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Is Navigation in Virtual Reality with
fMRI Really Navigation?

Jeffrey S. Taube1, Stephane Valerio1, and Ryan M. Yoder2

Abstract

■ Identifying the neural mechanisms underlying spatial orien-
tation and navigation has long posed a challenge for research-
ers. Multiple approaches incorporating a variety of techniques
and animal models have been used to address this issue. More
recently, virtual navigation has become a popular tool for under-
standing navigational processes. Although combining this tech-
nique with functional imaging can provide important information
on many aspects of spatial navigation, it is important to recognize
some of the limitations these techniques have for gaining a com-
plete understanding of the neural mechanisms of navigation.

Foremost among these is that, when participants perform a vir-
tual navigation task in a scanner, they are lying motionless in a
supine position while viewing a video monitor. Here, we provide
evidence that spatial orientation and navigation rely to a large
extent on locomotion and its accompanying activation of motor,
vestibular, and proprioceptive systems. Researchers should there-
fore consider the impact on the absence of these motion-based
systems when interpreting virtual navigation/functional imaging
experiments to achieve a more accurate understanding of the
mechanisms underlying navigation. ■

INTRODUCTION

Is navigation in virtual reality with functional imaging
(fMRI) really navigation? The short answer is yes and no.
Yes, because a participant must use visual cues to solve a
spatial problem. However, virtual navigation differs from
real navigation, which relies heavily on motor, proprio-
ceptive, and vestibular information—none of which are
activated when a participant is lying supine in a functional
imaging scanner while performing a virtual reality naviga-
tional task. Virtual navigation, of course, shares many fea-
tures in common with real-world navigation, but the two
processes are not identical. Just as there are differences in
brain activity when imagining an apple and actually seeing
it (Kosslyn, Ganis, & Thompson, 2001), there are many
differences between navigating in the virtual world and
navigating in the real world. Foremost, among these dif-
ferences is that vestibular and proprioceptive information
(idiothetic cues) do not match the visual cues viewed by
the participant on the monitor, and this mismatch has
been shown to produce reorientation of the participant
(Wang & Spelke, 2002). Consequently, reorientations
most likely occur more frequently during virtual reality,
and virtual navigation may therefore differ from real-world
navigation. Although fMRI has become an incredibly unique
and important tool in understanding brain function, its use
with virtual reality technology to study brain mechanisms
underlying spatial orientation and navigation are limited

because of the specific brain networks that it has been used
to study. Our focus here is not to discuss the relevance of
the BOLD signal per se but, rather, to discuss what we
believe are important considerations when combining vir-
tual reality and fMRI techniques to understand the neural
processes involved in naturalistic spatial navigation.

THE NEURAL BASIS OF SPATIAL NAVIGATION:
SINGLE-UNIT RECORDINGS

Researchers have made significant strides during the past
decade in understanding the neural processes that under-
lie navigation. Approaches using both behavioral and
electrophysiological recording techniques in rodents
have uncovered many of the processes involved in naviga-
tion ( Jeffery, 2003; Gallistel, 1990; OʼKeefe & Nadel,
1978). The existence of a “cognitive map” within the brain
has historically been a controversial topic (Benhamou, 1996;
Tolman, 1948), but it has provided a foundation for many
studies that have sought an understanding of these pro-
cesses. Neurons that form the basis for spatial orientation
have been identified and extensively studied—as single-
unit recordings have found various cell types that respond
to different spatial aspects of an animalʼs environment.
Place cells in the hippocampus (OʼKeefe & Dostrovsky,
1971) show increased or decreased firing rates based on
an animalʼs location. Grid cells in the entorhinal cortex
and subicular complex discharge in multiple locations, with
these locations collectively forming a repeating hexagonal
grid pattern (Boccara et al., 2010; Hafting, Fyhn, Molden,
Moser, & Moser, 2005). Head direction (HD) cells, which
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have been identified in a number of limbic system areas
(Taube, 2007), fire based on the animalʼs perceived direc-
tional heading within the environment, independent of the
animalʼs place or behavior. Border cells (also known as
boundary vector cells) fire in relation to the boundaries
of the environment, regardless of head orientation, and
are also found in portions of the hippocampal system
(Solstad, Boccara, Kropff, Moser, & Moser, 2008). In addi-
tion to this electrophysiological approach, many lesion and
behavioral studies have been performed in rodents to
address the underlying brain areas and behavioral pro-
cesses involved in navigation (Dolins & Mitchell, 2010;
Gallistel, 1990).
Figure 1 summarizes the processes involved in orien-

tation and navigation, which are divided into two main
components—(1) the use of idiothetic cues (vestibular,
proprioceptive, motor efference) for path integration,
which involves information concerning self-motion and
engages more (but not solely) subcortical areas, and (2)
the use of allothetic cues (visual, auditory, tactile) for pro-
cessing landmark information, which engages higher level

cognitive processes including contextual spatial memory.
Information from the path integration and landmark sys-
tems is integrated within limbic and cortical areas to yield
information about the participantʼs spatial orientation in
allocentric coordinates. Combining the participantʼs spatial
orientation with navigational knowledge about the loca-
tion of a goal enables the computation of a route that leads
to the goal. Both the path integration and landmark sys-
tems usually act together, but when spatial information
from the two systems do not match one another and are
in conflict, then unless the average information from the
two systems is adopted, information from one system
will dominate over the other (Dolins & Mitchell, 2010;
Golledge, 1999). For mammals, the dominant system is
usually landmark information, which can reorient the par-
ticipant quickly in the face of spatial errors (Valerio &
Taube, 2012; Wang & Spelke, 2002; Gallistel, 1990). Re-
orientation is also capable of occurring suddenly when
new visual (landmark) cues are provided or existing ones
are reinterpreted (Jönsson, 2002; Goodridge & Taube,
1995). Thus, since the discovery of place cells, important

Figure 1. Conceptual
framework for spatial
orientation and navigation.
Two major component
processes are depicted.
Within the gray ellipse on
the right, idiothetic cues,
which use an egocentric
reference frame, are primarily
processed by subcortical
structures and are used in
the path integration system.
Within the green ellipse on
the left, allothetic cues shown
in teal, such as visual, auditory,
and tactile information, are
combined to provide spatial
information about landmarks.
Landmark information along
with spatial memories
concerning context are
integrated with the path
integration system to yield
spatial cells that provide
information about the
participantʼs spatial
orientation with respect to
the environment using an
allocentric reference frame.
This landmark navigational
system involves higher level
cognitive processes and
takes place within limbic
and cortical brain areas.
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advances have been accomplished in our understanding
of spatial processes in the rodent brain, but the invasive
methods used to gain this information cannot be used in
the human brain. Recent technological advances, however,
are now providing new approaches for the investigation
of spatial processes in humans.

fMRI: AN ACCESS TO THE HUMAN BRAIN

Presently, only one single-unit recording study has shown
the existence of spatially tuned cells in human hippocam-
pus (Ekstrom et al., 2003), and even in that study, the spa-
tial tuning of the cells appears different from the ordered
and topographically smooth firing patterns observed in
rodent place cells. But the advent of functional neural
imaging techniques, such as fMRI, combined with the
development of highly realistic virtual reality environments
have enabled researchers to further explore mechanisms
involved in human navigation under well-controlled condi-
tions. It is noteworthy that virtual reality technology has
improved immensely during the past decade and now pro-
vides a highly realistic environment that mimics real-world
navigation. This endeavor is accomplished by using immer-
sion, where the participant is able to move and thus, at
least partially, can use internal cues to navigate. However,
because of the fMRI constraint, this immersion technology
cannot be used without the elimination of the participantʼs
movements. Consequently, in fMRI studies, participants
have to use a “desktop virtual reality” system. Although vir-
tual reality under these conditions is still multisensory, pro-
viding visual, auditory, and limited tactile information, the
participant must lie supine in the fMRI scanner looking
upwards at a video display and navigate via a joystick con-
trol within the virtual environment (Bohil, Alicea, & Biocca,
2011). These studies have described a network of brain
structures that are activated during navigational tasks,
including the hippocampus, the parahippocampal place
area, and retrosplenial cortex (Rodriguez, 2010; Spiers &
Maguire, 2006; Wolbers & Büchel, 2005; Janzen &
Van Turennout, 2004; reviewed in Epstein, 2008). Some
studies have also reported activation in the posterior pa-
rietal cortex and portions of the OFC (Rodriguez, 2010;
Spiers & Maguire, 2006, 2007). One common theme that
has emerged from these studies is that the hippocampus
proper is more involved in processing the spatial compo-
nents of a navigational task, whereas parahippocampal
areas are more involved in processing contextual spatial
information (Brown, Ross, Keller, Hasselmo, & Stern, 2010;
Rauchs et al., 2008). One interesting finding that parallels
findings in animals was that, in a virtual navigation task,
either the hippocampus or the caudate nucleus was acti-
vated depending on the spatial strategy used by the partici-
pant (Iaria, Petrides, Dagher, Pike, & Bohbot, 2003; Packard
& McGaugh, 1996). The right hippocampus showed greater
activation in the early stages of learning when participants
utilized landmarks. But with increased practice, the caudate
nucleus became activated, and this activity correlated with

the use of a nonspatial strategy as judged from verbal
reports. Activation that was common to both spatial and
nonspatial strategy groups occurred in the posterior pa-
rietal cortex and areas 9 and 46 of the pFC. Importantly,
however, all of these experiments only engaged high-level
cognitive processes—they were performed while the par-
ticipants were immobile and certainly were not moving
their heads. Themotor systems required tomove a joystick
are very different from those used to walk around in the
real world. It is therefore possible that the brain processes
activated under these conditions are considerably differ-
ent from those that are activated during navigation in the
real world, where participants are usually locomoting and
making numerous head turns.
To partially address this problem, some studies (e.g.,

Spiers & Maguire, 2006, 2007) have used video games
that are realistic renditions of real-world environments
(e.g., London), where participants, mostly professional
London taxi cab drivers, have learned the spatial layouts
of their environment from real-world work experiences.
While undergoing fMRI, the participants were then tested
while performing a navigational video game that had spa-
tial layouts similar to their experiences in the streets of
London. The participants had thus learned their real-
world experiences (and consequently, the virtual maps
of London) while fully engaging both their path integra-
tion and landmark systems while driving around London.
In contrast, other studies (e.g., Brown et al., 2010; Rodriguez,
2010; Wolbers & Büchel, 2005) have had their partici-
pants learn the testing environments completely from
the video games on a desktop monitor. Under these cir-
cumstances, the participants would not have engaged
their path integration/subcortical systems while learning
the spatial relationships of the environment but would
have relied primarily on the landmark-based cortical sys-
tem to learn the spatial layouts (see Figure 1). Although
the preimaging experiences of these two groups are dif-
ferent and various systems are activated, the imaging pro-
cedures are the same for both types of studies and, in
general, lead to similar findings in terms of the brain
areas activated. Note, however, that, for both preimaging
procedures, when participants are scanned during navi-
gational testing, they are lying supine and their heads are
motionless—conditions in which idiothetic cues and the
path integration system would not be activated. Therefore,
both types of studies suffer from the same problem, namely,
that only one navigational system, the landmark system, is
activated during fMRI.

THE IMPORTANCE OF ACTIVE MOVEMENT
FOR SPATIAL NAVIGATION

Decades of research using rodents, monkeys, and humans
have repeatedly shown the important role that active
movement plays in navigation. Oneʼs sense of spatial orien-
tation depends on proprioceptive feedback and motor
efference copy, which inform the participants about their
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body movements, and vestibular signals, which provide
information about head position and movement through
space. It is well known that active exploration usually re-
sults in greater spatial knowledge of that environment than
passive exploration of it, and this difference is usually not
accounted for by different attentional levels while navigat-
ing. For example, studies have shown that scene recogni-
tion across views was impaired when an array of objects
rotated relative to a stationary observer but not when the
observer moved relative to a stationary display (Simons &
Wang, 1998). Additional experiments suggested that infor-
mation obtained through self-motion facilitated scene rec-
ognition from novel viewpoints compared with when a
participant passively viewed the scenes (Wang & Simons,
1999). Other studies have reported that participants tend
to underestimate distance in virtual environments com-
pared with moving in the real world (Witmer & Kline,
1998). The role that active locomotion serves for orienta-
tion is also highlighted by studies reporting differences in
heading judgments between active locomotion and passive
transport. For example, one study monitored participantsʼ
abilities to update their directional heading and to point to
the origin of a two-segment path that they traversed under
four different conditions: physical walking, imagined walk-
ing from a verbal description, watching another person
walk, and experiencing optic flow that simulated the walk-
ing (Klatzky, Loomis, Beall, Chance, & Golledge, 1998).
Performance was impaired in the verbal description and
watching conditions but not for physical walking. More
importantly, simulated optic flow alone, which would occur
in virtual reality conditions, was not sufficient to induce
accurate turn responses (also see Riecke, Sigurdarson, &
Milne, 2012). Another study compared navigational perfor-
mance between participants that used a virtual reality sys-
tem when walking a route (creating an impression of full
immersion) and one where they viewed the same scenes
but locomoted through it using a hand-operated joystick
while seated (visual imagery condition; Chance, Gaunet,
Beall, & Loomis, 1998). The researchers found perfor-
mance to be significantly better in the immersion condition
compared with the visual imagery condition. These find-
ings emphasize the importance that physical movement
and its accompanying motor, proprioceptive, and vestibu-
lar inputs play in accurate spatial orientation.
Not all studies have found impaired spatial perfor-

mances when this internal spatial information is deprived
from the participant. In an early study that compared
learning a large-scale virtual environment via a helmet-
mounted display or a desktop monitor, Ruddle, Payne,
and Jones (1997) found that participants who wore the
helmet-mounted display navigated the buildings more
quickly and developed a better sense of straight-line dis-
tances within the environment (suggesting better survey
knowledge of the environment) than the desktop moni-
tor group. However, both groups traveled the same dis-
tance to the goals and showed similar accuracy in
estimating directions. In another study using a large-scale

environment, participants who were driven on a mile-
long car trip performed as well as participants who only
viewed a video of the route on a test assessing their recall
of the environmentʼs spatial layout (Waller, Loomis, &
Steck, 2003). Note, however, that the participants were
deprived of the motor and proprioceptive cues that
would accompany a normal walk through the environ-
ment. In subsequent studies that included active locomo-
tion, participants in a video-only viewing condition
performed similar to participants who received matching
motor, proprioceptive, or vestibular cues along with the
video. There was no difference between groups on tasks
that estimated the distance between points and in con-
structing maps of the spatial layout of the environment
(Waller & Greenauer, 2007; Waller, Loomis, & Haun,
2004). In contrast, participants who did not receive the
matching idiothetic information were impaired at point-
ing accurately to the recalled locations—suggesting that
their judgment about their perceived directional orienta-
tion was deficient. This inability to point accurately is
somewhat surprising, given that the participants remained
in an upright position during the task—a position which
improves pointing accuracy relative to a supine position
(Smetanin & Popov, 1997). Whether supine participants,
such as those in fMRI studies, would have been able to
accurately estimate distance and construct maps of the
spatial layout remains to be tested. Overall, spatial percep-
tion appears to be most accurate when motor, propriocep-
tive, and vestibular signals are available but can persist in
some cases when one or more of these signals are absent.
Furthermore, the influence of body position on spatial
performance is an important consideration for the inter-
pretation of virtual navigation experiments (see below).
The processes activated in virtual reality navigation tasks
of course share many of the same mechanisms that are
activated in real-world navigation (Richardson, Montello,
& Hegarty, 1999), but our point is that the two events
are not identical, and researchers should appreciate the
differences between the two events when defining the
neural mechanisms underlying navigation. As we have
highlighted above, the high-level cognitive processes
involved in processing landmark information and the
participantʼs perceived spatial orientation undoubtedly
activate both limbic and cortical networks during both
virtual reality and real-world navigation. However, the use
of virtual reality with fMRI confines the activation to mostly
these cortical brain areas and does not begin to tap into
the processes that occur at the subcortical level. It is im-
portant to note that much of our perceived orientation is
obtained from these subcortical systems, which are later
integrated with the limbic and cortical processes (Figure 1).

THE VESTIBULAR SYSTEM: A KEY COMPONENT
IN SPATIAL ORIENTATION AND NAVIGATION

Although visual information usually dominates control of per-
ceived directional heading, vestibular signals are important
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for accurate heading judgments in humans (Angelaki &
Cullen, 2008; Telford, Howard, & Ohmi, 1995). In dark-
ness, the loss of vestibular signals results in impaired
navigational abilities in humans (Glasauer, Amorim, Viaud-
Delmon, & Berthoz, 2002; Brookes, Gresty, Nakamura, &
Metcalfe, 1993; Heimbrand, Muller, Schweigart, & Mergner,
1991). And under light conditions, the loss of vestibular
information leads to impaired spatial memory and naviga-
tional deficits in a virtual water maze task (Brandt et al.,
2005). Similar findings have also been reported in rodent
studies where vestibular dysfunction, whether complete or
specific to the semicircular canals or otolith organs, pro-
duced marked disruption of both HD and place cell signals
(Muir et al., 2009; Yoder & Taube, 2009; Stackman, Clark, &
Taube, 2002; Stackman & Taube, 1997) and impaired per-
formance in spatial tasks (Wallace, Hines, Pellis, &Whishaw,
2002; Ossenkopp & Hargreaves, 1993). These findings sug-
gest that both accurate navigation and intact spatial signals
rely heavily (although not totally) on vestibular signals and
that active movement, which typically results in vestibular
activation, is fundamental for normal spatial awareness,
although additional sensory systems are obviously also im-
portant. This point is not to suggest that a healthy participant
requires vestibular stimulation to navigate or orient accu-
rately. Rather, the data suggest that active movement, which
results in the activation of the vestibular system, plays an
important role in these processes. Of particular importance
to the present discussion, both proprioceptive and vestib-
ular systems are not activated when a participant is per-
forming a virtual reality navigational task in a scanner.

THE MOTOR SIGNAL: ANOTHER IMPORTANT
ELEMENT FOR NAVIGATION

Although some motor systems are activated while per-
forming a virtual reality task in the scanner, they are
not activated in the same manner as they would during
real-world navigation. In fact, virtual navigation only in-
volves motor activation of the upper limbs, whereas the
lower limbs are usually involved in real-world locomo-
tion. Although neural structures involved in high-level
navigational processes and decisions certainly become
active during virtual navigation, these processes probably
only engage one portion of the navigational system—
namely the one that computes routes to a goal by flexibly
using associations and problem-solving skills. These areas
most likely overlap with the brain areas activated during
real-world navigation (Kupers, Chebat, Madsen, Paulson,
& Ptito, 2010), including those areas that are partic-
ularly activated by optic flow, such as area MST (Britten
& van Wezer, 1982). It is important to note, however, that
the idiothetic-based systems stimulated during active
movement would not be activated during virtual naviga-
tion. Furthermore, a recent study reported that partici-
pantsʼ short-term spatial memory capacity was greatest
when their visual view of landmarks could be encoded
either in reference to themselves (egocentric view) or in

relation to the surrounding environment (allocentric view),
but their memory capacity suffered when the visually
viewed objects had to be spatially encoded in relation to
each other, independent of the surrounding environment
(Lavenex et al., 2011). These findings demonstrate that an
image placed (or moved) in front of a stationary partici-
pant, such as would occur in a virtual reality environment,
is not equivalent to the movement of the participant
around stationary images. Thus, we contend that imaging
studies using virtual reality tasks only activate a portion of
the neural network that is engaged duringmore naturalistic
conditions that involve active movement. This limitation is
especially true for how spatial cells might represent their
encoded information during virtual reality tasks. In particu-
lar, the absence of self-motion during virtual reality tasks
may lead to differences in how spatial information is en-
coded in place, grid, and HD cells. Before turning to how
these spatial cells fire during virtual reality tasks, it is impor-
tant to review what we know about these spatial cells in
humans.

COHERENCE BETWEEN SINGLE-UNIT
STUDIES AND fMRI

HD cells have yet to be identified in humans, although they
have been reported in nonhuman primates (Robertson,
Rolls, Georges-François, & Panzeri, 1999). Their firing
was independent of the monkeyʼs eye position suggest-
ing that the cells were encoding true directional heading
rather than attentional gaze. Place cells and grid cells
appear to be present in the human hippocampus and
entorhinal cortex, both of which show increased activa-
tion during performance of virtual reality spatial tasks
under limited head movement conditions (Morgan,
MacEvoy, Aguirre, & Epstein, 2011; Doeller, Barry, &
Burgess, 2010). Indeed, single-unit recordings revealed
place-specific activity in a population of hippocampal
neurons during a virtual navigation task, even if the sig-
nal was not as robust as typically seen in rodent studies
(Ekstrom et al., 2003). Additionally, prominent activation
of medial parietal cortex, specifically Brodmannʼs area
31, also occurred when participants performed a virtual
reality spatial task that was dependent on the participantʼs
perceived directional heading (Baumann & Mattingley,
2010). This brain region encompasses the retrosplenial
region (as defined by Epstein, 2008) and became active
when participants passively viewed navigationally rele-
vant stimuli (Epstein & Kanwisher, 1998). The types of
neural correlates conveying spatial information that are
present in the human retrosplenial region is currently
unknown but, based on rat studies, may include HD
cells. The human medial parietal/retrosplenial region,
however, is different from the rat retrosplenial cortex
(Brodmannʼs area 29), which contains HD cells and
many other types of cells, although the extent of these
differences is not fully understood (Cho & Sharp, 2001;
Chen, Lin, Green, Barnes, & McNaughton, 1994).
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PLACE CELL RECORDING IN
STATIONARY CONDITIONS

Hippocampal place cells in rodents have also been moni-
tored under conditions of passive movement—conditions
that only provide access to vestibular and somatosensory
cues. Under these conditions, a lower percentage of cells
expressed location-specific firing, and those that did
were found to have larger fields and lower information
content values than cells recorded during active locomo-
tion (Terrazas et al., 2005). Recent experiments have
shown that robust place cell activity was present when
head-restrained mice ran on a track ball that simulated
their movements on a linear track within a virtual envi-
ronment, where the corresponding visual stimuli (that
would have been experienced by movement on the track)
were projected onto a visual screen (Harvey, Collman,
Dombeck, & Tank, 2009). Although vestibular activation
was absent under this experimental arrangement because
of the head restraint, the animals experienced all of the
motor and proprioceptive features that would be pre-
sent if they had indeed been moving through the envi-
ronment. Specifically, their limbs were moving and
simulating the active motion their movements would
make if they had been physically moving in the appara-
tus. Note here, too, that their limb movements would
coincide with the optic flow they experienced when
viewing the surrounding visual screens. Thus, these
experimental conditions are different from the stationary
virtual navigational tasks employed when participants
are scanned. In a more recent and similar experiment,
Chen, King, Burgess, and OʼKeefe (2012) compared rec-
ordings from hippocampal place cells as mice either ran
back and forth on a linear track or while they were head-
fixed and locomoted in a stationary position in a similar
but virtual reality track. The authors reported that visual
information alone in the virtual reality environment was
only sufficient to evoke normal place cell firing and theta
rhythmicity in 25% of the cells, and even in these cells,
there was a reduction in theta power. For the remaining
75% of cells, movement was required to elicit normal
place cell firing. These findings again emphasize the
point that movement contributes importantly to normal
spatial representations in the hippocampus.

THETA RHYTHM AND VIRTUAL REALITY

It is also well known that the presence of theta rhythm is
important for normal cognitive processing in both humans
(Kahana, 2006) and rodents (Winson, 1978), and some re-
searchers have even proposed that the precise temporal
coordination between spikes and theta may provide the
critical information for spatial navigation (Robbe& Buzsaki,
2009). For rodents, active movement is the most promi-
nent correlate of theta rhythm, although theta can occur
in brief epochs during immobility (Vanderwolf, 1969). Like
the place cell and HD cell signals, movement-related theta

depends heavily on vestibular signals, as lesions of the
vestibular system reduced theta amplitude during loco-
motion (Russell, Horii, Smith, Darlington, & Bilkey,
2006). Thus, without the normal vestibular processes
accompanying active locomotion, there may be an
abnormal or reduced theta rhythm during navigation.
Immobility is generally devoid of continuous theta,
although continuous theta can be induced by passive
rotation, which stimulates the vestibular system (Tai,
Ma, Ossenkopp, & Leung, 2012). Moreover, during pas-
sive movement, theta power remained dependent on
perceived movement (velocity) through the environ-
ment but was reduced in magnitude compared with
active locomotion (Terrazas et al., 2005). This power
reduction also led to a marked decrease in the gain of
the theta power function, indicating that the animal per-
ceived that it was moving more slowly through the envi-
ronment. Whether active locomotion is required to
obtain the same robust theta rhythm in humans is un-
clear. Theta EEG frequencies are clearly evident during
virtual reality spatial tasks (Ekstrom et al., 2005; Caplan,
Madsen, Schulze-Bonhage, Aschenbrenner-Scheibe, &
Kahana, 2003), and some theta that was generated inde-
pendently from movement was correlated with the par-
ticipantʼs spatial view (Watrous, Fried, & Ekstrom, 2011).
However, it is not known whether the amplitude and
characteristics of this theta are the same as during active
locomotion. To date, no studies have made a direct com-
parison between theta generated during active versus
virtual movement in humans—an issue that warrants
further investigation, particularly one using a within-
subject design. This issue has obvious implications for
drawing conclusions about brain mechanisms when par-
ticipants are lying motionless and performing virtual
navigation tasks in a scanner.

HD CELLS AND THE VESTIBULAR SYSTEM

The rodent HD cell signal is particularly important for our
understanding of the human navigation system because
its generation is independent of other spatial signals—
HD cell activity does not depend on the place cell (Calton
et al., 2003) or grid cell (Clark & Taube, 2011) signals.
However, preliminary evidence indicates that the grid cell
signal depends on the HD cell signal (Clark, Valerio, &
Taube, 2011), suggesting that deficits in heading percep-
tion may have detrimental effects on other spatial signals.
Like human heading perception, HD signal stability is
known to depend on active locomotion, as rats that were
passively transported to a novel arena showed consider-
ably less HD signal stability than rats that actively walked
to the novel arena (Yoder et al., 2011; Stackman, Golob,
Bassett, & Taube, 2003). Although a recent study demon-
strated that HD cell firing was similar between active
versus passive head turns (Shinder & Taube, 2011a),
other studies have found differences between these
conditions in terms of cell peak firing rates (Zugaro,

Taube, Valerio, and Yoder 1013



Tabuchi, Fouquier, Berthoz, & Wiener, 2001; Taube,
1995). Thus, if humans have HD cells, their representa-
tions of direction may be different during virtual reality
tasks because active locomotion is absent, which may, in
turn, affect other spatial representations such as those of
location.

Studies in rodents have shown that visual information
can override internally derived movement cues (e.g.,
Goodridge & Taube, 1995), but an intact vestibular sys-
tem is crucial for the generation of HD and place cell sig-
nals (Muir et al., 2009; Russell, Horii, Smith, Darlington,
& Bilkey, 2003; Stackman et al., 2002; Stackman & Taube,
1997). Although a typical participant in an fMRI experi-
ment has an intact vestibular system, the system remains
in a relatively inactive state in the motionless participant
and contributes little in updating the participantʼs per-
ceived orientation. The vestibular systemʼs contribution
to spatial updating and normal hippocampal processing
should not be underestimated. Stimulation of the vestib-
ular labyrinth activates hippocampal neurons at relatively
short latencies (40 msec; Cuthbert, Gilchrist, Hicks,
MacDougall, & Curthoys, 2000). Similarly, electrical stim-
ulation of the medial vestibular nucleus increases the fir-
ing rate of complex spike cells in CA1, possibly including
place cells (Horii, Russell, Smith, Darlington, & Bilkey,
2004). Behaviorally, vestibular lesions disrupt perfor-
mance on hippocampal-dependent spatial tasks (Smith
et al., 2005). The importance of the vestibular system
to normal hippocampal function is also underscored by
the hippocampal atrophy and impaired spatial memory
that occurs in humans after loss of vestibular functions
(Brandt et al., 2005).

In summary, we currently have evidence that the human
hippocampus and entorhinal cortex, which may contain
place cells and grid cells, are active during virtual naviga-
tion, but it is not known how HD cells might respond
under virtual reality conditions such as those used in fMRI
studies in humans.

THE HD NETWORK IS A “BLIND SPOT” IN
FUNCTIONAL IMAGING STUDIES

There is currently no evidence in humans that the brain
regions that form the generative portion of the HD circuit
(in rats)—the lateral mammillary nuclei, anterodorsal
thalamus, and postsubiculum—are activated during vir-
tual navigation tasks. These areas, which are certainly
integral for navigation in rodents, are likely involved in
human navigation, too. For example, in one case study,
a participant who had an infarct in the right anterior
thalamus was impaired at route finding, despite normal
recognition of salient landmarks, indicating the impor-
tance of this brain area for normal navigation (Ogawa
et al., 2008). But thus far, no imaging study has reported
activation in the anterior thalamus when participants per-
form a virtual navigation task. Thus, one might wonder
how accurate or complete a picture we have of brain areas

activated during human navigation. Although several fMRI
studies have shown activation of retrosplenial cortex in
humans during navigational tasks using virtual reality
(Epstein, 2008; Wolbers & Büchel, 2005), the retrosplenial
cortex is not considered an integral part of the HD genera-
tive circuit, at least in rodents (Taube, 2007).

fMRI AND THE SPECIFICITY OF THE
HD SIGNAL

One reason that could explain why the HD network is
not activated in fMRI could come from the differences
in the ways brain activity is detected by neural imaging
systems versus how the activity is collected by electro-
physiological recording systems. Many experimental strat-
egies that use fMRI rely on neural adaptation, which is
often referred to as repetition-related effects (Grill-Spector,
Henson, & Martin, 2006). A recent study used this ap-
proach to demonstrate that distance was encoded by the
hippocampus and landmark recognition was encoded by
the parahippocampal place area (Morgan et al., 2011). Simi-
larly, single-cell recordings in the inferior temporal cortex
provide evidence for neural adaptation with repeated pre-
sentations of the same visual stimuli (Desimone, 1996;
Ringo, 1996). Although neural adaptation is frequently
used as a technique in fMRI studies, this phenomenon
does not appear to occur consistently across all brain areas
and can be context-dependent. For example, in area V1,
the BOLD signal and local single-unit activity were strongly
linked during conventional stimulus presentation but were
not coupled during perceptual suppression (Maier et al.,
2008). In the Baumann and Mattingley (2010) study dis-
cussed above, the authors concluded that area 31 was acti-
vated based on the participantʼs perceived directional
heading in the virtual environment because the BOLD
signal was attenuated when participants viewed a second
image that represented the same heading direction. If true,
this finding is not consistent with electrophysiological
studies because rodent HD cells do not adapt over a series
of passes through the same directional heading—firing
rates through the tenth pass through the cellʼs preferred
direction are as robust as the first pass over a span of sev-
eral minutes (Bassett et al., 2005, see Figure 1; Taube,
2010). Interestingly, there is a sustained ∼30% decrease
in an HD cellʼs instantaneous firing rate after about 4 sec
when an animal maintains its heading in the cellʼs preferred
firing direction (Shinder & Taube, 2011b), although this
decrease is not seen over short intervals on the order of
1 sec (Taube & Muller, 1998). More importantly, though,
the firing rate changes that occur during an animalʼs first
pass through the cellʼs preferred firing direction are similar
to the changes that occur during subsequent passes
through the cellʼs preferred firing direction. Thus, although
HD cell firing may decrease over a period of several sec-
onds when an animal maintains the same directional head-
ing, the amount of this decrease is generally the same
across different epochs. It is therefore unclear how the
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relatively consistent firing rate changes seen in HD cells
over repeated passes through the cellsʼ preferred firing
directions relates to imaging studies that report a decrease
in the BOLD signal across different episodes—findings that
seem to be at odds with one another. It is vitally important
for future experiments to address and understand these
discrepancies.

MEASURE OF THE HD NETWORK IN fMRI:
AN INTRINSIC IMPOSSIBILITY?

The issue of observing a change in the BOLD signal in
brain areas that contain HD cells when performing a vir-
tual task is also questionable on grounds that, theoreti-
cally, the directional system is always active—it is always
“on” whether or not a participant is using this information
at the moment. For example, HD cells reliably show an
increased firing rate when the head is pointed in a single
direction within the environment, regardless of whether
an animal is actively navigating or sitting still and groom-
ing (Taube, Muller, & Ranck, 1990). Accordingly, it is dif-
ficult to imagine how the directional system might be
“more” or “less” active during a particular task, because
the information appears to be always present. The di-
rectional information is not more, or less, present just
because a participant is, or is not, navigating at the
moment. What is relevant is whether the participant is uti-
lizing the information when performing a particular task.
Thus, assuming that the HD signal in humans operates
with similar properties as those found in rodents, utiliza-
tion of directional information should not influence the
generation of the BOLD signal in HD cell areas. Along
related lines, direction-specific firing of HD cells ceases
or is markedly attenuated when an animal is inverted
(Calton & Taube, 2005), but the cellsʼ average firing rates
increase because the cells now fire at a sustained low rate
at directional headings they were not firing in before.
Whether human cells show similar firing average rate
changes or whether these changes could be detected by
fMRI is not known.
In addition to this constant activity that makes it diffi-

cult to find a “resting condition” to compare with, the fact
that HD cells are not topographically organized is also a
problem for fMRI studies. Indeed, a single voxel (∼55 mm3,
5.5 million neurons; Logothetis, 2008) may contain HD
cells representing the entire 360° range, which wouldmake
the bold signal irrelevant to detect the direction sensitivity
of these cells.

THE REPETITION-RELATED EFFECT AND
RATE REMAPPING

Along the same lines, another issue to consider is the
relationship between the repetition-related effect and
rate remapping. Hippocampal place cells undergo rate
remapping when environmental changes occur, which
is manifested as a change, either an increase or decrease,

in the cellʼs peak firing rate when the animal is in the
cellʼs place field (Leutgeb et al., 2005). Although rate re-
mapping over a population of cells may average out when
conditions change, if it does not, then there will be an
overall increase or decrease in the activity across the popu-
lation. If monitored via the BOLD signal, this overall firing
rate change would appear as an alteration in the BOLD
signal and would be interpreted as a change in the amount
a brain area is contributing to a task, when in fact, the
population of cells was undergoing rate remapping.

When considering differences in findings between
single-unit recordings and fMRI studies, it is important
to keep in mind the differences between what these
two techniques measure. Single-unit activity measures
the firing of nearby neurons but does not provide any
information on local synaptic activity—excitatory post-
synaptic potentials (EPSPs) and inhibitory postsynaptic
potentials (IPSPs). The BOLD signal is believed to rep-
resent more closely the local synaptic activity and not
whether local neurons are discharging (Viswanathan &
Freeman, 2007; Logothetis, Pauls, Augath, Trinath, &
Oeltermann, 2001). Of course, EPSPs can drive cells to
their threshold potentials and cause them to fire, but this
input does not necessarily always lead to cell firing. Alter-
natively, the BOLD response, which reflects the sum of
local network activity, appears to remain constant, even
when the different quantitative parameters of the input
are changed (Angenstein, Kammerer, & Scheich, 2009).
Other studies have questioned the strength of the rela-
tionship between the BOLD fMRI signal and underlying
neural activity, particularly as it relates to the spatial co-
incidence of these two measures (Cardoso, Sirotin, Lima,
Glushenkova, & Das, 2012; Conner, Ellmore, Pieters,
DiSano, & Tandon, 2011), and Ekstrom, Suthana, Millett,
Fried, and Bookheimer (2009) reported that neither neural
firing rates nor local field potential changes correlated well
with BOLD signal changes in the hippocampus (although
the local field potential changes did correlate better with
the BOLD signal in the parahippocampal cortex). To-
gether, these findings may explain some of the disparities
observed in results from single-unit and fMRI studies.
For example, the BOLD response decreased while spike
activity increased in the caudate/putamen, whereas the
BOLD response and spike activity were consistent in cor-
tical and thalamic areas (Mishra et al., 2011). In summary,
the extent to which the BOLD signal corresponds to spike
rates in brain structures that participate in spatial pro-
cessing is currently unclear.

POSITION IN THE SCANNER: A PROBLEM FOR
NORMAL NAVIGATION?

A final important point to consider is the participantʼs
perceived directional heading while lying supine in a
scanner, looking upward, during navigation within a vir-
tual environment. On one level, they are immersed in the
spatial video game and perceive their location within the
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world of the video game. On another level, their otolith
organs indicate that they are lying on their back, facing
upward, and motionless. The head position during virtual
navigation in the scanner is thus markedly different from
that of real-world navigation. This aspect may impair nor-
mal path integration in the virtual reality task, particularly
if participants do not perceive themselves as upright
when immersed in the navigational task, because there
is a disparity between real-world idiothetic cues (the
participant is lying in the scanner) and task allocentric
reference frames engaged by the participant in the task
(the participant appears upright when interacting with
the virtual reality monitor). Head position is a particularly
important consideration because both HD cell activity
(Calton et al., 2005) and navigational performance (Valerio
et al., 2010) are degraded during inverted navigation,
possibly the result of altered otolith signals (Yoder &
Taube, 2009). It is important to note, however, that a
supine participant is not inverted while lying in the scan-
ner, as the head and body are only pitched backward by
90°, a position that results in normal HD cell activity in
rodents (Calton et al., 2005). Nonetheless, this situation
raises the issue of whether a participant is capable of simul-
taneously holding multiple reference frames “on-line” in
their working memory or if only one reference frame is
activated and perceived at a time.

In addition to the supine orientation of their head,
participants probably maintain some sense of their orien-
tation with respect to the surrounding room environ-
ment. For example, a participant may perceive himself
as facing east and looking up at the ceiling in the scan-
ning room—both of which may be different directions
relative to their perceived directional heading within
the virtual reality task. It is interesting to ponder how
HD cells might respond under such circumstances. Is
their firing tied to the scanning room and the real-world
environment, or is their firing associated with their per-
ceived directional heading in the virtual reality spatial
task? Again, could both representations be encoded
simultaneously, possibly across separate HD cell net-
works in different brain areas? It is interesting to enter-
tain this notion because, in rodents, different HD cell
populations exist across multiple brain areas. It is note-
worthy that, in rodents, the place cell population can
split and encode two different reference frames simulta-
neously (Knierim & Rao, 2003; Zinyuk, Kubik, Kaminsky,
Fenton, & Bures, 2000; Shapiro, Tanila, & Eichenbaum,
1997). For example, Zinyuk et al. (2000) showed how
simultaneously recorded place cells fired to different
aspects of a spatial task with some cells firing in relation
to the rotating platform they were on, whereas other
cells fired in relation to the stationary room reference
frame. Regardless, both the cancellation of a conflicting
otolith signal and the task of handling two different refer-
ence frames simultaneously may significantly influence
the brain activity recorded in these experimental con-
ditions. The nature of the interaction between different

neural circuits that maintain multiple reference frames
poses an interesting problem for future research.

Conclusions

In summary, the recent use of virtual reality tasks with
brain imaging systems has provided important insight
into the human brain mechanisms that contribute to navi-
gation. These techniques have enabled researchers to
study navigation in humans at levels that are difficult to
accomplish in freely moving individuals because of ethical
and technical reasons. Furthermore, the use of animal
models for studying the mechanisms of navigation has
some drawbacks, too, that methods using virtual reality
can overcome. For example, virtual reality techniques
easily lend themselves to using large-scale, naturalistic
environments that are often difficult to perform in animals,
and a recent study has exploited the use of combined cal-
cium imaging techniques with virtual reality to monitor cal-
cium levels in head-fixed zebrafish as they rapidly adapted
their motor output to changes in visual feedback—an
experiment that would not be possible in a freely moving
fish (Ahrens et al., 2012). Thus, virtual reality can exploit
certain conditions that animal models have difficulty simu-
lating easily. However, the vast literature on animal naviga-
tion suggests that there are clear differences between the
spatial systems that are activated in virtual reality navigation
tasks and the systems activated during real-world naviga-
tion. Although participants orient correctly and are able
to accurately perform the virtual navigational tasks in a
scanner, we question whether the brain performs these
tasks in the same manner as in more naturalistic condi-
tions, where vestibular, motor, and proprioceptive activa-
tion contribute to normal spatial processing. We therefore
urge caution when comparing results across human and
rodent studies. A better appreciation of these differences
would lead to improved understanding of the neural
mechanisms underlying navigation and spatial cognition.
In particular, researchers should be mindful of the differ-
ences between perceptual (where I am now physically)
and cognitive (where I am in the virtual spatial task) factors
when performing a navigational task (Shelton &Marchette,
2010). As research moves forward in this field, particularly
with developments enabling ever finer spatial and temporal
resolution with fMRI techniques, it will be important that
the dialogue among researchers using real-world condi-
tions and those using virtual reality systems refer to the
same thing.
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