

 3   0.86  20.5 ± 0.6  20.2 ± 0.3     

 5   0.83  13.8 ± 2.5  10.9 ± 0.3     

 7   0.81  21.0 ± 0.0  3.3 ± 0.2     

 9   0.79  20.0 ± 0.4  19.7 ± 0.1     

 12   0.83  12.4 ± 1.3  21.0 ± 2.2     

 16   0.82  n/a ± n/a  21.0 ± 0.0     

4869;  

3 
                

 1   0.79  3.6 ± 3.8  n/a ± n/a     

 3   0.79  4.9 ± 0.4  21.0 ± 0.2     

 5   0.80  4.8 ± 1.3  21.0 ± 0.1     

 7   0.80  - ± -  - ± -     

 9   0.80  2.4 ± 1.8  1.1 ± 0.6     

 12   0.80  - ± -  - ± -     

 16   0.80  n/a ± n/a  0.4 ± 6.1     

4861;  

4 
                

 1   0.86  3.0 ± 4.2  n/a ± n/a     

 3   0.86  7.0 ± 0.5  18.8 ± 9.9     

 5   0.83  20.5 ± 0.2  7.2 ± 0.2     

 7   0.81  17.6 ± 6.2  21.0 ± 0.5     

 9   0.79  - ± -  0.5 ± 1.6     

Residence time is not determined for the bottom-most sediment section (+z transport direction) and for 

the top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘ symbol. 
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Table A.6. Continued 

Site        Depth               Porosity             Residence time +z          Residence time -z                                      

core;     (cmbsf)                                                (days)                            (days) 

 12   0.83  3.2 ± 5.3  0.5 ± 6.0     

 16   0.82  n/a ± n/a  - ± -     

4867;  

5 
                

 1   0.94  6.2 ± 0.3  n/a ± n/a     

 3   0.94  11.1 ± 0.1  21.0 ± 0.2     

 5   0.90  20.6 ± 0.8  21.0 ± 0.0     

 7   0.86  9.8 ± 0.3  21.0 ± 0.6     

 9   0.86  2.3 ± 0.5  21.0 ± 0.5     

 12   0.85  2.9 ± 0.8  - ± -     

 16   0.84  n/a ± n/a  - ± -     

4866;  

6 
                

 1   0.88  2.1 ± 7.7  n/a ± n/a     

 3   0.88  5.6 ± 0.4  21.0 ± 0.5     

 5   0.90  6.3 ± 0.4  21.0 ± 0.1     

 7   0.90  17.8 ± 0.5  12.78 ± 1.1     

 9   0.86  2.3 ± 0.7  21.0 ± 0.4     

 12   0.82  2.5 ± 1.7  21.0 ± 0.9     

 16   0.82  n/a ± n/a  21.0 ± 6.4     

4862;  

7 
                

 1   0.86  3.9 ± 0.4  n/a ± n/a     

 3   0.86  7.1 ± 0.1  21.0 ± 0.5     

 5   0.83  4.5 ± 5.0  21.0 ± 0.1     

 7   0.81  2.2 ± 0.5  21.0 ± 1.1     

 9   0.83  - ± -  - ± -     

 12   0.83  15.4 ± 0.8  14.0 ± 1.0     

 16   0.82  n/a ± n/a  5.6 ± 5.6     

4861;  

8 
                

 1   0.79  2.2 ± 0.5  n/a ± n/a     

 3   0.80  2.4 ± 1.5  - ± -     

 5   0.82  9.3 ± 0.4  21.0 ± 0.3     

 7   0.82  1.5 ± 1.2  21.0 ± 0.1     

 9   0.73  1.4 ± 0.4  - ± -     

Residence time is not determined for the bottom-most sediment section (+z transport direction) and for 

the top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘symbol. 
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Table A.6. Continued 

Site        Depth               Porosity             Residence time +z          Residence time -z                                      

core;     (cmbsf)                                                (days)                            (days) 

 12   0.76  - ± -  - ± -     

 16   0.80  n/a ± n/a  0.2 ± 0.5     

4862;  

9 
                

 1   0.79  1.6 ± 0.4  n/a ± n/a     

 3   0.80  2.0 ± 4.3  - ± -     

 5   0.82  2.9 ± 1.2  - ± -     

 7   0.82  2.9 ± 11.1  21.0 ± 0.3     

 9   0.73  2.7 ± 0.3  - ± -     

 12   0.76  0.8 ± 2.7  21.0 ± 6.2     

 16   0.80  n/a ± n/a  21.0 ± 5.6     

4872;  

10 
                

 1   0.86  1.1 ± 1.0  n/a ± n/a     

 3   0.86  3.0 ± 0.1  - ± -     

 5   0.80  0.6 ± 17.0  21.0 ± 0.0     

 7   0.73  1.2 ± 1.7  - ± -     

 9   0.73  - ± -  - ± -     

 12   0.72  - ± -  2.8 ± 0.9     

 16   0.72  n/a ± n/a  18.4 ± 4.7     

4872;  

11 
                

 1   0.88  3.8 ± 0.4  n/a ± n/a     

 3   0.88  6.5 ± 0.1  21.0 ± 0.4     

 5   0.86  2.3 ± 17.0  21.0 ± 0.0     

 7   0.86  0.3 ± 2.1  - ± -     

 9   0.84  0.5 ± 26.3  - ± -     

 12   0.82  - ± -  - ± -     

 16   0.80  n/a ± n/a  0.3 ± 0.9     

4869;  

12 
                

 1   0.78  0.3 ± 11.4  n/a ± n/a     

 3   0.78  1.0 ± 0.8  - ± -     

 5   0.85  2.1 ± 1.1  - ± -     

 7   0.85  3.1 ± 0.5  - ± -     

 9   0.84  1.2 ± 0.6  - ± -     

Residence time is not determined for the bottom-most sediment section (+z transport direction) and for 

the top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘ symbol. 
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Table A.6. Continued 

Site        Depth               Porosity             Residence time +z          Residence time -z                                      

core;     (cmbsf)                                                (days)                            (days) 

 12   0.84  n/a ± n/a  - ± -     

4871;  

13 
                

 1   0.76  2.5 ± 0.3  n/a ± n/a     

 3   0.76  2.6 ± 0.3  - ± -     

 5   0.76  0.4 ± 1.2  - ± -     

 7   0.74  - ± -  - ± -     

 9   0.73  0.2 ± 4.4  0.4 ± 1.9     

 12   0.73  n/a ± n/a  - ± -     

4868;  

14 
                

 1   0.89  0.4 ± 1.8  n/a ± n/a     

 3   0.89  1.4 ± 2.9  - ± -     

 5   0.82  1.0 ± 3.9  - ± -     

 7   0.82  1.8 ± 108.4  - ± -     

 9   0.82  0.5 ± 1.2  - ± -     

 12   0.82  n/a ± n/a  0.6 ± 5.4     

4871;  

15 
                

 1   0.87  0.2 ± 3.0  n/a ± n/a     

 3   0.87  0.3 ± 2.4  - ± -     

 5   0.87  1.4 ± 3.6  - ± -     

 7   0.87  1.1 ± 1.9  - ± -     

 9   0.84  1.2 ± 2.0  - ± -     

 12   0.82  0.6 ± 8.5  - ± -     

 16   0.79  n/a ± n/a  - ± -     

4868;  

16 
                

 1   0.79  0.1 ± 5.0  n/a ± n/a     

 3   0.78  0.2 ± 2.0  - ± -     

 5   0.76  4.5 ± 0.7  - ± -     

 7   0.75  2.8 ± 4.4  21.0 ± 0.3     

 9   0.73  n/a ± n/a  - ± -     

4872;  

17 
                

 1   0.88  0.3 ± 20.0  n/a ± n/a     

 3   0.88  0.3 ± 30.2  - ± -     

Residence time is not determined for the bottom-most sediment section (+z transport direction) and for 

the top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘ symbol. 
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Table A.6. Continued 

Site        Depth               Porosity                    Residence time +z          Residence time -z                                      

core;     (cmbsf)                                                (days)                            (days) 

 5   0.74  0.3 ± 22.2  - ± -     

 7   0.74  0.3 ± 1.9  - ± -     

 9   0.76  0.4 ± 10.4  - ± -     

 12   0.77  - ± -  - ± -     

 16   0.78  n/a ± n/a  0.4 ± 0.5     

4862;  

18 
                

 1   0.86  0.2 ± 3.4  n/a ± n/a     

 3   0.86  0.1 ± 5.0  - ± -     

 5   0.83  3.2 ± 1.0  - ± -     

 7   0.79  0.8 ± 3.8  21.0 ± 0.2     

 9   0.79  0.2 ± 4.4  - ± -     

 12   0.83  n/a ± n/a  - ± -     

4871;  

19 
                

 1   0.86  0.2 ± 3.7  n/a ± n/a     

 3   0.86  0.2 ± 6.2  - ± -     

 5   0.86  0.1 ± 10.8  - ± -     

 7   0.85  1.3 ± 0.8  - ± -     

 9   0.84  3.2 ± 1.8  - ± -     

 12   0.82  3.4 ± 2.0  21 ± 5.3     

 16   0.80  n/a ± n/a  - ± -     

Residence time is not determined for the bottom-most sediment section (+z transport direction) and for 

the top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘ symbol. 
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Table A.7. Vertical volumetric porefluid flux determined for sediment samples associated with 

sediment cores recovered from the Gulf of Mexico. Fluid flux is estimated by assuming 

transport toward the overlying ocean (+z) and also into the sediments (-z). Dive number refers 

to the HOV Alvin dive number during cruise AT37-06 and core number refers to the fluid flux 

rank variable used in Chapter 5 (Figure 5.4).  

Site             Depth                        Fluid flux +z                                  Fluid flux -z                                      

core;           (cmbsf)                       (mL cm-2 day-1)                           (mL cm-2 day-1) 
 

4870;  

1 
               

 1     - ± -  n/a ± n/a     

 3     - ± -  -28.2 ± 5.9     

 5     0.1 ± 0.1  -3.3 ± 0.9     

 7     0.7 ± 0.2  -0.3 ± 0.9     

 9     0.1 ± 0.7  -0.1 ± 0.3     

 12     0.8 ± 0.2  -0.2 ± 1.3     

4864; 

 2 
 

 1     0.1 ± 0.6  n/a ± n/a     

 3     0.1 ± 0.7  -0.1 ± 0.3     

 5     0.1 ± 2.8  -0.2 ± 0.3     

 7     0.1 ± 0.0  -0.5 ± 0.2     

 9     0.1 ± 0.4  -0.1 ± 0.1     

 12     0.3 ± 1.4  -0.2 ± 2.4     

 16     n/a ± n/a  -0.2 ± 2.0     

4869;  

3 
                

 1     0.4 ± 4.1  n/a ± n/a     

 3     0.3 ± 0.4  -0.1 ± 0.2     

 5     0.3 ± 1.4  -0.1 ± 0.1     

 7     - ± -  - ± -     

 9     0.7 ± 1.9  -1.5 ± 0.6     

 12     - ± -  - ± -     

 16     n/a ± n/a  -8.9 ± 4.0     

4861;  

4 
                

 1     0.6 ± 4.6  n/a ± n/a     

 3     0.2 ± 0.5  -0.1 ± 10.9     

 5     0.1 ± 0.3  -0.1 ± 0.2     

 7     0.1 ± 6.8  -0.2 ± 0.5     

 9     - ± -  -0.1 ± 1.7     

Fluid flux is not determined for the bottom-most sediment section (+z transport direction) and for the 

top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘symbol. 
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Table A.7. Continued 

Site             Depth                        Fluid flux +z                                  Fluid flux -z                                      

core;           (cmbsf)                       (mL cm-2 day-1)                           (mL cm-2 day-1) 
 

 12     1.0 ± 0.7  -7.3 ± 3.9     

 16     n/a ± n/a  - ± -     

4867;  

5 
                

 1     0.3 ± 0.4  n/a ± n/a     

 3     0.2 ± 0.1  -0.1 ± 0.2     

 5     0.1 ± 0.9  -0.1 ± 0.0     

 7     0.2 ± 0.3  -0.1 ± 0.6     

 9     0.8 ± 0.5  -0.1 ± 0.6     

 12     1.2 ± 0.8  - ± -     

 16     n/a ± n/a  - ± -     

4866;  

6 
                

 1     0.8 ± 8.4  n/a ± n/a     

 3     0.3 ± 0.5  -0.1 ± 0.6     

 5     0.3 ± 0.4  -0.1 ± 0.1     

 7     0.1 ± 0.6  -0.1 ± 1.2     

 9     0.8 ± 0.8  -0.1 ± 0.4     

 12     1.3 ± 1.9  -0.2 ± 1.0     

 16     n/a ± n/a  -0.1 ± 3.6     

4862;  

7 
                

 1     0.4 ± 0.5  n/a ± n/a     

 3     0.2 ± 0.1  -0.1 ± 0.3     

 5     0.4 ± 5.5  -0.1 ± 0.0     

 7     0.8 ± 0.5  -0.1 ± 0.4     

 9     - ± -  - ± -     

 12     0.2 ± 0.8  -0.2 ± 1.1     

 16     n/a ± n/a  -0.6 ± 2.8     

4861;  

8 
                

 1     0.7 ± 0.6  n/a ± n/a     

 3     0.7 ± 1.6  - ± -     

 5     0.2 ± 0.5  -0.1 ± 0.3     

 7     1.1 ± 1.4  -0.1 ± 0.1     

 9     1.1 ± 1.0  - ± -     

Fluid flux is not determined for the bottom-most sediment section (+z transport direction) and for the 

top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘ symbol. 
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Table A.7. Continued 

Site             Depth                        Fluid flux +z                                  Fluid flux -z                                      

core;           (cmbsf)                       (mL cm-2 day-1)                           (mL cm-2 day-1) 
 

 12     - ± -  - ± -     

 16     n/a ± n/a  -18.1 ± 6.7     

4862;  

9 
                

 1     1.0 ± 0.5  n/a ± n/a     

 3     0.8 ± 4.7  - ± -     

 5     0.6 ± 1.4  - ± -     

 7     0.6 ± 12.2  -0.1 ± 0.3     

 9     0.5 ± 0.3  - ± -     

 12     4.0 ± 3.0  -0.1 ± 6.9     

 16     n/a ± n/a  -0.1 ± 0.6     

4872;  

10 
                

 1     1.6 ± 1.1  n/a ± n/a     

 3     0.6 ± 0.2  - ± -     

 5     2.5 ± 18.7  -0.1 ± 0.0     

 7     1.2 ± 1.9  - ± -     

 9     - ± -  - ± -     

 12     - ± -  -2.7 ± 33.5     

 16     n/a ± n/a  -1.0 ± 1.8     

4872;  

11 
                

 1     0.5 ± 0.4  n/a ± n/a     

 3     0.3 ± 0.1  -0.1 ± 0.4     

 5     0.8 ± 0.5  -0.1 ± 0.0     

 7     6.2 ± 2.4  - ± -     

 9     3.6 ± 28.9  - ± -     

 12     - ± -  - ± -     

 16     n/a ± n/a  -11.0 ± 12.6     

4869;  

12 
                

 1     4.8 ± 12.6  n/a ± n/a     

 3     1.5 ± 0.8  - ± -     

 5     0.8 ± 1.2  - ± -     

 7     0.6 ± 0.5  - ± -     

 9     1.4 ± 0.7  - ± -     

Fluid flux is not determined for the bottom-most sediment section (+z transport direction) and for the 

top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘ symbol. 
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Table A.7. Continued 

Site             Depth                        Fluid flux +z                                  Fluid flux -z                                      

core;           (cmbsf)                       (mL cm-2 day-1)                           (mL cm-2 day-1) 
 

 12     n/a ± n/a  - ± -     

4871;  

13 
                

 1     0.6 ± 0.4  n/a ± n/a     

 3     0.6 ± 0.4  - ± -     

 5     4.0 ± 1.4  - ± -     

 7     - ± -  - ± -     

 9     8.7 ± 4.9  -3.7 ± 2.1     

 12     n/a ± n/a  - ± -     

4868;  

14 
                

 1     4.9 ± 2.0  n/a ± n/a     

 3     1.2 ± 3.2  - ± -     

 5     1.6 ± 4.3  - ± -     

 7     0.9 ± 5.0  - ± -     

 9     3.3 ± 1.3  - ± -     

 12     n/a ± n/a  -5.9 ± 2.4     

4871;  

15 
                

 1     8.1 ± 3.3  n/a ± n/a     

 3     6.8 ± 2.6  - ± -     

 5     1.3 ± 4.0  - ± -     

 7     1.5 ± 2.1  - ± -     

 9     1.4 ± 2.2  - ± -     

 12     5.8 ± 9.3  - ± -     

 16     n/a ± n/a  - ± -     

4868;  

16 
                

 1     13.7 ± 5.5  n/a ± n/a     

 3     6.7 ± 2.2  - ± -     

 5     0.3 ± 0.7  - ± -     

 7     0.5 ± 4.8  -0.1 ± 0.3     

 9     n/a ± n/a  - ± -     

4872;  

17 
                

 1     6.3 ± 22.0  n/a ± n/a     

 3     5.8 ± 33.2  - ± -     

Fluid flux is not determined for the bottom-most sediment section (+z transport direction) and for the 

top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘ symbol. 
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Table A.7. Continued 

Site             Depth                        Fluid flux +z                                  Fluid flux -z                                      

core;           (cmbsf)                       (mL cm-2 day-1)                           (mL cm-2 day-1) 
 

 5     4.6 ± 24.4  - ± -     

 7     4.7 ± 2.1  - ± -     

 9     3.9 ± 11.5  - ± -     

 12     - ± -  - ± -     

 16     n/a ± n/a  -7.8 ± 4.9     

4862;  

18 
                

 1     9.2 ± 3.7  n/a ± n/a     

 3     14.4 ± 5.5  - ± -     

 5     0.5 ± 1.1  - ± -     

 7     1.9 ± 4.2  -0.1 ± 0.2     

 9     10.1 ± 4.9  - ± -     

 12     n/a ± n/a  - ± -     

4871;  

19 
                

 1     10.5 ± 4.0  n/a ± n/a     

 3     10.3 ± 6.8  - ± -     

 5     28.7 ± 11.9  - ± -     

 7     1.3 ± 0.9  - ± -     

 9     0.5 ± 2.0  - ± -     

 12     1.0 ± 0.7  -0.2 ± 1.8     

 16     n/a ± n/a  - ± -     

Fluid flux is not determined for the bottom-most sediment section (+z transport direction) and for the 

top-most sediment section (-z transport direction) where initial 224Ra activities are potentially sourced 

outside of the sampled domain. Such instances are indicated by ‘n/a’. Where empirical estimates were 

not solvable results are indicated by a ‘-‘ symbol. 
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Center for Marine and Wetland Studies, Coastal Carolina University 

Richard Viso (843) 349-4022 

 

Laboratory Assistant                                                                            Jun. 2011 – Dec. 2011 

     Groundwater Discharge Measurement Facility 

     Center for Marine and Wetland Studies, Coastal Carolina University 

Richard Peterson (843) 349-4057 

 

  

PROFESSIONAL EXPERIENCE 

 Research Cruises 

 

 Guaymas Basin Hydrothermal Impacts                                   Dec. 2016  

    R/V Atlantis, Chief Scientist: Andreas Teske (UNC), 19 days 

- Evaluated fluid flux from hydrothermal sediments with special interest in ecological impacts.     

 

 Gulf Of Mexico Cold Seeps                 Apr. 2014, June 2015, June 2016  

    R/V Atlantis, Chief Scientist: Joseph Montoya (GT), 28 day; 32 day; 20 day 

 

- Investigated transport rates of subsurface water and oil through sediments and estimated brine 

age in the environment. 

 

 Gulf of Mexico Hydrocarbon Discharge                         Jun. - Jul. 2013  R/V Endeavor, 

Chief Scientist: Mandy Joye (UGA), 32 days 

 

- Development of Ra isotopes as tracers of hydrocarbon discharge and degradation rates. 

 

 Antarctic Meltwater                                                Dec. 2012, Mar. 2014 

    R/V Laurence M. Gould, Chief Scientist: Reide Corbett (ECU), 20 days 

 

- Determined interaction of glacial meltwater and nutrients with ocean water along Antarctic 

continent.  

 

Field and Laboratory Experience 

 

 Seasonal fluxes into Discovery Bay, Jamaica       Nov. 2015, Apr. 2016 

- Estimated groundwater flux to Jamaican embayment over rainy and dry seasons with emphasis 

on material delivery. 

 

 Groundwater derived nutrients to Laguna Madre, Texas        Jun. 2015 

- Surveyed shorelines for groundwater discharge zones and associated nutrient loads 

investigating the role of subsurface flow in eutrophication.   

 

 Groundwater fluxes to Lake Huron                                         Jun. 2014 
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- Used 222Rn to identify groundwater ‘hot-spots’ along the lake shores to assist a large effort 

investigating potential sources of E. coli to the lake. 

 

 Urban tidal creek water budgets                            Jun. 2011- Oct. 2013 

- Used Rn and Ra isotopes to delineate water sources to coastal creeks in Myrtle Beach and 

Surfside, SC. 
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and electrical resistivity.  
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- Compiled vertical profiles and collected Rn and Ra data from Apache Pier, SC to 

assess the role of groundwater in Long Bay hypoxia.  

            

PUBLICATIONS 

  L. Peterson, Peterson, R., 2019. Spatial associations between fluid flux, temperature, and 

microbial mat in Guaymas Basin, Gulf of California. Deep-sea Research. In-prep. 

 

 R. Peterson, Meile, C., Peterson, L.E., Carter, M., Miklesh, D., 2019. Groundwater discharge 

dynamics into a salt marsh tidal river. Estuarine, Coastal and Shelf Science. 218 324-333 

 

 J. Tao, Peterson R., Befus, K., Peterson L., Robinson C. 2017. Characterization of groundwater 

discharge to Nottawasaga Bay, Lake Huron with hydraulic and 222Rn measurements. Journal of 

Great Lakes Research, 43,920-929. 

 

 D.R. Corbett, Crenshaw J, Null K, Peterson R, Peterson L, Lyons B. 2017. Nearshore mixing 

and nutrient delivery along the Western Antarctic Peninsula. Antarctic Science, 29(5), 397-409. 

 

 L.E. Peterson, Peterson R., Smith E., Libes S. 2016. Advances in Water Security: Emerging 

Issues in Groundwater Resources. In: Ali Fares. (Ed.) Prairie View, TX: Springer International 

Publishing. Chapter 9, Quantifying groundwater export from an urban reservoir: A case study 

from coastal South Carolina. 223-262 doi: 10.1007/978-3-319-32008-3_9 2016. 

 

 R.N. Peterson, Moore W.S., Chappel S., Viso R., Libes S., Peterson L. 2016. A new perspective 

on coastal hypoxia: The role of saline groundwater. Marine Chemistry, 179, 1-11. 

 

 S.C. Weber, Peterson L., Battles J., Roberts B., Peterson R., Hollander D., Chanton J., Joye, 

S.B., Montoya J. 2016. Hercules 265 rapid response: Immediate ecosystem impacts of a natural 

gas blowout incident. Deep Sea Research II, 129, 66-76. 

 



217 
 

 J.C. Hill, Phillips, J.A., Marshall, J.A., O'Brien-Gayes, P.T., Peterson L.E. 2011. High-resolution 

Geophysical Survey and Interpretation for the Morehead City ODMDS and Borrow Area "Y" 

near Bogue Banks, North Carolina. Technical Report submitted to Geodynamics, LLC. 

 

PRESENTATIONS 

 L. Peterson, R. Peterson, S. Harrison, S.M. Joye, 2016. Toward the development of an oil aging 

technique using radio-isotopic analytes to evaluate environmental exposure time. 3rd Annual 

Southeastern Biogeochemistry Symposium, March 11- 13. Knoxville, TN. 

 

 L. Peterson, R. Peterson, M. Joye, C. Meile, J. Montoya, S. Weber. 2015. Using fluid advection 

rate estimates from natural hydrocarbon seeps to constrain bottom boundary water turnover times 

in deep ocean systems. Gordon Research Conference –Chemical Oceanography, July 26-31. 

Holderness, NH. 

 

 L. Peterson, R. Peterson, S. Joye, C. Meile, J. Montoya, S. Weber, 2015. Comparing 

fluid advection rates between natural oil and bubble seeps in deep ocean systems using 

radium isotopes. 10th International Conference on Methods and Applications of 

Radioanalytical Chemistry, April 12-17. Kailua-Kona, HI 

 

 L. Peterson, R. Peterson, S. Joye, C. Meile, J. Montoya, S. Weber, 2015. High-resolution 

fluid advection rate estimates from natural oil and bubble seeps in deep ocean systems: 

An examination of heterogeneity. 2nd Annual Southeastern Biogeochemistry 

Symposium, March 28-29. Atlanta, GA 

 

 L. Peterson, R. Peterson, S. Joye, C. Meile, J. Montoya, S. Weber, 2015. Assessing 

hydrocarbon flow through sediments using radium isotopes. Gulf of Mexico Oil Spill and 

Ecosystem Science Conference, February 16-19. Houston, TX 

 

 R. Peterson, L. Peterson, J. Montoya, S. Weber, C. Meile, S. Joye, 2015. Radium 

isotopes as conservative tracers of hydrocarbon transport through the water column. Gulf 

of Mexico Oil Spill and Ecosystem Science Conference, February 16-19. Houston, TX   

 

 T. Ji, R. Peterson, L. Peterson, C. Robinson, S. Malott, 2014. Multiple methods to 

quantify nearshore groundwater discharge to the Great Lakes.14th Annual Great Lakes 

Beach Association Conference, November 12-14. Toronto, Canada 

 

 L. Peterson, R. Peterson, D.R. Corbett, K. Null, R. Viso, J. Crenshaw, 2014. Spatial 

partitioning of Ra and 222Rn isotopes indicative of fluid origin: Observations using novel 

high-resolution survey techniques. 5th International Workshop on Radium and Radon, 

July 21-24. Rio de Janiero, Brazil 

 

 R. Peterson, L. Peterson, S. Joye, J. Montoya, S. Weber, R. Viso,  2014.  Radium 

isotopes as tracers of hydrocarbon discharge and transport through the water column. 

5th International Workshop on Radium and Radon, July 21-24. Rio de Janiero, Brazil 

 



218 
 

 L. Peterson, R. Peterson, E. Smith, A. Defore, R. Viso, 2013. Using Time-series Water 

Budgets to Assess Tidal Influence on Fluid Composition (Surface and Subsurface Inputs) 

in Urbanized Tidal Creeks. Southeast Tidal Creek Summit, December 16-18. 

Wilmington, NC  

 

 D.R. Corbett, L. Peterson, J. Crenshaw, D. Hawkins, K. Null, R. Peterson, R. Viso, 2013. 

Time-series Measurements of Geochemical Tracers and Electrical Resistivity to Evaluate 

Groundwater-Surface Water Interactions on Anvers Island, Antarctica. American 

Geophysical Union Conference, December 9-13. San Francisco, CA 

 

 J. Crenshaw, D.R. Corbett, J. Walsh, K. Null, L. Peterson, D. Hawkins, R. Peterson, R. 

Viso, D. Sybert, B. Lyons, 2013. Transport of Terrestrially-derived Nutrients across the 

Continental Shelf of the Western Antarctic Peninsula, Anvers Island. American 

Geophysical Union Conference, December 9-13. San Francisco, CA 

 

 K. Null, J. Crenshaw, L. Peterson, D. Hawkins, R. Peterson, W.B. Lyons, D.R. Corbett, 

2013. Submarine Groundwater Discharge along the Western Antarctic Peninsula: 

Relative Contributions of Recirculated Seawater and Subsurface Glacial Freshwater. 

American Geophysical Union Conference, December 9-13. San Francisco, CA  

 

 L.E. Peterson, R. Peterson, R. Viso, K. Gregorcyk, E. Smith, 2012. Geochemical 

Characterization of Groundwater Discharge into Tidal Creeks using Radon-222. 4th 

International Workshop on Radium and Radon, June 3-8. Narragansett, RI  

 

 S. Chappel, R. Peterson, R. Viso, S. Libes, P. Hutchins, L. Peterson, K. Gregorcyk, 2012. 

Developing the use of Geochemical Tracers in linking Submarine Groundwater 

Discharge to Hypoxia Formation in Long Bay, S.C., USA. 4th International Workshop on 

Radium and Radon, June 3-8. Narragansett, RI  

 

 R.N. Peterson, R. Viso, S.Chappel, K. Gregorcyk, S.M. Libes, L.E. Peterson, 2012. 

Continuous Radon Time-Series Measurements Link Submarine Groundwater Discharge 

to Ocean Hypoxia. 4th International Workshop on Radium and Radon, June 3-8. 

Narragansett, RI 

 

RESEARCH GRANTS AND AWARDS 

     Nelson Fellowship                                                                  2014 -2015            
          Outstanding graduate studies in marine geology at CCU ($500)  

 

     Savannah Presbytery M.K. Pentecost Ecology Fund              2012-2013  

          “An Integrated Approach to Characterize Temporal Variability of  

          Porewater Chemistry and Sediment Porosity Within a Coastal Aquifer”  

          ($2,000) 

 

     The Slocum-Lunz Foundation                                                 2012-2013    

          “An Integrated Geophysical and Geochemical Approach to  



219 
 

 

  

          Characterize Groundwater Discharge” ($500)  

 

     Graduate Student Incentive Grants, CCU                               2012-2013 

          “Characterizing Groundwater Inputs to Coastal Environments Using  

          Geochemical and Geophysical Techniques” ($500)  

 

 



220 
 

APPENDIX III. 

 

When a radionuclide (P) decays to a radioactive daughter (D), the rate of decay of 

D is the difference between the rate at which D is produced by decay of P and its own 

rate of decay. The rate of decay of P (−
𝑑𝑃

𝑑𝑡
) is given by: 

−
𝑑𝑃

𝑑𝑡
= 𝜆𝑝 ∗ 𝑁𝑝                                                                                                (A.1) 

where 𝜆𝑃 is the decay constant of the parent isotope and 𝑁𝑃 is the number of atoms of the 

parent remaining at any time (t).  

 Similarly, the rate of decay of D (−
𝑑𝐷

𝑑𝑡
) is given by: 

−
𝑑𝐷

𝑑𝑡
= 𝜆𝑑 ∗ 𝑁𝑑                                                                                                  (A.2) 

where 𝜆𝑑  is the decay constant of the daughter isotope and 𝑁𝑑 is the number of atoms of 

the daughter remaining at any time (t).  

 Since the amount of D is cumulatively determined by its own radioactive decay as 

well as ingrowth from decay of P, 

𝑑𝐷

𝑑𝑡
= (𝜆𝑝 ∗ 𝑁𝑝) − (𝜆𝑑 ∗ 𝑁𝑑)                                                                                         (A.3)        

 The number of atoms of parent (NP) remaining at any time is given by: 

𝑁𝑝 =  𝑁𝑝
0𝑒−𝜆𝑝𝑡                                                                                                            (A.4) 

where 𝑁𝑃
0 is the number of parent atoms present at t=0. Equation A.4 is substituted into 

Equation A.3 and, by rearranging terms, yields:  

𝑑𝐷

𝑑𝑡
+ (𝜆𝑑 ∗ 𝑁𝑑) − (𝜆𝑝 ∗ 𝑁𝑝

0𝑒−𝜆𝑝𝑡) = 0                                                                          (A.5)          
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Equation A.5 is a first-order linear differential equation first solved by Bateman (1910) 1.  

 The solution to Equation A.5 is:  

𝑁𝑑 =
𝜆𝑝

𝜆𝑑−𝜆𝑝
𝑁𝑝

0(𝑒−𝜆𝑝𝑡 − 𝑒−𝜆𝑑𝑡)+ 𝑁𝑑
0𝑒−𝜆𝑑𝑡                                                                 (A.6) 

The first term of Eq. A.6 gives the number of daughter atoms that have formed by parent 

decay, but have not yet decayed themselves. The second term represents the number of 

daughter atoms that remain from an initial number (𝑁𝑑
0). 

Since, generally, the activity (A) of an isotope is given by:  

𝐴 = 𝜆𝑁                              (A.7)            

we multiply each N term in Equation A.6 by its respective decay constant (λ), to convert 

Equation A.6 into activity units for calculations described throughout the dissertation:  

𝐴𝑑 =
𝜆𝑝𝜆𝑑

(𝜆𝑑−𝜆𝑝)

𝐴𝑝
0

𝜆𝑝
(𝑒−𝜆𝑝𝑡 − 𝑒−𝜆𝑑𝑡) + 𝐴𝑑

0 𝑒−𝜆𝑑𝑡                                               (Eq. 2.3)                                                                                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Bateman, H. 1910. Solution of a system of differential equations occurring in the theory of 

radioactive transformations. Mathematical Proceedings of the Cambridge Philosophical Society. 

15, 423.  
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