
Binary Message Passing Decoding of Product Codes Based on
Generalized Minimum Distance Decoding: (Invited Paper)

Downloaded from: https://research.chalmers.se, 2020-01-17 16:14 UTC

Citation for the original published paper (version of record):
Sheikh, A., Graell i Amat, A., Liva, G. (2019)
Binary Message Passing Decoding of Product Codes Based on Generalized Minimum Distance
Decoding: (Invited Paper)
53rd Annual Conference on Information Sciences and Systems (CISS). Invited paper
http://dx.doi.org/10.1109/CISS.2019.8692862

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Chalmers Research

https://core.ac.uk/display/270109019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Binary Message Passing Decoding of Product Codes
Based on Generalized Minimum Distance Decoding

Alireza Sheikh§, Alexandre Graell i Amat§, and Gianluigi Liva†
§ Department of Electrical Engineering, Chalmers University of Technology, Sweden

†Institute of Communications and Navigation of the German Aerospace Center (DLR), Germany

(Invited Paper)

Abstract—We propose a binary message passing decoding algo-
rithm for product codes based on generalized minimum distance
decoding (GMDD) of the component codes, where the last stage
of the GMDD makes a decision based on the Hamming distance
metric. The proposed algorithm closes half of the gap between
conventional iterative bounded distance decoding (iBDD) and
turbo product decoding based on the Chase–Pyndiah algorithm,
at the expense of some increase in complexity. Furthermore, the
proposed algorithm entails only a limited increase in data flow
compared to iBDD.

I. INTRODUCTION

Applications requiring very high throughputs, such as fiber-
optic communications and high-speed wireless communica-
tions, have recently triggered a significant amount of research
on low-complexity decoders. While codes-on-graphs such as
low-density parity-check (LDPC) codes and turbo codes have
been shown to provide close-to-capacity performance under
belief propagation (BP) decoding, scaling their BP decoders
to yield throughtputs of the order of several Gbps or even
1 Tbps, as required for example for the the future optical
metro-networks, is a very challenging task. One of the main
bottlenecks is the data flow required by the exchange of soft
information in the iterative BP decoding. This has spurred
a great deal of research in novel low-complexity decoding
algorithms.

Several works have attempted to reduce the decoding com-
plexity of BP decoding of LDPC codes, see, e.g., [1]–[4]. For
high-throughput applications, an alternative to LDPC codes
with (BP) soft decision decoding (SDD) is to consider hard
decision decoding (HDD). Product codes (PCs) [5], half-
product codes [6], staircase codes [7], braided codes [8], and
other product-like code structures [9] with HDD based on
bounded distance decoding (BDD) of the component codes
(which we refer here to as iterative BDD (iBDD)) yield
excellent performance with a significantly reduced data flow,
hence achieving very high throughputs. However, this comes
at the expense of a performance loss (typically larger than 1
dB) compared to SDD.

To close the performance gap between iBDD of product-like
codes and SDD of LDPC codes or product-like codes, yet with

This work was financially supported by the Knut and Alice Wallenberg
Foundation, the Swedish Research Council under grant 2016-04253, and the
Ericsson Research Foundation.

throughputs and energy consumption close to that of iBDD,
another line of research recently explored is to improve the
performance of the conventional iBDD. In [10], an algorithm
that exploits conflicts between component codes in order
to assess their reliabilities even when no channel reliability
information is available, was proposed. The algorithm, dubbed
anchor decoding (AD), improves the performance of iBDD
at the expense of some increase in decoding complexity. In
[11], a decoding algorithm based on marking the least reliable
bits was proposed for staircase codes. In [12], we proposed a
decoding algorithm based on BDD of the component codes,
named iBDD with scaled reliability (iBDD-SR). The algorithm
in [12] improves the performance of iBDD by exploiting chan-
nel reliabilities as proposed in [13] for LDPC codes, while still
only exchanging binary (i.e., hard-decision) messages between
component decoders, similar to iBDD. iBDD-SR improves
upon iBDD and AD, and achieves the same throughput of
iBDD with a slight increase in energy consumption [14]. In
[15], we proposed an algorithm based on generalized minimum
distance decoding (GMDD) of the component codes. The
proposed algorithm closes over 50% of the performance gap
between iBDD and turbo product decoding (TPD) based on
the Chase–Pyndiah algorithm [16], with lower complexity
than TPD. However, the algorithm, which we referred to as
iterative GMDD with scaled reliability (iGMDD-SR), requires
the exchange of soft information between the component
decoders and hence entails a decoder data flow equivalent to
that of TPD and significantly higher than that of iBDD.

In this paper, we propose a novel binary message pass-
ing (BMP) decoding algorithm for product codes based on
GMDD of the component codes, which we refer to as BMP-
GMDD. The proposed algorithm follows the same principle
as the iGMDD-SR algorithm proposed in [15], but a crucial
difference is that the Hamming distance metric is used at the
final stage of the GMDD of the component codes. In contrast
to iGMDD-SR, the resulting algorithm does not require the
exchange of soft information, but the exchange of the hard
decisions on the code bits (as conventional iBDD) and an
ordered list of the dmin − 1 least reliable code bits for
each component code, where dmin is the minimum Hamming
distance of the component code. This list can be represented
by a small number of bits. The proposed algorithm yields
performance very close to that of iGMDD-SR, closing 50% of

c4,3c4

c′3

c′3
c4

Fig. 1. Code array (left) and simplified Tanner graph (right) of a PC with
identical component code of length n = 6 for row and column codes. In the
simplified Tanner graph, the CNs are represented by squares (the CNs on the
left represent the column codes and the CNs on the right represent the row
codes) and degree-2 VNs are represented as simple edges. The third column
code and the fourth row code are highlighted.

the performance gap between iBDD and TPD, while entailing
only a small increase in data flow compared to iBDD (between
8.5% and 34.3%, depending on the code parameters).

Notation: We use boldface letters to denote vectors and
matrices, e.g., x and X = [xi,j]. The i-th row and j-th column
of matrix X is denoted by Xi,: and X:,j , respectively. |a|
denotes the absolute value of a, bac the largest integer smaller
than or equal to a, and dae the smallest integer larger than or
equal to a. A Gaussian distribution with mean µ and variance
σ2 is denoted by N (µ, σ2).

II. PRELIMINARIES

Let C be an (n, k, dmin) binary linear code, where n,
k, and dmin are the code length, dimension, and minimum
distance, respectively. We consider two-dimensional PCs with
identical binary Bose–Chaudhuri–Hocquenghem (BCH) com-
ponent code C for the row and column codes. Such a PC, of
parameters (n2, k2, d2

min) and rate R = k2/n2, is defined as
the set of all n×n arrays such that each row and each column
of the array is a codeword of C. Thus, a codeword of the PC
can be represented by an n × n binary matrix C = [ci,j].
Alternatively, a PC can be defined via a Tanner graph with
2n constraint nodes (CNs), where n CNs correspond to the
row codes and n CNs correspond to the column codes. The
graph has n2 variable nodes (VNs) corresponding to the n2

code bits. The code array and (simplified) Tanner graph of a
two-dimensional PC with n = 6 is shown in Fig. 1.

We assume transmission over the binary-input additive
white Gaussian noise (AWGN) channel. The channel obser-
vation corresponding to code bit ci,j is given by

yi,j = xi,j + zi,j ,

where xi,j = (−1)ci,j , zi,j ∼ N (0, (2REb/N0)
−1), with

Eb/N0 being the signal to noise ratio. We denote by L = [Li,j]
the matrix of channel log-likelihood ratios (LLRs) and by
R = [ri,j] the matrix of hard decisions at the channel output,
where ri,j is obtained by mapping the sign of Li,j according
to 1 7→ 0 and −1 7→ 1. We denote this mapping by B(·), i.e.,
ri,j = B(Li,j). With some abuse of notation, we also write
R = B(L).

A. Generalized Minimum Distance Decoding

Consider the decoding of a BCH component code of length
n and the vector of channel LLRs l = (L1, . . . , Ln) corre-
sponding to the received vector r = (r1, . . . , rn). GMDD is
based on multiple algebraic error-erasure decoding attempts
[17]. In particular, the decoder ranks the coded bits in terms of
their reliabilities |L1|, . . . , |Ln|. Then, the m least reliable bits
in r are erased, where m ∈Modd , {dmin−1, dmin−3, ..., 2}
if dmin is odd and m ∈ Meven ,∈ {dmin − 1, dmin − 3, ..., 3}
if dmin is even. For later use, we denote by L the ordered
list of dmin − 1 least reliable code bits. It can be readily
checked that |Modd| = |Meven| = t, where t =

⌊
dmin−1

2

⌋
is the error correcting capability of the code. Together with
the received vector r, this gives a list of t + 1 trial vectors
r̃i, i = 1, . . . , t + 1, out of which t vectors contain both
erasures and (possibly) errors. Finally, algebraic error-erasure
decoding [18, Sec. 6.6] is applied to each trial vector r̃i,
resulting in a set of candidate codewords, of size at most
t + 1, denoted by S . If decoding fails for all t + 1 vectors
in the list, a failure is declared. Otherwise, the decoder picks
among all candidate codewords in S the one that minimizes
the generalized distance dGD(r, c), [17]

ĉ = arg min
c∈S

dGD(r, c)

= arg min
c∈S

∑
i:ri=ci

(1− αi) +
∑

i:ri 6=ci

(1 + αi), (1)

where αi
∆
= |Li|/ max

1≤j≤n
|Lj |. Note that if all input LLRs

L1, . . . , Ln have the same magnitude, we have αi = 1 for
all i = 1, . . . , n and (1) reverts to 2dH(r, ĉ), where dH(r, ĉ)
is the Hamming distance between r and ĉ.

By introducing erasures and performing multiple error-
erasure component decoding attempts, GMDD can decode
beyond half the minimum distance of the code.

III. BINARY MESSAGE PASSING DECODING BASED ON
GENERALIZED MINIMUM DISTANCE DECODING

In this section, we propose a BMP decoding algorithm for
PCs based on GMDD of the component codes. We refer to it
as BMP-GMDD. The algorithm follows the same principle as
the iGMDD-SR algorithm that we proposed in [15]. However,
compared to iGMDD-SR, the proposed BMP-GMDD does
not require the exchange of the reliabilities on the code bits
between the row and column decoders. To achieve that, rather
than considering the generalized distance in (1) to perform the
decision at the last stage of GMDD of the row and column
decoders as in [15], we perform the decision based on the
Hamming distance, i.e., among all candidate codewords in S
(see Section II-A), the decoder selects the one that minimizes
dH(r, c), i.e., the decision in (1) is substituted by

ĉ = arg min
c∈S

dH(r, c). (2)

Making the decision based on the Hamming distance instead
of the generalized distance entails a small performance loss, as
the decision does not take into consideration the normalized

reliabilities αi. However, this allows to significantly reduce
the decoder data flow, as explained later.

The proposed BMP-GMDD algorithm works as follows.
Without loss of generality, assume that the decoding starts
with the row codes and let us consider the decoding of the
i-th row code at iteration `. Let Ψc,(`−1) = [ψ

c,(`−1)
i,j] be the

matrix of hard decisions on code bits ci,j after the decoding
of the n column codes at iteration `− 1. Also, let Lr,(`−1)

i be
the ordered list of dmin−1 least reliable bits of codeword Ci,:

from the decoding of the column codes at iteration `−1. Note
that in the first iteration the list Lr,(`−1)

i is built according to
the ordering of the channel reliabilities Li,: = (Li,1, . . . , Li,n).
Row decoding of the i-th row code is then performed based on
Ψ

c,(`−1)
i,: and Lr,(`−1)

i . First, GMDD of the i-th row code based
on the Hamming distance is performed based on Ψ

c,(`−1)
i,: and

Lr
i, as explained in Section II-A (see (2)). Note that GMDD

does not provide reliability information about the decoded bits,
i.e., it is a soft-input hard-output decoding algorithm. In order
to provide the column decoders with the list of m least reliable
bits for each codeword C:,j after the decoding of the row
codes at iteration `, we do the following. The output bits of
GMDD are mapped according to 0 7→ +1 and 1 7→ −1 if
GMDD is successful and mapped to 0 if GMDD fails. Let
µ̄
r,(`)
i,j ∈ {±1, 0} be the result of this mapping for the decoded

bit corresponding to code bit ci,j . The reliability information
is then formed according to

µ
r,(`)
i,j = w

r,(`)
i · µ̄r,(`)

i,j + Li,j , (3)

where wr,(`)
i > 0 is a scaling factor than needs to be optimized.

Then, the hard decision on ci,j made by the i-th row decoder
is formed as

ψ
r,(`)
i,j = B(µ

r,(`)
i,j). (4)

The hard decision ψr,(`)
i,j is the binary message on code bit

ci,j passed from the i-th row code to the j-th column code,
i.e., from the i-th row CN to the j-th column CN (see Fig. 1).
In particular, after applying this procedure to all row codes,
the matrix Ψr,(`) = [ψ

r,(`)
i,j] is formed and used as the input for

the n column decoders. Furthermore, after decoding of all row
codes, for each column codeword C:,j , the corresponding code
bits are ranked according to the reliabilities (µ

r,(`)
1,j , . . . , µ

r,(`)
n,j).

Then the m least reliable bits are stored in the list Lc,(`)
j , which

is passed to the j-th column decoder.
The decoding of the n column codes at iteration ` is then

performed based on the hard decisions Ψr,(`) and the lists of
least reliable bits Lc,(`)

1 , . . . ,Lc,(`)
n as explained for the i-th

row decoder above. After decoding of the n column codes
at decoding iteration `, the matrix Ψc,(`) = [ψ

c,(`)
i,j] of hard

decision bits and the lists Lr,(`)
1 , . . . ,Lr,(`)

n are passed to the
n row decoders for the next decoding iteration. The iterative
process continues until a maximum number of iterations is
reached. The BMP-GMDD of PCs is schematized in Fig. 2.

Remark: With reference to Fig. 2, the iGMDD-SR algorithm
proposed in [15] passes the soft information µr,(`)

i,j to the j-th

GMDD
Ψ

c,(`−1)
i,:

Lr,(`−1)
i

× +
µ̄
r,(`)
i,j ∈ {±1, 0}

B(·) GMDD
µ
r,(`)
i,j ψ

r,(`)
i,j

Lc,(`)
j

i-th row
code bit ci,j

j-th columnw
r,(`)
i

Li,j

Fig. 2. Block diagram showing the information flow from the i-th row decoder
to the j-th column decoder in BMP-GMDD. The message at the input of the
i-th row decoder is the vector of hard decisions on the code bits Ψc,(`−1)

i,: and

the ordered list of the dmin−1 least reliable bits Lr,(`−1)
j from the decoding

of the column codes at the previous iteration.

column decoder, which entails a significantly higher decoder
data flow compared to BMP-GMDD.

IV. DECODING COMPLEXITY DISCUSSION

A thorough complexity analysis of BMP-GMDD should
include, besides pure algorithmic aspects, implementation
implications in terms of memory requirements, wiring, and
transistor switching activity [14], and is beyond the scope of
this paper. We however provide a high-level discussion of the
complexity and data flow of BMP-GMDD compared to that of
conventional iBDD, AD [10], iBDD-SR [12], and iGMDD-SR
[15].

Conventional iBDD, iBDD-SR, and AD are based on BDD
of the component codes and are characterized by a similar
complexity and data flow. In particular, it was shown in [14]
that for the same data throughput (up to 1 Tbps), iBDD-SR
provides 0.2–0.25 dB gain with respect to iBDD with only
slightly higher energy consumption.

Both GMDD-SR and the proposed BMP-GMDD are based
on GMDD of the component codes. In this case, t error-
erasure decoding attempts and one BDD attempt are required.
Each error-erasure decoding attempt has a cost close to a run
of BDD. Each decoding attempt may result in a candidate
codeword that is used to form a list of size up to t + 1, as
explained in Section II-A. The minimization of the generalized
distance in (1) for GMDD-SR and the Hamming distance in
(2) for BMP-GMDD has a negligible cost with respect to the
t+1 decoding attempts. On the other hand, both BMP-GMDD
and iGMDD-SR require finding the dmin−1 least reliable bits
and sorting them according to their reliabilities, which adds
some further complexity.

Note that GMDD-SR requires the component decoders to
be provided with soft information by the previous decoding
iteration. Therefore, its data flow is significantly higher than
that of iBDD, iBDD-SR, and AD, and is the same of soft deci-
sion TPD. For an a-bit representation of the soft information,
the data flow is roughly a times that of BDD, iBDD-SR, and
AD. In contrast, BMP-GMDD requires only the exchange of
the hard decisions and the ordered list of dmin−1 least reliable
bits for each row and column codeword. For a component code
of length n, the index of each code bit can be represented
with dlog2(n)e bits. Furthermore, for each of the dmin − 1
least reliable bits we need to provide their ordering in terms

Table I
COMPARISON OF DIFFERENT PRODUCT DECODING ALGORITHMS. CODING GAINS AND CAPACITY GAPS ARE MEASURED AT A BER OF 10−6

acronym decoding algorithm channel
reliabilities

exchanged
messages

gain over
iBDD (dB)

gap from
capacity (dB)

iBDD iterative bounded distance decoding no hard - 1.03 (HD)
iBDD (ideal) iterative bounded distance decoding without miscorrections no hard 0.28 0.75 (HD)

iBDD-SR iterative bounded distance decoding with scaled reliability [12] yes hard 0.27 2.3 (SD)
AD anchor decoding [10] no hard 0.18 0.85 (HD)

BMP-GMDD binary message passing decoding based on GMD decoding yes hard 0.51 1.79 (SD)
iGMDD-SR iterative generalized minimum distance decoding with scaled reliability [15] yes soft 0.58 1.72 (SD)

TPD turbo product decoding (Chase–Pyndiah) [16] yes soft 1.08 1.22 (SD)

2.5 3 3.5 4 4.5 5 5.5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

SD
capacity

HD capacity

Eb/N0 (dB)

B
ER

iBDD
AD
ideal iBDD
iBDD-SR
iGMDD-SR
BMP-GMDD
TPD

Fig. 3. BER performance of different decoding algorithms for a PC with
(256, 239, 6) eBCH component codes and transmission over the AWGN
channel. The PC rate is 0.8716 and the maximum number of decoding
iterations is 10.

of reliabilities. Thus, each ordered lists Lr,(`)
i , i = 1, . . . , n,

and Lc,(`)
j , = j, . . . , n, can be represented with

(dlog2(n)e+ dlog2(dmin − 1)e) (dmin − 1)

bits each. This is the additional data flow (per row and column
code decoding) compared to conventional iBDD. For instance,
for a component code of code length n = 256 bits, the data
flow of BMP-GDD is 15.625% and 34.375% higher than that
of iBDD for dmin = 5 (t = 2) and dmin = 9 (t = 4),
respectively. For a component code of length n = 512 bits,
the increase in data flow is reduced to 8.593% and 18.75%,
respectively. Thus, the increase in data flow of BMP-GMDD
compared to iBDD is very limited and is much lower than the
data flow of iGMDD-SR and conventional TPD.

V. NUMERICAL RESULTS

In Fig. 3, we give the bit error rate (BER) performance
of BMP-GMDD for a PC with double-error-correcting ex-
tended BCH (eBCH) codes with parameters (256, 239, 6) as
component codes and transmission over the AWGN channel.
The resulting PC has rate R = 2392/2562 ≈ 0.8716. For
comparison purposes, we we also plot the performance of
conventional iBDD, AD [10], iBDD-SR [12], iGMDD-SR

[15], and TPD based on the Chase-Pyndiah decoding [16]. For
all algorithms, a maximum of `max = 10 decoding iterations
is performed. As a reference, the Shannon limit for SDD and
HDD is also plotted in the figure.

Both BMP-GMDD and iGMDD-SR require a proper choice
of the scaling factors w(`)

i . For simplicity, we consider the
same scaling factor for all row and column codes, i.e.,
w

r,(`)
i = w

c,(`)
j = w(`) for all i, j = 1, . . . , n, and jointly

optimize the vector w = (w(1), . . . , w(`max)) by using Monte–
Carlo estimates of the BER for a fixed Eb/N0 as the op-
timization criterion. Intuitively, one would expect that the
decisions of the component decoders become more reliable
with increasing number of iterations, whereas the channel
observations become less informative. Therefore, in order
to reduce the optimization search space, we only consider
vectors w with monotonically increasing entries. iBDD-SR
also requires scaling factors (see [12], [19]). In this case, the
scaling factors can be derived using density evolution [13],
[19].

The two reference curves are conventional iBDD (red curve
with empty triangle markers) and TPD (purple curve with
pentagon markers), with the latter performing 1.1 dB better
at a BER of 10−7. AD (dark blue curve with filled circle
markers) and iBDD-SR (pink curve with filled triangle mark-
ers) outperform conventional iBDD by 0.18 dB and 0.27 dB,
respectively, at the same BER. As a reference, we also show
the performance of ideal iBDD (brown curve with empty circle
markers), where a genie prevents miscorrections. Interestingly,
at a BER of 10−7 iBDD-SR yields the same performance as
ideal iBDD.1 iGMDD-SR (green curve with diamond markers)
outperforms iBDD, iBDD-SR, and AD and closes ≈ 54% of
the gap between iBDD and TPD, at the expense of an increased
complexity and data flow.

The performance of the proposed BMP-GMDD is given by
the blue curve with square markers. The proposed decoding
algorithm yields performance very close to that of iGMDD-SR
(a performance degradation compared to iGMDD-SR of only
0.074 dB is observed at a BER of 10−7), while achieving
a significantly lower data flow. BMP-GMDD closes around

1We remark that the performance of iBDD-SR in Fig. 3 is improved
compared to [15], since in this paper we use the optimized scaling factors
based on the density evolution derived in [19], rather than based on Monte-
Carlo simulations as in [15].

50% of the performance gap between iBDD and TPD, while
requiring only a 21.48% higher data throughput than iBDD.

The coding gain improvements of all considered decoding
algorithms over iBDD are summarized in Table I (fifth col-
umn). In the table we also indicate whether the algorithms ex-
ploit the channel reliabilities or not, the nature of the messages
exchanged in the iterative decoding (hard or soft), as well as
the gap to capacity for all schemes (sixth column). Note that
the performance of iBDD and AD should be compared to the
hard decision (HD) capacity, while the performance of iBDD-
SR, iGMDD-SR, BMP-GMDD, and TPD should be compared
to the soft decision (SD) capacity since the channel LLRs are
exploited in the decoding. Overall, one can see a clear trade-
off between BER performance and decoding complexity for
the different algorithms.

We remark that if the channel LLRs are highly reliable
but with wrong sign, one can expect that the decoding rule
in (3) will be unable to recover from these errors. In this
situation, although µ̄r

i,j may correspond to a correct decision,
it is overridden by the channel channel, i.e., the hard decision
on code bit ci,j made by the i-th row decoder, ψr,(`)

i,j , becomes
ψ
r,(`)
i,j = B(w

r,(`)
i · µ̄r,(`)

i,j + Li,j) = B(Li,j) (cf. (3) and
(4)), leading to an erroneously decoded bit. Therefore, one
needs to be careful when applying BMP-GMDD to avoid
the appearance of an error floor. In particular, to avoid such
errors and avoid a high error floor, we run BMP-GMDD for
some iterations and then we append a few conventional iBDD
iterations, where the channel reliabilities are disregarded when
making the decision on a given code bit. The appended iBDD
iterations increase the chance to correct transmission errors
with high channel reliability. By doing so, an error floor is
avoided. The same discussion applies to iBDD-SR [12], [19]
and iGMDD-SR [15]. For the simulation of BMP-GMDD,
iBDD-SR, and iGMDD-SR in Fig. 3 we considered 8 decoding
iterations of the algorithms appended with 2 iBDD iterations.

VI. CONCLUSION

We proposed a new message passing decoding algorithm
for product codes based on generalized minimum distance
decoding, i.e., error and erasure decoding, of the component
codes, where the last stage of GMDD is based on the Ham-
ming distance metric. The proposed algorithm, dubbed BMP-
GMDD, exploits soft information but requires to exchange
only hard decisions and a short ordered list of the least
reliable bits between component decoders, hence introducing
a limited increase in data flow compared to conventional
iterative bounded distance decoding. For the considered sce-
nario based on (256, 239, 6) double-error-correcting eBCH
component codes, the proposed algorithm closes about 50%
of the performance gap between iBDD and turbo product
decoding and yields performance very close to that of the
algorithm iGMDD-SR introduced in [15], with a much lower
data flow, only 21.48% higher than that of iBDD. The increase
in data flow is even lower for longer component codes. While
in this paper we considered PCs, the proposed algorithm can
be extended to other classes of product-like codes such as

staircase codes. Overall, the proposed BMP-GMDD algorithm
provides a very good performance-complexity tradeoff and is
appealing for very high-throughput applications such as fiber-
optic communications.

ACKNOWLEDGMENT

The authors would like to thank Dr. Christian Häger for
providing the simulation results of anchor decoding in Fig. 3.

REFERENCES

[1] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “Power reduction
techniques for LDPC decoders,” IEEE J. Solid-State Circ., vol. 43, no. 8,
pp. 1835–1845, Aug. 2008.

[2] T. Mohsenin, D. N. Truong, and B. M. Baas, “A low-complexity
message-passing algorithm for reduced routing congestion in LDPC
decoders,” IEEE Trans. Circ. and Sys. I: Regular Papers, vol. 57, no. 5,
pp. 1048–1061, May 2010.

[3] F. Angarita, J. Valls, V. Almenar, and V. Torres, “Reduced-complexity
Min-Sum algorithm for decoding LDPC codes with low Error-Floor,”
IEEE Trans. Circ. and Sys. I: Regular Papers, vol. 61, no. 7, pp. 2150–
2158, Jul. 2014.

[4] K. Cushon, P. Larsson-Edefors, and P. Andrekson, “Low-power
400-Gbps soft-decision LDPC FEC for optical transport networks,”
IEEE/OSA J. Lightw. Technol., vol. 34, no. 18, pp. 4304–4311, Sep.
2016.

[5] P. Elias, “Error-free coding,” Trans. IRE Professional Group on Inf.
Theory, vol. 4, no. 4, pp. 29–37, Sep. 1954.

[6] J. Justesen, “Performance of Product Codes and Related Structures with
Iterated Decoding,” IEEE Trans. Commun., vol. 59, no. 2, pp. 407–415,
Feb. 2011.

[7] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge,
“Staircase codes: FEC for 100 Gb/s OTN,” IEEE/OSA J. Lightw.
Technol., vol. 30, no. 1, pp. 110–117, Jan. 2012.

[8] Y. Jian, H. D. Pfister, and K. R. Narayanan, “Approaching capacity
at high rates with iterative hard-decision decoding,” IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5752–5773, Sep. 2017.

[9] C. Häger, H. D. Pfister, A. Graell i Amat, and F. Brännström, “Density
Evolution for Deterministic Generalized Product Codes on the Binary
Erasure Channel at High Rates,” IEEE Trans. Inf. Theory, vol. 63, no. 7,
pp. 4357–4378, Jul. 2017.

[10] C. Häger and H. D. Pfister, “Approaching Miscorrection-free Perfor-
mance of Product Codes with Anchor Decoding,” IEEE Trans. Commun.,
vol. 66, no. 7, pp. 2797–2808, Jul. 2018.

[11] Y. Lei, A. Alvarado, B. Chen, X. Deng, Z. Cao, J. Li, and K. Xu,
“Decoding staircase codes with marked bits,” in Proc. IEEE Int. Symp.
Turbo Codes & Iterative Information Processing (ISTC), Hong Kong,
Dec. 2018.

[12] A. Sheikh, A. Graell i Amat, and G. Liva, “Iterative bounded distance
decoding of product codes with scaled reliability,” in Proc. Eur. Conf.
Opt. Commun. (ECOC), Rome, Italy, Sep. 2018.

[13] G. Lechner, T. Pedersen, and G. Kramer, “Analysis and design of binary
message passing decoders,” IEEE Trans. Commun., vol. 60, no. 3, pp.
601–607, Mar. 2012.

[14] C. Fougstedt, A. Sheikh, A. Graell i Amat, G. Liva, and P. Larsson-
Edefors, “Energy-efficient soft-assisted product decoders,” in Proc. OSA
Optical Fiber Commun. Conf. (OFC), San Diego, CA, Mar. 2019.

[15] A. Sheikh, A. Graell i Amat, G. Liva, C. Häger, and H. D. Pfister,
“On low-complexity decoding of product codes for high-throughput
fiber-optic systems,” in Proc. IEEE Int. Symp. Turbo Codes & Iterative
Information Processing (ISTC), Hong Kong, Dec. 2018.

[16] R. M. Pyndiah, “Near-optimum decoding of product codes: block turbo
codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, Aug.
1998.

[17] G. Forney, “Generalized minimum distance decoding,” IEEE Trans. Inf.
Theory, vol. 12, no. 2, pp. 125–131, Apr. 1966.

[18] S. Lin and D. J. Costello Jr., Error Control Coding, Second Edition.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2004.

[19] A. Sheikh, A. Graell i Amat, and G. Liva, “Binary message passing
decoding of product-like codes,” IEEE Trans. Commun. (submitted),
2019.

