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A B S T R A C T

Metabolic reprogramming is considered a hallmark of malignant transformation. However, it is not clear
whether the network of metabolic reactions expressed by cancers of different origin differ from each other or
from normal human tissues. In this study, we reconstructed functional and connected genome-scale metabolic
models for 917 primary tumor samples across 13 types based on the probability of expression for 3765 reference
metabolic genes in the sample. This network-centric approach revealed that tumor metabolic networks are
largely similar in terms of accounted reactions, despite diversity in the expression of the associated genes. On
average, each network contained 4721 reactions, of which 74% were core reactions (present in> 95% of all
models). Whilst 99.3% of the core reactions were classified as housekeeping also in normal tissues, we identified
reactions catalyzed by ARG2, RHAG, SLC6 and SLC16 family gene members, and PTGS1 and PTGS2 as core
exclusively in cancer. These findings were subsequently replicated in an independent validation set of 3388
genome-scale metabolic models. The remaining 26% of the reactions were contextual reactions. Their inclusion
was dependent in one case (GLS2) on the absence of TP53 mutations and in 94.6% of cases on differences in
cancer types. This dependency largely resembled differences in expression patterns in the corresponding normal
tissues, with some exceptions like the presence of the NANP-encoded reaction in tumors not from the female
reproductive system or of the SLC5A9-encoded reaction in kidney-pancreatic-colorectal tumors. In conclusion,
tumors expressed a metabolic network virtually overlapping the matched normal tissues, raising the possibility
that metabolic reprogramming simply reflects cancer cell plasticity to adapt to varying conditions thanks to
redundancy and complexity of the underlying metabolic networks. At the same time, the here uncovered ex-
ceptions represent a resource to identify selective liabilities of tumor metabolism.

1. Introduction

Dysregulation of cellular metabolism has been implicated in the
progression of several cancers as a consequence of oncogenic mutations
(Cairns et al., 2011; Pavlova and Thompson, 2016; DeBerardinis and
Chandel, 2016; Luengo et al., 2017). Despite the fact that the regulatory
programs underlying the observed metabolic shifts should be tumor
specific, it is also known that at the system level metabolic regulation is
substantially similar between the tumor and its tissue of origin (Hu
et al., 2013; Nilsson et al., 2014; Gatto et al., 2014). Even when shown
to be selectively essential to cancer cells, the diversity of metabolic
phenotypes associated with cancer questions the extent to which these
regulatory programs are context-dependent rather than tumor-specific
(Boroughs and Deberardinis 2015; Gatto and Nielsen, 2016). For ex-
ample, glucose metabolism was shown to vary within tumor regions
and between human tumors in lung cancer patients (Hensley et al.,
2016) or to depend strongly on the initiating oncogenic mutation and

the tumor tissue of origin in genetically engineered mice (Yuneva et al.,
2012). Human metabolism is a highly complex system, accounting for
thousands of reactions and metabolites that interact with the environ-
ment to form a connected and functional metabolic network
(Mardinoglu et al., 2013). It is plausible that metabolic shifts so far
associated with different cancers are yet another expression of the
plasticity of these cells to ever-changing conditions in their genome and
their environment (Meacham and Morrison, 2013), with the advantage
that in metabolism this adaptation can leverage on the high redundancy
and complexity of the human metabolic network. The aim of this study
was therefore to characterize the landscape of metabolic reactions ex-
pressed in different cancers, to define their occurrence depending on
the cancer type or mutations in key cancer genes, and finally to identify
any difference from metabolic reactions normally expressed in human
tissues.

Networks represent the natural structure of biological systems, in-
cluding metabolism (Barabasi and Oltvai, 2004). Network-dependent
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analyses not only enhance the interpretability of genome-scale data by
providing a context, but also highlight knowledge gaps and experi-
mental artifacts, e.g. networks can have been used to build a systematic
gene ontology, where manual curation would have been biased towards
well-studied cellular processes (Dutkowski et al., 2013). In cancer me-
tabolism, network-based approaches have unveiled non-trivial meta-
bolic dependencies of the studied cancers (Aspuria et al., 2014;
Björnson et al., 2015; Ghaffari et al., 2015; Schultz and Qutub, 2016;
Yizhak et al., 2014a, 2014b; Zielinski et al., 2017; Damiani et al. 2017;
Peng et al., 2018). In light of this, we sought to reconstruct the meta-
bolic networks of 1082 primary tumor samples in order to obtain a
network-dependent landscape of metabolic reactions occurring in dif-
ferent cancers. These were reconstructed in the form of genome-scale
metabolic models (GEMs) (Yizhak et al., 2015; O'Brien et al., 2015;
Mardinoglu and Nielsen, 2015) in order to derive viable metabolic
networks. GEMs encode all metabolic reactions performed by the gene
products occurring in a sample, while ensuring that included reactions
can carry flux during the simulation of essential metabolic tasks, such as
synthesis of biomass constituents. Once the GEMs were reconstructed,
we analyzed the underlying metabolic networks to address the above-
defined goals of the study.

2. Results

2.1. Reconstruction of 917 cancer genome-scale metabolic models

In order to explore the landscape of metabolic reactions in cancer,
we aimed to reconstruct the metabolic network in each primary tumor
of a cohort consisting of 1082 patients, spanning 13 cancer types.
Clinical, genetic, and gene expression data were retrieved for each
sample from The Cancer Genome Atlas (TCGA). Each metabolic net-
work was reconstructed in the form of a genome-scale metabolic model
(GEM) (O'Brien et al., 2015), here-on referred to as model. The re-
construction was performed by mapping RNA-seq gene expression data
from each tumor sample in a reference generic GEM of the human cell,
HMR2 (Mardinoglu et al., 2014), using the tINIT algorithm (Agren
et al., 2014) and by estimating the probability that a gene is truly ex-
pressed in that sample using an ad hoc Bayesian statistical framework.
As per algorithm formulation (Agren et al., 2012), each reconstructed
GEM results in a connected and functional metabolic network. A con-
nected GEM can carry flux in each reaction under standard medium
conditions, and this requirement ensures for example that expressed
genes that become isolated due to the malignant transformation are
eliminated from the network. A functional GEM, on the other hand, can
simulate a flux through 56 fundamental metabolic tasks, including
biomass growth. Noteworthy, samples used in this study represented a
mixed population of cells, predominantly constituted by cancer cells
(> 80% of tumor nuclei in each sample according to TCGA quality
criteria). Therefore, each GEM should be thought as the metabolic
network expressed in the tumor, rather than solely representing the
cancerous cells.

We devised quality criteria to ensure that the reconstruction algo-
rithm did not introduce any substantial bias while including or ex-
cluding reactions in the final GEMs. These quality criteria measured for
example the expected proportion of reactions included in the final GEM
given the input probabilities (see Material and Methods). Out of the
initial 1082 samples, 917 reconstructed GEMs passed the quality cri-
teria (Fig. S1). We observed that many discarded models were derived
from pancreatic adenocarcinoma (PAAD) and clear cell renal cell car-
cinoma (KIRC) samples. Specifically, GEMs for 15 PAAD samples (52%)
and 53 KIRC samples (51%) were discarded because they failed to
converge to an optimal solution (Fig. S2). The lack of convergence in
the case of KIRC is consistent with the notion of a highly compromised
metabolic network that we uncovered previously for this cancer type
(Gatto et al., 2014, 2015). Finally, we inspected whether the genes
included in a GEM have indeed a higher expression level in the

corresponding sample compared with the genes excluded. This was the
case both when looking at individual models (Fig. S3B) and all models
simultaneously (Fig. S3A). Nevertheless, we noted that a fraction of
lowly expressed genes was still included in most reconstructed models,
likely to preserve connectivity and functionality of the metabolic net-
works. Taken together, we were able to reconstruct GEMs re-
presentative of the metabolic network expressed in 917 cancers.

2.2. Classification of metabolic reactions in core or contextual

Compared to the reference GEM, HMR2, which contains 8184 re-
actions associated with 3765 genes, the reconstructed GEMs featured
on average 4721 reactions and 1995 genes (Fig. S4). We observed small
variations in the number of reactions, but substantial differences in the
number of genes included across GEMs. We performed principal com-
ponent analysis (PCA) on the gene inclusion matrix, that is the binary g
x m matrix where 1 indicates inclusion of HMR2 gene g in the m-th

Fig. 1. – Principal component analysis of 917 cancer genome-scale metabolic
models based on gene (A) and reaction (B) inclusion from the reference generic
human model. Models are grouped by cancer type. Key: BLCA – Bladder ade-
nocarcinoma, BRCA – Breast carcinoma, COAD – Colon adenocarcinoma, HNSC
– Head and neck squamous cell carcinoma, GBM – Glioblastoma multiforme,
KIRC – Clear cell renal cell carcinoma, LGG – Low grade glioma, LUAD – Lung
adenocarcinoma, LUSC – Lung squamous cell carcinoma, OV – Ovarian carci-
noma, PAAD – Pancreatic adenocarcinoma, READ - Rectum adenocarcinoma,
UCEC – Uterine corpus endometrial carcinoma.
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GEM, and 0 vice versa. PCA revealed that GEMs separated mostly by
cancer type when looking at gene inclusion (Fig. 1A), even by taking
into account that the reconstruction might be biased in the case of
PAAD and KIRC types. Nevertheless, PCA on the reaction inclusion
matrix virtually abolished the above-seen diversity among models
(Fig. 1B). This suggest a considerable similarity in metabolic functions
in cancer, in spite of gene expression heterogeneity.

To shed light on the extent of the similarity in terms of reactions
across cancers, we classified a reaction as “core” if included in> 95%
of all models, “absent” if excluded in> 95% of all models, and “con-
textual” if otherwise (Figs. 2A–S5). At this threshold, 3510 reactions
were core (95% bootstrap confidence interval [CI], 3421 to 3599),
3455 were contextual (95% CI, 3367 to 3539), and 1219 were absent
(95% CI, 1157 to 1284) (Fig. 2B). Since reactions can be associated with
more than one gene (i.e. isoenzymes), we further distinguished core
reactions into “pan” if included in all models because of the same gene-
reaction association or “iso” if otherwise (Fig. 2A). Finally, some re-
actions with no gene associations in HMR2 (e.g. spontaneous reactions)
were classified as core because present in> 95% of all models and they
connected other core reactions. We termed these “conn” reactions.
Among core reactions, 2850 were pan reactions (95% CI, 2807 to
2897), 69 were iso reactions (95% CI, 52 to 85), and 590 were conn
reactions (95% CI, 546 to 632) (Fig. 2B). Considering an average of
4721 reactions per GEM, then 74% of all metabolic reactions in the
expressed network were found in any given cancer. Importantly, we
calculated a significantly higher fraction of core reactions than ex-
pected by chance, using 1000 sets of 917 randomly generated models,
with equivalent gene inclusion diversity as in the reconstructed set, but
no constrain on connectivity or functionality (Fig. 2B). A bird's eye view
on the generic KEGG metabolic map showed that the core reactions
mostly cover primary metabolic pathways (e.g. energy, nucleotide and

lipid metabolism), while contextual reactions appear more peripheral
(e.g. glycan metabolism, Fig. 2C), which was confirmed when we
grouped core vs. contextual reactions in HMR2 metabolic subsystems
(Fig. S6). Taken together, these results suggest that, despite hetero-
geneity in the expressed metabolic genes, distinct cancers express a
strikingly similar metabolic network, which can support flux con-
nectivity and functionality and form the backbone of metabolism.

2.3. Analysis of core metabolic reactions in cancer

Core reactions are expected to represent the backbone of cell me-
tabolism. Thus, we compared core reactions as defined here to the list of
reactions carried by the housekeeping proteome in normal human tis-
sues based on Human Protein Atlas (HPA) data (Uhlén et al., 2015)
(Fig. 3A). Excluding conn reactions, 2900 out of 2919 core reactions
(99.3%) were classified as housekeeping also in normal tissues, as ex-
pected. Noteworthy, cancer metabolism seemed to be generally asso-
ciated with a large loss of function in metabolism, i.e. there were 2083
housekeeping reactions in normal cells that were not consistently pre-
sent across all cancers. Noteworthy, all reactions belonging to lipoic
acid metabolism, keratan sulfate biosynthesis, and mitochondrial β-
oxidation of branched-chain fatty acids were associated with the
housekeeping proteome but were not necessarily core in cancer. Con-
versely, 19 reactions were core only in cancers. These were lumped in 5
reaction clusters, defined as sets of reactions encoded by the same gene
(s): the mitochondrial conversion of arginine to ornithine and urea
(encoded by ARG2); amino-acid transport (SLC6A9 and SLC6A14);
prostaglandin biosynthesis (PTGS1 and PTGS2); sulfate transport
(SLC26A1, SLC26A2, SLC26A3, SLC26A7, SLC26A8, SLC26A9); and
ammonia transport (RHAG). Except for ammonia transport by RHAG,
all other reactions have at least one associated gene that was highly

Fig. 2. – Classification of reactions based on their
presence across 917 cancer genome-scale metabolic
models. (A) Depiction of reaction classification. Core
reactions are present in virtually all models, either by
means of the same gene-reaction association (pan) or
via different isoenzymes (iso). Contextual reactions
are present only in a fraction of the models. Absent
reactions are absent in virtually all models. (B)
Number of core, contextual and absent reactions in
the pan-cancer set and in a random set of 917 me-
tabolic networks. The error bar represents the 95%
confidence interval for the bootstrap statistics. See
also Fig. S5 (C) KEGG map of human metabolism
colored to distinguish core (red) from contextual
(blue) reactions. (For interpretation of the references
to color in this figure legend, the reader is referred to
the Web version of this article.)
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expressed in the sample from which the model was reconstructed,
further probing the consistency between the reconstruction method and
the source expression data (Fig. 3B). At the same time, the corre-
sponding proteins showed weak to no gene expression evidence in at
least 30 out of 32 normal human tissues according to HPA (Fig. 3C).
This is suggestive of a small acquisition in metabolic housekeeping
functions in cancer compared to normal human cells.

Among the core reactions, we identified 69 core-iso reactions, which
were included in all models but due to different gene-reaction asso-
ciations. These were lumped in 16 reaction clusters (Fig. 4A). For ex-
ample, the conversion of N-acetylputrescine to N4-acetylaminobutanal
in the metabolism of arginine can be carried out in principle by 5 dif-
ferent amine oxidases (encoded by AOC1, AOC2, AOC3, MAOA,
MAOB), whose expression varied considerably among samples for
which GEMs had been reconstructed (Fig. 4B). We sought to identify if
inclusion of a given isoenzyme in the GEM correlated with particular
features of the modeled sample, specifically with the sample cancer
type and with the presence of mutations in key cancer genes. We ob-
served that in all cases the expression of a particular isoenzyme was
significantly associated by the sample cancer type, but in no instance by
the presence of a particular mutated gene (likelihood ratio test,
FDR < 0.001). This was well illustrated by the example of N-acet-
ylputrescine degradation (Fig. 4C). This reaction was likely to be car-
ried out by AOC1-MAOA gene products in rectal adenocarcinoma but
AOC3-MAOB in invasive breast carcinoma. To provide a simplified yet
exhaustive view of these associations, we computed for each cancer
type the isoenzyme with the most frequent association with a given
reaction cluster (Fig. 4A). Collectively, these results suggest that the
inclusion of different genes across models underlies the inclusion of the
same reaction. This may explain why models displayed a large degree of
separation when compared in terms of gene inclusion but not when
compared in terms of reaction inclusion (Fig. 1).

2.4. Analysis of contextual metabolic reactions in cancer

Contextual reactions were included only in a fraction of all models.
This can be explained in view of how the algorithm treated the input
data. A reaction was prone to be excluded from a GEM in two cases:
first, the expected expression of the associated gene(s) in the corre-
sponding sample was not distinguishable from noise; or second, the
expected expression of genes associated with neighboring reactions in
the corresponding sample was not distinguishable from noise, hence
prejudicing the connectivity of the network. An example of contextual
reactions was the ALOX12-mediated peroxidation of 12(S)-hydro-
peroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HPETE) to 12(S)-
hydroxyeicosateraenoic acid (12(S)-HETE), a reaction in the metabo-
lism of arachidonic acid that was included only in 163 out of 917 GEMs
(17.8%). This was reflected by the expression level of ALOX12 in the
corresponding samples (Fig. 5A). Again, we sought to identify if in-
clusion of contextual reactions depended on the cancer type or on the
presence of mutated genes in the sample. Out of 3,455, 3269 reactions
(94.6%) showed a significant association with the cancer type, while 1
reaction had a significant association with a mutated gene (likelihood
ratio test, FDR < 0.001). As an example for the former case, the cancer
type-dependency of the ALOX12-catalyzed reaction was evident from
ALOX12 expression level in the different types, which was particularly
high in head and neck and lung squamous cell carcinomas and in
bladder adenocarcinomas (Fig. 5B). As for the latter case, the only
mutated gene-associated reaction was the mitochondrial hydrolysis of

Fig. 3. – Core reactions in cancer versus reactions carried out by the house-
keeping proteome in normal humantissues. A) Venn diagram of the reactions
classified as core in this study (excluding conn-reactions) (red circle) or
housekeeping on the basis of the gene expression pattern in 32 normal human
tissues as reported in HPA (green circle). B) Core reactions in cancer but not
housekeeping in normal tissues based on HPA data. The cellular compartment is
shown in square brackets (s, extracellular; c, cytosol; r, endoplasmic reticulum).
C) Inclusion of core reactions not classified as housekeeping based on HPA data
across the 917 cancer models and matched gene expression in the corre-
sponding tumor samples. For comparison, the gene expression evidence in 32
normal human tissues for the genes encoding these reactions were retrieved
from HPA. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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Fig. 4. – Core-iso reactions in cancer.
Sixteen core-iso reaction clusters (i.e., set of
reactions encoded by the same gene(s))
were identified following differential inclu-
sion of isoenzymes in the different models.
In all cases, differential inclusion was sig-
nificantly associated with the sample cancer
type. A) Most recurrent gene-reaction asso-
ciation in the models representing a given
cancer type for the 16 core-iso reaction
clusters (only one representative reaction
shown per cluster). The cellular compart-
ment is shown in square brackets (s, extra-
cellular; c, cytosol; m, mitochondria). B)
Expression plot for an example core-iso re-
action, the cytosolic conversion of N-acet-
ylputrescine to N4-acetylaminobutanal in
arginine metabolism, which is associated
with 5 different genes (AOC1, AOC2, AOC3,
MAOA, MAOB). Each bar stacks the ex-
pression levels of the 5 genes in the tumor
sample from which the model was re-
constructed. The bar of genes with size-ad-
justed log-cpm<0 was neglected. Models
were sorted according to AOC1 expression.
C) Expression boxplots for the 5 genes en-
coding the example reaction in B) when
binned by cancer type. Key: BLCA – Bladder
adenocarcinoma, BRCA – Breast carcinoma,
COAD – Colon adenocarcinoma, HNSC –
Head and neck squamous cell carcinoma,
GBM – Glioblastoma multiforme, KIRC –
Clear cell renal cell carcinoma, LGG – Low
grade glioma, LUAD – Lung adenocarci-
noma, LUSC – Lung squamous cell carci-
noma, OV – Ovarian carcinoma, PAAD –
Pancreatic adenocarcinoma, READ -
Rectum adenocarcinoma, UCEC – Uterine
corpus endometrial carcinoma.
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glutamine to glutamate encoded by glutaminase-2 (GLS2), which was
preferentially excluded in models for tumors with TP53 mutations
(Fig. S7).

In order to reduce the complexity of cancer-type dependency in
contextual reactions, we computed for each cancer type the fraction of
GEMs where the reaction was included (e.g. 0 means that no GEMs from
samples belonging to a given cancer type included that contextual re-
action). Next, we performed consensus hierarchical clustering to detect
consensus clusters of cancer types where contextual reactions appeared
to segregate (Fig. S8). Four clusters were identified: brain tumors (low
grade glioma and glioblastoma multiforme); kidney-pancreatic-color-
ectal tumors (clear cell renal cell carcinoma and pancreatic, colon, and
rectum adenocarcinoma); female reproductive system tumors (ovarian
cancer and uterine corpus endometrial cancer); other tumors (bladder
and lung adenocarcinomas, breast carcinoma, head and neck and lung
squamous cell carcinomas). Finally, we performed random forest cross-
validated variable selection to select contextual reactions that exhibited
the strongest representativeness to either cluster. We found 49 re-
presentative contextual reactions. For example, the transport of sulfo-
glycolithocholate was preferentially included in brain tumor GEMs
(mean in cluster, 82.4%; outside cluster, 19.7%); the conversion of
phenylalanine to phenethylamine was almost exclusively present in
kidney-pancreatic-colorectal tumor GEMs (in cluster, 89.9%; outside,
1.9%); the conversion of cytosolic malate to pyruvate was less common
in female reproductive system tumor GEMs (in cluster, 56.4%, outside,
99.3%); and the above-seen conversion of 12(S)-HPETE to 12(S)-HETE
was mostly included in other tumor GEMs (in cluster, 27.3%, outside,
1.9%) (Fig. 5C).

Since virtually all contextual reactions displayed cancer-type de-
pendency, which in turn appeared to cluster by human tissue similarity,
we interrogated whether the context-specificity of these 49 re-
presentative reactions simply mirrored the expression patterns of the
associated genes in the normal tissues of origin, as previously suggested
for metabolic genes (Hu et al., 2013; Gatto et al., 2014). Therefore, we
retrieved RNA-seq gene expression data from HPA for all putative tis-
sues of origin for the cancer types in this study (except breast, un-
available). We then extracted which gene had the maximum expression
level in each tissue among all genes associated with each reaction. As
hypothesized, the expression patterns in normal tissue closely re-
sembled the availability of a given reaction in the GEMs of their ma-
lignant counterpart (Fig. 5D). However, we noticed some exceptions,
both in terms of gain and loss of metabolic function. As an example of
gain of function, the conversion of N−acetylneuraminate−9−pho-
sphate to N−acetylneuraminate was present in all GEMs except in some
belonging to the cluster of female reproductive system tumors. How-
ever, the associated gene, NANP, is not expressed in any major normal
tissue (range, 0 to 4 FPKM). As a second example, the sodium-depen-
dent transport of mannose and the absorption of cholesterol were both
featured in GEMs belonging to the cluster of kidney-pancreatic-color-
ectal tumors. However, the encoding genes, SLC5A9 and NPC1L1 re-
spectively, were not expressed in the matched normal tissues, but only
in the duodenum and small intestine (range, 52 to 55 FPKM and 41 to
45 FPKM resp.). An example of loss of function was the mitochondrial

oxidation of indole-3-acetaldehyde to indoleacetate in tryptophan cat-
abolism, which is catalyzed by several NAD-dependent aldehyde de-
hydrogenases with shallow substrate specificity (ALDH1B1, ALDH2,
ALDH3A2, ALDH7A1, ALDH9A1). While these enzymes were largely
expressed in all major normal tissues, the catalyzed reaction was mostly
absent in all cancer GEMs, except for a fraction of models belonging to
the cluster of kidney-pancreatic-colorectal tumors.

In conclusion, contextual reactions represented on average 26% of
all metabolic reactions in any given cancer network. This analysis re-
vealed that the context-specificity was often related to the cancer type.
In particular, most contextual reactions segregated in four tissue clus-
ters and, with few notable exceptions, this pattern resembled the ex-
pression profiles of the cancer tissue of origin.

2.5. Expression of contextual reactions correctly distinguished cancer type
clusters

We sought to validate the 49 contextual reactions here found to
distinguish the metabolic networks of four cancer type clusters defined
above. To this end, we retrieved expression data from TCGA for 66
genes encoding these contextual reactions in an independent cohort of
4462 tumor samples spanning the same 13 cancer type. Next, we
trained a random forest classifier on 2231 samples to assign samples to
one of the four cancer type clusters based on the expression level of this
66 gene signature (Fig. S9A). We then tested the so-trained classifier on
the remaining 2231 samples (Fig. S9B). The out-of-bag error was 3.38%
in the training set and 2.9% in the test set. The multiclass area-under-
the-curve (AUC), as defined by Hand and Till (2001), was 0.973.

The classification performance might be biased due to inherent
differences in the gene expression profile of the tissue of origins in the
four clusters. In other words, any set of 66 genes could distinguish the
four clusters because their expression is supposedly modulated in a
tissue-specific fashion also in healthy conditions. To control for this, we
repeated the above multiclass classification using 1000 random 66
gene-signatures and verified that the classifier based on the expression
of contextual reactions outperformed the random classifier in 98.8%
cases (permutation test p=0.012, Fig. S9C). This suggestive that not to
any set of 66 genes was differentially regulated between these cancer
type clusters simply because of inherent differences in expression in
their respective tissue of origins. To further check whether these 66
genes were differentially expressed between cancer type clusters, but
yet substantially similar in their corresponding normal tissues, we
performed differential expression analysis using a generalized linear
model to fit gene expression to the cancer type cluster while controlling
for the matched-normal tissues of origin. We retrieved 438 tumor-ad-
jacent normal samples from TCGA for the same cancer types as above
except brain tumors, for which only 5 normal samples were available
(sample size range per cluster: 24–287). Thus, we analyzed gene ex-
pression for the three remaining cancer type clusters (accounting for
3867 tumor samples, sample size range per cluster: 459–2452). We
observed that 64 of 66 genes in the signature (97%) displayed differ-
ential regulation between cancer type clusters (FDR < 0.001). For
example, AOC1 is moderately expressed in the female reproductive

Fig. 5. – Contextual reactions in cancer were mostly dependent on the cancer type with some of these possibly representing specific gain or loss of metabolic
functions compared to the matched normal tissues. A) An example of contextual reaction, the cytosolic conversion of 12-HPETE to 12-HETE by arachidonate 12-
lipoxygenase, ALOX12), and its expression plot across models. B) Expression boxplots for ALOX12 binned by cancer type. C) Barplots for the fraction of models from a
cancer type (columns) that contain 4 representative contextual reactions (rows) for each cancer-type consensus clusters (horizontal colored bars). D) Heatmap of the
fraction of models from a cancer type (columns) that contained the 49 most representative contextual reactions (rows) for the four cancer-type consensus clusters (see
Fig. S8, colored horizontal bars). A blue entry indicates that all models belonging to that cancer type included a given reaction (white if vice versa). Below, maximum
expression detected in matched normal tissues among the genes encoding for each representative contextual reaction. The reactions' cellular compartment is shown
in square brackets (s, extracellular; c, cytosol; m, mitochondria; g, Golgi apparatus). Key: BLCA – Bladder adenocarcinoma, BRCA – Breast carcinoma, COAD – Colon
adenocarcinoma, HNSC – Head and neck squamous cell carcinoma, GBM – Glioblastoma multiforme, KIRC – Clear cell renal cell carcinoma, LGG – Low grade glioma,
LUAD – Lung adenocarcinoma, LUSC – Lung squamous cell carcinoma, OV – Ovarian carcinoma, PAAD – Pancreatic adenocarcinoma, READ - Rectum adeno-
carcinoma, UCEC – Uterine corpus endometrial carcinoma. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version
of this article.)
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system tumor cluster, but lowly expressed in the other tumor cluster
(FDR = 9*10−69, Fig. S9D). For 48 of 66 genes, the expression was also
significantly different from at least one cluster of matched normal
samples. However, importantly, we found no evidence of expression
difference between the corresponding clusters of matched normal
samples (FDR > 0.01). For example, AOC1 expression is overexpressed
in female reproductive system tumors compared to matched normal
samples (FDR = 2*10−4). But normal samples from the female re-
productive system had similar AOC1 expression to normal samples from
tissues matched to the other tumor cluster (FDR=0.988). Besides
AOC1, we computed the most significant gene for the remaining two
cluster comparisons: ALDH2, repressed in the other tumor cluster
compared to kidney-pancreatic-colorectal tumor cluster, but similarly
expressed in the respective tissue of origins; and CYP3A5, very lowly
expressed in female reproductive system tumor cluster compared to the
kidney-pancreatic-colorectal tumor cluster, yet again similarly ex-
pressed in the respective tissues of origin (Fig. S9D).

Taken together, even though gene expression analysis does not re-
present direct evidence of the occurrence of the underlying reactions
and fails to account for the systems of metabolic reactions in which a
gene is expressed, these results in a large independent cohort suggest
that the 49 contextual reactions in the different cancer type clusters
arise from cancer type-specific regulation of the corresponding genes
that are not attributable to substantial differences in the gene expres-
sion profiles of the matched tissue of origins. This argues in favor to the
fact that these contextual reactions may represent cancer type-specific
metabolic liabilities.

2.6. Validation of core reaction analysis in an independent set of cancer
GEMs

Our analysis suggested that the metabolic network of cancer was for
the vast majority composed of core reactions (74% of all reactions),
largely independent of cancer type, and, with the exception of 19 re-
actions, completely overlapping with the metabolic reaction network
encoded by the housekeeping proteome. To confirm these findings, we
retrieved an independent set of 3933 primary tumor samples from
TCGA for which we reconstructed as many GEMS by adopting the same
reconstruction procedure but a distinct - more computationally scalable

- method to estimate the probability of expression for each metabolic
gene in the sample. The previously adopted quality control criteria
returned a final set of 3388 functional and connected GEMs. Despite the
fact that the more scalable method resulted in the inclusion of a slightly
higher average number of reactions per GEM (5063±207) and thereby
number of core reactions (N=3,957, Fig. 6A), the proportion of core
reactions versus contextual reactions in this validation set was con-
cordant with the original set (78% vs. 76% core reactions and, con-
versely, 22% vs. 24% contextual reactions in the validation vs. original
set respectively). In addition, there was a significant overlap in the list
of core reactions between the two sets (N=3452 out of 3510 (98%) in
the original set and 3957 (87%) in the validation set, OR=314,
p < 10−15). After filtering out 582 reactions classified as “conn”, we
were able to replicate the previous finding that 96.3% of all core re-
actions in cancer were housekeeping reactions, i.e. expressed in the
greatest majority of normal tissues according to HPA (note that 33 core
reactions were excluded in the comparison as HPA had no data on the
associated genes, Fig. 6B). Consistent with the original set, also in the
validation set we observed a small acquisition of 92 reactions core
exclusively in cancer. Of the 19 reactions classified as core only cancer
in the original set, 18 were found also in the validation set, a significant
over-representation (OR=1159, p < 10−15). Overall, these results
corroborate: first, that most cancers expressed the same backbone of
metabolic reactions mostly with housekeeping functions in normal
human tissues; and second, that there exist a small set of metabolic
reactions seemingly present in any cancer but without housekeeping
functions in the normal tissues.

3. Discussion

Reprogramming of cellular metabolism is a hallmark of malignant
transformation, as suggested by accumulating evidence that uncovered
tumor-specific molecular mechanisms of metabolic regulation (Cairns
et al., 2011; Pavlova and Thompson, 2016). However, only few studies
explored tumor metabolism at the systems level (Gatto and Nielsen,
2016; Zielinski et al., 2017; Peng et al., 2018). Since networks are the
natural structure of complex systems like metabolism, in this study we
adopted a network-centric approach to characterize the landscape of
metabolic reactions expressed in different cancers. Despite the sub-
stantial diversity of the genes included in each model across cancers,
the resulting metabolic networks were strikingly similar in terms of
included reactions, probing the robustness and redundancy of the
human metabolic network.

The overwhelming majority of core reactions in this study were
carried out by enzymes classified as housekeeping in normal tissues.
This argues that cancer cells, regardless of their origin, vastly maintain
the backbone of cellular metabolism and no specific metabolic function
is universally acquired as a result of the transformation. Potential ex-
ceptions to this could be represented by the residual core reactions,
which were so-classified only in cancer metabolism networks. While
inclusion of these reactions in all GEMs certainly depended on network
connectivity and functionality, we also observed an obvious correlation
with gene expression in the underlying cancer samples. There could be
many alternative biological reasons why these reactions are universally
present in cancer metabolic networks while being seldom expressed in
normal human tissues. Perhaps an intriguing pattern is the role of both
ARG2 and PTGS1/2 in the generation of metabolites that control en-
dothelial cell proliferation (Li et al., 2002, Wang and DuBois, 2010) and
activation of the immune system (Wang and DuBois, 2010; Bansal and
Ochoa, 2003), which are likely to be dispensable metabolic functions in
the majority of healthy human cells. Another interesting observation is
the presence of core-iso reactions, included in all models because at
least one isoenzyme was expressed in the modeled tumor sample. Core-
iso reactions were previously observed by Hu et al., for example in the
case of aldolase isoenzymes (ALDOA, ALDOB, ALDOC) (Hu et al. 2013).
Here, we complemented these findings and verified that in all cases the

Fig. 6. – Validation of the analysis of core reaction in cancer in an independent
set of 3388 GEMs. (A) Classification of reactions based on their presence across
3388 cancer genome-scale metabolic models in core, contextual and absent
reactions. The error bar represents the 95% confidence interval for the boot-
strap statistics. (B) Venn diagram of the reactions classified as core in the va-
lidation set (excluding conn-reactions) (red circle) or housekeeping on the basis
of the gene expression pattern in 32 normal human tissues as reported in HPA
(green circle). (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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differential expression of isoenzymes could be attributed to differences
in cancer type between the modeled samples. For example, oxidation of
primary amines (like acetylputrescine) is possible in all models because
at least one among the spectrum of monoamine oxidases (MAOA and
MAOB) and amine oxidases (AOC1, AOC2, AOC3) was expressed in
each underlying sample.

Contextual reactions were present only in a fraction of the re-
constructed metabolic networks. In one case, which is the mitochon-
drial synthesis of glutamate from glutamine encoded by GLS2, the
contextual reaction was strongly associated with absence of TP53 mu-
tations in the modeled sample (regardless of its cancer type). This result
is strikingly concordant with the notion that p53 directly controls GLS2
expression in either stressed or not stressed conditions (Hu et al., 2010)
and further suggests that the presence of the underlying reaction is
partly dictated by mutations in TP53 independent of the cancer type. In
94.6% of the other cases, the inclusion of contextual reactions could be
attributed to differences in cancer types, which we narrowed down to
differences across four cancer type clusters. In particular, 49 contextual
reactions were strongly representative for the four cancer type clusters
because of differential regulation of the associated genes across cancers
of different types, irrespective of the expression level in the corre-
sponding tissues of origin. At the same time, in general, the pattern of
contextual reaction inclusion in a model largely resembled the ex-
pression pattern of the associated gene(s) in the matched normal tissue
of origins. Exceptions to this were noted for few reactions, for example
the mitochondrial oxidation of indole-3-acetaldehyde to indoleacetate
in tryptophan catabolism, by several NAD-dependent aldehyde dehy-
drogenases (ALDH1B1, ALDH2, ALDH3A2, ALDH7A1, ALDH9A1). This
case is intriguing because of ALDH2: its cancer type-cluster specificity
and the substantial expression difference with the matched normal
tissues seem both to stem from the underlying patterns of ALDH2 ex-
pression (Fig. S9D). ALDH2 is moderately to highly expressed in most
normal samples, but it is strongly repressed in all cancers except those
belonging to the kidney-pancreatic-colorectal cluster, as observed in
our network-centric approach (Fig. S9C). For the other cases, we could
not derive equally straightforward relations with gene expression,
likely due to the complexity of metabolic network around these reac-
tions. An interesting outcome of this analysis is that the expression of
the 66 genes encoding these 49 contextual reactions could accurately
classify tumor samples into four groups of cancer types. Although we
did not perform a systematic review of the physiological or therapeutic
importance of each of these 49 reactions in the four cancer groups, we
noted an apparent enrichment of intracellular transport processes and
reactions within eicosanoids and xenobiotics metabolism in this list.
These latter two pathways are known to be involved in cancer pro-
gression and initiation given the role of eicosanoids in shaping a pro-
inflammatory tumor microenvironment and the promotion of geno-
toxicity by reactive intermediates generated in the metabolism of xe-
nobiotics (Wang and DuBois, 2010; Nebert and Dalton, 2006). In ad-
dition, we previously observed that specifically these two metabolic
pathways were exquisitely correlated with the occurrence of cancer-
associated mutations (Gatto et al., 2016). Overall, this analysis points to
metabolic reactions that not only may represent unique vulnerabilities
in cancer, but also are common between cancer types in the same
group. Such reactions might represent drug targets common across the
different cancer types in each group.

Modeling metabolic networks at genome scale comes with chal-
lenges, mostly arising from knowledge gaps in the biochemistry of
several metabolic reactions (Monk et al., 2014). The gene-reaction as-
sociations in this study were occasionally inferred, since the specificity
and in vivo activity of some enzymes is unknown. Even though we drew
our conclusions based on stringent statistical models, these short-
comings may introduce a systematic bias that is difficult to estimate and
control for in downstream analysis. Hence, we expect that some
quantitative claims will be revisited in light of improved knowledge on
the biochemistry of human metabolism. An alternative approach could

be (differential) expression analysis for each gene associated with a
metabolic reaction, as we and others have implemented previously (Hu
et al., 2013; Nilsson et al., 2014; Gatto et al., 2014; Zielinski et al.,
2017). However, we adopted a network-centric approach because re-
actions might be expressed or not depending on the availability of the
neighboring reactions or, in a broader context, of a metabolic pathway
or even a metabolic function; or they could be carried out by differ-
entially expressed isoenzymes. This context is lost in canonical gene
expression analyses. The network structure may occasionally override
information coming from gene expression data. This provides an op-
portunity for discovery, but at the same time complicates the inter-
pretability of certain results in light of gene expression evidence, as in
the case of RHAG expression in Fig. 3C. This can also result in the
opposite situation, i.e. metabolic genes seemingly expressed in the
tumor yet absent at the reaction level because either unconnected or
supporting an unknown metabolic function. Another challenge is the
paucity of large-scale cell type-specific data. Despite the TCGA re-
quirement that a sequenced tissue should contain>80% of tumor
nuclei, its reconstructed network does not necessary reflect the reac-
tions occurring in a single cancer cell nor it can dissect their distribution
in the different clones in the tumor. Rather it compiles all the reactions
expressed in the cell population of that tumor. Whilst a limitation, this
acknowledges the contribution of stromal and immune cells to the
metabolic plasticity of tumor (Ghesquiere et al., 2014).

In conclusion, our findings suggest that tumors express a metabolic
network of core reactions with housekeeping functions and cancer type-
specific contextual reactions that are virtually overlapping with the
corresponding normal tissue of origin. In light of this vast similarity,
metabolic reprogramming implicated with cancer transformation might
just reflect the plasticity of tumors to adapt to varying environmental
and genetic factors by leveraging on the complexity of the metabolic
network. This also suggests that targeting tumor metabolism may result
in either toxicity or resistance, because the underlying metabolic net-
work supports essentially the same metabolic functions as in the mat-
ched normal tissue. Nonetheless, exceptions to this similarity with
normal tissues were uncovered in this study, and we believe that this is
a valuable resource to further investigate selective liabilities of tumor
metabolic networks.

4. Materials and methods

Reconstruction of tumor genome-scale metabolic models. Read
count tables for 18,956 genes from 1082 primary tumor samples in the
original set and 3635 in the validation set were retrieved from The
Cancer Genome Atlas (TCGA), for which both gene expression and
mutation data were simultaneously present. These samples were se-
quenced using Illumina HiSeq or Genome Analyzer RNA-seq platforms.
For each sample, counts were transformed into log-counts-per-million
(log-cpm) and multiplied with a normalization factor that accounts for
differences in library sizes across samples, which was calculated using
the edgeR R-package (Robinson et al., 2010). The resulting size-adjusted
log-cpm for a gene is an expression level measurement comparable
across samples (Law et al., 2014).

In the original set, the probability that a gene is truly expressed in
an individual sample was estimated using a Bayesian statistical fra-
mework by computing the probability that its expected distribution of
read counts in that sample is better explained by the expected dis-
tribution of read counts of genes that should not be expressed in that
samples. The expected size-adjusted log-cpm for gene i in sample j was
calculated based on specific features of sample j (like the belonging to a
certain cancer type or the presence of a mutation in a key gene) using a
pre-specified generalized linear model (1) from (Gatto et al., 2016):

= − = ∼E μ x βθ (log cpm ) ( )i i
T

igene ,j ,j ji (1)

where the expected size-adjusted log-cpm for gene i in sample j is equal
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to the linear combination of sample feature variables (x j) and coeffi-
cients for the effect of that feature on gene i (βi). The coefficients were
fitted for each gene to the observed size-adjusted log-cpm across the
1082 samples by ordinary least squares regression using voom R-
package (Law et al., 2014). The linear model for the expected expres-
sion of gene i is referred to as θgenei. We reasoned that gene i is truly
expressed in sample j if its observed size-adjusted log-cpm is better
explained by a normal distribution with parameters derived from θgenei,
rather than by linear models constructed on the expected size-adjusted
log-cpm of genes that are not supposed to be expressed in sample j. We
selected 7 testis-specific gene products as “noise” genes: ACRV1,
ADAM2, BOLL, DKKL1, FMR1NB, TEX101, and ZPBP2. These proteins
are not detected in any other tissues according to the Human Protein
Atlas (Uhlén et al., 2015), yet reads that align to their loci are seldom
detected by the RNA-seq platform. The posterior probability that gene i
is truly expressed in sample j, or in other words the likelihood of the
linear model θgenei for gene i being better than alternative linear models
θgeneg, was than calculated using the Bayesian formula (2):
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where the prior probability of the linear model θgeneiwas set equal to
50% and the prior probabilities for each alternative linear model θ ggene

derived from each of 7 “noise” genes was equally split so that they
would sum to 50%. The output is a m x n matrix of posterior prob-
abilities P, where m is 18,956 genes and n is 1082 samples, and

∈P (0,1).m n,
In the validation set, the probability that a gene is truly expressed in

an individual sample was computed using a distinct more computa-
tionally scalable method. The probability was estimated as the chance
of randomly finding a non-zero difference between the median in the
population of expression value for the 7 “noise” genes and the expres-
sion value for that gene in that sample, i.e. the p-value of a 1-sample
Wilcoxon test. The output is a m x n2 matrix of probabilities P, where m
is 18,956 genes and n2 is 3933 samples, and ∈P (0,1).m n, 2 Compared to
the previous method, this resulted in a less conservative threshold to
declare a gene expressed and therefore in the inclusion of more reac-
tions in the final GEM.

The probabilities' vector for sample j was used to score each reaction
in the automatic reconstruction of a genome-scale metabolic model
(GEM) from the reference generic human GEM, HMR2. HMR2 contains
8184 reactions associated with 3765 genes. The reconstruction was
performed using the tINIT algorithm, as described previously (Agren
et al., 2014). Briefly, the algorithm implements a mixed-integer linear
problem (MILP) that, starting from a reference metabolic network (in
this case HMR2), maximizes the inclusion in the final model of reactions
that are positively scored while maximizing the exclusion of reactions
that are negatively scored. Other constraints in the MILP guarantee that
the final model features a connected and functional network, in that it
can simulate a flux in each reaction under standard medium conditions,
and it can simulate a flux through 56 fundamental metabolic tasks,
including biomass growth (Agren et al., 2014). In each reconstructed
sample j, the reaction score was equal to the posterior probability of the
associated gene in sample j, as returned from (2). If more than one gene
was associated with a reaction, the most positive score was retained
because indicative that the reaction can be carried out by at least one
expressed gene product, as previously implemented (Agren et al., 2012,
2014). We selected a threshold equal to 0.99 that we subtracted to the
posterior probabilities’ vector for sample j, before scoring the reactions,
so that only genes with a posterior probability> 99% to be truly

expressed (as defined above) have positive values and will tend to be
included by tINIT. We selected this threshold as an arbitrary metric
reflecting 99% statistical confidence, which we reasoned to be a con-
ceptually superior over arbitrary thresholds based on expression scores
as previously implemented in automatic reconstruction of GEMs (Agren
et al., 2012; Wang et al., 2012; Vlassis et al., 2014). In the validation
set, the selected threshold was 0.98 due to small estimation differences
to compute probabilities between the two methods. For the scope of the
validation analysis and as observed empirically in the results, the two
methods resulted in largely similar analysis outcomes probing the re-
latively low sensitivity to this parameter choice. All other parameters
for the reconstruction were otherwise identical across sets and across
samples, in particular the maximum allowed relative gap in the optimal
solution returned from the MILP was set to 5%. The reconstruction was
implemented in Matlab 7.11 using Mosek v7 as solver. All models and
reconstruction scripts are made available in: https://github.com/
SysBioChalmers/pan-cancer-GEMs.

Quality control of reconstructed tumor GEMs. We evaluated the
quality of the reconstruction according to the following criteria: con-
vergence to an optimal solution; the accuracy of gene inclusion should
be>90%; the corresponding Matthews correlation coefficient, an un-
biased estimator of accuracy, should be > 0.8; and the number of re-
actions added during the reconstruction in order to be able to perform
the 56 metabolic tasks considered in the tINIT algorithm should
be<1% of all reactions included in the model. These thresholds were
selected to prevent reconstructions of questionable quality to be in-
cluded in downstream analysis, in consideration that most reconstruc-
tions converged successfully and only some outliers fall below the se-
lected values (Fig. S1). The accuracy for model k derived from sample j
was calculated in terms of true/false positives/negatives in the final
model k, where a true positive is a gene with posterior probability>
99% in sample j and included in model k and a true negative is a gene
with posterior probability≤99% in sample j and excluded in model
(false positive/negative if vice versa). Principal component analysis
(PCA) to evaluate similarity of the 917 reconstructed GEMs was per-
formed on the gene/reaction inclusion matrix, where each row is a
gene/reaction in the reference GEM, HMR2, and each column re-
presents a reconstructed GEMs. A matrix cell is equal to 1 if the cor-
responding HMR2 gene/reaction is included in the corresponding re-
constructed GEM. PCA was performed on unscaled data with mean
centering using the ade4 R-package (Dray and Dufour, 2007).

Reaction classification and analysis. A HMR2 reaction was clas-
sified as “core” if included in>95% of all reconstructed GEMs; “ab-
sent” if included in less< 5% of all reconstructed GEMs; “contextual” if
otherwise. We selected these thresholds because the underlying dis-
tribution seemed to reach a plateau at these values (Fig. S5). Core re-
actions were further sub-classified into “pan” if their inclusion was due
to inclusion of the same associated gene(s) in> 95% of all re-
constructed GEMs and “iso” if otherwise, meaning that different iso-
enzymes are present in different models for that core reaction. We es-
timated how robust was the number of core, contextual and absent
reactions to potential outliers in the set of reconstructed GEMs by
bootstrapping the count of each category 1000 times. We computed the
count of core, contextual and absent reactions in 1000 sets of 917
random GEMs, reconstructed by including v random genes from the
gene-reaction association matrix of HMR2, where v is a 1×917 vector
equal to the number of genes included in the actual set of 917 GEMs
reconstructed using tINIT. Core and contextual reactions were mapped
to the generic KEGG metabolic map using iPath2 (Yamada et al., 2011)
(if univocally identified using KEGG IDs) and grouped according to
HMR2 metabolic sub-systems.

Core reactions in tumors were compared to housekeeping reactions
in normal tissues, so classified based on Human Protein Atlas (HPA)
evidence for the associated genes. We compiled this list by including
genes that were either expressed (> 0.5 FPKM) in all 32 normal tissues
considered by HPA (“expressed in all” HPA category); or in> 30
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normal tissues; or expressed in a subset of the 32 tissues that share little
functional similarity, e.g. CBLN3 in cerebellum, lung and small intes-
tine, which suggests that the gene may be expressed promiscuously
across human tissues (“mixed” HPA category). We counted 69 core-iso
reactions, which could be lumped in 16 reaction clusters, sets of reac-
tions encoded by the same gene(s). We tested whether the preferential
inclusion of an isoenzyme in certain model could be attributed to the
cancer type or presence of mutations in 9 key cancer-associated genes,
which were featured in the linear model (1), using a likelihood ratio
test. After adjustment for multiple testing (Benjamini et al., 2001), an
association was considered significant if the false discovery rate
(FDR) < 0.001. The most recurrent gene-reaction association present
in models belonging to a certain cancer type was chosen as the most
likely isoenzyme to carry out the core-iso reaction in that cancer type.

We tested if the preferential inclusion of a contextual reaction in a
certain model could be attributed to the cancer type or presence of
mutations in 9 key cancer-associated genes, using a likelihood ratio test.
Since 94.6% of contextual reactions showed an association with cancer
type, we sought to reduce the complexity by deriving clusters of cancer
types where a contextual reaction is included more or less frequently
than expected. We performed consensus clustering on a l x c matrix,
where c is the number of cancer types (13) and l is the number of
contextual reactions (3,269), and each matrix cell is the fraction of
models derived from samples of the corresponding cancer type con-
taining the corresponding contextual reaction. The optimal number of
cluster w=4 was selected based on the observation that for w > 4 the
relative change in the area-under-CDF-curve was<0.1, where CDF
stands for the empirical cumulative distribution function of consensus
distributions for up to w clusters. Consensus clustering was im-
plemented using ConsensusClusterPlus R-package (Wilkerson and Hayes,
2010). The 49 contextual reactions most representative of the four
clusters were chosen based on variable selection procedure applied to a
random forest classifier constructed to assign a model to either of the
four consensus clusters based on inclusion of contextual reactions.
Random forest-driven variable selection was implemented using the
varSelRF R-package (Diaz-Uriarte, 2007).

Validation of cancer type cluster-dependency of contextual
reactions. Gene expression profiles for 4462 primary tumor samples
from the same 13 cancer types (sample size per type: 94 to 978) were
retrieved from TCGA and transformed to size-adjusted log-cpm as de-
scribed above. The profiles were randomly split in a training and test set
so that 50% of samples belonging to a certain cancer type cluster were
included in each set. A random forest classifier was constructed on the
expression level in the training set of 66 genes, selected because asso-
ciated with the 49 contextual reactions most representatives of the
different clusters (see above). The performance in the classification of
samples in the test set to the 4 cancer type clusters based on the 66 gene
expression signature was evaluated by calculating the multiclass AUC
(Hand and Till, 2001). The same procedure was repeated for 1000
random 66 gene expression signatures. The random forest classification
was implemented using the RandomForest R-package (Breiman, 2001).
Differential gene expression analysis for the 66 gene expression sig-
nature was performed. Samples belonging to the brain tumor cluster
because not enough tumor-adjacent normal samples were found to
match these cancer types in TCGA. We retrieved 438 normal samples
from TCGA that matched the remaining cancer types. We evaluated
differential gene expression between tumor vs. normal samples be-
longing to the same cluster, between tumor samples belonging to dif-
ferent clusters, and between normal samples belonging to different
clusters. After adjustment for multiple testing, a gene was considered
differentially expressed between groups if FDR<0.001. The differ-
ential gene expression analysis was implemented using the voom and
limma R-packages (Law et al., 2014; Smyth, 2004).
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