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Abstract

The modelling of perovskites using density functional theory (DFT) can sometimes
be a challenge with many different states very close in energy. In particular, the tilt-
ing of the inscribed octahedron, as well as the formation of electron polarons, leads
to states with energy differences in the meV range. To distinguish between these
states requires special care. This thesis investigates how the vibrational frequen-
cies and defect-induced strain, or chemical expansion, can be used to distinguish
between different states. For the polaron state in oxyhydride BaTiO3, the compar-
ison of calculations of hydrogen-ion vibrational frequencies to neutron scattering
experiments is an excellent discriminator. The presence of polarons is deemed
highly unlikely in unstrained material, despite the presence of oxygen vacancies.
The observation is confirmed by comparisons of the strain tensor, calculated using
a here-developed formalism. In BaZrO3 the likelihood of an anti-ferrodistortive
phase transition is a direct consequence of the magnitude of the R25-mode fre-
quency. The R25-mode frequency is strongly dependent on the lattice spacing, but
it is shown that the main effect of the inclusion of gradient corrections, as well
as non-local correlation, is secondary and is mostly a consequence of the adjusted
lattice constant. The inclusion of Fock exchange, however, leads to a significant
stabilisation of the cubic phase, which is also verified by neutron scattering mea-
surements. This thesis also concludes that the inclusion of Fock exchange, as found
in hybrid functionals, is essential for a correct description of vibrational properties
in both two studied perovskites.

Keywords: BaZrO3, BaTiO3, materials modelling, density functional theory, vi-
brational analysis, phonon, polaron, anti-ferrodistortive, chemical expansion, oxy-
hydride
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1
Introduction

Materials modelling has become an integral part of materials development and is
now routinely used in the development of new materials. Methods like the cal-
phad approach based on thermodynamic modelling, classical Molecular Dynamics
(MD) simulations and Monte Carlo (MC) techniques based on empirical potentials
have long been used to guide materials development. Properly conducted, materials
modelling makes it possible to predict properties of materials not yet synthesised.
While the calphad approach is a continuum theory, both MD and MC are atomic
simulation techniques which give the user a “microscope” of atomic resolution in all
three dimensions. If the calculated prediction matches the experimental results it
is also, at least in principle, possible to trace the microscopic origin of macroscopic
phenomena. However, common for both the thermodynamic modelling or the em-
pirical potentials mentioned above is that input is often taken from experimental
data, and that the output will be limited by the quality of the input data. Some
predictions may turn out trivial if the method has been designed to predict it, or
worse unreliable and even false if the model has not been designed to be able to
capture it. Some phenomena are even impossible to model with these methods
when the behaviour is of strict quantum origin.

It is also possible that the phenomenon we are trying to model is predicted to the
correct numbers for the wrong reason, that the model produces the correct results
because it was designed to, not because there is any underlying fundamental physics
behind it. Therefore, we would prefer our model to contain as few parameters as
possible, parameters which have to be fitted to some kind of experiment. Indeed,
we want our model to contain no parameters at all if possible.

Several of the more challenging prototypical problems for materials theory are
found in perovskites. Perovskite is a class of materials which share the basic per-
ovskite crystal structure and the general chemical formula ABX3, but with few
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Chapter 1. Introduction

limitations in the constituent elements. Due to the vast number of perovskites
this class of material is very versatile and exhibits very large variety of properties,
including a plethora of phase transitions. Many of these phase transitions can be
categorised as octahedral tilts or cation displacements. The latter can cause the
formation of ferroelectric phases, such as in BaTiO3 the first perovskite with a
practical application [1–3]. The former leads to anti-ferrodistortive phases such as
in the low temperature phase of the prototypical SrTiO3. The energy difference
between the phases is usually very small and thermal energy is often enough to sta-
bilize the high symmetry cubic phase. Sometimes even quantum zero point motion
is enough to suppress the phase transition.

Victor Goldschmidt [4] was the first to systematically categorise the distortion
aptitude for perovskites in the tolerance factor or Goldschmidt ratio. The tolerance
factor is a measure which relates the ionic radii of the constituent elements and,
despite its simplicity, is remarkably accurate at predicting the likelihood of cubic
symmetry as well as indicating which type of distortion can be expected otherwise.
Although it is but a first rough estimate, two main types of distortions away from
the cubic symmetry may be predicted based on the tolerance factor. If the tolerance
factor is too high a cation displacement will occur, and if it is too low a more or
less rigid rotation, or tilt, of the inscribed octahedron.

The categorisation of perovskites was extended by Mike Glazer [5, 6] who desig-
nated the different perovskite derivative crystal structures according to the octahe-
dral tilts. The Glazer notation is a very intuitive and pictorial description of the
various lower symmetry structures that the ideal cubic perovskite may transform
into by a pure octahedral rotation. Further work on the formal categorisation of
perovskites into space groups has been performed by Woodward [7,8] and Howard
and Stokes [9–11]. The latter have also studied cation displacements, which also
may be regarded as a function of a continuous order parameter.

One perovskite which seems not to undergo any phase transition is BaZrO3. It is
prototypical in the sense that it is one of a select few, perhaps the only non-metallic
oxide perovskite, to remain cubic at all temperature [12–17]. Although the absence
of phase transitions has been confirmed, at least down to 2 kelvin [12], the phase
stability is still under discussion.

Several computational studies [18–22] find an unstable phonon mode at the R-
point. This is indicative of an anti-ferrodistortive phase transition, similar to that
of SrTiO3. It has been suggested that the absence of experimental evidence is
because this phase transition is suppressed by quantum zero point motion [22, 23].
This is in contrast to the several experimental studies [12, 24, 25] which maintain
that BaZrO3 will remain cubic all the way down to zero kelvin.

The existence of an anti-ferrodistortive phase transition in BaZrO3 is indeed an
example of a challenging materials modelling task, where small differences, in total
energy or in some other measurable quantity, e.g., phonon frequencies, can cause
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a qualitatively different behaviour. It is also a task which is very sensitive to the
computational method used and different modelling schemes will predict different
behaviours.

Another challenge in materials modelling is to determine the presence or absence
of polarons. The oxyhydride BaTiO3, was reported in 2012 [26] and consists of
substitutional hydrogen on the oxygen site with ionic charge −1. Conventional
band theory predicts oxyhydride BaTiO3 to exhibit metallic conductivity [27], and
it has been suggested that the observed semi-conducting behaviour [28] is caused
by the presence of polarons [29]. A polaron is a localisation of an electron in real
space, as opposed to the state where the electron is completely delocalised in the
entire lattice as predicted by conventional band theory. The presence of polarons
inhibits electron diffusion and thus conductivity in a material, causing the material
to exhibit semi-conducting rather than metallic conductivity. Hole polarons in
perovskites have been modelled [30–32] and found to be stable in BaZrO3, SrTiO3
and BaTiO3. Electron polarons seem to be unstable and unlikely to form [29].
However, the conductivity in oxyhydride BaTiO3 is reported to be semi-conducting
at low hydrogen concentrations [28].

Modelling of polarons is difficult for many reasons. First of all, it is a phenomenon
of quantum nature which requires solution of the electronic-structure problem by
means of an electronic structure program. Secondly, it’s a phenomenon which
might easily be overlooked by a “naive” approach. In addition, the exact ground
state structure of BaZrO3 is difficult to determine, and different computational
schemes or approximations will yield different results, not only quantitatively but
also qualitatively. The only path forward is effectively through a co-called first-
principle method.

In this thesis “First principle” will be used to denote methods for solving the elec-
tronic structure problem which can be directly derived from the (non-relativistic)
many-body Schrödinger equation without input from experimental quantities such
as cohesive energies, bond lengths or band-gaps. First-principles materials mod-
elling includes wavefunction based methods, such as Hartree-Fock (HF) method, as
well as standard density functional theory (DFT). It also includes so-called hybrid
formulations, mixing the HF and standard DFT formulations. However, it does
not include thermodynamic modelling based on empirical potentials.

The great advantage of first principles methods is that they do not require prior
knowledge about the specific system under investigation. In other words, a first
principle method does not contain parameters which depend on the specific system
which need to be provided from experimental results or heuristic experience. A true
first principles method should also be transferable, i.e., if it works for one system it
should work also for similar, or even vastly different, systems. This does not mean
that computational techniques do not require a certain degree of craftsmanship
for producing proper results. Indeed, as this thesis will show, a certain degree of
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Chapter 1. Introduction

know-how is essential for taking full advantage of the predictive power.
Since the seminal papers in 1964 by Hohenberg and Kohn [33] and 1965 by

Kohn and Sham [34] DFT has emerged as the first principles method of choice for
modern computational materials modelling, with the number of published articles
growing almost exponentially [35, 36]. Experimental results are almost routinely
supported by DFT calculations. The popularity of DFT is to a large extent due
to two factors: 1) the beauty of the theory and, for practical calculations, also 2)
the favourable trade-off between accuracy and computational cost. DFT can, at
the same computational cost, treat much larger systems than typical wavefunction
based methods [37]. In the present thesis differences in speed of up to a factor
500 has been noted for a 40 atom system. Also the memory requirement for a
wavefunction based calculation is higher. Not only do we need to store the set of
parameters needed to represent the wavefunction in all three cartesian direction,
we need to store this information for all orbitals and all atoms in the system. For
large systems or heavy atoms, this rapidly becomes a daunting task. The advantage
of DFT is that only one scalar property needs to be stored, namely the electron
density.

In principle, DFT is an exact theory. However, practical implementations of DFT
relies on approximations to the true functional, which remains intractable. The
strength of the Kohn-Sham DFT is that the functional is separated into terms which
are easily computed. The approximations are found in the exchange-correlation
(xc) functional the energy of which is only a fraction of the total [38]. DFT can
therefore give decent results even at rather simple xc-functional approximations.

The local density approximation (LDA), which is regarded as the simplest ap-
proximation to the xc-functional, has been extended to higher rungs by including
higher orders of density gradients in the families of functionals called the generalised
gradient approximation (GGA) and meta-GGA. Since these latter functionals de-
pend not only on the electron density at a specific point but at its neighbourhood,
these functionals are often denoted semi-local.

Beyond the GGA, non-local correlation functionals offer an approach to system-
atically include van der Waals interaction, especially in sparse matter where van
der Waals forces are significant [39]. This class of functionals are truly non-local,
meaning that their impact on any given point, in principle, also depends on the
electron density far away.

Another approach to increasing the accuracy of the xc-functional approximation,
is the combination of standard DFT and a wavefunction description adapted from
the Hartree-Fock method. This class of functionals are termed hybrids and are
popular in the chemistry community and have more recently found widespread use
also in the solid state community. As noted by Kohn and Sham [34] “This proce-
dure may be regarded as a Hartree-Fock method corrected for correlation effects.”
This class of methods, which goes under the name of hybrid functionals, is a prag-
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matic approach which combines the benefits of DFT with those of Hartree-Fock.
Hybrids are sometimes discussed as not being DFT in the purest of definitions [40],
because the exchange depends on the wavefunctions. However, in DFT, the solu-
tion wavefunctions are also formally functionals of the density, and so, therefore
is the exchange term in the hybrid description [41]. The essential difference be-
tween hybrid and standard DFT formulations (like LDA, GGA, meta-GGA and
vdW-DF), is that hybrids can not be seen as having an explicit density dependence
in their description of exchange and correlation effects. For practical implementa-
tions, the suggestion of Kohn and Sham was modified by Becke [42–44] and was
soon to be followed by several others [45–50].

Today, a plethora of different functionals have been proposed. In principle there
are two different approaches for how to design functionals. Either the underlying
parameters can be subjected to a fitting procedure against available experimental
data, or it can be determined from theoretical considerations based on known
theoretical constraints [45,51–63]. The previous has the obvious advantage that it
produces very accurate values for the materials and properties for which it has been
designed, but may be unreliable for other materials or other properties. The latter
exhibit a higher degree of transferability between different systems and properties
and can hence be termed more predictive.

The assessment of functionals follows similar divides. Functionals can be as-
sessed based on how well a certain property, or set of properties, in one material
or set of materials is predicted. The “best” functional is then defined as the func-
tional which makes the best prediction of the desired properties in the investigated
materials. The obvious drawback with this approach is that transferability is not
guaranteed and that assessment becomes impossible if there are no available mea-
surements of a certain property. Also, there is no guarantee that the underlying
mechanism (having the correct electron density) is correct simply because a given
observable (e.g., the correct total energy) is accurately predicted for a selection of
problems [64].

The other way to asses a functional is by determining to what degree the
functional satisfies the known theoretical constraints, such as the reduction to
the uniform electron gas limit [51], the conservation of the exchange-correlation
hole [51, 52], the exchange scaling relation [53, 54] and the spin-exchange scaling.
An overall goal is that the functional approximation delivers DFT solutions that
reproduces the correct electron density [64], the fundamental quantity in DFT.

Another criterion, which the xc-functionals should satisfy is the piecewise-linearity
criterion [56, 65, 66], that reflects the so called derivative discontinuity of the xc-
functional at integer particle number. This criterion is not satisfied for either the
GGA or the wavefunction based Hartree-Fock, although they err in different di-
rections [65–67]. This can be taken as a rationale for mixing of DFT with Fock
exchange or for adding a Hubbard like U term [68, 69]. The Hubbard like U term
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Chapter 1. Introduction

is an on-cite repulsion term added to account for the self-interaction error in DFT
and is often used in perovskite systems to account for Mott transitions and Jahn-
Teller distortions in “strongly correlated” systems. Often, the U term is fitted to
some experimentally determined observable, such as the band-gap or the position
of the d state in the band structure.

In the spirit of ‘first principle’ this theses advocates the use of parameter free,
constraint based functionals, or computational schemes where the parameters can
be determined self-consistently without prior knowledge of the investigated system.
The benefit is an expected improvement in transferability implied by not relying
on experimental measurements, but also, as mentioned above, the higher reliability
in reflecting the underlying mechanisms.

All predictions performed within a theoretical framework must be tested against
observations. This is true even when not relying on experimental input in the
development of functionals. A successful theoretical description is that which is
corroborated by experimental evidence. While no single experimental result can
be treated as the complete answer, the combination of several measurement using
different experimental techniques and theoretical first principles modelling can give
a deeper understanding of a material or a phenomenon which in turn can spur a
technological advancement or an advancement in the field of science.

This thesis investigates and describes several prototypical cases which early use
of DFT with explicit LDA or GGA xc-functionals has failed to describe correctly.
It will be shown that the vibrational frequencies, and properties derived from these,
are very sensitive discriminators. The vibrational frequencies are both difficult to
compute accurately, show a large variation between the different functionals and
have large implications on the predicted stability of the material state. By com-
paring the calculated vibrational frequencies to experimental results, we can accu-
rately determine the material state. We can assert the performance of the different
functionals for material phases and properties that must be seen as exceptionally
sentitive to details of the predicted density variations. Specifically, this thesis in-
vestigates which elements of the xc-correlation functional are most crucial for an
accurate description of these properties, non-local exchange or non-local correlation.
The thesis concludes that inclusion of non-local exchange is of primary importance
for an accurate description of the investigated materials and material states, and
that non-local correlation effects are, although non-negligible, of lesser importance
in BaZrO3. Again, the indirect validation of the accuracy of the electron-density
description is valuable since the density variation is the core quantity in DFT.

This thesis also proposes solutions to several materials problems. The size and
shape of the oxygen vacancy and the hydroxide ion in barium zirconate are de-
scribed and given a theoretical framework, and the predicted chemical expansion
is found to be well in line with experiments. The existence of oxyhydride BTO
is confirmed through a combination of neutron scattering measurements and first-
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principles calculations, and the conduction state is proposed to be metallic-like. It
is shown that the presence of a large number of vacancies do not dramatically affect
the local environment of the hydride ion or the conduction state.

Furthermore, this thesis shows that BaZrO3 is indeed cubic all the way down to
absolute zero. The discrepancies found by previous computational works are due
to the xc-functional used.

Finally, this thesis makes a prediction for the phase transition pressure at zero
kelvin for the anti-ferrodistortive phase transition in BaZrO3.
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2
The perovskite structure

“ Perowskit, ein neues Mineral, das ich im Sommer 1839 von Herrn
Ober-Bergmeister Kämmerer erhalten und in einer früheren Beschrei-
bung desselben zu Ehren des Vizepräsidenten Herrn von Perowski in
Petersburg zu benennen vorgeschlagen habe.1 ”

– Gustav Rose [70]

Perovskite is a mineral named after the Russian mineralogist Count Lev Per-
ovski [70]. It is composed of calcium titanate (CaTiO3) in a very distinctive crys-
tal structure which is shared by many other compounds. As with many minerals,
Perovskite has given its name to this class of materials, called perovskites, exhibit-
ing the perovskite structure. We will adopt this terminology of calling a material
exhibiting the perovskite structure a perovskite.

Perovskites are rather extensively studied due to the abundance of properties
exhibited by different perovskites in combination with their rather simple crystal
structure. Bhalla et al. [3] even claim it is “the single most versatile ceramic host”.
Among the properties exhibited by perovskites are high dielectric constant [71],
ferro- and anti-ferro-electricity [72], piezoelectricity [73], magnetoresistance [74,75],
thermoelectricity [76], superconductivity [77, 78], oxygen ion conduction [79] and
last but not least proton conductivity [80].

1Perovskite, a novel mineral, which I received in the summer of 1839 from Herr Ober-
Bergmeister Kämmerer and which I, in an earlier description of it, proposed to name in honor of
the Vice-President Herr von Perowski in Petersburg.
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Chapter 2. The perovskite structure

Figure 2.1: The cubic crystal structure of the ideal perovskite with symmetry
Pm3̄m with the conventional A-atom centred representation (left) and the B-atom
centred representation (right). The inscribed oxygen octahedron is marked with
blue.

2.1 Ideal crystal structure
A perovskite has the general formula ABX3, where the cations A and B span the
periodic table and the anion, X, typically is a chalcogen or halogen. For the
material to be charge balanced the charge sum of the cations must equal three
times the charge of X, (qA + qB = −3qX). For an oxide perovskite, qX = +2, the
charges of the A and B atoms may be obtained either as 1+5, 2+4 or 3+3. This
limited restriction on the valency of the A and B atoms leads to an abundance of
perovskites [1,2] Many more structures can also be constructed by alloying on the
A or B site.

The ideal perovskite structure, the aristotype, is simple cubic with symmetry
Pm3̄m. There are two different, but equivalent representations of the atoms in the
unit cell. In the standard representation the A cations is chosen as the origin (0,0,0)
with the B atoms in the body centre (1/2, 1/2, 1/2). The X atoms are then located on
the face centres, (1/2, 1/2, 0) with cyclic permutations. This is shown in Figure 2.1.
The Wyckoff sites for these positions are 1a, 1b and 3c. A crystallographically
equivalent representation can be obtained by shifting the origin of the point group
to the B site. The X atoms are then found at (1/2,0,0) with cyclic permutations. The
Wyckoff sites for these positions are 1a, 1b and 3d. The choice of origin has little
implication for the most purposes, but it affects the nomenclature for the irreducible
representations. For example, the irreducible representation (often abbreviated
irrep) R25 in the standard or A-atom centred representation is equivalent to R′
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Figure 2.2: The Brillouin zone of the cubic perovskite.

in the B-atom centred representation. In this thesis the standard representation is
used.

A very important representation of a crystal is the reciprocal cell. The recip-
rocal cell is the Fourier transform of the real space (primitive) unit cell. It is a
mathematical construction in which both electronic and vibrational properties of
a crystal can be calculated and visualised. The reciprocal unit cell, also known as
the Brillouin zone, of a simple cubic lattice, such as the perovskite structure, is
also simple cubic and shown in Figure 2.2. Due to the symmetries of the cube it
is customary to specify the properties only at certain points, the high symmetry
points, and along the lines connecting them. In Figure 2.2 the high symmetry
points Γ, X,M and R corresponding to the points (0,0,0), (0,0,1/2), (0,1/2, 1/2) and
(1/2, 1/2, 1/2) are shown.

2.2 Distorted crystal structures
Very few perovskites exhibit the ideal cubic structure [1, 2]. In fact, not even
CaTiO3, the perovskite mineral itself, is truly cubic. Since most perovskites are
considered to be ionic, the ions building up the crystal can, to a first approxima-
tion, be regarded as hard spheres with ionic radii R. For such a model, the lattice
constant, as measured along the B–O–B axis, equals a = 2RA + 2RO or if mea-
sured along the face diagonal

√
2a = 2RB + 2RO. Due to the differences in ionic

radii these two measures lead to different lattice constant, and the discrepancy is
accommodated for in the tolerance factor or Goldschmidt ratio [4]

t =
RA +RO√
2 (RB +RO)

(2.1)

11



Chapter 2. The perovskite structure

A tolerance factor close to 1 often implies cubic structure [81] while a tolerance fac-
tor lower than unity in general implies distortions into structures of lower symmetry,
usually tetragonal or orthorhombic. With the ionic radii defined by Shannon [82]
the tolerance factor is 1.002 for SrTiO3, which is indeed cubic at room temper-
ature [83]. However, although CaTiO3 has a tolerance factor of 0.97, which is
near unity, it is orthorhombic at room temperature. Tolerance factors larger than
unity also cause distortions, generally towards hexagonal close-packed structure [1].
BaTiO3, which has a tolerance factor of 1.06, distorts into a tetragonal symmetry
and it is not until at a temperature of 120◦C that BaTiO3 becomes cubic. Several
lower symmetry crystal structures are described in further detail in Section A.

Although the tolerance factor may serve as a first guide to the crystal structure
of a perovskite it is but a rough estimate. Even SrTiO3, which is cubic at room
temperature and has a tolerance factor close to 1 undergoes a phase transition
when cooled below 105 K [84].

2.3 Tilts and instabilities
For an understanding of phase transitions and various derivative structures of the
ideal perovskite it is often convenient to think of the perovskite as built up of
corner-sharing BX6 octahedra. The phase transition of SrTiO3 at 105 K can be
described by a rotation, or tilt, of the inscribed BX6 octahedron about the pseudo-
cubic axes. The octahedron, illustrated in Figure 2.1, is regarded as rigid and a
rotation leaves the B-atom centred in the cage, but does not disrupt its corner
sharing connectivity. The tilts can be designated according to Glazer [5, 6] by the
rotations along the three Cartesian coordinates axes, which coincide with the basis
vectors. Since rotations do not commute this is an approximation which works
reasonably for small angles. General, unequal, rotations about the axes x, y and z
are denoted by a, b and c with a superscript + indicating tilts in successive layers
in the same direction, i.e. in-phase rotation, and − in opposite directions, i.e. out-
of-phase rotation. A zero superscript indicates no rotation. Thus a rotation a+b+c+
indicates three unequal rotations about the axes x, y and z, with the octahedra
along the axes tilted the same way.

The phase transition exhibited by SrTiO3 at 105 K is a a0a0c− tilt, indicating
a rotation about the z-axis with successive layers in opposite directions. This is
illustrated in Figure 2.3b. In order to leave the oxygen octahedra rigid the lattice
constants must change during a tilt, and for the rotation around the z-axis the
lattice constant in the x and y direction decrease by an equal amount leading to a
tetragonal I4/mcm symmetry.

The distortion in BaTiO3 differs from the octahedral tilting mentioned above in-
sofar as that the A and B-cations are displaced relative to the polyhedral centres of
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2.4. The BZO balancing act

(a) (b)

Figure 2.3: (a) The ferrodistortive phase of BaTiO3 with tetragonal P4mm symme-
try and (b) the a0a0c− anti-ferrodistortive phase of SrTiO3 with tetragonal I4/mcm
symmetry.

coordination. This causes a permanent electric dipole moment, which is the cause of
the ferroelectricity exhibited by BaTiO3. Often this cation displacement is accom-
panied by an octahedral tilt and BaTiO3 stand out as an example where this is not
the case. There are three possible directions for the B-cation displacement; along
the [100] direction, the [110] direction and the [111] direction. These displacements
cause distortions into crystals of tetragonal, orthorhombic and rhombohedral sym-
metry, respectively [85]. BaTiO3 is important because it exhibits all these three
phases and is therefore sometimes considered as the prototypical ferroelectric [86].

The tilt exhibited by SrTiO3 also carries a local dipole moment which is out-of-
phase from one unit cell to the next. This phase is termed anti-ferrodistortive.

2.4 The BZO balancing act
It has been hypothesised in theoretical works that BaZrO3 undergoes an anti-ferro-
distortive phase transition similar to that of SrTiO3 [18–22]. This has not been
confirmed in experimental works which report BaZrO3 to be cubic, at least down
to 2 kelvin [12]. It has been suggested that the absence of experimental evidence is
because the phase transition is suppressed by quantum fluctuations [22, 23]. This
is contrasted by other experimental studies [12, 24, 25] which claim that BaZrO3
will remain cubic also in the classical regime.

To complicate things further, there are a set of experimental measurements which

13



Chapter 2. The perovskite structure

have been interpreted as indications of a phase transition by theoretical calcula-
tions. The “anomalously high Debye–Waller factor” for the Ba–O bonds in exafs
measurements is attributed to an anti-ferrodistortive tilt [18]. Also the calculated
dielectric constant computed with GGA in the tetragonal cell fits the experimental
results much better than the values calculated within a cubic cell [19]. Further
indications of a possible phase transition is the measured Raman spectrum which
shows some features not compatible with a perfectly cubic perovskite in some stud-
ies [25, 87] but not in other [13, 14, 88]. It has been suggested that the existence
of peaks in the Raman spectrum is due to dynamical disorder [14, 87, 88], but
it cannot be ruled out that these features appear due to impurities. It has also
been suggested that the forbidden Raman peaks are due to second-order Raman
scattering [89]. The earlier experiments are not conclusive.

Although no phase transition has been seen as a function of temperature, a
phase transition has been reported at room temperature and an elevated pressure
of 17.2 GPa to a tetragonal phase [17]. It is hypothesised, based on previous
computational works, that the high pressure phase is the tetragonal I4/mcm sym-
metry, a hypothesis which is supported by Rietweld refinements performed by the
same authors. No further phase transitions were reported up to a pressure of
46.4 GPa. This pressure induced phase transition might be seen as support for the
cubic ground state structure of BaZrO3, but measurements of the phase transition
pressure at different temperatures are lacking. The phase transition pressure is
addressed in Paper V.
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3
Points defects in BaZrO3 and

BaTiO3

“ Crystals are like people, it is the defects in them which tend to make
them interesting ”

– Colin Humphreys [90]

3.1 Point defects
In addition to the structural instabilities discussed above, all real materials con-
tain defects, including point defects such as vacancies and interstitials, line defects
such as dislocations and plane defects such as grain boundaries. In this thesis
the focus is on three types of point defects; interstitials, vacancies and substitu-
tional defects. These are illustrated schematically in Figure 3.1. A point defect
is a non-stoichiometric perturbation of the ideal lattice which may or may not be
electrically charged. Point defects cause an increase of the configurational entropy
contribution to the free energy at non-zero temperatures and will therefore always
be present. Materials can also be prepared in such a way as to increase the number
of defects. This is referred to as doping and is performed, e.g., to make BaZrO3
proton conducting.

By substituting a tetravalent zirconium ion with a trivalent ion, such as yttrium,
a substitutional defect is created. In Kröger-Vink notation, which is often used in
defect chemistry, this is written as Y′

Zr, where Y denotes yttrium and the subscript
Zr indicates the host site. While zirconium donates four electrons to the lattice
making the zirconium ion charged +4, yttrium donates only three and the yttrium
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Chapter 3. Points defects in BaZrO3 and BaTiO3

Figure 3.1: Schematic illustration of (a) a substitutional defect (b) a vacancy and
(c) an interstitial.

ion is charged +3. Since the defect charge is given relative to the original site in
Kröger-Vink notation the apostrophe indicates a defect charge of −1.

A vacancy is formed by removal of an atom, e.g., an oxygen atom. Since the oxy-
gen ion has a charged of −2 the defect left behind after removal of an oxygen atom
will be vO

•• in Kröger-Vink notation, where v indicates a vacancy1, the subscript
O indicates the oxygen host site and the defect charge of +2 is denoted by two dots.
Thus the combination of, e.g., two yttrium substitutional defects and one oxygen
vacancy makes the material charge neutral. Alloying with substitutional defects
in this manner is usually referred to as acceptor doping due to the similarities to
semiconductor doping.

An interstitial is an ion situated between ideal lattice sites. An interstitial can
be of any type, including those already found in the host, and is denoted by an
index i. A proton (H+) interstitial would for example be denoted Hi

•, where the
dot denotes the positive charge of the proton. The proton studied in Paper I
however, is so closely bound to the nearest neighbour oxygen that the notation
(OH)O

• is more appropriate.
It is often necessary to include a non-defect site in chemical reaction formulas.

The notation for an ideal site is written O×
O, which is an oxygen on an oxygen site

with neutral charge.

1Vacancies are often denoted with an upper-case V. Here we adhere to the convention of using
lower-case to avoid confusion with a substitutional vanadium. Similarly a lower-case i is used to
denote the interstitial.
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3.2. Hydration

3.2 Hydration
In Paper I the hydration of a BaZrO3 is studied. Although a small number
of vacancies can be present also in undoped BaZrO3 a higher concentration of
vacancies is made possible by the presence of acceptor doping, such as yttrium in
BaZrO3. During hydration an oxygen vacancy is filled and two hydroxide ions are
formed.

H2O(g) + VO
•• + OO

× → 2(OH)O
• (3.1)

The hydrogen atom is rather closely bound to the oxygen but is mobile in the
shape of a positively charged proton which diffuses through the material through
the Grotthuss mechanism [91] by hopping between lattice sites, making the material
proton conducting.

In analogy with the ionic radii of atoms, the vacancy is often described in terms
of an ionic radius. This is intrinsically difficult and the modelling of a vacancy as
a hard sphere is problematic as the vacancy should rather be modelled as the lack
of one. Similarly, the proton can be given an ionic radius. Usually, the radius is
not assigned to the proton itself, but to the hydroxide ion. The difference in ionic
radius between the vacancy and the hydroxide ion causes a chemical expansion in
the lattice when the material is hydrated [92].

The chemical expansion during hydration is a serious problem in applications
with mechanical stress and fatigue that can cause micro cracking and deterioration
of the material. Therefore, chemical expansion has been investigated, both ex-
perimentally [93–95] and theoretically [96–100]. Despite the efforts to understand
chemical expansion and thus the size difference between the vacancy and the pro-
ton, the size of the vacancy has been debated. The size of the oxygen vacancy is
addressed in Paper I.

3.3 Anomalous hydrogen species in barium titanate
Hydrogen can also appear as negatively charged hydride ions in, for example oxy-
hydride phases, where a hydride ion is substituted on an oxygen site, H•

O. Oxyhy-
drides are rather rare in nature and until recently the layered perovskite structured
LaSrCoO3H0.7 and SrCo2O4.33H0.84 were the only reported transition metal oxides
exhibiting higher than defect level amounts [101, 102]. The discovery of the oxy-
hydride perovskites (Ca,Sr,Ba)TiO3−xHx was therefore rather unexpected [26,103].
Among these BTO exhibits the highest amounts of hydrogen, up to x ≲ 0.6.

The formation energy of a substitutional hydride ion is large and positive which
implies that oxyhydride BTO is not thermodynamically stable and can form only
under strongly reducing conditions provided by, e.g., CaH2. Nevertheless, it is
kinetically stable in air (up to 200◦C) and under inert conditions up to 450◦C,
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Chapter 3. Points defects in BaZrO3 and BaTiO3

above which hydrogen gas is released [26]. The lattice constant increases slightly
compared to the pristine lattice constant, and a phase transformation occurs from
tetragonal to cubic. The substitutional hydride thus stabilises the cubic phase.
In addition, oxyhydride BTO is a dark blue-black material, in contrast to white
pristine BTO. The origin of the blue colour is not fully understood yet.

The substitutional hydrogen is stable only in the positive charge state (H•
O) over

the entire range of fermi levels within the bandgap [27,29]. The formation reaction
is thus

1
2
H2 + O×

O → 1
2
O2 + H•

O + e′ (3.2)
Therefore, it acts as a shallow donor contributing to n-type conductivity in the
initially empty Ti 3d band. Conductivity measurements confirm that BaTiO3−xHx

is electrically conducting [26, 28]. However, while SrTiO3−xHx exhibits metallic-
like conductivity over the whole concentration range, BaTiO3−xHx exhibits semi-
conductor-like conductivity at lower concentrations. At x = 0.14 the conductivity
in epitaxial thin films is semiconductor-like for all temperatures, at x = 0.24 a
semiconductor to metal transition occurs at 200 K, and at higher concentrations
the conductivity is metallic for all temperatures [28]. This semiconductor-like con-
ductivity has been attributed to the presence of small electron polarons forming a
localised defect level in the bandgap [29].

3.4 The polaron quasi-particle
A band-state electron (or hole), i.e., an electron inside an allowed energy band,
moves freely in the crystal with an effective mass m∗, which differs from the elec-
tron mass in vacuum me [104,105]. Band theory follows from solving the electronic
Hamiltonian in an assumed rigid lattice. In real materials the ions are mobile and
at least in an ionic material an electron can polarise the lattice in its neighbourhood
and localise. The combination of a localised, self-trapped electron with its accompa-
nying lattice distortions can be treated as a quasi-particle called polaron [106–108].

If the extent of the polaron is large compared to the lattice spacing, the polaron
is called Fröhlich or large polaron [106]. In this long wavelength limit the solid is
treated in a continuum approximation in the adiabatic limit and the polaron moves
around in the lattice with an increased effective mass compared to a bandstate
electron.

A polaron with a radius for the lattice distortion of the order of the lattice
spacing is called a small polaron and the charge carrier is often localised to a single
atomic site. Figure 3.2 shows an example of a small polaron where the charge
is localised almost entirely to one atom. Because of the short range of the small
polarons the Fröhlich continuum theory is not applicable. The description of small
polarons are on the other hand accessible through first-principle calculations. The
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3.5. Polarons in BTO?

Figure 3.2: The polaron state of the oxyhydride phase of BaTiO3−xHx with a
substitutional hydrogen on an oxygen site. The electron density of the polaron is
shown as a white isosurface.

small polaron can be described in a way similar to a substitutional point defect
and diffuses through the material through hopping between lattice sites [105].

The formation of a polaron from a delocalised bandstate electron is associated
with an energy cost for the polarisation of the lattice. The energy gain by localising
the electron must therefore be larger than the energy cost of the lattice polarisation
to promote the the formation of a polaron. Figure 3.3 shows a schematic illustration
of the energy as a function of lattice distortion. The formation energy Epol is defined
as the total energy difference between the relaxed polaronic and delocalised states,
and is a combination of the strain energy required to distort the lattice Est and the
electronic energy gained by localising the electron in the distorted lattice, Eel.

3.5 Polarons in BTO?
Hole polarons in perovskites have been modelled [30–32] and found to be stable in
BaZrO3,SrTiO3 and BaTiO3. In addition, small self trapped electron polarons have
been found in rutile TiO2 (although not in anatase) both theoretically [109–112]
and experimentally [112–114]. The similarities between the electronic structure of
BaTiO3 and TiO2 near the band edge can be interpreted as a suggestion that self-
trapped polarons may be present also in BTO. However, electron polarons seem to
be unstable and unlikely to form in BaTiO3 [29].

In some cases the strain energy is too large compared to the electronic energy gain
for the polaron to be favourable. Under such circumstances self-trapped electron
polarons will not form. This is believed to be the case in pristine BaTiO3 [29]. A
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Figure 3.3: Schematic illustration showing the polaronic (Epol), lattice strain (Est),
and electronic (Eel) energies as a function of lattice distortion for the delocalised
bandstate and the localised polaron state

polaron can still form if strain can be induced by other means, e.g. by a charged
point defect which attracts the polaron. The strain induced by the point defect
lowers the strain energy required to form the polaron and a bound polaron is created.
Bound polarons have been discussed in BTO in connection with n-type doping such
as Nb+5 substitution and oxygen vacancies [115, 116]. It is therefore plausible to
assume that bound polarons could exist on the titanium ion in oxyhydride BTO
where the natural associate defect site is the n-type H•

O defect [29].
The conductivity in oxyhydride BaTiO3 is reported to be semi-conducting at

low hydrogen concentrations [28]. Conventional band theory predicts oxyhydride
BaTiO3 to exhibit metallic conductivity [27], and it has been suggested that the
semi-conducting behaviour is caused by the presence of polarons [29].

Detection of polarons has proven a challenging task, both experimentally and
theoretically. Due to the very short range of the lattice distortion, polarons cannot
be seen from X-ray diffraction. Also the theoretical modelling of polarons in oxides
has proven challenging. Density functional theory with local and semi-local xc-
functionals suffers from the well known self-interaction error [55] which favours
delocalisation of the electron and thus cannot properly describe charge localisation
such as polarons. Paper II presents a method for polaron description from first-
principles calculations and how to characterise the bandstate from the polaron state
combining vibrational analysis based on density functional theory calculations with
inelastic neutron scattering experiments.
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4
Electronic structure calculations

“ The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are thus com-
pletely known, and the difficulty is only that the exact application of
these laws leads to equations much too complicated to be soluble. It
therefore becomes desirable that approximate practical methods of ap-
plying quantum mechanics should be developed, which can lead to an
explanation of the main features of complex atomic systems without
too much computation. ”

– Paul Dirac [117]

The present thesis uses so-called first principles or ab initio methods to compute
relevant quantities. At the core of first principles calculations is the absence of
experimentally fitted parameters. All derived and computed quantities should be
obtained from first principles, i.e. from the fundamental description of the nature,
the Schrödinger equation. The full time-independent Schrödinger equation in its
most compact form reads

HΨ(x,R) = EΨ(x,R) (4.1)

where H is the Hamiltonian, Ψ is the (multi-particle) wavefunction, E is the energy
eigenvalues, R are the positions of the ions and x the position and spin of the
electrons. Almost all first-principles calculations rely on the separation of the
full Hamiltonian into an electronic Hamiltonian and an ionic Hamiltonian. The
justification for this is the almost instantaneous electronic response to an ionic
displacement due to the much lower mass of the electrons. The instantaneous
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response implies that, as far as electron degrees of freedom are concerned, the
ionic position can be treated parametrically. The nuclei are simply assumed to be
classical particles (of essentially infinite mass) that only reacts to the electrostatic
forces produced by the other nuclei and the electrons. This is called the Born-
Oppenheimer or Adiabatic Approximation.

After a justification of the adiabatic approximation, the present chapter gives an
overview of the methods used for solving the electronic structure problem [36, 37,
44, 118–122]. The ionic motion is treated in Chapter 5.

4.1 Separating electronic and ionic degrees of
freedom

For a multi-particle system the full Hamiltonian1 reads

H = −
N∑
i=1

∇2
i

2
−

K∑
k=1

∇2
k

2Mk

+
1

2

N∑
i,j=1
i̸=j

1

|ri − rj|

−
K∑
k=1

N∑
i=1

Zk

|ri − Rk|
+

1

2

K∑
k,k′=1
k ̸=k′

ZkZk′

|Rk − Rk′|

(4.2)

where upper case denotes ionic and lower case electronic quantities. The terms
represent in order, the kinetic energy for the electrons and nuclei (with mass Mk),
the interaction between electrons, between electrons and nuclei and between the
nuclei.

With the electronic Hamiltonian in the Born-Oppenheimer approximation de-
fined as

Hel =
∑
i

[
−∇2

i

2
+ Vext(ri)

]
+

1

2

∑
i̸=j

1

|ri − rj|
(4.3)

where
Vext(ri) = −

∑
k

Zk

|ri − Rk|
(4.4)

is the external potential caused by the ions, the Schrödinger equation for the elec-
trons with the ions at fixed positions R can be written

HelψR (r) = εRψR (r) (4.5)

The solution to the electronic Hamiltonian will be discussed in this chapter.
1In atomic units in which ℏ = e = me = 1/(4πε0) = 1.
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The remaining terms in the full Hamiltonian in Equation (4.2) form in the ionic
Hamiltonian

Hion = −
∑
k

∇2
k

2Mk

+ V (R) (4.6)

where V (R) is the potential created by the combination of the repulsive ionic
potential and the electron-density variation. This is treated in Section 5.

Even when applying the adiabatic approximation the multi-electron Schrödinger
equation in Equation (4.5) is quite intractable. Several methods for solving the elec-
tronic structure problem have been utilised over the years [36, 44]. The intuitively
most accessible are perhaps the Hartree and the Hartree-Fock (HF) approxima-
tions. These are also the foundation for understanding notions such as the Hartree
potential, self-interaction error and Fock exchange, which are used in hybrid func-
tionals in DFT. In addition, several conclusions and technical aspects carry over
to DFT.

4.2 The Hartree and Hartree-Fock approximations
A first approximation to the electronic structure problem can be made by approx-
imating the full wave function with the product of single particle wave functions
Ψ(x1,x2, ...xN) = ψ1(x1)ψ2(x2)...ψN(xN), where ψi are one particle wave functions
and xi = xi(ri, σi) denotes the position ri and the spin σi. This is referred to as
the Hartree approximation. In the Hartree approximation the electrons are uncor-
related in the sense that the probability of finding electron 1 at x1, electron 2 at
x2 etc. is given by

|Ψ(x1,x2, ...xN)|2dx1dx2...dxN = |ψ1(x1)|2dx1|ψ2(x2)|2dx2...|ψN(xN)|2dxN
(4.7)

is the product of the probability of finding electron 1 at x1, electron 2 at x2 etc.
The single particle wave functions are optimised using the variational principle.

By the variational principle the expectation value of the Hamiltonian is always
higher than the true ground state energy

E0 ≤
⟨Ψ|H |Ψ⟩
⟨Ψ|Ψ⟩

(4.8)

for any wave function Ψ, with equality for the true ground state |Ψ0⟩. The ground
state is obtained by minimising the energy with respect to the wavefunction Ψ
subject to the constraint∫

dxn(x) =
∫

dx
N∑
i=1

ni(x) =
∫

dx
N∑
i=1

|ψi(x)|2 = N (4.9)
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where n(x) is the electron density and N is the number of electrons. The Hartree
equation for the single particle state ψi then becomes[

−1

2
∇2 + Vext(x)

]
ψi(x) +

N∑
j=1

∫
dx′|ψj(x′)|2 1

|r − r′|ψi(x) = εiψi(x) (4.10)

The total energy in the Hartree approximation is obtained as

EH = −1

2

∑
i

∫
ψ∗
i (x)∇2ψi(x)dx +

∫
Vext(x)n(x)dx +

1

2

∫∫
n(x′)n(x)
|x − x′|

dx′dx

(4.11)
Here the first two terms are the kinetic energy and the energy from the external
potential from by the nuclei. The third term is called the Hartree energy and
contains the interaction from the average charge distribution caused by all the
electrons. The Hartree term introduces an interaction between an electron and
the electron density of the crystal, which in turn contains the electron itself. The
electron thus interacts with itself. This causes the so-called self-interaction error.

This self-interaction error can to some degree be removed by taking the anti-
symmetry of the wave function required by permutation symmetry for fermions
into account. In the Hartree-Fock approximation this is done in the shape of a
Slater determinant

Ψ(x1x2...xN) =
1√
N

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · · ψN(x1)
ψ1(x2) ψ2(x2) · · · ψN(x2)

... ... . . . ...
ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣ (4.12)

where the ψi(xj) is the atomic orbital of atom i at position and spin xj = (rj, σj).
The introduction of spin here is necessary since the total wave function consists
of both a spatial and a spin part. In order for the total wavefunction to be anti-
symmetric, as required for fermions, the contributions from both spin and spatial
parts need to be considered. When the spin part is symmetric the spatial wave-
function must be corrected for the self-interaction error. The inclusion of exchange
as discussed below.

The Hartree-Fock equations are very similar to the Hartree equations above with
the addition of a fourth term

Ex = −1

2

N∑
j=1

δσi,σj

∫
dr dr′ ψ∗

i (r)ψ∗
j (r′)

1

|r − r′|ψi(r′)ψj(r) (4.13)

which is the non-local exchange term and is the result of the anti-symmetry of
the wave function. The exchange term, which is non-zero only if the spin are
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parallel, removes the self-interaction in the Hartree-Fock approximation. However,
the true wavefunction is not a single particle theory as there are electron-electron
interaction-effects beyond the Hartree-term.

The difference between the Hartree and the Hartree-Fock approximations is the
inclusion of exchange which removes the self-interaction caused by the Hartree
term. Still, HF is an approximation and by definition the difference between the
true many-particle ground state energy and the HF energy is called correlation [55].

4.3 The Hohenberg-Kohn Theorems
The great advantage of the Hartree and Hartree-Fock approximations (cf. Eq. (4.10))
is that the N -multiparticle Schrödinger equation has been reduced to N non-
interacting single state equations. The great disadvantages are that correlation
has been left out, that the exchange term in the Hartree-Fock approximation is
non-local and that information about all single particle wave functions thus has to
be evaluated and stored.

However, the problem can be reformulated with the electron density as the fun-
damental variable. This possibility of using the density as a fundamental variable
had been explored [36, 37, 44], first by Thomas [123], Fermi [124] and Dirac [125]
and also extensively in the special case of the homogeneous electron gas before
Hohenberg and Kohn [33] proved in two famous theorems that

1. the external potential Vext and thus the full Hamiltonian is uniquely deter-
mined by the ground state density n0(r)

2. there exists a functional E[n, Vext] for any external potential Vext such that
the electron density n(r) that minimises this functional will be the exact
ground state density.

In short this means that there exists a functional of the electron density only, for any
external potential, which solves the problem exactly, not only including exchange
but also correlation. Furthermore, it uses the electron density as the fundamental
variable.

The functional is defined by Hohenberg and Kohn as

FHK [n] = ⟨Ψ|T + Vee |Ψ⟩ (4.14)

where T is the kinetic energy and Vee electron-electron interaction of the full inter-
acting system. The corresponding energy functional

EHK [n] = F [n] +

∫
dr Vext(r)n(r) (4.15)
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satisfies the variational principle, i.e., it assumes it minimum at the value for the
correct electron density n(r) subject to the constraint∫

n(r)dr = N. (4.16)

The Hohenberg-Kohn theorems give no explicit expression for this functional.
While the last term in Equation (4.15) is easily computed, the Hohenberg-Kohn
functional FHK [n], containing the kinetic energy and the electron-electron interac-
tion of the full interacting system, remains unknown.

4.4 The Kohn-Sham Approach
Despite the theoretical beauty of the Hohenberg-Kohn theorems, they provide no
recipe for how to make use of these theorems. An ansatz was proposed by Kohn
and Sham [34] in which the full interacting many-body system is replaced by an
auxiliary system of independent particles. The ansatz relies heavily on the first
Hohenberg-Kohn theorem which can be regarded as the inverse relation to the
Schrödinger equation. While the Schrödinger equation uniquely determines the
wave functions and thus the electron density for a given external potential the first
Hohenberg-Kohn theorem says that the inverse relation also holds.

The great benefit of the auxiliary system is twofold; firstly, it reduces the full
problem of N interacting particles to N single particle systems, secondly, it sepa-
rates out the kinetic energy term and the long-range Hartree term in such a way
that the remaining exchange-correlation (xc) term can be approximated reasonably
well by local or nearly local functionals of the density.

It should be stressed that the Kohn-Sham approach is not an approximation. In
theory the Kohn-Sham approach would be exact if only the exchange-correlation
functional were known. However, for practical calculations approximations to the
unknown exchange-correlation functional must be introduced.

Kohn-Sham, in a manner analogous to the Hartree and Hartree-Fock approxima-
tion, proposed a separation of the two first terms into tree terms; a kinetic energy
term of a non-interacting single particle Ts[n(r)], a Hartree term EH [n(r)] and
an exchange-correlation term Exc. The Hohenberg-Kohn energy functional from
Equation (4.15) then becomes

EKS[n] = Ts[n(r)] + EH [n(r)] + Exc[n(r)] +
∫

dr Vext(r)n(r) (4.17)

A variation of this expression with respect to the single particle wave functions
ψi(r) subject to the constraint in Equation (4.16) leads to[

−1

2
∇2 +

∫
n(r′)
|r − r′|dr′ + Vxc(r) + Vext(r)

]
ψi(r) = εiψi(r) (4.18)
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where
Vxc(r) =

δExc[n(r)]
δn(r) (4.19)

The total energy of the system is

EKS =
∑
i

εi − EH [n(r)] + Exc[n(r)]−
∫

drVxc[n(r)]n(r) (4.20)

Although the Kohn-Sham equation similar to the Hartree equation (4.10) the main
difference is that the Hamiltonian now depends on the density and not the one-
particle wavefunctions.

4.5 Approximations to the Exchange-Correlation
Functional

Up to this point the Density Functional Theory is exact, save for the Born-Oppen-
heimer approximation. However, in practise the xc-functional in Equation (4.19)
must be approximated in some way. The Kohn-Sham approach of separating the
Hohenberg-Kohn functional FHK in a kinetic energy, a long range Hartree term
and an exchange-correlation (xc) functional Exc has the advantage that the xc-
functional is rather small compared to the kinetic and the Hartree energies and
may be approximated reasonably well as a local or nearly local functional of the
particle density at the point r [38]. The accuracy of any DFT-calculation relies
on the approximations of the xc-functional. Over the years an abundance of differ-
ent xc-functional approximations have been proposed [35,44,45,47–50,60–64,126],
but still today the original functional proposed by Kohn-Sham, the local density
approximation, is competitive in certain areas.

4.5.1 Local Density Approximation
The local density approximation (LDA) is perhaps the least sophisticated xc-func-
tional. It is based upon the assumption that the electronic structure in solids to
a good approximation can be described by the homogeneous electron gas [34]. In
this limit the exchange and correlation can be seen as local, i.e., depends only on
the electron density at each point. However, simplicity is also an advantage in that
it’s internal parameterisation can be computed in accurate or even exact model
studies [55, 127–129]. It is given by an analytical expression, with the coefficients
are determined, once and for all, using quantum Monte Carlo techniques [128]. The
total xc-functional in the local density approximation can then be written as

Exc[n(r)] =
∫

drn(r) εxc (n(r)) (4.21)
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where εxc (n(r)) is the energy density per electron at a point r.
This approximation is remarkably accurate for many solids and was a contribut-

ing factor to the great success of the density functional theory. In particular the
LDA predicts for example bond lengths in solids with close to homogeneous elec-
tron density to within a few percent. However, the LDA fails in molecules where
the density varies rapidly.

4.5.2 Generalised Gradient Approximation
The general success of the LDA has inspired the development of various Gener-
alised Gradient Approximations (GGA) with the explicit aim of accounting for the
inhomogeneous electron density found in real material. The natural extension of
the LDA is to include not only the (local) density at a point r but also (semi-local)
gradients of the density εxc = εxc (n(r),∇n(r)). The presence of gradients in the
functional expression have given this class of functionals its name. Several various
forms have been proposed and although derived in different manners, the GGA:s
give similar improvements over LDA. Unfortunately, there is no known systematic
procedure for improving such “gradient corrections” to LDA, and in practise the
development often relies heavily on physical intuition and trial and error [42].

A physically motivated approximation to construct a trusted approximation to
the correct functional is to model the so-called xc-hole, which reflects the density-
density correlation [51, 52]. From this form the form of the GGA:s can be derived.
This procedure leads to some of the most famous and successful GGA versions,
namely those proposed by Perdew and Wang (PW91) [129], Perdew, Burke and
Ernzerhof [126] (PBE) and Perdew et al. [61](PBEsol).

4.5.3 The van der Waals density functional method
The effect of non-local correlation is often not addressed. Among non-local corre-
lation effects are the van der Waals forces of London type between neutral atoms
or molecules which are well established and go as ∼ 1/r6 in the asymptotic limit.
Local or semi-local xc-functional approximations fail to achieve this limit. These
effects of dispersion interaction are perhaps most important in sparse matter and
biological systems where the wave-function overlap is minimal, but may still be
relevant also in dense matter.

There are several ways to take van der Waals forces into account. The van der
Waals density functional (vdW-DF) method [39, 130, 131] is very appealing as it
produces the correct 1/r6 limit with no empirical fitting parameters. Also vdW-DF
stays entirely within the DFT framework and like the LDA and GGA represents an
explicit functional. It computes the beyond-LDA contributions to the correlation
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energy as a double integral similar to the Hartree energy

EvwWDF
xc = EGGA

x + ELDA
c + Enl

c [n]

Enl
c [n] =

1

2

∫
n(r)ϕ(r, r′)n(r′)drdr′.

(4.22)

Here, however, an explicit interaction kernel ϕ(r, r′) is derived from formal many-
body theory of the electron gas theory focusing on the plasmon response [39, 132,
133]. The kernel can be tabulated and the computational cost of adding the non-
local correlation term is practically negligible. In the the present thesis the observed
cost is generally only about 5% higher than the cost for PBE functional.

The exchange part in the vdW-DF functionals is taken from a suitable GGA-
functional. The initial vdW-DF1 functional used the exchange of revPBE [58],
while the next version, vdW-DF2, used a revised version of the PW86 [59]. The
version used in the this thesis is called vdW-DF-cx [62,63] and is here abbreviated
CX. It uses a combination of Langreth-Vosko exchange for small density variations
and PW86 at larger variations in an exchange functional denoted LV-PW86r. The
resulting non-empirical vdW-DF-cx functional is consistent in the sense that the
same plasmon-response description [39] is used to set both exchange and correla-
tion.

4.5.4 Hybrid functionals
DFT suffers from the well known self-interaction problem [55], as mentioned in
Section 4.2. Self-interaction errors lead to a deviation from piecewise linearity of
the xc-functional, a theoretically known criterion of the exact xc-functional, and
delocalisation of the electrons.

It was mentioned already by Kohn and Sham that the inclusion of Fock exchange
(FX), i.e., exchange computed using the Hartree-Fock method, should improve the
results compared to LDA, since at least non-local exchange effects are included. As
Kohn and Sham point out this may be regarded as a Hartree-Fock method corrected
for correlation. However, correlation effects are still treated approximately.

The expected improvement over local and semi-local xc-functionals have inspired
a number of functionals incorporating FX. However, although the inclusion of FX is
supposed to remove the self-interaction, this is not the case. While the Hartree-Fock
method is one-electron self-interaction-free it is not many-electron self-interaction-
free and thus over-compensates the self-interaction [67]. Therefore, in general, FX
is not incorporated in the way that was proposed by Kohn and Sham but by mixing
a fraction of FX with the DFT exchange

Exc = EDFT
xc + α

(
EHF

x − EDFT
x

)
(4.23)
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One popular choice based on theoretical constraints is the mixing proposed by
Perdew, Ernzerhof and Burke (PBE0) [45], which mixes the exchange and correla-
tion from the GGA-PBE with 25% FX.

A computationally more efficient functional is the range separated hybrid func-
tional proposed by Heyd, Scuseria and Ernzerhof (HSE) [47, 48] which splits the
terms in the PBE0 into short- and long-range components, with FX only included
within the region defined by the parameter ω and the long range exchange given
by the semi-local PBE exchange.

EHSE
xc = αEHF,SR

x (ω) + (1− α)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c (4.24)

The adjustable parameter ω, determines the extent of the short-range interactions,
with ω = 0 is equivalent to PBE0 and ω → ∞ to PBE. The ω must be small
enough to agree with PBE0, but large enough to increase performance. There are
two standard choices of ω. The first published article (HSE03) [47] stated a value
of ω = 0.15 a−1

0 ≈ 0.3 Å−1. However, this was not the value actually used in the
article and later an erratum was published [48] with stated a value of ω = 0.2 Å−1.
The latter functional, which sometimes goes under the name HSE06, has been
abbreviated HSE in this thesis.

The non-local correlation in vdW-DF-cx can be combined with non-local ex-
change into the hybrids vdW-DF-cx0 [49] and vdW-DF-cx0p [50] (in this thesis
abbreviated CX0p). The hybrid extension follows the mixing scheme of Eq. (4.23)
with α = 0.25 for vdW-DF-cx0. After a theoretical derivation based on the adia-
batic connection formula [51, 52, 134], the CX0p was proposed with α = 0.2 [50].
This value, based on many-body perturbation-theory coincides with the value pro-
posed by Becke [43] after a fitting procedure. The fact that the same value can be
obtained using two fundamentally different approaches strengthens the argument
for the α-value.

4.5.5 DFT+U – “poor man’s hybrid”
Calculations of exact exchange is computationally very demanding and sometimes
the desired properties can be obtained with simpler methods. While hybrids are
necessary for correcting the underestimated band-gap in a DFT calculation, the
bandstructure within occupied bands can be improved by less computationally
demanding schemes such as the DFT+U method [67–69,135].

As opposed to the rather delocalised s and p states, the d and f states are
rather localised and are not well described by LDA or GGA, which favour fractional
occupancies. By adding a Hubbard-like on-site repulsion term to the semicore d (or
f) states, fractional occupancies are penalised and the total energy is written [67,
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135]

EDFT+U
tot [ρ(r)] = EDFT

tot [ρ(r)] +
∑
t

U

2

(∑
α,σ

nt,σ
α,α −

∑
α,β,σ

nt,σ
α,βn

t,σ
β,α

)
(4.25)

where nt,σ
α,α are the occupation matrices involving orbitals α and β for site t and

spin channel σ.
The value of the U parameter is not transferable and has to be determined from

case to case. Different possible approaches for determining the U parameter are
possible, e.g. to produce the correct bandgap or the correct position of the d-
band [136]. In the spirit of first principles it is desirable to determine the value
of U without relying on experimental observations. In Paper II we choose to fit
the U parameter to the piecewise linearity constraint of the xc-functional, i.e. that
the energy increases linearly when filling the defect level, which is a theoretically
known property of the true xc-functional [56].

4.6 Implementation in periodic solids
The presence of a differential operator in the Schrödinger equation Hamiltonian has
caused a wide variety of approaches concerning the practical implementation. One
of the most important aspects is how to represent the trial wavefunction solutions.
A common approach is to expand the wavefunction in a complete set of basis
functions, e.g. in a linear combination of atomic orbitals, which is rather natural
in the representation of isolated molecules.

In solids with periodic boundary conditions the natural basis function is the
plane wave due to its intrinsic periodicity. In a planewave basis an important
implementation aspect is how to represent the core and the core electrons. A
proper description of the core, where the wavefunctions oscillate rapidly, requires a
very large number of plane waves. The all-electron potentials are not well suited for
a planewave basis set, but by constructing an effective potential the core electrons,
which do not participate in chemical bonding, can be treated together with the
nuclei in a pseudopotential. The resulting system will exhibit a much smoother
potential requiring significantly fewer planewave basis functions. With the PAW
method the all-electron properties can still be obtained.

Since VASP, which is the code used throughout this thesis, is a planewave PAW
code, these aspects will be given attention in the following sections.

4.6.1 Plane waves
Consider a lattice with the periodicity R. The effective potential is then also
periodic with the same periodicity veff(r) = veff(R + r). In such a periodic lattice
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Bloch’s theorem states that a one-electron wavefunction can be written as

ψk(r) = uk(r)eik·r (4.26)

where uk(r) is a function with the periodicity of the lattice. Like any periodic
function it can be expanded in a Fourier series

uk(r) =
∑
m

ck,meiGm·r (4.27)

where Gm is a reciprocal lattice vector. The one-particle wave function can now
be written

ψk(r) =
(∑

m

ck,meiGm·r

)
eik·r =

∑
m

ck,mei(k+Gm)·r (4.28)

If the effective potential is local it can also be expand in a similar way

veff(r) =
∑
m

veff(Gm)eiGm·r (4.29)

Substituting these expressions back into the Kohn-Sham Equation (4.18),(
−1

2
∇2 + veff (r)

)
ψk(r) = εkψk(r) (4.30)

a reciprocal space equation for the coefficients ck,m can be obtained as

1

2
|k + Gm|2 ck,m +

∑
m′

veff (Gm − Gm′) ck,m = εkck,m (4.31)

The original Kohn-Sham differential equation has now been rewritten as a matrix
equation, one for each value of k, where the matrix Hamiltonian is

Hm,m′(k) = 1

2
|k + Gm|2 δm,m′ + veff (Gm − Gm′) (4.32)

The problems are that there are infinitely many k-points to consider and that the
Hamiltonian matrix in principle is of infinite dimension. In practise both these
infinities can be handled by considering only a finite number of k-points and recip-
rocal lattice vectors G.
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4.6.2 Finite sampling
It follows from Bloch’s theorem (Equation (4.26)) that if ψk is a solution, then
so is ψk+G. The solutions can therefore be restricted to the primitive reciprocal
unit cell, called the Brillouin zone. However, there is still an uncountably infinite
number of k-points to consider. This is handled through discrete sampling of the
Brillouin zone. In this thesis the common method of Monkhorst and Pack [137]
has been used. The method selects Ni k-points along each reciprocal lattice vector
b according to the scheme

uni
=

2ni −Ni − 1

2Ni

ni ∈ [1, Ni] (4.33)

kn1,n2,n3 = u(1)ni
b1 + u(2)ni

b2 + u(3)ni
b3 (4.34)

Due to symmetry in the crystal this can be reduced even further, to the irreducible
Brillouin zone, and in practise, especially for crystals of high symmetry, only a few
k-points will suffice to determine the electron density in the entire crystal.

The infinite sum over m′ and thus the dimension of the Hamiltonian matrix can
be truncated at a cut-off energy 1

2
|k + G|2 < Ecut. This introduces a small error

and Ecut has to be chosen judiciously taking both accuracy and computational
cost into account. Usually, the energy cut-off is taken as a value beyond which
accuracy increases only marginally when increasing the cut-off energy. The exact
value of Ecut will depend on how the core electrons are treated. By using the
pseudopotential method Ecut can be reduced greatly.

4.6.3 Pseudopotentials and PAW
A problem with plane wave basis sets is that rapidly varying functions, such as
the wave functions close to heavy nuclei, require a very high cut-off energy in or-
der to be well represented. One solution to this is the pseudopotential method in
which the potential in the core region, i.e. the nucleus and the innermost electrons,
are replaced by a different potential [138]. The argument for this is that the core
electrons do not take part in and are to a large degree unaffected by chemical
bonding. Among the requirements on pseudopotentials are that they should repro-
duce the true potential and electron density of the all-electron problem outside the
core region as well as energy eigenvalues and be smooth enough that a low Ecut is
possible.

Although the pseudopotentials are smoother than the original all-electron poten-
tials they can be made even smoother by relaxing the norm-conserving condition. A
norm-conserving pseudopotential generates pseudo wavefunctions which obey the
usual orthogonality relation of wavefunctions. By relaxing the norm-conserving
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constraint it is possible to formulate ultrasoft pseudopotentials [139, 140], which
reach the goal of accuracy while being much smoother and thus requiring decid-
edly smaller cut-off energy.

The ultrasoft pseudopotential method was refined and given a firmer theoretical
footing by the works of Blöchl [141] and Kresse and Joubert [142] in the Projector
Augmented Wave (PAW) method. The PAW method prescribes a linear mapping
T which projects the pseudo wavefunctions inside the core regions onto the true all-
electron wave functions. The PAW is therefore effectively an all-electron method
giving access to the core electron states while still preserving all the benefits of a
plane wave pseudopotential. In practise however, the frozen-core approximation
is usually applied, in which the core states are not updated. This approximation
usually leads to sufficient accuracy [143].
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Vibrational motion

“ Because atomic behaviour is so unlike ordinary experience, it is very
difficult to get used to, and it appears peculiar and mysterious to ev-
eryone - both to the novice and to the experienced physicist. ”

– R. Feynman [144]

With the electronic structure problem formally solved it is time to turn to the
vibrational motion of the ions. The free energy for the vibrational motion can be
rather easily obtained if just the vibrational frequencies are known. The frequencies
can be obtained by diagonalising the ionic Hamiltonian in Equation (4.6), which is
obtained after applying the adiabatic approximation.

Although it is possible to write down a formal expression for the potential V (R)
in Equation (4.6), it is customary to expand the potential in a Taylor series. In the
harmonic approximation the potential is expanded to second order. The second
order term is a matrix, which can computed using first principle methods, and can
be diagonalised to yield the eigenmodes and eigenfrequencies for the vibrational
motion. These eigenmodes are collective lattice vibrations called phonons which
oscillate in a harmonic potential for which the quantum mechanical solutions are
known.

It is instructive to start the discussion about lattice vibrations with a one dimen-
sional diatomic chain as many of the conclusions can be carried over to the three
dimensional case while at the same time being more transparent [118, 145, 146].

35



Chapter 5. Vibrational motion

a

M1 M2

vnun

Figure 5.1: One-dimensional diatomic chain

5.1 One-dimensional diatomic chain
Assume a periodic chain of atoms of types A and B, with masses M1 and M2

separated a distance a/2, where a is the period of the chain, and connected with
springs with spring constant c (see Figure 5.1). Denote the deviation from the
equilibrium position by un and vn for the atoms A and B respectively in unit cell
n. By Hooke’s law the atom A in unit cell n will then experience a restoring force
equal to F = c(vn − un) + c(vn−1 − un) = (−2un + vn−1 + vn)c, and analogously
for atom type B. By applying Newtons second law for both atom types we get two
coupled differential equations{

M1ün = (−2un + vn−1 + vn)c

M2v̈n = (−2vn + un + un+1)c
(5.1)

The right hand side of Equation (5.1) is the one dimensional equivalent of what
will later be called the Force Constant (FC) matrix, times the displacement vector.
A general form of solution to a second order differential equation is

un(t) =
1√
M1

ũne−iωt; vn(t) =
1√
M2

ṽne−iωt (5.2)

which reduces the Equation (5.1) to{
−ω2ũn = − 2c

M1
ũn +

c√
M1M2

ṽn−1 +
c√

M1M2
ṽn

−ω2ṽn = − 2c
M2
ṽn +

c√
M1M2

ũn +
c√

M1M2
ũn+1

(5.3)

By assuming plane wave like solutions we can introduce a phase factor dependence

ũn = Ueiqxn ; ṽn = V eiqxn (5.4)
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where xn is the position of the atoms in unit cell n. This can be written as xn = na
and xn = (n+1/2)a for atoms A and B respectively. Equation (5.1) is now reduced
to {

−ω2U = − 2c
M1
U + c√

M1M2
e+iqa/2V + c√

M1M2
e−iqa/2V

−ω2V = − 2c
M2
V + c√

M1M2
e+iqa/2U + c√

M1M2
e−iqa/2U

(5.5)

This can now be written as an eigenvalue problem in matrix notation
ω2
q±eq± = D (q) eq± (5.6)

Here eq± = (U±, V±)
T are the eigenvectors and

D(q) =

[
2c
M1

− 2c√
M1M2

cos
(
qa
2

)
− 2c√

M1M2
cos
(
qa
2

)
2c
M2

]
(5.7)

is called the Dynamical matrix. This eigenvalue problem can now be solved to yield
the eigenfrequencies and eigenmodes of the vibration. As with any 2 × 2 matrix
there are two solutions

ω2
± =

c

M1M2

[
(M1 +M2)±

√
(M1 +M2)

2 − 4M1M2 sin2
(qa
2

)]
(5.8)

In this case the solutions are non-degenerate and non-negative. The solutions
are illustrated in Figure 5.2 as functions of q. It is already apparent, due to
the periodicity of the cosine function, that the only region of interest is the first
Brillouin zone, i.e. when |q| ⩽ π

a
. The formal expression for the eigenvector

e± = (U±, V±)
T is

U±

V±
=
c (1 + e−iqa)

2c− ω2
±M1

(5.9)

It should be stressed that no assumption has yet been made as to the direction
of the displacements un and vn. If the displacement is along the direction of prop-
agation the mode is called longitudinal. The two perpendicular modes are called
transversal. The different modes will in general have different coupling constants
c in Equation (5.6).

5.1.1 High symmetry points
Two limiting cases are of particular interest, the limits when qa → 0 and when
qa → π. The first case, the zone centre where q = 0 is called the Γ-point. This is
true also in higher dimensions. The solutions near the Γ-point are

ω2
Γ = 2c

(
1

M1

+
1

M2

)
(optical mode) (5.10)

ω2
Γ =

1

2

c

M1 +M2

q2a2 (acoustic mode) (5.11)
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π/a

[

2c
(

1
M1

+ 1
M2

)]1/2

(2c/M2)1/2

(2c/M1)1/2

Optical branch

Acoustical
branch

M1 > M2

ω

q

Figure 5.2: One-dimensional diatomic chain dispersion relation

We note immediately that there are two distinct types of solutions to Equation (5.6),
one optic and one acoustic mode separated by a bandgap. The eigenvector (Equa-
tion (5.9)) for the optical mode is reduced to

U

V
= −M2

M1

(5.12)

which shows that, at the Γ point, the atoms vibrate against one another with the
centre of mass fixed. For the acoustic mode, the ratio is 1 and the atoms vibrate
in phase and with the same amplitude. This infinite wavelength limit is equivalent
to a pure translation of the lattice.

The zone boundary, where q = π/a is another special or high symmetry point.
The points have different designations in different symmetries. In 1D, the zone
boundary point usually isn’t given a name, but for convenience it will henceforth
be denoted X in analogy with the point (1,0,0) in a 3D simple cubic lattice (see
Figure 2.2). The eigenfrequencies at the zone boundary are

ω2
X =

2c

M2

(optical mode) (5.13)

ω2
X =

2c

M1

(acoustic mode) (5.14)

The eigenvectors become e+ = (0, 1) and e− = (1, 0) for the optical and acoustic
modes respectively. This means that in the optic mode only the lighter atoms move
and in the acoustic only the heavier.
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5.1. One-dimensional diatomic chain

Since the displacement of atom A in unit cell n is (cf. Eqs. (5.2) and (5.4))

un =
1√
M1

Uei(qan−ωt) (5.15)

we can express the displacement of the atom in the neighbouring unit cell as

un+1 =
1√
M1

Uei(qa(n+1)−ωt)

=
1√
M1

Ueiqaei(qan−ωt)

= uneiqa

(5.16)

and analogously for the B atom. Thus, at the Γ-point where q = 0 all atoms of
the same type move in the same direction, while at the Brillouin zone boundary
where q = π/a and eiqa = −1 the atoms in neighbouring unitcells move in opposite
directions.

5.1.2 Limiting cases I. Identical masses
The bandgap between the two branches at the zone boundary depends on the
difference between the masses. In the limiting case when the masses M1 = M2

are equal the bandgap closes. This is because the atoms are now identical and the
primitive unit cell is only half that of the unit cell in Figure 5.1. As a consequence
the Brillouin zone is extended to 2π

a
. The point at q = π/a is no longer a zone

boundary point and the two different branches are in fact only one branch. The
points on the optical branch should be unfolded to the region between q = π/a and
q = 2π/a such that the Γ-point ends up on q = 2π/a.

5.1.3 Limiting cases II. Localised vibrations
In the limit when M2/M1 → 0 the dispersion of the optical branch goes to zeros
and the eigenfrequency becomes independent of q. The motion of one particular
atom in one particular unit cell is thus independent of the motion of the atoms in
neighbouring unit cells. The eigenvectors will, in this limit, become the same at the
Γ point and at the zone boundary, e+ = (0, 1). Thus the amplitude of the heavier
atom will be negligible in comparison and the motion of the lighter is independent
of q-value. In other words, the motion of one light atom is independent of the
motion of any other atom in the lattice. Such a mode is called localised. The unit
cell can be treated as if it were an isolated molecule with no periodicity. In this
case only the Γ point has to be considered.
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Chapter 5. Vibrational motion

Figure 5.3: Illustration of hydride vibrational modes in the oxyhydride BaTiO3.

5.1.4 Application in oxyhydrides
The one-dimensional diatomic chain is used qualitatively in the study of the oxy-
hydride BaTiO3 in Paper II and Paper III. The hydrogen vibrational modes
are very localised and it is possible to treat all ions as immobile, except for the
oxygen and hydrogen ions along the O-Ti-H-Ti chain, with the hydrogen ion the
lighter with mass M2 and the oxygen ion the heavier with mass M1. The oxyhy-
dride barium titanate is illustrated in Figure 5.3. In the higher frequency mode
the displacements are along the chain while the lower frequency mode is two fold
degenerate and perpendicular to the direction of the chain. These three modes are
seen as optical modes with very little dispersion in Figure 5.4c. The effective mass
for oxygen in atomic mass units is 83 for the longitudinal mode and 426 for the
transverse modes, in both cases much than larger 16, the atomic mass for oxygen,
which shows that the approximation of a one-dimensional diatomic chain in the
limit of infinite mass for one of the atoms holds.
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5.2. Lattice modes

5.2 Lattice modes
In reality the atomic motion in a solid occur in three dimensions and the above
model, albeit instructive and intuitive, needs to be generalised [118–120, 145, 147].
The potential energy in a periodic solid, V (R), is a function of the positions R of all
atoms in the crystal. Under the assumptions that the deviations from equilibrium
are small the potential energy can be written as an expansion with respect to the
displacements dRniα. Furthermore, a local minimum is characterised by the first
derivative being zero. By keeping only second order terms in what is called the
harmonic approximation the potential can be written

V ({R}) = V ({R0}) +
1

2

∑
niα,mjβ

∂2V ({R0})
∂Rniα∂Rmjβ

dRniαdRmjβ (5.17)

where V ({R0}) = E0 is the equilibrium energy and is a function of the equilibrium
positions {R0} of all ions. E0 can e.g. be obtained from DFT calculations. This is
just an additive constant and we are free to choose the energy scale in the following
such that E0 = 0. The indices i, j indicate sum over atoms in the unit cell, n,m
indicate sum over unit cells and α, β the sum over cartesian directions.

With the notation for the displacements u = dR the ionic Hamiltonian from
Equation (4.6) can be written (in the adiabatic approximation)

Hn =
∑
niα

p2niα
2Mi

+
1

2

∑
niα,mjβ

Fniα,mjβuniαumjβ (5.18)

The matrix Fniα,mjβ is called the Force Constant (FC) Matrix. Due to the commuta-
tivity of the derivatives it is immediately obvious that the FC-matrix is symmetric.
The equations of motion become

Miüniα = −
∑
mjβ

Fniα.mjβumjβ (5.19)

By assuming wavelike solutions, a general form of solution is of the form

uniα(t) =
1√
Mi

ũniαe−iωt (5.20)

Inserting this expression, Equation (5.19) can be written

ω2ũniα =
∑
mjβ

1√
MiMj

Fniα.mjβũmjβ (5.21)
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Let us now introduce a new matrix, which is a real space representation of the
dynamical matrix1

D̃niα,mjβ =
1√
MiMj

Fniα.mjβ (5.22)

and has the dimension 3× n×N , where n is the number of atoms in the unit cell,
N is the number of unit cells in the system and 3 is the dimension of space.

5.2.1 q-space
In an (infinite) periodic solid it is convenient to introduce the q-space2 representa-
tion, the Dynamical Matrix. First, since the energy cannot depend on the absolute
positions of cells n and m, only on their relative position R = Rn − Rm we have

D̃niα,mjβ =
1√
MiMj

Fniα,mjβ = D̃iα,jβ(Rn − Rm) (5.23)

By virtue of Bloch’s theorem we can set the R-dependence as a phase and write
ũniα = eiαeiq·Rn (5.24)

which gives the eigenvalue problem as

ω2eiα =
∑
mjβ

D̃iα,jβ(Rn − Rm)e−iq·(Rn−Rm)ejβ (5.25)

By Fourier transform of the dynamical matrix

Diα,jβ(q) =
∑

R
D̃iα,jβ(R)e−iq·R =

∑
n

e−iq·Rn
1√
MiMj

∂2V

∂uniα∂u0jβ
(5.26)

we now get the eigenvalue problem

ω2eiα =
∑
j,β

Diα,jβ(q)ejβ (5.27)

or in matrix notation
ω2
sqesq = D(q)esq (5.28)

where the index s denotes the 3×n solutions at each q-point. The original problem
of diagonalising a 3× n×N matrix (where the number of unit cells N in principle
is infinite) has now been reduced to diagonalising one marix of size 3× n for each
value of q. As with the electronic structure problem (cf. Section 4.6.2), this can
be done at a finite number of q-points.

1The literature is not completely consistent in the notation. Sometimes the FC-matrix is
defined weighted with the masses, what is here called the real space dynamical matrix (cf. Equa-
tion 5.22), sometimes the opposite. Another name for the FC-matrix is the Hessian matrix

2The reciprocal space is customarily called k-space, but we will here use the notation q-space
for the phonon motion in order not to confuse it with the electronic structure k-space.
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5.2.2 Atomic displacements
Once the eigenvectors are found the displacement of ion i at lattice vector Rn in
the mode s with frequency ωsq will be given by

unis(q, t) =
1√
Mi

eiqsei(q·Rn−ωsqt) (5.29)

where eiqs is the set of d components of the eigenvector solutions to Equation (5.28)
that denote the displacement of ion i at frequency ωsq in d dimensions. It is
customary to chose the eigenvectors to be orthonormal∑

i

[eiqs]
∗ eiqs = δss′ (5.30)

The most general displacement of ions is the superposition of all linearly indepen-
dent elementary solutions and can be written as

uni(t) =
1√
Mi

∑
s,q

csqeiqsei(q·Rn−ωsqt) (5.31)

where the coefficient csq corresponds to the amplitude of the oscillation.

5.2.3 Normal coordinates
The time dependence can be absorbed in a time dependent normal coordinate or
generalised coordinate Qsq(t) = csq

√
Ne−iωsqt, where N is the number of unit cells

in the crystal. It is already clear that, independently for each mode s, Qsq(t)
satisfies the differential equation of a harmonic oscillator

Q̈sq + ω2
sqQsq = 0 (5.32)

The displacement can then be written as

uni(t) =
1√
NMi

∑
s,q

Qsq(t)eiqseiq·Rn (5.33)

From the relation u̇ni(t) = Mipni(t), which follow immediately from the equations
of motion, we can write

pni(t) =

√
Mi

N

∑
s,q

Q̇sq(t)eiqseiq·Rn (5.34)
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Since this describes displacements of ions in a real crystal, both uni and pni have
to be real. In addition, due to symmetry q → −q

[Qsq(t)eiqs]
∗ = Qs(−q)(t)ei(−q)s (5.35)

and since this must be true at all times, both Qsq(t) and eiqs must obey this relation
separately.

Equation (5.33) can be inverted

1√
N

∑
n

umi(t)e−iq·Rm =
1√
Mi

∑
s,q

Qsq(t)eiqs
1

N

∑
m

eiq·(Rn−Rm)

︸ ︷︷ ︸
=δ((Rn−Rm)−G)

(5.36)

√
Mi

N

∑
ni

uni(t)e−iq·Rn (eiq′s)
∗ =

∑
s

Qsq(t)
∑
i

eiqse∗
iq′s︸ ︷︷ ︸

=δss′

(5.37)

Qsq(t) =
∑
ni

√
Mi

N
(eiqs)

∗ e−iq·Rnuni(t) (5.38)

The kinetic term in the Hamiltonian can now be written as

T =
∑
niα

pniα
2Mi

=
1

2

∑
niα

Mi(u̇)
2

=
1

2

∑
niα

(∑
sq
Q̇sqe

i,α
sq eiq·Rn

)(∑
s′q′

Q̇s′q′ei,αs′q′eiq
′·Rn

)

=
1

2

∑
niα

∑
ss′

∑
qq′

Q̇sqQ̇s′q′ei,αsq e
i,α
s′q′

∑
n

eiq+q′·Rn

︸ ︷︷ ︸
=⇒ q′=−q

=
1

2

∑
ss′

∑
q
Q̇sqQ̇s′−q

∑
iα

ei,αsq e
i,α
s′−q

=
1

2

∑
ss′

∑
q
Q̇sqQ̇

∗
s′q
∑
iα

ei,αsq
(
ei,αs′q
)∗

︸ ︷︷ ︸
δss′

=
1

2

∑
sq
Q̇sqQ̇

∗
sq

(5.39)
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After a similar calculation, making use of the reciprocal space representation of the
dynamical matrix, the potential term becomes

V =
1

2

∑
niα,mjβ

Fniα,mjβuniαumjβ =
1

2

∑
sq
ω2
sqQsqQ

∗
sq (5.40)

The Hamiltonian can now be written as H = T + V from which follows that the
conjugate momentum can be written as

Psq =
∂L

∂(Q̇∗
sq)

= Q̇sq (5.41)

The harmonic approximation Hamiltonian in (5.18) becomes

H =
1

2

∑
sq

(
PsqP

∗
sq + ωsq

2QsqQ
∗
sq
)

(5.42)

This formally diagonalises the Hamiltonian and is identical to a set of independent
harmonic oscillators with frequencies ωsq, where Qsq and Psq are the generalised
coordinates and momenta of collective motions.

5.2.4 Quantization
In the above derivation there is nothing preventing the amplitudes take on any
real value, similar to a classical particle. The theory can be quantized by imposing
canonical commutation relations. We will choose to define[

Qsq, P
†
s′q′

]
= δss′δqq′ (5.43)

All other commutators are zero.
Introducing creation and annihilation operators ajq and a†jq in the usual fashion

Qsq =

√
ℏ

2ωsq

(
ajq + a†j(−q)

)
Psq = −i

√
ℏωsq

2

(
ajq − a†j(−q)

) (5.44)

leads to the commutation relations[
ajq, a

†
j′q′

]
= δjj′δqq′ [ajq, aj′q′ ] = [a†jq, a

†
j′q′ ] = 0 (5.45)

Inserting this in Equation (5.42) leads to the Hamiltonian

H =
∑
sq

ℏωsq
(
a†sqasq + 1

2

)
= E0 +

∑
sq

ℏωsqn̂sq (5.46)
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Chapter 5. Vibrational motion

Here n̂sq is the number operator and E0 =
∑

sq ℏωsq/2 is a constant called the zero
point energy, which is given considerable attention in Paper IV and Paper V.

Once again, we see that, in the harmonic approximation, crystal vibrations are
made up of a set of independent oscillators.

5.2.5 Mean square displacement
Before quantization the displacement of an atom in the crystal could take on any
real value (cf. Equation (5.33)). After quantization the atomic displacement is
given by

uni(t) =
∑
sq

√
ℏ

2Nmiωsq

(
ajq + a†j(−q)

)
eiqseiq·Rn (5.47)

This leads to the mean square displacement (MSD) projected onto the individual
atoms i and cartesian directions α

⟨u2i,α⟩ =
∑
sq

ℏ
2Nmiωsq

(1 + 2nsq) |ei,αqs |2 (5.48)

where mi is the mass of atom i, s is again the band index and nsq is the number
operator. At finite temperature (see Sec. 5.2.6) it will be replaced by its thermal
average, the Bose-Einstein population factor, which takes temperature dependence
for the mean square displacement into account.

In analogy with the mean square displacement, the mean square momentum can
be computed as

⟨p2i,α⟩ =
∑
qs

miℏωsq

2N
(1 + 2nq) |ei,αqs |2 (5.49)

In order to compare with the experiments in Paper IV the total mean square
momentum for atom i is computed as the average

⟨p2i ⟩ =
1

3

∑
α

⟨p2i,α⟩ (5.50)

5.2.6 Vibrational free energy
We are often interested of quantities at finite temperatures. Using the expression
for the energy from Equation (5.46) the partition function becomes

Zvib =
∑
nsq

e−βEn =
∏
sq
e−βℏωsq/2

∑
nsq

e−βℏωsqnsq =
∏
sq

e−βℏωsq/2

1− e−βℏωsq
(5.51)
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Here the last equality follows because the sum over n runs over all integer numbers
including zero, which makes the sum a geometrical series.

We can now write the vibrational free energy Fvib = −kBT ln (Zvib) for a periodic
solid as

Fvib =
∑
sq

(
ℏωsq

2
+ kBT ln

(
1− e−βℏωsq

))
= E0 + kBT

∑
sq

ln
(
1− e−βℏωsq

)
(5.52)

where E0 is the zero point energy.
The internal energy and the entropy can be obtained as derivatives of the parti-

tion function

Uvib = − ∂

∂β

(
lnZvib

)
=
∑
sq

(
ℏωsq

2
+

ℏωsq

eβℏωsq − 1

)
=
∑
sq

ℏωsq

2
(2nsq + 1) (5.53)

Svib =
∂

∂T

(
kBT lnZvib

)
= kB

∑
sq

(
βℏωsq

eβℏωsq − 1
− ln

(
1− e−βℏωsq

))
(5.54)

The vibrational motion thus contributes both to the internal energy and the en-
tropy.

Within the harmonic approximation, the expression for the internal energy U
can also be obtained directly. By taking the thermal average ⟨nsq⟩ = nsq(T ) the
number operator is transformed into the Bose-Einstein population factor

nsq(T ) =
1

exp
(

ℏωsq
kBT

)
− 1

. (5.55)

This leads to the thermodynamic energy Uvib. The internal energy can be written
in yet another shape through another often used identity

2nsq + 1 = coth
(
1
2
βℏωsq

)
. (5.56)

5.2.7 Bandstructure
The vibrational properties of a periodic system are given by its eigenfrequencies,
found by diagonalising the Dynamical matrix at each respective q-point in the first
Brillouin zone. However, illustrating this in a figure is not as straight forward as
in the one-dimensional case in Figure 5.2 since q is a three-dimensional vector. It
it therefore convenient to plot the vibrational frequencies only at selected points of
high symmetry in the Brillouin zone and along the path that connects them in a
bandspectrum. As an example of a bandspectrum Figure 5.4 shows the bandspectra
of pristine cubic BaTiO3 and SrTiO3 along the high symmetry paths illustrated
in Figure 2.2 as well as the bandspectrum of the oxyhydride BaTiO3−xHx in a 40
atom simulation cell.
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Figure 5.4: Illustration the bandspectrum (left) and PDOS (right) of (a) pris-
tine cubic BaTiO3 (top), (b) pristine cubic SrTiO3 (middle) and (c) oxyhydride
BaTiO3−xHx (bottom).
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5.2.8 Density of State
Often, it is not necessary to illustrate the full vibrational spectrum. Rather, it is
sufficient or even desirable to present only a the density of state (DOS).

The density of state is a convenient measure of the number of phonons in the
interval [ω, ω + dω] independent of the q-vector. Formally this can be written as

g(ω) =
∑
sq
δ (ω − ωsq) (5.57)

By integrating the DOS

n(ω) =

ω∫
0

g(ω′)dω′ (5.58)

the number of modes with frequencies below or equal to ω is obtained. By inte-
grating over all frequencies the total number of 3n modes is obtained, where n is
the number of atoms in the unit cell.

The DOS is useful in the thermodynamic limit of an infinite crystal where the
sum over q in e.g. Equation (5.52) approaches an integral. Using the identity∑

sq
f(q) =

∑
s

Ωc

(2π)3

∫
BZ

dqf(q) =
∫
g(ω)f(ω)dω (5.59)

where Ωc is the volume of the unit cell, any function of s and q, such as the free
energy in Section 5.2.6 can be written in terms of an integral with the density of
state as a weight function.

In computer simulations it is possible to separate the contribution from different
elements. The partial density of states (PDOS) is the density of state caused by
the motion of atom i

gi(ω) =
∑
sq

|eiqs|2 δ (ω − ωsq) (5.60)

If the atom i does not participate in the mode at frequency ωsq, the corresponding
eigenvector eiqs will be the zero vector and the partial density of state at this
frequency is zero. As an example Figure 5.4 shows the PDOS of pristine cubic
BaTiO3 and SrTiO3 as well as the PDOS of the oxyhydride BaTiO3−xHx in a 40
atom simulation cell. The correspondence between the bandspectrum and density
of state is clearly seen.
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Figure 5.5: Visualisation of the R25 anti-ferrodistortive mode. The bond distance
u∥ between barium and oxygen, which can be measured in exafs, is also marked.
Note that barium and oxygen are found in different planes such that u∥ contains a
component in the direction perpendicular to the plane.

5.2.9 Lattice stability
Although the dynamical matrix is Hermitian and as a consequence has only real
eigenvalues, there is nothing preventing the existence of negative eigenvalues. Since
the eigenvalue is the square of the frequency the existence of imaginary frequencies
has to be addressed.

Assume that there is an eigenvalue ω2
sq = −γ < 0. Then ω = i

√
γ will be a

purely imaginary number and the displacement (cf. Equations (5.15) and (5.29))
will behave as e±γt. Any disturbance will grow exponentially and the crystal is not
stable. This corresponds to a negative spring constant c in the one dimensional
case. The force is not restoring but repelling and the larger the displacement the
larger the repelling force.

Since it is a requirement that all vibrational frequencies be positive it is thus
the formal criterion of lattice stability that the matrix of second order derivatives,
the Hessian matrix, be positive definite. The presence of imaginary modes indi-
cates that the investigated structure at {R0}, although at a stationary point as
assumed in Equation (5.17), is not at an energy minimum but at a saddle point.
The imaginary frequencies indicate that a lower energy structure can be found by
displacing the atoms in the crystal along the phonon coordinate associated with
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the imaginary frequency [148].
An example of an imaginary mode is the R25-mode in SrTiO3 which has been ex-

tensively studied in first-principles phonon calculations. This mode is illustrated in
Figure 5.5. In a cubic symmetry SrTiO3 exhibits an imaginary R25-mode frequency
indicating that the cubic phase is not stable at 0 K. This instability causes a phase
transformation to a tetragonal phase of I4/mcm symmetry. Lattice instabilities
are also at the core of both Paper IV and Paper V, where the anti-ferrodistortive
R25-mode of BaZrO3 is investigated. A phase transition similar to that of SrTiO3
also occurs in BaZrO3 at sufficiently high pressure and is predicted also at zero
pressure and zero kelvin for some xc-functionals.

5.2.10 Limiting case. Localised modes.
Despite the collective nature of phonons, there are cases where only a few atoms
take part in a certain mode. These modes are called local or localised modes [149].
Localised modes were discussed briefly in Section 5.1.3 in the special case for the
one-dimensional diatomic chain. A localised mode is a phonon mode concentrated
in a region of space and is characterised by the fact that only a few atoms participate
in the vibration while the rest of the lattice remains at rest. The eigenvector for
such a mode will be non-zero only for a few elements, which typically are much
lighter than all the others and will, to a good approximation, form a sub-matrix in
a block diagonal dynamical matrix. The dynamical matrix in Equation (5.26) can
thus be obtained as a limiting case of Mj → ∞ for all j ̸= i, where i is the lighter
atom or atoms. If a mode is local most force constants will be close to zero and
the dynamical matrix Diα,jβ(q) will span a relatively small space.

A local mode is typically also rather q-point independent, and there is no need
to go to reciprocal space. The vibrational mode is well enough represented at
the Γ-point by the real space Force Constant matrix Fniα,mjβ. By the argument
above only a part of the FC-matrix needs to be computed in order to describe the
vibrational mode [149, 150].

An example of such a local mode is the hydrogen mode in BaTiO3−xHx which
is shown in Figure 5.4c. A 3 × 3 Force Constant sub-matrix can be constructed
by displacing only the hydrogen ion in three directions. By diagonalising only the
non-zero sub-matrix the hydrogen vibrational frequencies and eigenmodes can be
obtained.

In Paper II the localised hydrogen modes for BaTiO3−xHx were obtained in
this way for the HSE calculations. The eigenmodes could be deduced a priori from
symmetry arguments. Since the mode is very local and contains only one atom, any
interaction between atoms could be neglected both within the unitcell (with indices
i, j) as well as between unitcells (with indices n,m). To stress this independence
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Figure 5.6: Illustration of one particle harmonic potential (OPHP) well mapping.

these indices have been dropped below. The terms in the FC sub-matrix

Fαα =
∂2V

∂u2α
(5.61)

were computed by fitting second order polynomials of type 1
2
mω2x2, where m is

the mass of the atom, ω the vibrational frequency and x the displacement away
from the equilibrium position, to the energy landscape obtained by displacing the
ions in both positive and negative directions along the eigenvectors as illustrated in
Figure 5.6. In Paper II the method is called the one particle harmonic potential
(OPHP) method.

5.3 Measurable quantities derived from vibrations
5.3.1 Dynamical structure factor
The dynamical structure factor S(q, ω) is the thermal average of the Fourier trans-
form in time and space of the time-dependent pair-correlation function of the
scattering system. It is closely related to the differential cross-section ∂σ2/∂Ω∂ε
which can be measured from neutron scattering. In the incoherent approxima-
tion [151–154], which is used in Paper II and is tacitly assumed in the following,
the relationship is particularly simple

∂σ2

∂Ω∂ε
=

σ

4π

kf
ki
S(q, ω) (5.62)

Here ki (kf ) the neutron wave-vector for the initial (final) neutron state and σ is
the scattering cross-section.
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5.3. Measurable quantities derived from vibrations

Inelastic neutron scattering is primarily given by one phonon scattering events.
The dynamical structure factor for one phonon scattering is [147, 151]

S(1)(q, ω) =e−2W
∑
s

ℏ
2Mωqs

[q · eqs]
2

×
(
[1 + nqs]δ[ω + ωqs] + nqsδ[ω − ωqs]

) (5.63)

Here M is the atomic mass, eqs is the eigenvector for mode s at the point q, ωqs
the corresponding frequency and n(ω) = [exp (ℏω/kBT )−1]−1 is the Bose-Einstein
distribution factor. The delta function expresses the condition that energy transfer
can occur only when the neutron energyloss or gain exactly matches the excitation
energy of a phonon ℏ2/2m(k2i − k2f ) = ℏωs. Thus, the first term, sometimes called
Stokes shift, represents phonon creation and the second term, called Anti-Stokes
shift, annihilation.

It is customary to apply the incoherent approximation, which has also been tac-
itly assumed above. In the incoherent approximation it is assumed that terms
involving coherent scattering between atoms on different sites are neglected. Only
the self-correlation is considered. Each atom and isotope has a unique cross section
σ and the response to a neutron scattering event will depend on the cross-section
of the individual atom. For example, the total neutron-scattering cross-sections
of H, Ba, Ti, and O we use 82.0, 3.38, 4.35, and 4.23 barn, respectively [151].
The total dynamical structure factor in the incoherent approximation can be ob-
tained by weighting the structure factors for the constituent atomic species with
the corresponding total cross-sections

S(tot)(q, ω) ∝
∑
i

σie
−2Wi

∑
s

ℏ
2Miωqs

[q · eiqs]
2

×
(
[1 + nqs]δ[ω + ωqs] + nqsδ[ω − ωqs]

) (5.64)

where i labels the atomic species.
In the case of a cubic crystal at low temperature the above expression can be

simplified. First of all, only a very limited number of phonons are excited at low
temperatures so we can make the approximation ns(q) ≈ 0. Secondly, since the
materials investigated in this thesis are all powder samples the powder average
makes the directional dependence lost. Only the magnitude q = |q| of the momen-
tum remains and |q · ei

s|2 = q2|ei
s|2. Combined with the definition of the density of

state (Equation (5.60)) we arrive at

S(tot)(q, ω) ∝
∑
i

σi
ℏq2

2Mi

gi(ω)

ω
e−2Wi(q) (5.65)
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Chapter 5. Vibrational motion

Furthermore, the energy of the scattered neutron can in certain cases be assumed
negligible and a relation between the phonon energy and neutron momentum can
be written as (ℏ2q2)/(2mn) = ℏω. This couples the two variables q and ω and the
final expression can be written

S(tot)(ω) ∝
∑
i

σi
mn

Mi

gi(ω)e
−2Wi(ω) (5.66)

5.3.2 Debye Waller factor
The exponential factor in Equation (5.63) is known as the Debye-Waller factor. The
effect of the Debye-Waller factor is to reduce the intensity in neutron spectroscopy
both with increasing temperature and by increasing mode frequency. The Debye-
Waller factor is related to the mean square displacement according to

exp (−2Wi) = exp
(
−⟨[q · ui]

2⟩
)

(5.67)

This equation can be simplified significantly. First by assuming powder average in
a cubic crystal. Furthermore, in a cubic crystal ⟨u⟩x = ⟨u⟩y = ⟨u⟩z = 1

3
⟨u⟩

2Wi = ⟨[q · ui]
2⟩ = q2⟨uiq⟩2 = 1

3
q2⟨ui⟩2 (5.68)

Finally, the Debye-Waller factor can also be expressed using Equation (5.48) in
terms of the density of state in a fashion similar to the previous section

2Wi =
1

3
q2⟨ui⟩2 =

ℏq2

2Mi

∞∫
0

dωgi(ω)
ω

coth
(
1
2
βℏω

)
(5.69)

We see that the Debye-Waller factor not only reduces the intensity with in-
creasing temperature due to the increased amplitude of ⟨u2⟩, the intensity is also
decreased with increasing vibrational frequency. The temperature effect can be
taken care of by performing the experiments at low temperatures. For hydrogen,
being a very light atom with large mean square displacement and high frequency,
the Debye-Waller factor has important implications for the intensity. Fortunately,
this is compensated by the large cross-section of hydrogen. However, as was seen
in Paper II, the oxygen motion was clearly seen relative to the hydrogen intensity
despite the significantly lower cross-section of oxygen.
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5.3. Measurable quantities derived from vibrations

Figure 5.7: (left) The exafs spectrum of BaTiO3 in an energy range spanning
the titanium K edge at 4966 eV and barium LIII edge at 5247 eV. (right) The
absorption spectrum for the barium K edge of BaTiO3. The dashed line is the
background function. The inset plots the fine structure ξ(k), weighted by k2 to
show detail. (From Ref. [157] with permission.)

5.3.3 EXAFS

Extended X-Ray Absorption Fine Structure (exafs) is a technique based on the X-
ray Absorption Spectroscopy (XAS) from which local structure can be deduced due
to a diffraction-like phenomenon [155,156]. When X-rays sent into a sample match
the binding energy of an electron of an atom the number of photons absorbed by
the sample increases dramatically causing a peak in the absorption spectrum. An
example of a full XAS spectrum for BaTiO3 is shown in the left panel of Figure 5.7.
The small oscillations, called fine-structure, on the high energy side of the peak
are formed from interference between forward scattered and backscattered photo-
electrons from nearby atoms [156]. The inset of the right panel of Figure 5.7 shows
the fine structure modulation at the barium K edge of BaTiO3 [157]. Since the
range of correlation for electrons in a solid is very limited, exafs is a local structure
technique. By clever application of the fourier transform [158] the small oscillations
in the exafs spectrum can provide information on the local structure, such as bond
distances, coordination number and chemical identity of the neighbouring atoms.

Similar to how the fluctuation in the position of an atom gives rise to a mean
square displacement, the bond length exhibits a variance. These fluctuations in
the mean square relative displacement (MSRD) in the direction parallel to the
bond are denoted ⟨∆u2∥⟩. The distance u∥ for the first neighbour shell relative to
barium is marked in Figure 5.5. The MSRD differs from the ordinary mean square
displacement (MSD) insofar as that when MSD only measures the fluctuations of
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Chapter 5. Vibrational motion

an atom around its equilibrium position on a macroscopic level the MSRD enables
detailed information on a local level.

The MSRD can be computed [159] through

⟨∆u2∥⟩ =
1

N

ℏ
2µab

∑
q,s

|Ya,b(q, s)|2
1

ω(q, s) coth ℏω(q, s)
kBT

(5.70)

where

Ya,b(q, s) =
[(

µab

mb

)1/2

eb(q, s)exp(iq · Rab)

−
(
µab

ma

)1/2

ea(q, s)
]
· R̂ab

(5.71)

Here ma and mb are the respective masses, µab the corresponding reduced mass,
e(q, s) is the eigenvector and ω(q, s) the eigenfrequency at the point q and bandin-
dex s. Rab is the vector connecting atoms a and b and R̂ab the corresponding vector
of unit length.

5.3.4 Dielectric constant
The dielectric constant of a material is a tensor measure of the materials response
to an induced electric field. The static dielectric tensor can be computed as the
sum of the electronic contribution ε

(el)
αβ and the ionic contribution ε

(ion)
αβ [160]. The

electronic contribution as well as the Born effective charges Z∗
κ,αα′ can be obtained

from a linear response calculation [161,162] or a Berry’s phase calculation [163–169].
The calculation of the ionic contribution also requires the eigenvectors eµ,κα′ and
eigenfrequencies ωµ of the dynamical matrix at q = 0. These quantities can be
readily obtained from a phonopy calculation[170].

We define the mode effective charge as [160]

Z∗
µα =

∑
κα′

Z∗
κ,αα′eµ,κα′

√
mκ

(5.72)

Here an additional sum over degenerate modes is implicit, i.e. if a mode is degen-
erate (two or three dimensional irreducible representation) they are considered as
one. From the mode effective charge we also define (the ionic contribution to) the
mode dielectric tensor

ϵ
(ion)
µαβ =

Z∗
µαZ

∗
µβ

ϵ0Ω0ω2
µ

(5.73)

where Ω0 is the unit cell volume. The average mode dielectric constant is

ϵ(ion)µ =
1

3

∑
α

ϵ(ion)µαα (5.74)
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Here again, the sum over α also implies a sum over degenerate modes µ. Finally
we compute the total dielectric constant as

ϵ = ϵ(el) +
∑
µ

ϵ(ion)µ (5.75)

which, by symmetry is only a constant times the identity matrix in 3 dimensions
for a cubic crystal such as BaZrO3. Hence there is no need to write out the tensor
indices.

The high dielectric constant of BaTiO3 was the first useful property found in a
perovskite [3]. This was a highly sought after property in the early 40:s and the
reason for its early application as a dielectric medium in capacitors.

5.4 Handling anharmonicity and temperature
dependence

Harmonic approximation, which has been used up to this point, works well for
many materials properties, such as the mean square displacement, but is insuffi-
cient for other properties. Perhaps most significantly, the harmonic approximation
cannot account for thermal expansion. The simplest way to take anharmonicity
into account is the quasi harmonic approximation [170].

The quasi harmonic approximation is based on the assumption that the harmonic
approximation holds at every value of the lattice constant, which is treated as an
adjustable parameter. Within the quasi harmonic approximation it is possible to
compute, among other things, the thermal lattice expansion, which is out of reach
within the harmonic approximation. However, also the quasi harmonic approxima-
tion fails ultimately when the temperature increases and the displacements away
from equilibrium become too large. At this point higher order terms need to be
included in the potential energy expansion in Equation (5.17) [171].

By varying the volume of the unit cell the vibrational free energy at each volume
is computed through F (T, V ) ≈ Uel(V ) + Fvib(T, V ). The Gibbs free energy is
obtained through the minimisation of the free energy with respect to the volume
G(T, p) = min

V
[F (T, V )+ pV ]. As a result the volume as a function of temperature

V (T ) and the temperature dependent frequencies ω(V (T )) are obtained.
The treatment is complicated by the presence of imaginary modes. As an ex-

ample, Figure 5.4 shows the bandspectra of pristine cubic BaTiO3 and SrTiO3
along the high symmetry points illustrated in Figure 2.2. The phase transition of
BaTiO3 mentioned in Section 2.3 is clearly seen as imaginary frequencies (on the
negative y-axis) at the Γ-point, but also along the entire paths connecting Γ, M
and X. SrTiO3 also exhibits this imaginary frequency at the gamma point showing
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that SrTiO3 also, in principle, could be prone to a ferrodistortive transition [23].
However, in practise SrTiO3 does not exhibit the ferrodistortive phase transition
of BaTiO3 [86] because of the R-mode instability which makes the TiO6 octahedra
in SrTiO3 tilt into an anti-ferrodistortive phase described in Section 2.3. BaTiO3
on the other hand is not prone to the anti-ferrodistortive transitions of SrTiO3 due
to the lack of imaginary frequencies at the R-point.

Since the cubic phase of SrTiO3 is stable at some temperature it should in
principle be possible to stabilise the cubic structure by renormalising the vibra-
tional frequencies at the respective temperatures. Although some work has been
attempted [172–180] there is still no simple, generally accepted first-principles ap-
proach to the temperature dependence of phase transitions.

5.5 Computational aspects
In order to solve the eigenvalue problem Equation (5.28) the quantity to be com-
puted is the dynamical matrix, reprinted here for convenience,

Diα,jβ(q) =
∑
n

e−iq·Rn
1√
MiMj

∂2V

∂uniα∂u0jβ
. (5.26)

Even though the original problem of diagonalising a 3 × n × N matrix (where N
in principle is infinite) now has been reduced to diagonalising one matrix of size
3×n for each value of q, the calculation of the dynamical matrix in Equation (5.28)
is still immense. If the crystal is infinite the number of q-vectors is in principle
also infinite. However, it turns out that a judiciously chosen finite number of q-
points, e.g. using a Monkhorst-Pack [137] grid, works well enough. The symmetry
of the lattice further reduces the number of q-points at which a matrix has to be
diagonalised to the irreducible Brillouin zone. The principle is the same as for the
electronic structure in Section 4.6.2.

5.5.1 The supercell approach
Not only are the number of q-vectors infinite, in an infinite crystal the sum over unit
cells, N , is also infinite. Fortunately acceptable accuracy can often be obtained with
a finite number of terms in the infinite sum over unit cells n in Equation (5.26), i.e.
Rn is limited the period of a supercell of modest size. Which size is required must
be determined from case to case, usually by performing full phonon calculations
in supercells of different sizes until convergence of the phonon spectrum is reached.
An example of such a convergence test for BaZrO3 is shown in Figure 5.8. Here
a 2 × 2 × 2 supercell was deemed sufficient for convergence. Note that despite
not being explicitly contained in the supercell, the zone-boundary R-point is well
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Figure 5.8: Illustration of supercell convergence for BaZrO3 calculated with the
PBE xc-functional.

represented also in a 3× 3× 3 supercell. The M zone-boundary point on the other
hand seems more long range and is less well represented in this supercell. The
2×2×2 and 4×4×4 supercells give identical results for the zone-boundary points.
This is because the zone-boundary points are explicitly included and the 2× 2× 2
supercell can accommodate the long range nature of these modes.

5.5.2 The frozen phonon approximation

In the present thesis the matrix elements are obtained using phonopy [170] which
is a software implementation of the frozen phonon approach. In the frozen phonon
approach the motion of the i:th atom is frozen in at a finite displacement δ and
the forces on each ion are calculated from the relaxed electronic structure. This
works rather well if the displacements are small enough not to violate the harmonic
approximation but large enough for numerical accuracy. The forces are typically
given as the Hellmann-Feynman forces directly from an electronic structure calcula-
tion. The matrix elements can be computed using finite differentiation and central
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differences.

Fniα,0jβ =
∂2V (u)

∂uniα∂u0jβ
=

∂

∂uniα

(
∂V (u)
∂u0jβ

)
= −∂f0jβ(u)

∂uniα

≈ −f0jβ (u1, . . . , uniα +∆, . . . , u3N)− f0jβ (u1, . . . , uniα −∆, . . . , u3N)

2∆
(5.76)
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6
Energy of point defect formation

“ Textbooks and Heaven only are Ideal;
Solidity is an imperfect state.
Within the cracked and dislocated Real
Nonstoichiometric crystals dominate. ”

– John Updike [181]

The formation of a point defect can be regarded as a chemical reaction which,
at constant pressure, p, and temperature, T , proceeds in the direction that lowers
the Gibbs free energy defined as

G = U + pV − TS = H − TS (6.1)

where U is the internal energy, V the volume and S is the entropy. H is the
enthalpy, defined as H = U + pV .

If we consider the formation of n independent defects the change in free energy
can be written as

∆G = n∆fG− T∆fSconf (6.2)

where ∆fSconf is the configurational entropy, the part of the entropy change associ-
ated with randomly distributing n defect in the material. ∆fG, the formation free
energy for a single defect, can be written as

∆fG = ∆fU + p∆fV − T∆fS (6.3)

and is independent of the number of defects.
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Chapter 6. Energy of point defect formation

6.1 Defect formation energy
The formation free energy, ∆fG, can be separated into different contributions of
chemical bonding and vibrational character [182]. The largest contribution is the
formation energy, ∆fE, responsible for chemical bonding. The defect formation
energy for a defect X in charge state q is defined as [67, 183]

∆fE [Xq] = Etot [X
q]− Etot [bulk] + Eq

corr

−
∑
i

∆niµ̄i + q (εv + µe +∆v0)
(6.4)

where Etot [X
q] is the total energy at zero kelvin from a supercell calculation includ-

ing the defect and Etot [bulk] is the reference energy of the pristine material. Eq
corr

is the energy correction which compensates for the spurious electrostatic interac-
tion between charged defects in the supercell approach. There are several different
correction schemes. Paper II makes use of the modified Makov-Payne correction
scheme of Lany and Zunger [184]

∆Ecorr =
2

3

Mq2

2εL
, (6.5)

where M is the Madelung constant, q is the charge, ε is the dielectric constant
and L is the linear dimension of the supercell. The integer ∆ni is the number
of atoms of type i that have been added (∆ni > 0) or removed (∆ni < 0) from
the supercell in creating the defect, and µ̄i is the corresponding chemical poten-
tial. The chemical potential µ̄i is the reference energy of the reservoir with which
the atoms are exchanged. If the reservoir is a gaseous phase the chemical poten-
tial can be computed from the expressions for a classical ideal gas. The electron
chemical potential, µe, is often called the Fermi energy and is customarily given
relative to the valence band maximum, εv. The additional term ∆v0 is used for
properly aligning the electrostatic potentials of the bulk and the defect containing
supercells [185, 186].

6.2 Chemical potentials for the gas phases
In a first approximation the chemical potentials for the gas phases µ̄i can be taken as
the total energies from electronic structure calculations similar to Etot [X

q]. This
is marked by a bar in Equation (6.4) and would correspond to the free energy
at zero kelvin, neglecting zero point effects. At finite temperatures the pressure
dependence for the gas phases can be assumed to follow classical ideal gas behaviour.
The chemical potential for a mono atomic gas can then be written as

µi(pi, T ) = µ̄i + kBT ln
(
piVQ

kBT

)
(6.6)
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where kB is Boltzmann’s constant, pi is the partial pressure and VQ = (2πℏ2/mkBT )
3/2

is the quantum volume [67]. For molecules involving more than one atom additional
terms containing vibrational and rotational degrees of freedom must also be taken
into account.

The vibrational contribution contains a temperature independent part, the zero
point energy, εZP, which can be separated from the temperature dependent part.
If the zero-point energy is computed within the harmonic approximation the zero
point energy is εZP =

∑
k ℏωk/2, where ωk are the molecular vibrational frequencies.

These frequencies can be obtained from tables [187] or computed from first principle
methods as described in Section 5.

The temperature dependence can be obtained by computing the full partition
function, which is illustrated for the vibrational degrees of freedom in Section 5,
but can also been taken, relative to the reference pressure p◦, from thermodynamic
tables [188] if shifted such that h◦i (0) = 0. The full pressure and temperature
dependence of the chemical potential for the gas phases can, under the assumption
of ideal gas behaviour, be written as

µi(pi, T ) = µ̄i + εZP
i + h◦i (T )− Ts◦i (T ) + kBT ln

(
pi
p◦

)
(6.7)

6.3 Configurational entropy
While the formation energy must be positive for the material to be stable the
configurational entropy must be large enough to lower the free energy to a negative
value to enable defect formation. Without the configurational entropy there would
be no defect chemistry.

Unfortunately, the configurational entropy is by nature extremely difficult to cal-
culate since each configuration has a probability of the respective Boltzmann fac-
tor. This means that the energy of every possible configuration must be computed.
One approximate approach is the cluster expansion technique in combination with
Monte Carlo simulations and the Metropolis algorithm. However, since defect for-
mation energies are often calculated in the dilute limit, i.e. in the limit where
individual defects can be assumed to be independent of each other, it is possible to
resort to a simpler first approximation to the configurational entropy, namely the
ideal solution where all configurations have the same probability.

For n defects distributed on N sites with a degeneracy factor g accounting for
the internal degrees of freedom of the point defect, the number of microstates is

Ω =
gN · g(N − 1) · · · g(N − n+ 1)

n
= gn

(
N

n

)
(6.8)
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and the entropy can be written with the use of Stirling’s approximation as

S = kB lnΩ ≈ n ln g +N ln N

N − n
− n ln n

N − n
(6.9)

Since T is always positive and Ω ≥ 1, the configurational formation entropy con-
tribution to the free energy is always negative, thus favouring defect formation.

In the dilute limit the total free energy change ∆G is a function of the number
of defects n only through the configurational entropy and can now be written as in
Equation (6.2), restated here for convenience

∆G = n∆fG− TSconf(n) (6.2)

An equilibrium is obtained when the derivative with respect to the number of
defects is zero. The equilibrium condition then reads

∂G

∂n
=

∂

∂n
∆G

= ∆fG+ kBT

(
ln n

N − n
− ln g

)
= 0

(6.10)

It is convenient to introduce the defect concentration x = n/N . The equilibrium
concentration is then given by

xeq

1− xeq
= ge−∆fG/kBT (6.11)

or if the concentration is very low (xeq ≪ 1)

xeq = ge−∆fG/kBT (6.12)

6.4 Influence of configurational entropy on site
probability

When one defect is introduced in a material translational symmetry is destroyed.
The defect formation free energy ∆fG [Xq] for an introduced second defect will
in general differ depending on defect site. Some sites will be more energetically
favourable than other. At zero kelvin the configuration with the lowest electronic
energy Etot becomes the most likely state (provided that differences in vibrational
zero point motion is negligible). This does not mean that it is the most likely state
also at finite temperature. As the temperature is increased the configurational
entropy make also energetically unfavourable states accessible. A simple way to
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Figure 6.1: (a) The relative site probability as a function of temperature for the
three defects sites indicated in the illustration in (b).

account for the different configurational entropies of different defect sites will be
discussed below.

The probability for site (†) to be occupied is given by the Boltzmann factor

P (†) ∝ g(†) exp
(
−∆fG

(†)/kBT
)

(6.13)

Here g(†) is the multiplicity of the site (†) counting all crystallographically equiva-
lent sites. The defect formation energy ∆fG [Xq] can be computed from Eq. (6.4),
and could in principle include vibrational entropy, but not configurational entropy.
However, since all terms in Eq. (6.4), except for the first, are equal for all defect
sites these factor out and cancel when forming ratios. Therefore, it is sufficient to
know Etot [X

q] relative to some arbitrarily chosen reference level. The extension
to include vibrational entropy is straight forward. The probability of a site is then
just the summation over all energy levels given by the vibrational spectrum.

In Paper III the relative site probability for three different vacancy-hydrogen
configurations is investigated. The second nearest neighbour site, marked 2 in
Fig. 6.1a, is the energetically most stable site for the vacancy. However, the multi-
plicity of that site is only 4, to be compared with 8 for the first nearest neighbour
site and 16 for the third nearest neighbour site. With increasing temperature the
other sites become more and more likely until 837 K, above which the third near-
est neighbour site has the highest probability. Also the first nearest neighbour
site has a non-zero probability, although not as high as that of the third nearest
neighbour. We thereby rationalise the observed peak at 100 meV as a signature
of first nearest neighbour vacancies frozen in from the sintering process at higher
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temperatures. It should be noted that even if the multiplicity of the higher energy
state had been lower than the lowest energy state, the higher energy state would
still have a non-zero probability although it would then never exceed that of the
lower energy state.
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7
Phase Transitions

7.1 Thermodynamics of Phase Transitions
The crystal structure of phase attained by a material is determined by the free
energy [189]. Setting aside meta-stable structures, which can exist if the energy
barrier for transforming into the equilibrium structure is to high, the structure
attained by the material at a given temperature and pressure is the one with the
lowest free energy. At absolute zero, entropy effects, other than zero point motion,
can be neglected and the free energy equals the enthalpy H. As the temperature is
increased entropy becomes increasingly important until at some point a lower free
energy can be attained if the material assumes a different phase. If the enthalpy
of two phases differ by a latent heat ∆H the phase transition is called first order.

The phase transition temperature also depends on the applied pressure. By
applying pressure it becomes favourable to attain the crystal structure with a
smaller volume. This is the case for BaZrO3. While BaZrO3 remains cubic down
to zero kelvin, as shown in Paper IV, BaZrO3 undergoes a pressure induced
phase transition at 17.2GPa when measured at 300 K. This shows up as imaginary
phonon modes at the R-point at sufficiently small lattice constants.

In Figure 7.1 the energy-volume curves for the three phases attainable from an
R25-mode instability in BaZrO3 are shown. Here the energies and volumes are
given relative to the reference values E0 and V0 given by the energy minimum and
its corresponding volume of the cubic phase. As seen in Figure 7.1, for positive
volumes (negative pressures) all phases have the same energy. This is because the
lower symmetry phase differs from the cubic structure only by a Glazer rotation of
the inscribed oxygen octahedron. The magnitude of the Glazer angle depends on
the pressure where a larger angle is associated with a smaller unit cell volume. At
negative pressure there is no energy gain associated with the reduction the unit cell
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Figure 7.1: Energy as a function of volume (left) and enthalpy as a function of
pressure (right) computed using the PBE functional for the three different phases
attainable from an R25-mode instability in BaZrO3.

volume and all lower symmetry structures relax into the cubic phase. At higher
pressures (smaller volumes) a finite angle will be energetically favourable and a
phase transition occurs.

Based on the information shown in Figure 7.1, determination of the phase-
transition pressure for BaZrO3 is difficult. Rather than showing two distinctly
separate parabolas for the energy as a function of volume, Figure 7.1 shows two
practically overlapping parabolas. Similarly the two expected essentially straight
lines with different slopes intersecting at a transition pressure have merged into
only one. The insets show how the differences between energies and enthalpies of
the lower symmetry structures and the cubic. Here the deviation as the pressure is
increased is seen more clearly. However, the difference is in the meV range, below
what is usually considered the accuracy of DFT. By also taking the accuracy of
the calculations (marked by the shaded area in the figure) into account, determi-
nation of a phase transition pressure based on identification of the lowest enthalpy
structure becomes difficult and other methods must be utilised. Since the different
lower symmetry structures can be characterised by their Glazer angle the phase
transition can be modelled as a continuous phase transition.

7.2 Free energy expansion
Many phase transitions can be expressed in terms of a continuous order parameter,
often denoted q, which is a quantitative measure of the extent to which the phase
transition has changed the structure [190,191]. A first, and necessary, requirement
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7.2. Free energy expansion

for this formalism to be applicable is that the two phases have a group-subgroup
relation, i.e. all the symmetry elements in the lower symmetry structure are con-
tained in the higher symmetry structure [9].

We can now express the free energy as an expansion around q = 0

G(q) = G0 + aq2 + bq4 + cq6 + . . . (7.1)

Due to the symmetry requirement G(q) = G(−q) odd order terms can be excluded
in a cubic crystal. This is referred to as a 2-4-6 potential after the exponents in q.
It can almost always be assumed that c is small enough to be neglected for small
values of q as long as b is positive. The equilibrium value of q is that which fulfils

∂G

∂q
= 0 ; ∂

2G

∂q2
> 0 (7.2)

When both coefficients a and b are positive, G(q) has a single minimum at q = 0
and the free energy expansion describes the system in a high symmetry phase as
its equilibrium. When a is negative (and b is positive) the expansion describes
a system with a double well potential with a maximum at q = 0 and minima at
non-zero values of ±q and the equilibrium phase is now the lower symmetry phase.
A schematic of the free energy expansion is illustrated in Figure 7.2 for T < TC,
T = TC and T > TC. This is equivalent to a < 0, a = 0 and a > 0 as will be
discussed below.

Usually, the higher symmetry phase is also the high temperature phase and as the
temperature is lowered the lower symmetry phase is attained. Since the sign of a
is crucial for determining the equilibrium phase it is reasonable to assume a simple
relationship where the coefficient a decreases continuously with temperature and
changes sign at the critical temperature TC at which a phase transition occurs. The
simplest relationship is a = ã(T − TC), where ã is a positive constant. This allows
a continuously increasing value of the order parameter at the phase transition.

When both a and b are negative it is important to include (the positive) 6th order
coefficient c to make the expansion bounded from below. As long as a is negative
the potential describes a double well potential similar to that discussed above, but
when a becomes positive the expansion describes a triple-well potential, with three
distinct local minima. Depending on the value of a the global minimum will be
either at q = 0 or ±q. In this case the order parameter jumps discontinuously at
the phase transition at a finite value of a > 0.

When the values of the order parameter changes continuously through the phase
transition it is denoted continuous or for historic reasons second order. If the order
parameter makes a discontinuous jump to a non-zero value at the phase transition
the transition is denoted first order. A note is in order here. With second order
phase transition it is implied that c = 0 is a valid approximation. When b = 0 < c
the order is called tricritical.
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Figure 7.2: Schematic of the excess free energy as a function of the order parameter
q at different temperatures T .

The final form of the expansion often goes under the name of Landau expansion
or sometimes excess free energy since it describes the increase (decrease) of the free
energy

G(q) =
1

2
ã(T − TC)q

2 +
1

4
bq4 +

1

6
cq6 (7.3)

While there exist many subgroups to the high symmetry cubic phase, not all
are attainable through a continuous phase transition. The second necessary re-
quirement for a continuous phase transition is that ∂G

∂q = 0 has a solution for a
non-zero q with ∂2G

∂q2 > 0 which is a global minimum [11]. To understand this we
need to extend the expansion above to higher dimension. The extension is rather
straight forward, but a subtlety is that different coefficients are allowed for the
double derivatives with respect to the same variable and those including the cross
derivatives.

70



7.2. Free energy expansion

Let us for example investigate the Landau expression

G =
1

2
a(T − TC)(q

2
1 + q22 + q23) +

1

4
b(q21 + q22 + q23)

2

+
1

4
b′(q41 + q42 + q43) +

1

6
c(q21 + q22 + q23)

4 + . . .
(7.4)

where q = [q1, q2, q3] is now vector valued. Here qi can for example be a Glazer tilt
angle around the three cartesian axes or a cation displacement. If the last term in
Equation (7.4) is omitted the equilibrium condition can be written as

∂G

∂qi
= a(T − TC)qi + b(q21 + q22 + q23)qi + b′q3i = 0 (7.5)

which has the trivial solutions for qi = 0, which we recognise as the high tem-
perature solution or the saddle point at lower temperatures. Let us study three
non symmetry-equivalent cases, q = q√

3
[1, 1, 1], q = q√

2
[1, 1, 0] and q = q[1, 0, 0].

If qi denotes the tilt angle around the three cartesian axes these cases would cor-
respond to the structures a−a−a− (R3̄c), a0b−b− (Imma) and a0a0c− (I4/mcm).
The non-trivial solution is

q2i =
a(T − TC) + b′

nb
(7.6)

where n is the number of non zero elements in q. Using this result the excess free
energy can be written as

G = −1

2
a
a+ b′

b
+

1

4

(a+ b′)2

b
+

b′

4n

(
a+ b′

b

2)
(7.7)

The role of q41 + q42 + q43 term is to distinguish the three different directions in order
parameter space. Depending on the sign of b′ the global minimum is attained for
n = 1 or n = 3 for b′ < 0 and b′ > 0 respectively. We can see that n = 2 can never
be a global minimum and hence Imma (a0b−b−) cannot be obtained through a
continuous phase transition. The q41+q42+q43 term also shifts the critical temperature
in Equation (7.6) slightly such that the renormalized critical temperature is

T ∗
C = TC − b′/a (7.8)

We will assume that b′ is small and neglect this for the time being.

71



Chapter 7. Phase Transitions

7.3 Spontaneous strain

During a phase transition the change the change in order parameter q is often
accompanied by a spontaneous change in lattice constant. This is called spon-
taneous strain and must fulfil the symmetry of the phase transition. Following
Refs. [9, 192–196] the excess free energy can be written as

G =
1

2
a(T − TC)q

2 +
1

4
bq4 +

1

6
cq6

+
1

2

∑
ik

c0ikeiek +
∑
i

λieiq
2

(7.9)

where the index on the order parameter q has been dropped. (See Refs. [9], [192]
or [193] for the generalisation with vector valued q.) Here q is the order parameter,
a, b, and c are the normal, or bare Landau coefficients, the first summation is over
the elastic strain components and the second is the coupling between spontaneous
strain and the order parameter. The elements of the stiffness tensor cij are in reality
not constant when the order parameter changes, but in a first approximation we
here assume they change very little and that their equilibrium values can be used.
This is marked with a superscript 0.

In a cubic crystal there are only 3 independent non-zero components of c0ik:
c011 = c022 = c033, c012 = c13 = c23 and c044 = c055 = c066. All other c0ik = 0. It is therefore
convenient to rewrite Equation (7.9) in terms of the the volume, tetragonal and
orthorhombic stains

ea = (e1 + e2 + e3) (7.10a)

et =
1√
3
(2e3 − e1 − e2) (7.10b)

eo = (e1 − e2) (7.10c)

as

G =
1

2
a(T − TC)q

2 +
1

4
bq4 +

1

6
cq6

+
1

4

(
c011 − c012

) (
e2o + e2t

)
+

1

6

(
c011 + 2c012

)
e2a

+
1

2

(
e24 + e25 + e26

)
+ λ∗1eaq

2 + 2λ∗2etq
2

(7.11)
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7.3. Spontaneous strain

Here the relation between the coupling constants is

λ1 = λ∗1 +
√
3λ∗2 −

2√
3
λ∗2 (7.12a)

λ2 = λ∗1 −
√
3λ∗2 −

2√
3
λ∗2 (7.12b)

λ3 = λ∗1 +
4√
3
λ∗2 (7.12c)

A relation between the strain and the order parameter can be obtained for the
equilibrium condition ∂G/∂e = 0 as

ea = − q2λ∗1
1
3
(c011 + 2c012)

(7.13a)

et = − 2q2λ∗2
1
2
(c011 − c012)

(7.13b)

eo = 0 (7.13c)

Substituting these equations back into equation (7.11), a new Landau like expres-
sion is found, with the coefficient b renormalised to b∗, as

G =
1

2
a(T − TC)q

2 +
1

4
b∗q4 +

1

6
cq6 (7.14)

With the addition of externally applied stresses, σi, with the customary sign
convention of positive sign for expansive pressure, the contribution to the excess
free energy, is −

∑
i eiσi and (remembering that eo = e4 = e5 = e6 = 0) the

expression is yet again modified to

G =
1

2
a(T − TC)q

2 +
1

4
b′q4 +

1

6
cq6

+ Paea + Ptet
(7.15)

where

Pa = −1

3
(σ1 + σ2 + σ3) (7.16a)

Pt = − 1

2
√
3
(2σ3 − σ1 − σ2) (7.16b)
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7.4 Hydrostatic pressure
Let us now shift focus from an excess free energy as a function of temperature to
a function of pressure. For a hydrostatic pressure the transition (critical pressure)
occurs when the second order term changes sign. Substituting the strains from
equation (7.13) the expression for the critical pressure can be defined as

PC =
a1
3
(c011 + 2c012)

2λ∗1
(T − TC) (7.17)

Using this definition of PC we can finally write the excess free energy in terms of
the hydrostatic pressure as

G =
1

2
A(PC − P )q2 +

1

4
Bq4 +

1

6
Cq6 (7.18)

This result could have been obtained by the same type of reasoning used above for
the Landau expansion since temperature and pressure occur on equal footing in the
free energy expression, keeping in mind that pressure appears with a positive sign
G = U−TS+PV , while temperature comes with a negative sign. Equivalently, the
double well shape of the excess free energy is expected at lower temperature, but
at higher pressures. The strength with the above argument is that it connects the
two with a quantitative expression for the temperature development of the critical
pressure PC.

At equilibrium ∂G
∂q

= 0 the order parameter is given by

q2 =
1

2C

(
−B ±

√
B2 + 4AC(P − Pc)

)
(7.19)

The negative solutions result in imaginary order parameter values and indicate
(inversely to the soft mode frequency) stability for the cubic phase. In the limit
when C → 0 the phase transition is second order and

q2 =
A(P − Pc)

B
(7.20)

Combining this equation with equation (7.13b) a linear relationship between the
tetragonal strain and pressure can also be obtained

et = − 2λ∗2
1
2
(c011 − c012)

A(P − Pc)

B
(7.21)

Equations (7.20) and (7.21) constitute two discriminators for determining the phase
transition pressure. This is illustrated in Figure 7.3.
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Figure 7.3: Illustration of the near pressure dependence of the square of the tilt
angle according to Equation (7.19) and the almost perfect linear dependence for
the tetragonal strain predicted by Equation (7.21).

7.5 Relation to soft mode frequency
In the harmonic approximation, the potential is expanded up to second order

V = V0 +
1

2

∑
ij

Φijuiuj (7.22)

A very natural choice of the order parameter q is the normal coordinates Qsq, which
diagonalises the Hamiltonian. The harmonic potential can then be written as

1

2

∑
ij

Φijuiuj =
1

2

∑
sq
ω2
sqQsqQ

∗
sq (7.23)

Now expressing the Landau potential in the normal coordinate of the R25 mode
(q ≡ Qsq

∣∣
sq=R25

≡ QR25) to harmonic order and we obtain the relation

1

2
A(PC − P )q2 =

1

2
ω2
R25
QR25Q

∗
R25

(7.24)

i.e. that the square of the harmonic vibrational frequency is proportional to the
applied pressure.

ω2 =
∂2G

∂q2

∣∣∣∣∣
q=0

= A(P − Pc) (7.25)
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Figure 7.4: Illustration of the linear relationship between square of the harmonic
vibrational frequency and the applied pressure (cf. Equation (7.25))

This shows that not only does the order parameter go to zero at the phase transi-
tion (see Equation (7.20) and Figure 7.3) but so does also the soft mode frequency
squared. This is illustrated in Figure 7.4, where the correspondence to the phase
transition pressure for the PBE functional determined from the tilt angle is con-
firmed.

However, and since G(P ) is defined in a multidimensional q-space we can expect
the true transition pressure to be renormalised P ∗

C (cf. Eq (7.8))

P ∗
C = PC +B′/A (7.26)

Depending on the sign of B′ the phase transition pressure could be shifted slightly.
Since the assumed phase transition in BaZrO3 is of type n = 1 B′ should be
negative and the measured phase transition pressure shifted to lower pressures.
On the other hand, quantum fluctuations near the phase transition temperature
will help stabilising the cubic symmetry and shift the measured phase transition
pressure to higher pressures.
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8
Chemical expansion

While the formation volume contribution to the formation free energy is negligible,
the formation volume is significant when it comes to chemical expansion. As already
mentioned in Section 3.2 the formation volume induces strain in the material upon
defect formation. In a material where the composition changes constantly, such
as in a proton conducting fuel cell membrane where the material is constantly
hydrated and de-hydrated, this is particularly important. Chemical expansion is
often measured as a unit cell volume change per defect, or per water molecule. This
works well in (pseudo) cubic material where the strain can be considered isotropic,
but does not capture the anisotropy or shear that a single defect may induce. To
model this we have expressed the chemical expansion it terms of defect induced
strain tensor in Paper I. Although it turned out that the strain tensors indeed
were diagonal Paper I is written with precisely such a general case in mind.

8.1 A thermodynamics view on strain
Let us consider the crystal volume, V = V (T, P, {xk}), to depend on the tempera-
ture, pressure and defect concentration of species k. In analogy with the thermal
expansion coefficient and the bulk modulus mentioned above we now define the
chemical expansion coefficient as [92]

βk =
1

V

(
∂V

∂xk

)
P,T,xk′ ̸=xk

(8.1)

In order to generalise the scalar chemical expansion coefficient to three dimensions,
we first note that the volume expansion of a material in the small strain limit is
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Chapter 8. Chemical expansion

given by the trace of the strain tensor [145, 197]

∆V

V
= Tr (ε) (8.2)

By dividing by the change in defect concentration ∆xk and taking the infinitesimal
limit we can write the chemical expansion coefficient as

βk = Tr
(
∂ε

∂xk

)
P,T,xk′ ̸=xk

= Tr (λk)P,T,xk′ ̸=xk
(8.3)

where λ is the defect induced strain tensor in the infinite dilute limit [198].

8.2 The defect induced strain tensor
The defect induced strain tensor is the natural generalisation of the chemical expan-
sion coefficient. In practical calculations with a finite concentration, we consider
the effect of a single defect introduced in a volume V0. With a defect concentration
xd = Ωc/V0, where Ωc is the volume of a primitive unit cell, the defect induced
strain tensor is

λ =
1

xd
ε (8.4)

With this definition we get the chemical expansion coefficient as

β = Tr (λ) = 1

xd
Tr (ε) = V0

Ωc

· ∆V
V0

=
∆V

Ωc

(8.5)

and the defect formation volume is given by

∆fV = ΩcTr (λ) (8.6)

8.3 Strain in one dimension
The strain tensor appearing in Equations (8.3) and (8.4) is often calculated from
the relative lattice expansion, the linear strain, for each axis in the crystal. In
an isotropic cubic material, in which the defects can be assumed to be randomly
oriented, causing no shear strain, the linear strains are all equal and are found along
the diagonal in the three dimensional strain tensor. With the volume expansion in
Equation (8.2) equal to the trace of the strain tensor the volume expansion can be
written as three times the linear strain.
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8.4. Obtaining the strain tensor

Consider therefore a one-dimensional object of initial length l0. This can e.g. be
the lattice constant in a cubic material. It is, by some means, forced into a new
length l, which can be either larger or smaller than l0. The elongation

∆l = l − l0 (8.7)

is defined such that it is positive (negative) if the length of the rod has increased
(decreased). The strain is the dimensionless quantity

e =
∆l

l0
(8.8)

This is called the engineering strain [199] and is the measured quantity in an
experiment. There is, in general, no reason to favour l0 over l in the denominator
and the engineering strain can just as well be defined with l in place of l0. To relate
the elongation to the original length of the rod , i.e. using l0 in the denominator, is
called the Lagrangian strain measure and relating the elongation to the final length,
l, is called Eulerian strain measure [199].

Under the assumption that the strain is small the Lagrangian strain and the
Eulerian strain are approximately equal, but under greater strain one would ideally
measure the length l at every infinitesimal ∆l in order to compute the logarithmic
or true strain. The true strain is defined as

e =

l∫
l0

dl′
l′

= ln
(
l

l0

)
≈ l − l0

l0
(8.9)

where the last approximation is valid under small strain and takes us back to the
engineering strain. The one-dimensional engineering strain is the average of the
diagonal terms in the full strain tensor e = Tr(ε)/3 and the chemical expansion
coefficient can now be computed as

β = 3
∆l/l0
xd

=
3e

xd
(8.10)

8.4 Obtaining the strain tensor
When there is shear strain present, or when the crystal is not cubic the linear
strain is not sufficient to describe the deformation of the crystal. Under such
circumstances a formalism for a three dimensional body has to be used.

Assume a body in three dimensions can be described as a periodic lattice with
a unit cell of basis vectors a1, a1 and a3. Let

ai = L0 ei (8.11)
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be the one-to-one matrix transformation that maps the cartesian coordinates ei

onto the undeformed crystal ai. After deformation the crystal is defined by the
new set of basis vectors

a′
i = L ei = LL0

−1ai (8.12)
The last equality follows because L0 is one-to-one and Equation (8.11) is invertible.

The location of an arbitrary point P = (p1, p2, p3) as measured relative to the
cell vectors in the undeformed crystal can be written as

r =
∑
i

piai (8.13)

and analogously after deformation. The displacement of the point is

u = r′ − r =
∑
i

pi (a′
i − ai) =

(
LL0

−1 − 1
)

r (8.14)

The linear transformation F = LL0
−1 that maps the undeformed system onto the

deformed is called the displacement gradient and can formally written as

F =
∂r′i
∂rj

(8.15)

from which the Biot strain tensor is defined as

εij =
∂ui
∂rj

=
∂(r′i − ri)

∂rj
=
∂r′i
∂rj

− δij = F − I (8.16)

We can now recognise
ε =

(
LL0

−1 − 1
)

(8.17)
in Equation (8.14) as the Biot strain tensor in the Lagrangian description of con-
tinuum mechanics.

A transformation of a three dimensional body can in general be decomposed
in three different actions; translation, rotation and deformation. Translation, as
well as rotation, can have no thermodynamical significance, since they do not alter
the internal structure of the body. Translation are by construction not included.
Rotations on the other hand can in principle be present since the Biot strain tensor
is not by necessity symmetric.

Rotations can be removed through a symmetrization procedure. In general this
can be done through a polar decomposition [199], but for small rotations it is
sufficient to add the transpose and take the mean. The strain tensor is then given
by

εij =
1
2

(
∂ui
∂rj

+
∂uj
∂ri

)
(8.18)
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or in matrix notation
ε = 1

2

(
LL−1

0 +
(
L−1

0
)T

(L)T
)

(8.19)

However, if no rotations are present there is no reason to favour one strain tensor
over another and the strain tensor can be computed as the Biot strain tensor

ε =
(
LL0

−1 − 1
)
= (L − L0) L0

−1 (8.20)

This is the natural generalisation of the engineering strain in Equation (8.8) to
three dimensional objects.
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9
Summary of appended papers

“ Wer Großes will, muss sich zusammenraffen;
in der Beschränkung zeigt sich erst der Meister,
und das Gesetz nur kann uns Freiheit geben.1 ”

– Johann Wolfgang von Goethe, Natur und Kunst

9.1 The size and shape of a defect
The volume of a defect, and how to properly describe the shape of a defect, is
investigated in Paper I for BaZrO3. The strain tensor formalism, which describes
not only the size, i.e. the ionic radius, but also the anisotropy induced by the defect
is developed. The trace of the strain tensor is directly related to the volume of the
defect from which an ionic radius can be obtained. The strain tensor is general
and applicable to any point defect in any material describing not only the volume
expansion but also the anisotropy.

The strain tensor formalism is applied to the defects involved in hydration of
BaZrO3 i.e. the proton and the oxygen vacancy, including some acceptor dopants
necessary for the formation of the vacancies. The difference in ionic radius between
the hydroxide ion and the vacancy causes the material to expand during hydration.
We conclude that the vacancy is smaller than the oxygen host ion but more inter-
estingly, also the hydroxide ion is smaller than the oxygen ion. The cause of the
chemical expansion during hydration is not the large size of the proton, but the

1Whoever seeks greatness must gather himself together, only in limitation does the master
distinguish himself, and only the law can give us freedom
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relatively small size of the vacancy. An important side result is that the strain
tensor is rather independent of the acceptor dopant species as well as the supercell
size.

The strain tensor is also applied in Paper II to the oxyhydride BaTiO3 as an
independent discriminator for the polaron state. The difference in chemical expan-
sion between the oxyhydride in the bandstate and in the polaron state is about a
factor two, leading to the conclusion that the chemical expansion determined from
measurements of the lattice constants implies a bandstate configuration.

9.2 Understanding the oxyhydride BaTiO3-xHx

The substitutional hydrogen HO
•, which can form in BaTiO3, consists of a nega-

tively charged H− ion on an oxygen site and leads to n-type doping of the material.
Doping into the initially empty Ti 3d band should according to band theory lead
to a delocalised electron. However, through coupling to phonons it can also lead
to a polaron.

In order to localise an electron and form a polaron the DFT+U method is used.
The value of the U -parameter was determined self-consistently through applying
the criterion of piecewise linearity to the xc-functional. The exact value of the
U -parameter is not transferable between different systems and we find that the
optimum U -value is different in a 2 × 2 × 2 supercell (U = 3.3) and a 3 × 3 × 3
supercell (U = 3.1). Polaron formation is found to be energetically favourable
(∆E = −57 meV) in the smaller supercell, but unfavourable (∆E = 124 meV) in
the larger. This can perhaps be interpreted as an indication of a concentration
dependence for the polaron formation energy. We conclude that the formation
energy is not sufficient do determine whether polarons are present or not in the
oxyhydride.

The hydrogen local environment differs significantly between the polaron and
the bandstate. This has a large impact on the vibrational character of the hydride
ion and the vibrational properties of the hydride ion changes significantly when a
bound polaron is formed on the nearest neighbour titanium. For both states the
hydrogen vibrational modes are found to be highly localised and decoupled from
the lattice and thus easily distinguishable.

The PBE functional turns out to be insufficient at accurately predicting the vi-
brational frequencies of pure BaTiO3. The HSE hybrid functional on the other
hand is shown to produce more accurate vibrational frequencies. Since the vi-
brational frequencies are highly localised the One Particle Potential method (also
known as the Partial Hessian approach) has been used. This method requires fewer
displacements, only one displacement of the hydrogen atom in each of the three
cartesian directions, and consequently fewer calculations.
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9.3. Understanding anti-ferro distortions in BaZrO3
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Figure 9.1: Close up of the measures INS spectrum in the interval 700–1250 cm−1.
Frequencies calculated with HSE are marked with dashed (bandstate) and dotted
(polaron) lines. Gaussian fits are indicated by shaded areas.

In Paper II we discriminate between the two possible electronic states, the
delocalised bandstate and the localised polaron state. The agreement between the
calculated vibrational frequencies and the measured inelastic neutron scattering
spectrum is excellent and leads to the conclusion that the conduction electrons in
the measured sample are predominantly delocalised.

As an independent confirmation of the conclusion we computed the strain tensor
for the two states. We find that the strain tensor agrees very well with the bandstate
but that polarons are highly unlikely in unstrained material.

While a a bound polaron on the nearest neighbour titanium changes the vibra-
tional frequencies significantly, the presence of oxygen vacancies does not. This is
shown in Paper III. Only when an oxygen vacancy is formed in closest possible
proximity to the hydride ion can a shift of the vibrational frequencies be observed
as a peak at 800 cm−1. This configuration is not energetically favourable, however,
and is only found at elevated temperatures. Thus the presence of nearest neigh-
bour oxygen vacancies at lower temperatures can only be explained by assuming
that oxygen mobility is limited and that these configurations are formed during
the sintering at 600 ◦C.

9.3 Understanding anti-ferro distortions in BaZrO3

The presence of imaginary modes in the phonon dispersion of BaZrO3 indicates an
instability of the cubic phase. Since the imaginary mode is at the R-point, more
specifically the R25 irreducible representation, the instability is anti-ferrodistortive,
leading to a transition into a tetragonal phase. No such phase transition has been
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Figure 9.2: (left) The square of the R25-mode frequency as a function of lattice
constant for the six different functionals. The equilibrium lattice constant is marked
by a square and the zero point energy corrected lattice constant obtained from a
quasi harmonic approximation is marked by a circle (right). The potential energy
surface (PES) along the R25 phonon mode. The curvature of the PES is directly
proportional to the square of the R25-mode frequency.

seen experimentally.
As seen in Figure 9.2 the magnitude of the R25-mode frequency is different in

different functionals. The R25-mode frequency is also strongly lattice constant
dependent and for the non-hybrids the magnitude ranges from the largest instability
predicted by LDA to PBE, which does not predict any instability. As seen in
Figure 9.2 the lattice constant is the largest effect and can almost entirely explain
the difference between LDA, PBEsol and PBE. Inclusion of non-local exchange
causes a significant shift in the R25-mode frequency while inclusion of non-local
correlation only has a minor effect.

Many early works used LDA and found discrepancies between experiments and
theory, while later works have relied on PBE, or sometimes a 3 × 3 × 3 supercell,
to prevent octahedral rotations and thus circumvent the problem. With standard
functionals exhibiting qualitatively different behaviour two questions arise: which is
the crystal structure of BaZrO3 at zero kelvin and which functional can accurately
predict this?

In Paper IV we address the question of the BaZrO3 ground state structure. By
combining results from inelastic neutron scattering experiments on a powder sample
with the calculated phonon dispersion using different functionals we can extract
the R25-mode and accurately determine the R25-mode frequency as a function of
temperature, down to 5 K. We thereby conclude that BaZrO3 is cubic down to zero
kelvin with a R25-mode frequency of about 6 meV. Thus, although often denoted
soft, the R25-mode is not soft. We also both calculate and measure the mean
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9.3. Understanding anti-ferro distortions in BaZrO3

square displacement and momentum distribution, both of which show only small
differences between the different functionals, but more importantly, good agreement
with the experimental values.

In Paper V we present an extended set of properties and compare them with
measurements found in the literature. Once again we find a set of properties,
such as the elastic constants, which show good agreement with the experimental
values for all investigated functionals. These results are obtained in the cubic
symmetry and are fully consistent with a cubic ground state structure of BaZrO3.
However, we also identify a set of properties where the different functionals predict
different values. Perhaps the most interesting ones are the dielectric constant and
the parallel mean square relative displacement, where earlier works have failed to
achieve agreement between computational and measured values. This failure has
previously been interpreted as an indication of a different crystal structure.

We show that there is no need to go beyond the assumption of cubic symmetry for
an accurate description for a wide range of measurable BaZrO3 properties. Using
hybrid functionals we achieve agreement between experimental measurements and
theoretical predictions in the cubic crystal structure. Both the Γ-point frequen-
cies, the dielectric constant and the EXAFS measurements of the parallel mean
square relative displacements can be accurately described computationally within
the cubic symmetry. By the inclusion of Fock exchange (in HSE and CX0p) the
calculated values are in very good agreement with the experimental values.

An independent confirmation of the stability of the cubic ground state of BaZrO3
is given by the observed pressure-induced phase transition at room temperature. In
Paper V we predict that such a pressure-induced phase transition at zero kelvin
would lead to a tetragonal I4/mcm symmetry at high pressures in accordance
with the observation. This would be similar to the well-studied anti-ferrodistortive
phase transition exhibited by SrTiO3 at 105 K and ambient pressure. Using Landau
theory for continuous phase transitions we predict the phase transition pressure at
zero kelvin using three different discriminators.
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Figure 9.3: Illustration of the functional square

9.4 The role of non-local exchange and non-local
correlation in the description of vibrational
frequencies and the phase transition of BZO

The four approximations to the exchange-correlation functional investigated in Pa-
per IV and Paper V can be represented as a 2 × 2 square as illustrated in
Figure 9.3. Letting PBE represent one corner in which both correlation and ex-
change are treated semi-locally, the inclusion of non-local correlation along the
horizontal axis is represented by CX, and the inclusion of non-local exchange along
the vertical axis by HSE. The simultaneous inclusion of both non-local exchange
and non-local correlation is represented by CX0p. This allows us to investigate the
effect of including non-local exchange and non-local correlation separately.

Figure 9.4 summarises the results. A general observation is that non-local Fock-
exchange significantly improves the description of the vibrational properties in both
BaZrO3 and BaTiO3. This is in agreement with the literature [200, 201]. In Pa-
per II we conclude that Fock exchange is necessary for an accurate prediction of
the hydrogen vibrational frequencies (ωH•

O
) in the oxyhydride BaTiO3. Similarly,

in Paper IV we again find that Fock exchange is necessary for an accurate pre-
diction of the R25-mode frequency. Fock exchange is also essential for a range of
properties directly affected by the vibrational properties of the material, as dis-
cussed in Paper V. However, as also discussed below and in Paper V, inclusion
of non-local correlation effects are beneficial, although the effect is smaller.
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Figure 9.4: The assessment square comparing the prediction from of the function-
als HSE (top left), CX0p (top right) PBE (bottom left) and CX (bottom right)
with the available measurements. The bars indicate the relative error in percent
compared with experiments for the lattice constant a (magnified 10 times), the
R25-mode frequency ωR, the dielectric constant ϵ, the oxygen-barium MSRD at
300 K ⟨∆u2∥⟩BaO

and the root mean square average thermal expansion. The penul-
timate column shows the relative error of the hydride ion vibrational frequencies in
oxyhydride BaTiO3. The last column shows a root mean square error summarising
the previous columns.
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The dielectric constant ϵ also proves to be an excellent discriminator between the
different functionals. The poor performance of LDA, which has led to suggestions
of a different ground state crystal symmetry at zero kelvin, is inherited by PBE.
The inclusion of Fock-exchange in HSE significantly improves the prediction of the
dielectric constant. This is in line with the general observation that the inclusion
of Fock-exchange improves the predictive power of the functional.

What is more interesting is that inclusion of non-local correlation has a rather
significant effect. This is interesting because the difference can be traced back to the
differences in the dynamical matrix and not only to the difference in the vibrational
frequencies. While the differences in the dynamical matrix upon inclusion of non-
local exchange is small the difference upon inclusion of non-local correlation is
significant. The former leads to a significantly improved prediction of the dielectric
constant, mostly due to the improved prediction of the vibrational frequencies. The
effect of the latter is far less obvious and is to an almost equal amount due to a
change of the eigenvectors.

The oxygen-barium parallel mean square relative displacement (MSRD) ⟨∆u2∥⟩BaO
also proves to be an excellent discriminator of the different functionals. The MSRD
is strongly dependent on a correct determination of the R25-mode frequency. With
increasing temperature, modes with lower vibrational energy will be more easily
populated and a stronger temperature dependence is expected for xc-functionals
exhibiting a lower R25-mode frequency. This is also partly true. While all function-
als predict similar MSRD valued as zero kelvin, both PBE and CX exhibit a strong
temperature dependence. However, this is also the case for HSE, which proves that
the simplified picture of the MSRD being a measure of the R-point instability is
insufficient. In fact, the MSRD is again a property where truly non-local correla-
tion becomes important. This is particularly interesting since the effect of truly
non-local correlation is usually considered more important in sparse matter while
BaZrO3 is not sparse.

The common denominator for these two properties, the MSRD and the dielectric
constant, is that the calculation of said properties explicitly includes the eigenvec-
tors of the dynamical matrix. In Paper V we show that the inclusion of non-local
correlation significantly changes the dynamical matrix, while the change due to
inclusion of non-local Fock-exchange is smaller. This is somewhat curious since the
effect on the observable properties is the opposite. It seems that, in the MSRD
and the dielectric constant we have found two excellent discriminators between
the different functionals. Furthermore, it seems that the dynamical matrix and
its eigenvectors are where we should probe to elucidate the role of truly non-local
correlation.
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10
Conclusions and Outlook

“ The game of science is, in principle, without end. He who decides
one day that scientific statements do not call for any further test, and
that they can be regarded as finally verified, retires from the game ”

– Karl Popper [202]

In this thesis we have seen two examples of how first principles calculations can be
used to penetrate a material and provide information about the local environment.
We have also seen how this affects macroscopic properties in a material.

In Paper I the chemical expansion, which is a difference in ionic volume be-
tween two different types of defects, could be separated into the formation volume
of the two defects individually. Due to the charged nature of the defects this in-
formation is not easily accessible through experiments. The agreement between
the measured and calculated chemical expansion supports the conclusion that the
chemical expansion can be understood from the separation into two individual ef-
fects. However, the agreement is not perfect and there are important effects which
are neglected in the article, such as finite temperature and the quantum fluctuation
of hydrogen. Moreover, in charged supercells, such as those used here, there is a
fictitious pressure which depends on the specific implementation [203]. While the
effect should cancel for the modelling of the overall chemical expansion during hy-
dration, the individual defect volumes for the proton and the oxygen vacancy will
in principle differ between different DFT implementations. A proper modelling of
this effect requires further work.

In Paper II and Paper III the oxyhydride barium titanate was investigated.
Our calculated vibrational spectrum is in good agreement with the spectrum mea-
sured using inelastic neutron scattering. There is no signature from the O-H stretch
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confirming that hydride ions occupy the oxygen site and that oxygen vacancies in
the lattice have only a minor impact on the hydrogen vibrational. We also re-
fute the hypothesis that small bound electron polarons would form in unstrained
oxyhydride BaTiO3.

The oxyhydride BaTiO3 is still a rather recent discovery and many aspects re-
main to be understood. Most importantly for a practical application is perhaps
the elementary diffusion step, and thus the hydride exchange mechanism. The
apparent thermodynamical instability also needs further investigation. Also the
apparent semi-conducting behaviour of epitaxial BaTiO3 lacks an explanation. It
is not unlikely that polarons could form in an epitaxially strained material. Fur-
thermore, additional types of hydrogen defects may be present in the material. For
example the presence of substitutional dihydrogen, i.e. a hydrogen molecule or two
hydrogen ions, on any type of site, including the barium or titanium sites.

In Paper IV and Paper V we claim to have settled a long outstanding question
of the ground state structure of BaZrO3. In Paper IV we measure the R25-mode
frequency and find that the cubic crystal structure is stable. The agreement be-
tween the simulated neutron scattering map based on the CX0p functional is in
remarkable agreement with the measurement. In Paper V we continue assessing
the functionals against a broader set of experimental values found in the litera-
ture. The strong agreement between the predicted and measured values, at least
for the hybrid functionals and in particular for the CX0p, leads us to conclude that
BaZrO3 is indeed cubic down to zero kelvin.

At the same time, these two articles lead to new questions. For example, why
are the dynamical matrices for HSE and CX0p so different, and why is this not
reflected more strongly in the predicted properties? Another question which re-
mains unsettled is the extent to which the zero point energy can stabilise a higher
symmetry structure. How deep must a double well potential be before a phase
transformation is inevitable?

It has been argued that BaZrO3 should exhibit a shallow double well potential,
which is stabilised by quantum zero point motion. Since the R25-mode in BaZrO3
turned out to be far from soft, and the ionic potential energy landscape very close to
harmonic, the question of zero point energy stabilisation turned out rather semantic.
However, the question of to which degree a weak instability can be stabilised by
zero point motion remains.

Many perovskites, e.g., SrTiO3, exhibit double well potentials in DFT deep
enough to cause phase transformations when the temperature is lowered. The
phase transformation in SrTiO3 occurs at 105 K and is of the same type as the
phase transition investigated in Paper V for BaZrO3. The temperature-pressure
phase diagram has also been rather extensively studied experimentally for SrTiO3.
Taking temperature effect into account in the modelling of the pressure-induced
phase transition in both SrTiO3 and BaZrO3 is the natural next step. The question
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is also of general interest. A solid approach to modelling temperature effects based
on DFT data, and in particular temperature induced phase transitions, both at
high and and low temperatures, remains an open question.
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A
Description of relevant crystal

structures

“ If you want to understand function, study structure. ”
– Francis Crick [204]

A.1 Cubic Pm3̄m (221)
The ideal perovskite crystal structure, from which all other structures can be de-
rived, is called the aristotype. It has space group Pm3̄m which is No. 221 in the
International Tables for Crystallography [205]. The point group in Schönflies nota-
tion is O1

h. The atomic positions are described by their Wyckoff site is A (1a), B
(1b) and O (3c). This structure, illustrated in figure A.1, consists of two interpen-
etrating simple cubic lattices of A and B atoms respectively shifted such that the
origin of one lattice is the body centre of the other with oxygen on the faces of the
A-lattice. The oxygen atoms thus form an inscribed octahedron, the dual to the
cube, with the B atom at its centre.

It should be noted that it is also possible to shift the origin to the B-atom
without loss of generality, since both the 1a and the 1b Wyckoff site as well as the
3c and 3d Wyckoff sites have the same symmetry, Oh and D4h, respectively. In
this case the respective Wyckoff sites become A (1b), B (1a) and O (3d) and the
oxygen atoms now occupy positions along the edges of the cube. Which convention
is used is of importance for the characterisation of the irreducible representations
in Appendix B. All other lower symmetry structures contain the B atom at the
centre of the point group.
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Appendix A. Description of relevant crystal structures

Figure A.1: The Cubic Pm3̄m (221) crystal symmetry for the perovskite. The
conventional A-atom centred representation is shown to the left and the B-atom
centred representation to the right. The inscribed oxygen octahedron is marked
with blue.

Many lower symmetry perovskite structures, called hettptypes, can be related to
the aristotype as either a rigid rotation of the inscribed oxygen octahedron, called
tilt or Glazer rotation, or as a displacement of the body centreed B atom. The
tilted structures can be described in terms of six order parameters ϕi, where ϕ1 to
ϕ3 denote the rotation angle about the three cartesian axes with rotation in suc-
cessive layers in the same direction and ϕ4 to ϕ6 in opposite direction in successive
layers. The R25-mode instability, which implies octahedral rotation in opposite
direction along the axis of rotation, can lead to symmetries (0, 0, 0, 1, 0, 0) (tetrag-
onal I4/mcm), (0, 0, 0, 1, 1, 0) (orthorombic Imma), (0, 0, 0, 1, 1, 1) (rombohedral
R3̄c) and linear combinations of these. An M -point instability leads to structures
described by the first three order parameters ϕ1 to ϕ3. Similarly, the three ferro-
electric phases of BaTiO3 can be described by three order parameters describing
the displacement of the Ti atom in the directions [100] (tetragonal Pmma), [110]
(orthorombic Amm2) and [111] (rombohedral R3c).

The lower symmetry structures are generally described by unit cell vectors which
do not coincide with the original cubic lattice vectors. In these cases the vector
equivalent to the unitcell vectors for the cubic symmetry (essentially the distance
between nearest neighbour A (or B) atoms in three (almost) orthogonal directions)
are referred to as pseudo cubic lattice vector ã. These are often of different lengths
in different directions. The pseudo cubic lattice constant can then be defined as
ã = (abc)1/3 ≈ V

1/3
pseudo cubic. The approximation becomes an equality if the three

directions are truly orthogonal and of equal length.
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A.2. Tetragonal I4/mcm (140)

Below follows an overview of three different crystal structures likely to form as a
consequence of an R-point instability. In addition, the three different ferroelectric
phases exhibited by BaTiO3 are described.

A.2 Tetragonal I4/mcm (140)
The anti-ferroelectric distortion in SrTiO3, which is also the conjectured phase of
pressurised BZO, causes a lowering of the symmetry to a tetragonal phase. This
phase can be described as a Glazer rotation a0a0c−, i.e. a rigid rotation of the oxy-
gen octahedra around the z-axis in a cog-wheel fashion, with the rotation of neigh-
bouring layers along the z-axis in opposite direction. This structure is illustrated
in a 40 atom supercell in Fig. A.2a. The conventional unit cell is related to the orig-
inal cubic through the transformation a′ = [1, 1, 0], b′ = [1,−1, 0] and c′ = [0, 0, 2],
with the lengths of the new lattice vectors a′ = b′ ̸= c′ with a′/np.sqrt2 < a = 2c′.
The conventional unit cell contains 20 atoms. The primitive unit cell, which is
preferred for computational purposes but less intuitive, contains only 10 atoms.
The Shoenflies notation D4h indicates a dihedral symmetry with 4-fold rotational
symmetry around the principal axis, the z-axis, together with a horrisontal mirror
plane.

A.3 Orthorhombic Imma (74)
The orthorhombic Imma (74), visualised in figure A.2b, is related to the original
cubic through the transformation a′ = [1, 1, 0], b′ = [1,−1, 0] and c′ = [0, 0, 2], with
the lengths of the new lattice vectors a′ = b′ ̸= c′ with c′ < 2a, in combination with
the Glazer tilt a0b−b−, i.e. equal octahedral rotations around two axes. In the or-
thorhombic setting one zirconium atom is located in (0,0,0) and one is base centred
with a repetition at c′/2 but with the octahedral tilt in the opposite direction. The
conventional unit cell thus contains 20 atoms, but for computational purposes a
primitive unit cell containing only 10 atoms in attainable. The Shoenflies notation
D2h.

A.4 Rhombohedral R3̄c (167)
The rhombohedralR3̄c (167) is obtained from the cubic perovskite structure through
equal octahedral rotations around all three cartesian axes. This can be denoted
in a Glazer rotation as a−a−a−. In other words this is a rotation around the
[1,1,1]-direction with consecutive layers in opposite order. Figure A.2c shows the
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primitive unit cell of this structure along the 3-fold principal axis. There is the
rhombohedral rendering.

The new lattice vectors a′, b′, and c′ are obtained from the pseudo-cubic lattice
vectors a, b, and c through the relation a′ = [1, 0, 1], b′ = [1, 0,−1] and c′ = [1, 1, 1].
Although a pure Glazer rotation would leave all α = 90◦, this is not a requirement.
In order for these new vectors to span, not a cubic but a rhombohedral cell the cell
also needs to be augmented along the c′-direction, causing the α ̸= 90◦. However,
all pseudo-cubic angles α as well as pseudo-cubic lattice constants a are still equal
in magnitude.

A.5 Tetragonal Pmma (99)
The Tetragonal Pmma (99) structure is a FE displacement through [100]. This
is the ferroelectric phase assumed by BaTiO3 at room temperature. The unit
cell remains the same with octahedral unit vectors, but of equal length with one
c > a = b.

A.6 Orthorombic Amm2 (38)
The orthorhombic Amm2 structure, visualised in figure A.2e, is essentially obtained
from a rotation of the basis vectors b∗ and c∗ around the a-axis to [0,1,1] and [0,1,-
1] with a remaining [100]. In addition the length of the vectors is changed such
that the basis square becomes rectangular b ̸= c with an approximate length of√
2a. The Shoenflies notation C2v reveals that the c axis can also be viewed as a

two-fold rotation with two vertical mirror planes, containing one of the two other
cartesian axes. The cell now contains an base centred atom on the A face, i.e. in
the plane perpendicular to the a axis. The a and b axes contain horizontal mirror
planes (both planes include the c-axis) while the third direction (011) only has
2-fold rotational symmetry. This is because the Ba-atom is slightly displaced in
the c-direction (The b and c axes are similar from a point group perspective.)

A.7 Rombohedral R3c (160)
The rhombohedral R3c (160) structure is a FE displacement through [111]. Similar
to the rhombohedral structure No. 167, the new lattice vectors a′, b′, and c′ are
obtained from the pseudo-cubic lattice vectors a, b, and c through the relation
a′ = [1, 0, 1], b′ = [1, 0,−1] and c′ = [1, 1, 1].
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A.7. Rombohedral R3c (160)

(a) The Tetragonal I4/mcm (140) per-
ovskite crystal symmetry.

(b) The Orthorhombic Imma (74) crys-
tal symmetry in the orthorhombic visu-
alisation.

(c) The Rhombohedral R3̄c (167) crys-
tal symmetry in the rhombohedral visu-
alisation.

(d) The Tetragonal P4mm (99) crystal
symmetry.

(e) The Orthorhombic Amm2 (38) crys-
tal symmetry in the orthorhombic visu-
alisation.

(f) The Rhombohedral R3m (160) crys-
tal symmetry in the pseudocubic visual-
isation.
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Space group Pm3̄m I4/mcm Imma R3̄c Pmma Amm2 R3m
Crystal system Cubic Tetr. Orth. Rhomb. Tetr. Orth. Rhomb.
No. 221 140 74 167 99 38 160
Schönflies O1

h D18
4h D24

2h D6
3d C1

4v C14
2v C6

3v

Glazer∗ a0a0a0 a0a0c− a0b−b− a−a−a− 100 110 111
a a = b = c a = b ̸= c a = b ̸= c a = b ̸= c a = b ̸= c a ̸= b ̸= c a = b ̸= c
α 90 90 90 90 90 90 90
β 90 90 90 90 90 90 90
γ 90 90 90 120 90 90 120
O1 3c 4a 8g 18e 2c 4d 9b
O2 − 8h 4e − 1a 2b
Ba 1a 4b 4e 6a 1b 2b 3a
Zr 1b 4c 4a 6b 1a 2a 3a

∗ Where the Glazer rotation is not applicable the B-cation displacement direction has instead been specified.
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B
The irreducible representations using

group theoretical methods

The following section is a short outline of the determination of the irreducible
representations (irreps) for the special k-points on the Brillouin zone boundary
where R−1

α k = k + Km. Here Rα is a symmetry operation, k the k-point in the
Brillouin zone and Km a reciprocal lattice vector. As a specific example irreps at
the R-point is determined, following the prescription in Ref. 206.

The characters (χ) for the equivalence transformation are give by

χeq =
∑
j

δRαrj ,rje
iKm·rj (B.1)

where rj is the position of the jth atom with respect to the origin of the point group
and δRαrj ,rj = 1 if Rαrj and rj refer to equivalent atomic positions (Rαrj = rj+Rn

where Rn is a lattice vector). Application of Eq. (B.1) becomes simple for the
Γ-point irreps. Here χeq equals the number of atoms which remain on the same
site after a given symmetry transformation Rα. For other high symmetry points
some terms come with a negative sign due to the exponential factor .

By letting the A atom be at the centre of the point group, rA = (0, 0, 0), rB =
(1/2, 1/2, 1/2) while for the oxygen rO1 = (0, 1/2, 1/2), rO2 = (1/2, 0, 1/2) and
rO3 = (1/2, 1/2, 0). The characters for the equivalence transformations at the R-
point are found at the top of table B.1. The rest of table B.1 contains the character
table for the Oh group to be used in combination with the decomposition formula
below.
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Appendix B. The irreducible representations using group theoretical methods

The equivalence transformations are identified as:
Req

A = R1

Req
B = R′

2

Req
O3

= R25

Rvec = R15

(B.2)

The lattice modes is computed as
Rlat.mod. = Req ⊗Rvec

= (R1 +R′
2 +R25)⊗R15

= R1 ⊗R15 +R′
2 ⊗R15 +R25 ⊗R15

= R15 +R′
25 + (R′

2 +R′
12 +R15 +R25)

= R′
2 +R′

12 + 2R15 +R′
25 +R25

(B.3)

Here the characters for the direct product ⊗, taken between two representations of
the same group R, are computed through

χ(l1⊗l2)(R) = χ(l1)(R)χ(l2)(R) (B.4)

where χ is the character for the symmetry element R and li is representation of the
group. If the direct product is again a reducible representation

χ(reducible)(Ck) =
∑
Γj

ajχ
(Γj)(Ck) (B.5)

it can be reduced through the decomposition formula

aj =
1

h

∑
k

Nkχ
(Γj)(Ck)∗χ(reducible)(Ck) (B.6)

where N is the number of elements in the class Ck and h is order of the group.
Until the fourth line in Equation (B.3) the terms have been ordered atomwise in

such a way that A is the first term, B is the second and O are the remaining. This
makes it immediately clear that R15 is an A-atom mode and R′

25 is a B-atom mode.
From the character table B.1 we can read off the type of the R25 mode as triply
degenerate and odd with respect to the origin of the point group, the A atom. It is
also odd with respect to the C4 symmetry operation which uniquely identifies the
R25 as the anti-ferrodistortive mode in a ABO3.

This designation is not unique and in some texts the R25-mode is denoted R′
15.

There is no contradiction in this, however, since the decomposition if irreps depend
on the choice of point group origin. Howard and Stoke [9–11] have defined the
point group origin on the B site (in which the oxygen atoms are located on the d
Wyckoff site) whereas the choice of the A atom as he point group origin leads to
the results in this thesis.
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Table B.1: The equivalence transformations at the R-point for the constituent
atoms in BaZrO3 (top) and the character table for the Oh point group.

E 3C2
4 6C4 6C ′

2 8C3 i 3iC2
4 6iC4 6iC ′

2 8iC3

Req
A 1 1 1 1 1 1 1 1 1 1

Req
B 1 1 −1 −1 1 −1 −1 1 1 −1

Req
O3

3 −1 −1 1 0 3 −1 −1 1 0

R1 1 1 1 1 1 1 1 1 1 1
R2 1 1 −1 −1 1 1 1 −1 −1 1
R12 2 2 0 0 −1 2 2 0 0 −1
R15 3 −1 1 −1 0 −3 1 −1 1 0
R25 3 −1 −1 1 0 −3 1 1 −1 0
R′

1 1 1 1 1 1 −1 −1 −1 −1 −1
R′

2 1 1 −1 −1 1 −1 −1 1 1 −1
R′

12 2 2 0 0 −1 −2 −2 0 0 1
R′

15 3 −1 1 −1 0 3 −1 1 −1 0
R′

25 3 −1 −1 1 0 3 −1 −1 1 0

Table B.2: Phonon frequencies in meV for BaZrO3 at the high symmetry points
computed using CX0p.

Γ15 0 R25 6.00 X ′
5 10.99 M ′

1 10.87
Γ15 14.59 R15 13.20 X5 15.62 M ′

5 11.11
Γ15 25.88 R′

25 38.43 X ′
3 16.95 M2 12.11

Γ25 26.02 R15 46.26 X5 27.28 M ′
2 18.30

Γ15 63.18 R′
12 67.57 X1 28.10 M ′

5 26.68
R′

2 101.04 X2 30.35 M5 35.49
X ′

5 33.82 M ′
5 44.00

X1 55.08 M ′
1 51.45

X5 61.48 M ′
2 59.33

X ′
4 90.73 M ′

1 68.72
M3 97.23
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