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ABSTRACT

Human society’s expansion and demand for both biotic and abiotic
natural resources exert a large pressure on ecosystems around the
globe. Ecosystems are complex networks of species interacting with
each other and their physical surroundings. Although they are in
constant change due to incidental/fortuitous fluctuations as well as
climate, migration and, evolution, in a human time-frame ecosystems
are relatively stable, upholding certain qualities and functions. Stabil-
ity of an ecosystem can refer to many different aspects but in general
denotes an ability to keep the perceived qualities and functions in the
face of external disturbances.

This thesis builds on the long heritage of trying to understand sta-
bility of ecosystems, and the more recent use of dynamical modelling
for this purpose. A contested issue in ecosystem research is the role of
complexity in facilitating stability. Complexity being an intuitive but
not strictly defined concept including among others number of spe-
cies, amount of interactions and structure of interactions. Irrespective
of the role of complexity for ecosystem stability there is general agree-
ment that there are limits to stability, in terms of some property, at
which point an ecosystem if perturbed/pressured beyond it will trans-
ition to a qualitative different state.

This thesis shows that, contrary to previous conception, there are
more limits of stability than one. The new limits revise the important
transition points of an ecosystem and differentiate between different
types of stability, which in turn have differing responses to disturb-
ances of equal magnitude. Species extinctions are found as a mechan-
ism to prevent collapse of an entire community and collapse is found
to be divided into two types. The thesis also exposes certain types of
constraints on the structures of interactions among species that have
a large influence on the stability limits. Together these results give
indication of important structures of ecosystems which determine re-
sponse behaviour to a high degree, important when analysing systems
and assessing their vulnerability in an uncertain environment.

Keywords: ecosystems, complexity, stability, dynamical systems, Gen-
eralised Lotka-Volterra, interaction structure, structural stability, local
stability
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CHAPTER 1

Introduction

The world of living organisms, their interrelations, rhythms and har-
monies have interested humans since time immemorial. We have
sought to learn from living nature the properties of our surround-
ings to both survive and utilise it, as well as understand ourselves as
humans in relation to it. Today, our enormous capacity to harness
natural resources, shaping our surroundings in the process, adds in-
quiries into how living nature acts under changing circumstances as
an important goal. Important that is, if we wish to understand how to
keep natures harmonies and continue utilising its products.

Ecosystem is the word we use today for the living nature around us,
coined by Arthur Tansly in 1935 [1]. It is defined as the complex of living
organisms, their physical environment, and all their interrelationships
in a particular unit of space. Despite our long history of interest in
living nature Ecology as a discipline is rather young. It transitioned
from a more descriptive science to its modern form, in terms of a
search for mechanisms of synthesis, functioning and, degradation
during the late 19th and 20th centuries. Partly because humanity’s
influence on ecosystems was already quite apparent in the wake of
the industrial revolution.

With humanity’s increasing impact in mind, a focus in modern eco-
logy is on ecosystem stability, and specifically its reasons and mech-
anisms. The early paradigm view was that complex ecosystem with
a large number of species and interactions among them, are more
stable than less complex ones. This was theorised to be because of
less reliance on specific keystone species [2] and functional redund-
ancies [3] – the more species and interactions the more room for the
system to manoeuvre if perturbed or pressured. Observations also
seemed in favour of this view, complex ecosystems were not seen to
fluctuate in species abundances as radically as less diverse systems.
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INTRODUCTION

For example, agricultural mono-cultures appeared more prone to pest
invasions than complex tropical forests like the Amazon [4]. In addi-
tion, mathematics was entering ecology and arguments based on the
stability of interaction modules including a few species extrapolated
to larger systems and information theory, were used to posit a positive
relationship between stability and complexity [5].

The introduction of mathematics into ecology was pioneered by
MacArthur and Wilson. In their "Theory of Island biogeography" for
example, they used curves of emigration and immigration and argued
that ecosystems will equilibrate at the intersection, which can then
be used to predict biodiversity [6]. Another influential mathematical
approach was the application of dynamical systems theory and dif-
ferential equations to model species populations. Lotka and Volterra
separately and simultaneously found cycles of fluctuating predator
and prey populations in a two species model [7, 8], made famous under
the epithet the Lotka-Volterra model. Although useful to illuminate
possible dynamical behaviours of interactions between a few species,
the dynamical models become intractable when systems grow to the
size of entire ecosystems.

In 1972 Robert May expanded population dynamics beyond a few
species, while retaining a means of analysis by the use of statistics of
random numbers [9]. He posited a random network of interactions
among species, where the strengths of the interactions and which
species were to interact, were randomly chosen. With this model he
showed that complexity, in terms of species diversity, amount of inter-
action and strength of interactions will destabilise a system. This was
in opposition to the ruling paradigm of positive stability-complexity
connection and spurred a still ongoing debate of the role of complexity
in ecosystem stability.

The most blatant departure from real ecosystems in May’s model
is also the feature giving it strength in terms of analysis, the random
interaction structure. Since we do observe large stable ecosystems the
structure of interactions can be seen with all its clarity as key to stabil-
ity. Thus comparing specific structures of interaction to the random
model has been a fruitful way to test their stabilising effects [10, 11].
With the increase in computer power ecosystem stability has been
explored along many different avenues, but since it’s conception May’s
work has functioned as a reference point for the field of ecology either
expanding the model [12–16] comparing against it [17–20], confirming

2



MOTIVATION AND AIM

its conclusions [21–23], refuting them [24–26], discussing it [27–29], or
highlighting it’s shortcomings as a model for real ecosystems [30].

1.1 Motivation and Aim

I believe unravelling the mysteries of the natural world and increasing
our understanding of the functioning of complex systems, such as
the worlds ecosystems has an intrinsic value. However, with humanit-
ies increasing ability and propensity to expand, utilise and affect the
worlds ecosystems the instrumental value of this knowledge is increas-
ing. In order to for example manage our fishing without depleting the
stocks [31] or make informed judgements on boundaries of nature
reserves [13], and an abundance of other issues, knowledge of func-
tioning, response behaviours and, transition points of ecosystems is
desirable.

Many features of ecosystems having stabilising effects have been
found with the help of theoretical models, examples include hierarch-
ical structures [30], compartmentalisation [32], large number of weak
interactions [33], and allometric species properties [34, 35]. Some
features are contested such as nestedness sometimes shown to be sta-
bilising [36], sometimes not [37]. Other studies including stabilising
features in conjunction have shown less stability when combined than
in isolation [38]. The picture of ecosystems stability is additionally
complexified by the multitude of ways a system can be said to be
stable, some stability concepts enhancing, some decreasing for the
same ecosystem features [39]. Because of the difficulties in analysing
the overwhelming complexity of the ecosystems, there is a tendency
to focus on one stability concept or feature at a time, missing possible
synergies.

The aim of this thesis is to add to the knowledge of ecosystem re-
sponse behaviours by expanding the stability analysis of two of the
most influential models in theoretical ecology, May and General Lotka
Volterra. This by including several concepts of stability in the analysis
and finding structures of species interactions that influence them.

1.2 Disposition of thesis

The thesis consists of three additional chapters and two appended
papers. Chapter 2 gives the necessary background for the papers, in
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INTRODUCTION

terms of theory, concepts and research context. Chapter 3 contains
motivation for the two papers as well as summaries of results and
discussions. In chapter 4 the results of the entire thesis is discussed
together with conclusions and an outlook for my future research.

4



CHAPTER 2

Background

The issue I wish to address in this thesis is the stability of ecosystems
in relation to species interaction structures. To close in on this issue
some background is needed as to what type of ecosystem behaviour
stability in our work refers to, how species interactions are represented
and what modelling method is used. All this will be clarified and put
into a research context in this chapter.

In section 2.1 I introduce the most common stability concepts, sec-
tion 2.2 introduces dynamical models of ecosystems and technical
implementations of the stability concepts form section 2.1 which we
use in our work. In section 2.3 I present the interactions of ecosys-
tem represented as matrices and structures of interactions. Last but
definitively not least, in section 2.4 May’s framework is presented and
related to the research field of theoretical ecology.

2.1 Stability

The concept of stability of an ecosystem is no easy thing. It spreads
into a multitude of different behaviours and definitions both because
of our own conception of what stability implies and the complexity
and openness of ecosystems. For example, would an ecosystem that
recovers from a drought but with the abundance of some species
drastically reduced while others increased be said to be stable? How
about returning to the former state but after several years? Or, return-
ing to almost the same state but with one species less? There is of
course no final judgement, the two first are generally said to be stable
but capturing different concepts of stability, the first system robust
the second resilient. The third on the other hand would by some be
labelled robust, keeping its general appearance, while others would
classify the loss of a species as a mark of instability.

5



BACKGROUND

Stability concept Definition

Robustness
Ability to uphold characteristic/important
features when perturbed

Resilience
Return/return time to equilibrium state
after perturbation

Invasibility A new species ability to invade

Variability
The variation of species abundances over
time

Permanence
Change in any system characteristic ex-
cept extinctions

Table 2.1: The table lists the most common concepts of stability in
ecology.

The most commonly used concepts of stability are robustness, resi-
lience, invasibility and variability. Robustness is the ability of a sys-
tem to uphold characteristic features of interest when perturbed or
pressured. Because of the unspecific definition robustness can be
measured in a multitude of ways, one example is a system’s propensity
for cascading secondary extinctions after a species removal [26]. Re-
silience is the ability of a system to return to the same state after a
perturbation [40], sometimes including the time of return [41]. An
ecosystem is termed invasibile if it is susceptible to successful estab-
lishment of foreign species [42] and variability is a measure of fluctu-
ations in species abundances [27]. In table 2.1 stability concepts are
listed with short descriptions.

A subtlety when employing stability concepts is that they in turn
refer to concepts of state. Ecosystems are not static, species abund-
ances and interactions fluctuate, because of fortuitous reasons or
more ordered, for example seasonal ones. A usual way to handle this
is to think of some equilibrium "normal" state and fluctuations around
it. This means stability can be liable to the tolerance of the magnitude
of fluctuations, as well as some stability aspects inherent in fluctu-
ations overlooked. Nevertheless, in many cases an equilibrium state
is a fitting simplification and one I will employ the rest of the thesis.

2.2 Dynamical models

A common way to investigate ecosystem stability, and the approach
used in this thesis, is dynamical modelling (population dynamics),
using differential equations to model species abundances over time.
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DYNAMICAL MODELS

The most general form can be stated as

d xi

d t
=Ri (xi ) +

N
∑

i=1

Gi j (xi , ..., xN ), (2.1)

where xi are species abundances, Ri and Gi j are functions for in-
trinsic growth rate and the interactions among species respectively
for each species i = 1, 2...N . Ri and Gi j are in some cases split up, for
example dividing Ri into separate breeding and mortality functions.
Similarly Gi j is sometimes split up when treating food-webs (only
including predator and prey interactions) with differing functions for
when a species acts as prey or predator [43, 44]. For example, using
a function for predation which takes the predators limited capacity
of processing food into account called Holling type II, or Holling type
III adding extra difficulty of finding prey when their abundance is low
[45]. Making each interaction type explicit with a specific function can
capture dynamics more realistically, although the cost is in analytical
tractability.

One of the most widely used dynamical models is the Generalized
Lotka Volterra (GLV) set of differential equations

d xi

d t
= xi fi (x ) (2.2)

where f = r + B x . Here r is a vector of intrinsic growth rates (as-
suming Ri (xi ) to be linear) and A is an adjacency matrix coding the
interactions among species, discussed in more detail in section 2.3.
This general dynamical model thus assumes static interactions among
species which do not depend on abundances, such as a predator’s
shifting of preferred prey if prey abundances change or as in Holling
type II not being able to benefit of a large increase in prey because of
food processing limitations.

In terms of presentation it can be useful to explicitly separate the
intraspecific interactions (diagonal of A), which is competition within
a species, from the other interaction terms in the matrix. Giving the
equation in its usual appearance

d xi

d t
= ri xi

�

1−
xi

Ki

�

+ xi

N
∑

i=1

Ai j x j , (2.3)

where the diagonal of Ai i is set to zero. The intraspecific interaction
term −1/Ki makes a species self-stabilising by inhibiting exponential
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BACKGROUND

growth in the absence of interactions with other species (in case of
positive ri ). Ki is called the carrying capacity, setting the limit for a
species abundance.

The GLV equations allow for different types of dynamics, includ-
ing limit cycles (patterns of rising and falling species abundances),
chaotic dynamics and fixed-points where the species abundances do
not change over time. The focus for larger systems has mainly been
on the stability of fixed points, mainly because of the connection to
Mays stability analysis discussed in section 2.4.

The equilibrium state of an ecosystem in theoretical ecology usually
refers to fixed points of a dynamical model. For the GLV equations the
fixed points are

x ∗i = 0

or

x ∗i =
Ki

ri

�

ri +
N
∑

i=1

Ai j x ∗j

� (2.4)

as can be seen from these solutions different extinction patterns,
where x ∗i = 0 means a species i is extinct, leads to 2N fixed-point
solutions for a system of with N species. These fixed points can be
either stable or unstable. A natural assumption usually made when
the system is interpreted as an ecosystem is that all species are vi-
able (non-extinct) xi > 0 for all i . Such a fixed point is called feasible,
and we will show that the assumption of feasibility excludes certain
stability concepts and radically transforms the stability analysis.

In paper I and II we combine three stability concepts when analys-
ing the GLV model, local stability, structural stability and persistence.
The first two are technically defined versions of resilience and robust-
ness respectively, while the third is mainly a technical measure not
corresponding to any of the stability concepts listed in table 2.1. The
three stability concepts are presented below.

2.2.1 Local stability

The most common type of stability for a fixed-point of a dynamical
model is local stability, which is the return to the exact same state
(species abundances) after a perturbation. Local stability is based on
a linearisation around the fixed-point, therefore the epithet "local",
which leads to a differential equation for a small perturbationδx from
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the fixed-point

δẋ = Jδx , (2.5)

where J is the Jacobian of the system. The Jacobian for the system in
2.3 is

Ji j =δi j

�

ri −2
ri

Ki
xi +

N
∑

k=1

Ai k xk

�

+ xi Ai j , (2.6)

where δ is the Kronecker delta (equal to one when i = j and zero
otherwise). Assuming we are in a fixed point where all x ∗i 6= 0 the
Jacobian can be reduced to the more common form

J = X (A−D ) , (2.7)

where X and D are diagonal matrices with x ∗i and ri /Ki on the diag-
onal respectively.

The solutions of equation 2.5 for perturbations around a fixed point
are δz j ∼ e λ j t in the diagonal basis, giving the perturbations as δxi =
∑N

j=1αi jδz j , where α j are eigenvectors of the Jacobian and columns
in the matrix αi j and, λ j are the eigenvalues. From these solutions
we see that the real part of the eigenvalues need to be negative for
a fixed point to be locally stable. If any of the real parts are positive,
perturbations will increase exponentially in time and the fixed-point
will not return to the same state.

As mentioned in the section 2.1, in some studies resilience refers to
the time for a system to return to its initial state after a perturbation.
In such cases resilience is measured by the magnitude of the least
negative real part of the eigenvalues. Less negative eigenvalues lead
to longer times for the perturbations to die out.

2.2.2 Structural stability

Structural stability is one way of representing robustness. In theoret-
ical ecology it is defined as the size of the parameter region of a system
where the fixed points are qualitatively similar [46]. Qualitatively sim-
ilar is not strictly defined but in general means not too large changes
in species abundances, moving from fixed point to another type of
dynamics (cycles, chaos etc.) or switching to a fixed point with extinct
species. The parameters in this case refer to intrinsic growth rates,
carrying capacities, average interaction strengths, increase in amount
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Stability concept Definition

Local stability
System returns to fixed-point after small
perturbations in species abundances

Persistence
Fraction of species out of an initial num-
ber of species present at the fixed-point

Structural stability
size of parameter region which leave
the system fixed-point qualitatively un-
changed

Table 2.2: The table lists the three stability concepts we utilise in papers
I and II.

of interactions between species or shift in interaction structure. Struc-
tural stability thus measures how likely a system is to change radically
in response external perturbations. An example could be how likely it
is that an ecosystem will change qualitatively if experiencing a flood
or, a permanent shift in some external factor such as currents leading
to more nutrients (all intrinsic growth rates increase). For example
in [47] the size of a region without extinction in the space of intrinsic
growth rates r is used to measure structural stability. In both papers I
and II, but specifically in paper I we define structural stability in terms
of an interaction strength parameter, but also generalise the findings
to structural parameters in general.

2.2.3 Persistence

The third stability concept we use in papers I and II is persistence. Per-
sistence is measured as the fraction of viable species at a fixed-point
for a specific choice of model parameters (ri , c , Ki etc.) compared to
an initial starting amount, N . This measure has mainly been used in
simulation studies, although in some cases in comparison with em-
pirical systems. In the latter context if a stability analysis of an actual
system has a persistence smaller than 1, something is missing in the
analysis or representation of the system since obviously all species in
the measured ecosystem are viable. Or, an empirical system is said to
be more stable if it has a larger persistence when parametrised and
represented as a dynamical system.

10
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2.3 Networks and topology

The structure of the network of species interactions is mainly what
determines the stability of a system modelled as a dynamical system.
The interaction network is represented by the matrix A in equation
2.3. Each species in the ecosystem has a row in A and the columns are
the possible interaction partners (usually all species, including itself,
making A an N ×N matrix, where N is the number of species). An
interaction between two species is represented by a non-zero entry in
the intersecting rows and columns of the two species, see figure 2.1.

There are different types of interactions between two species, either
the interaction can benefit both species (mutualistic), be detrimental
to both species (competitive), benefiting one but detrimental to the
other (predator-prey, parasitism), having negative affect on one but
none on the other (ammensalism), or positive affect on one but none
on the other (commensalism). The affect on a species is coded for
by the sign and magnitude of the entries in its row in the interaction
matrix, see figure 2.1. Since the interaction matrix can code for inter-
actions of any type, flower-pollinator, competition for light, symbiosis
of bacteria and plant (although assuming all are fixed averages with
the same functional form), the interaction matrix does not inherently
have a unit. The entries of A can represent for example magnitudes
and directions of biomass, or energy (which are the usual ones).

In addition to type of interaction between any two species the net-
work matrix as a whole can have a range of topologies, meaning struc-
tures of the interactions. For example a food-web is generally not
flat, where anyone species can prey on any other, but structured into
hierarchies [30]. Plants, absorbing energy from the sun are classified
as primary producers. Herbivores, eating the primary producers clas-
sified as primary consumers, predators eating primary consumers are
called secondary consumers and so on. Predators also tend to prey on
animals in a range around their own size and more often on prey smal-
ler than themselves, adding to the structure of the network. Other
types of topologies include modular, which means species having
more and stronger interactions within subgroups of the whole system
[38]. A typical feature in pollination networks is nestedness [36], mean-
ing specialist pollinators tend to interact with flowers that are subsets
of the interaction partners of less specialist pollinators. Schematics of
network topologies in matrix form are shown in figure2.1.

11
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Figure 2.1: Matrix representations of interaction networks of species.
The top right panel displays the sign structure of the five different in-
teraction types mutualism (blue), competitive (yellow), predator/prey
(purple), ammensalism (pink) and, commensalism (green). Bottom
matrices show schematics of the different topological interaction struc-
tures: nested, hierarchical and modular.

2.4 May’s framework

The specific contributions in our papers mean to elucidate some as-
pects of the "point of reference"-paper of May and in this way theoret-
ically expand the response behaviour of a system when perturbed. A
visualisation of the research context and the influence of May’s paper
on the field of theoretical ecology can be seen in figure 2.3.

The model in its original formulation is based in dynamical systems
theory, uses the concept of linearisation around a fixed point and local
stability, but does not specify a system (any dynamics). Instead the
form of the Jacobian was proposed directly as

JM =σA− I . (2.8)

The ingenious step in May’s analysis was to assume the interaction
matrix A is a random matrix, meaning interaction partners are ran-
domly chosen and the non-zero entries are drawn from some distri-
bution. This is ingenious since the spectrum (all eigenvalues) of a
random matrix is known from random matrix theory [48]. This spec-
trum only depends on aggregated knowledge such as the mean and
variance of the distribution of the entries of A and its connectance

12
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c , which is the fraction of all possible links in the network which are
realised. In May’s framework an entry is drawn with probability c
from a distribution with mean µ = 0 and variance 1. The variance
is set to one so that the parameterσ in equation 2.8 can be used for
tuning the variance of A.

The spectrum of a N ×N random matrix (with mean µ = 0 and
variance σ) is a uniform disc in the complex plane centred at zero
with radius σ

p
c N . For local stability all real parts of eigenvalues

have to be negative. With a shift in the spectrum from the identity
matrix in Eq. 2.8 together with the radiusσ

p
c N this means a stability

boundary can be located atσ= 1/
p

c N .
From the model the conclusion can thus be drawn that there is a

limit to how complex a system can be (in terms of the parametersσ,
c and N ) and still retain stability. Since we do see large dense stable
systems in nature, and random structure of A is not a very plausible
biological structure of an ecosystem, May remarked, it must be some
extra structure that acts to stabilise a system. He therefore proposed
that random interaction matrices be used as null models to compare
to matrices with specific structures in order to evaluate their stability
impact. In the years since many such studies have been done and
indeed some features, such as predator/pray structure have been
found to be stabilising [12], in the sense that it increases the limit
of complexity before loss of stability. It is still intrinsic in the model
though, that complexity at some point leads to loss of stability. The fact
that complexity could play a destabilising role was the main point that
ignited the ongoing stability-complexity debate in ecological research.

The Jacobian proposed by May, JM has a close resemblance to the
Jacobian from the GLV equations, J , in Eq. 2.6 (when setting ri = Ki )
under the assumption that all species are viable. With the obvious
difference that J includes fixed-point abundances while JM does not.
Since it is from the Jacobian JM that the whole complexity debate
started, and was used as a general argument that complexity can lead
to instability, it is interesting to evaluate which kind of systems JM can
be a Jacobian of.

A first aspect is the randomness referred to earlier and treated in
more detail in chapter 4. A second aspect is the lack of anything
referring to the state of a system e.i species abundances, which is one
reason why the conclusions can be said to be a representative of all
systems. A first approach is to consider dynamics that would lead to
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such a Jacobian, devoid of species abundances. The Jacobian being
derivatives (with respect to xi ) of Eq. 2.3, the only way to not end up
with xi in the solution is if the differential equations of the dynamical
model are linear in xi or constant. Such dynamics has been used to
model quasi-species [49], but are in general considered too simple
to model species, for example there would be no limiting carrying
capacities allowing infinite growth.

If no reasonable model of species growth and interactions can lead
to a Jacobian as in equation 2.7, a second approach is to assume that
the inclusion of species abundances does not affect the stability, i.e
the spectrum. It is quite interesting that such an analysis was not
done until rather recently [50, 51]. They found that indeed the stability
does not change, even though the spectra of the two Jacobians JM

and J are radically different as seen in figure 2.2. Why more attention
was not given to these points in the debate, with their possibility to
undermine the whole model, is hard to tell. There is one remaining

Figure 2.2: The difference between the two spectra of J (including spe-
cies abundances) and JM (excluding species abundances) at May’s sta-
bility boundaryσM is clearly visible. Note though, that all the real parts
of the eigenvalues are negative for both spectra.

issue even after the establishment of the stability with and without the
inclusion of xi , which is the assumption that all species are viable (also
assumed in [50, 51]). This is the gap we found and have investigated
from different angles in papers I and II.
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Figure 2.3: This table gives an overview of the research field of theoretical ecology,
including the influence of May’s 1972 paper [9]. The colours of the columns in the row
"Type of interaction" classifies the studies in their respective columns. Absence of col-
our indicates either a mixture or that several types were used. The "Structure" refers to
additional topological structure such as modularity, nestedness, hierarchy etc. explicitly
included in the interaction matrices. Note that the category "Other functions", denoting
other type of functional responses than the GLV model, also introduces structure to the
interactions but not in the same manner. The column "Topology" refers to studies only
looking at the interaction network, for example studying change in connectance due to
species deletions. Blue citations are studies that in some way discuss May’s stability limit,
in which way specified by the different letters C (Compare), A (Agree), R (Refute) and E
(Explicitly extending). As a last comment, this table is necessarily skewed, with more
detail closer to my own work and incomplete since the field is broad and diverse, and
categorisation tend to lead to some overlap between categories.
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CHAPTER 3

Present work

There is no doubt that May’s paper has had a major impact on ecolo-
gical research, both by elucidating aspects of complexity other than
revealed by empirical observation [2, 4], as well as effects when in-
creasing the size of a system in theoretical investigations [5]. It has
also shaped the way stability and the limits of stability are thought to
function in real ecosystems.

In May’s framework the view of ecosystem stability is, that for a range
of parameters c ,N and σ (but usually represented by the standard
deviation of interaction strengthsσ), the system is locally stable (and
implicitly structurally stable) with a single boundary to where it is
not. What happens on the other side of the boundary is not specified
but a bifurcation, meaning a qualitative shift in dynamics, is implied
and has often been interpreted as collapse. Thus, the view of stability
transported onto real ecosystems is divided into two phases of stability,
either a system is both resilient and robust or neither.

A real ecosystem is generally assumed to be in the stable range and
therefore believed able to withstand perturbations or changes, in both
species abundances and structural features. This belief however is
purely theoretical and not substantiated by observation. A separation
of the two stability concepts in analysis can lead to other phases of sta-
bility and, an expansion of the of responses an ecosystem can exhibit
when perturbed. The stability concepts are lumped together in May’s
analysis due to the assumption of viability of all species. This chapter
presents our current work outlining response behaviours, stability lim-
its and measures, for when this assumption is relaxed and the three
stability concepts (local stability, structural stability and persistence)
are taken into account.
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3.1 Paper I

Motivation

In preliminary investigations of the GLV model we found that the as-
sumption of all species to be non-extinct was routinely violated within
the supposed stable range, implying the systems were not structurally
stable as previously believed. This was substantiated by the existence
of studies using persistence as a stability measure [32, 52], since persist-
ence is based on extinctions and measures the fraction of non-extinct
species at a fixed-point for a certain set of parameters. Although, no
comparison to the stability range was done in these studies. Other
studies were using May’s stability limit to compare with empirical sys-
tems [18] and expanding the limit to cover more cases [12], all under
the assumption that a feasible system can always be found. These
inconsistencies were becoming apparent in the literature with a call
for rigorous investigations into feasibility [51, 53–55].

Research questions and method

The research questions in paper I are, what types of behaviours can
a system exhibit in response to external perturbations, both in spe-
cies abundances and structural parameters? What are the parameter
ranges for the different types of responses? and how can we relate
these parameter ranges to real systems? To address these questions
we use the GLV dynamical model and include all three mentioned con-
cepts of stability (structural stability, local stability and, persistence)
in the analysis. The GLV model that we use

d xi

d t
= ri xi

�

1−
xi

Ki

�

+σxi

N
∑

i=1

Ai j x j , (3.1)

where xi are the species abundances, ri the intrinsic growth rates,
Ki carrying capacities, and A an N ×N interaction matrix. The off-
diagonal entries of A are drawn from a normal distribution with mean
zero and variance of one, with probability c . The intraspecific interac-
tions are not included in A (its diagonal is zero) but represented by the
quadratic xi term. The standard deviation of the interaction strengths
can be varied with the parameter σ. Setting ri = Ki = 1 we obtain
the dynamical system with a Jacobian closest in form to the Jacobian
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proposed by May. With this model we can both theoretically (using
linear algebra and order statistics) and with simulations map regions
in parameter space with varying system stability characteristics and
relate the findings to May’s results.

Results

The first thing established was the generality of extinctions in the GLV
model with random interaction matrices in the previously designated
"stable" parameter region. The extinctions were found to occur in
successive single species events when increasing the parameter σ,
rather than mass extinctions at some parameter values, as shown for
an example simulation in figure 3.1. The abundances of the remaining
species after an extinction (after a perturbation) only adjusts slightly
and the community remains locally stable.

We derived the parameter boundary at which the first extinction
event occursσ f . In the derivation we find and use the distributions of
the species abundances. With these distributions and order statistics
we obtain the distribution of the minimum of the set of abundances,
xi ∈ Z ,

fmi n (x ) =N (1− F (x ))N−1 f (x )

=
N e −(x−µ+)

2/2σ2
+

σ+
p

2π

 

1

2
−

1
p
π

∫

x−µ+
σ+
p

2

0

e −t 2
d t

!N−1

,
(3.2)

where f (x ) is the distribution of species abundances xi with cumulat-
ive distribution function F (x ). σ+ and µ+ are standard deviation and
mean of f (x ) respectively. The first extinction eventσ f is located at
theσ for which the mean of fmi n (x ) is zero.

We also located a second boundary,σc ,where the system loses sta-
bility altogether. We did this by predicting the persistence, based on
the reduced interaction matrix (only including interactions for viable
species) and combining it with May’s boundary for the a reduced
system

σc =
1

p

c N pc
, (3.3)

where pc is the persistence at the collapse boundary. The predictions
ofσ f andσc are shown in figure 3.2 together with simulation averages.
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Figure 3.1: Effects on stability of increasing interaction strength in a
complex system. Example simulation of a system with initial number
of species, N = 100, connectance (fraction of realised species interac-
tions), c = 0.5, ri = Ki = 1, and µ = 0 for the mean of the distribution
of inter-specific interaction. The plot shows the species abundances
(top) and the spectrum (bottom panels) at locally stable fixed-points for
increasing values of the standard deviation of interaction strength,σ.
The first extinction event and collapse are indicated by the blue lines,
and the dashed blue line indicates σM . Up to the first extinction the
system is in the Strict Stability (SS) phase, where the system is locally
and structurally stable with all N = 100 species non-extinct, x ∗i > 0.
Between the first extinction and collapse the system is in the Extinction
Continuum (EC), with successive single species extinctions preventing
collapse. The last phase is Collapse (C), where no nearby similar stable
fixed-points exist. The bottom panels show the spectrum of the general
Jacobian used by May jM at three the points of interest first σ f , σM

andσc , with the circle indicating the radius of stability. Note how the
σM both overestimates the first extinction event and underestimates
collapse.

None of the two boundaries derived coincide with the boundary
σM = 1/

p
c N previously thought to mark the loss of stability. Thus

we uncovered a phase between the two boundaries, the Extinction
Continuum (EC), where a system is locally stable but not structurally
stable, or stated in the general stability terms resilient but not robust.

Since determining the parameter-distance to the collapse boundary
is not possible solely based on macro properties such as number of spe-
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Figure 3.2: Stability predictions for complex systems. In the parameter-
space of the standard deviation of interaction strength, there are three
phases of behaviour: Strict Stability (SS), Extinction Continuum (EC),
and Collapse (C). Here we demonstrate that these phases hold across a
large range of system sizes N . The plot shows simulation averages of first
extinction events (orange dots) with one standard deviation error bars,
our theoretical prediction of first extinction (orange dashed line), the
complexity limit introduced by May (brown line), simulation averages
of collapse (black dots) with one standard deviation error bars, and our
theoretical collapse prediction (black dashed line). The width of the
Extinction Continuum is indicated by the arrow, note the increase in
width for larger systems. All simulations shown were run with, ri = Ki =
1, µ= 0 for the distribution of inter-specific interactions and a value of
c = 0.5 for connectance in the interaction matrix A.

cies n , standard deviation of interaction strengthσ, and connectance
c , we constructed a metric, γ ∈ [0,1], from the reduced interaction
matrix to place a system in the Extinction Continuum. The metric in
addition to indicating the parameter-distance to collapse captures
the level of structural instability (figure 3.3), interpreted as the size of
σ perturbation that would lead to an extinction.
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Figure 3.3: Predicting collapse. The plot shows in the top panel the
fraction of systems for a certain γ that found a locally stable fixed point
after perturbations. The systems with varying γ values were generated
from random systems with N = 70 and N = 100, connectance c = 0.5,
intrinsic growth rates and carrying capacities ri = Ki = 1, and inter-
action strengths from a Normal distribution with µ= 0, by specifying
their standard deviation of interaction strengthσ. Note that γ reaches
values larger than one, this is because it is inferred from the reduced
interaction matrix. The bottom panel shows the fraction of non-extinct
species at the new fixed-point for systems that found a stable state after
perturbation. Here even for small perturbations in the Extinction Con-
tinuum some species go extinct for the system to find a new locally
stable fixed-point. Together the plots demonstrate that a larger γ in-
dicates collapse both in terms of a substantial loss of species (more
structurally unstable) and a higher probability of loss of local stability.
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Discussion

A noteworthy aspect of the collapse boundary,σc , is its location ap-
proximately atσc = 1/

p
c n (with a slight upward bias), where n is the

number of viable species in the remaining community. This is because
the entries in the interaction matrix of the reduced community with
n species, are still distributed according to the normal distribution
with a variance of one and a small but now positive mean. Random
matrix theory relying only on aggregate statistics is not incorrect. How-
ever, correlations are formed by the non-random extinction events
[56]. Thus, the interaction matrices of communities in the Extinction
Continuum are no longer completely random.

The new collapse boundaryσc , in addition expels some of the pre-
vious vagueness of a system’s behaviour if pushed beyond it. As men-
tioned,σM = 1/

p
c N was seen as a boundary to any type of qualitative

change, including single species extinctions. From our analysis we
established that systems crossingσc = 1/

p
c n will experience more

radical change and either transition to limit cycles, chaos or lose a sub-
stantial number of species, thereby living up to its name of collapse
boundary.

The location of two boundaries adds an extra phase to the picture of
ecosystem stability, where a system is locally stable but not structurally
stable. This phase, the Extinction Continuum (EC), reveals a new
stabilising mechanism where systems can use extinctions to avoid
collapse. Since extinctions are far more common than collapse in real
ecosystems, this phase might be more ecologically realistic than the
previous binary phases.

A system’s approach to collapse is radically changed by the existence
of the EC. This also means the behaviour of the eigenvalue with least
negative real part is radically different. The standard way of predicting
collapse is by critical slowdown [57–59], which means a system takes
longer to return to its equilibrium state after a perturbation, when
approaching collapse. This corresponds to the eigenvalue with least
negative real part approaching zero. In the light of this, the behaviour
in the Extinction Continuum is very interesting, since the least neg-
ative real part of the eigenvalues fluctuates just below zero, implying
critical slowdown in the entire phase [60]. Thus, the extra information
of γ locating a system in the EC is needed to measure the closeness to
collapse. Although, the approach to zero only involves one eigenvalue
at a time in the EC, while at the actual collapse a collection of eigenval-

23



PRESENT WORK

ues have real parts approaching zero. This means, in the approach to
collapse the critical slowing down must be present in many directions
in the n-dimensional space of species abundances.

The fluctuating just below zero of the real part of the least negative
eigenvalue in the Extinction Continuum is curious in another aspect
than extending critical slow down. Since the spectrum is the same
regardless of which vector basis is chosen for the Jacobian, this beha-
viour is carried over to all other choices of basis (linear combinations
of ∗i , g ∗i =

∑N
i=1αi x ∗i representing for example functional traits). This

is curious since the fluctuations will appear to come out of thin air in
other bases, since they do not correlate with magnitudes of the new
variables g ∗i as with species extinctions in x ∗i . This is of course due
to us enforcing a "sticky" boundary, keeping species with abundance
zero at zero. Species extinctions might be an obvious sticky-boundary,
but it is an interesting phenomena that could be present in other
less obvious but ecologically important partitionings of a system, for
example trait based representations, leading to seemingly abrupt sta-
bility changes in real systems.

3.2 Paper II

Motivation, research questions and method

The stabilising mechanism found in paper I in terms of single species
extinctions, was also found to apply to systems with additional bio-
logical structure found in the literature. This naturally spurred the
question if there does exist interaction structures that could impact
the parameter range of the Extinction Continuum or erase it altogether.
This is the main research question of paper II: Are there ecologically
relevant interaction structures that significantly change the size or
eliminate the Extinction Continuum? We continue in the same frame-
work as paper I, using the GLV dynamical model in equation 2.3 and
locate boundaries in parameter space using dynamical systems theory,
linear algebra and order statistics.

From the fixed-point expression for the species abundances,

x∗ =

 

∞
∑

p=0

σp Ap

!

1, (3.4)

we could hypothesise which kind of constraints/structures in the in-
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teraction matrix that would likely lead to significant changes in the
range of the Extinction Continuum. Specifically we hypothesised that
constraining the variance of the row-sums in the interaction matrix
would have a large impact. Thus we constructed an interaction matrix
according to A = (1−ξ)Ac +ξA0, to investigate the change in Extinc-
tion Continuum. Here, Ac is a matrix with connectance c and and
entries distributed according toN (0, 1)where each row has been shif-
ted so that it sums to zero. A0 is a random matrix with entries in the
exact positions as Ac and distributed according toN (0, 1) and, ξ is a
parameter regulating the amount of variance in the row sums of A.

Results

As we expected, by increasing the row-sum constraint, (1−ξ), the first
extinction boundary,σ f , is shifted to larger values. With our construc-
tion of A, and an improved derivation of the first extinction boundary
from a first order approximation in paper I to an exact expression for
the variance of the distribution of the species abundances, the analysis
could be extended to account for the row-sum constraint and predict
the first extinction and collapse boundaries for systems constrained
to any degree. The expression for the variance of the distribution of
the species abundances, f (x ), in systems with row sum constraints is,

σ+ (c , N ,σ,ξ)2 =
∞
∑

p=1





�

c Nσ2
�p

p−1
∑

q=0

(1−ξ)2q ξ2(p−q )
�

p −1

q

�





=
c Nσ2ξ2

1− c Nσ2
�

(1−ξ)2+ξ2
� ,

(3.5)

which can be seen to reduce to the variance for systems without con-
straint when ξ= 1,

σ+(c , N ,σ)2 =
∞
∑

p=1

�

c Nσ2
�p
=

c Nσ2

1− c Nσ2
. (3.6)

Our analytical prediction together with simulation averages are shown
in figure 3.4.

When increasing the constraint on the row-sums the Extinction Con-
tinuum is decreased. Although the first extinction boundary never
crosses σM , but instead converges to it when ξ→ 0. This leads to
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two types of collapse behaviour in the region of small ξ. The first
being when the system collapses before any extinction has occurred, a
situation without an Extinction Continuum. The second collapse type
displays a rapid (unexpected) plummeting of some species abund-
ances to extinction atσM , a short Extinction Continuum and eventual
collapse atσc ≈ 1/

p
c n .

Discussion

We show examples in paper II of systems with more structure in their
interactions, such as predator/prey, for which the Extinction Con-
tinuum is seen to remain and the first extinction boundary is almost
unchanged. The structure we introduce, in terms of row-sum con-
straint, has a larger impact because the entries in the expression for
the species abundances, stemming from the interaction matrix, can
no longer be approximated as independent. We posit such constraint
are of a more global character.

The row-sum constraint is a type of global constraint since it re-
quires a balance of a species negative and positive interactions with
other species. Other such global constraints are thought to exist in
nature, such as energy [61] or allometric [62] constraints. The effects
on extinctions and collapse of row-sum constrained systems is maybe
extra intriguing because of its resemblance to Damuth’s law, stating
that species biomass is approximately equal for all species, smaller
species making up for there lack of mass by larger numbers [63]. This
connection has not been fully explored and is left for future study, but
it does point to the ecological plausibility of such global constraint
which we have shown have a large impact on a systems dynamical
behaviour and approach to collapse.

An additional interesting aspect of the row-sum constraint is that it
does not give itself away in the spectrum, in contrast to for example
predator/prey structures which stretches the spectrum in the ima-
ginary direction and compresses in the real [14]. This is why it is an
interaction structure that affects the first extinction boundary but
not σM . Systems with a small ξ also have a spectrum that does not
change when including species abundances in the Jacobian– except
when the standard deviation diverges at σM . This is in contrast to
un-constrained system where the spectrum is transformed by the
abundances, as shown in paper I and 2.2. This means that a sign
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Figure 3.4: Decreasing the Extinction Continuum. The top plot shows
averages from simulations of standard deviation of interaction strengths
for first extinction σ f , with one standard deviation errorbars, for in-
creasing row sum constraint (1 − ξ). Theoretical predictions of first
extinction are shown as full lines and σM as striped lines for systems
of size N = 100 and N = 160. The decreasing width for small ξ and
convergence to σM is clearly seen for both system sizes. The bottom
panels show species fixed point abundances (above) and the eigenvalue
with smallest negative real part (below) for J (blue line) and JM (blue
striped line) for example simulations of the two collapse types for highly
constrained systems (ξ= 0.01). The behavioural phases are marked by
different shades of grey: Strict Stability (SS) before the first extinction
boundary, Extinction Continuum (EC) and, Collapse (C) where no stable
nearby fixed-point exists. Note that Collapse type 1 does not have an
Extinction Continuum. Collapse type 2 abruptly enters the Extinction
Continuum atσM and can uphold stability by single species extinctions
until eventual collapse.
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of system vulnerability to species extinctions demonstrated in [51]
as Re(λma x ) ≈min(xi ), no longer holds for systems with global con-
straints such as the row-sum constraint.
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Discussion, conclusions and outlook

In this thesis I present work aimed at expanding the knowledge of
ecosystem stability and response behaviours. The choice of model to
reach this aim was almost given for our investigation. We observed
phenomena when simply implementing a model, that has been ex-
tensively used and referenced for over 50 years, which were not visible
in studies where it was used. Because May’s model has functioned as a
reference point of how to think about stability of real ecosystems and
their behaviour in response to perturbations, a thorough investiga-
tion of the discrepancies we found seemed vital. These discrepancies
were also becoming visible in recent studies [51, 53, 54]. In my mind,
there is no doubt that all the dynamical stability aspects of this widely
used model, in both its original form and in more biologically real-
istic versions, need to be understood if it is to be used as a model to
understand stability of real systems.

The main conclusions of this thesis and contributions to the field
of theoretical ecology are

• It shows that a naive implementation of May’s stability limit,
only including one type of stability, leads to incorrect predictions
of ecosystem transition points

• It expands the theoretical repertoire of ecosystem behaviour
in response to perturbations, introducing single species extinc-
tions as a stabilising mechanism to avoid collapse and, different
types of collapse behaviours.

• It provides a metric of parameter-distance to collapse and, struc-
tural stability.

• It shows which interaction structures lead to contraction or elim-
ination of the new phase of resilience and structural instability
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by mapping all transition points.

With this thesis more aspects of stability in the GLV model have
been elucidated. There are however many issues with the model itself
and its explanatory powers. Its simplicity is desirable in its generality
of analysis but might give implications that point in the wrong direc-
tions. For example allowing for adaptive foraging, so that interactions
among species can change have been shown to reverse the stability-
complexity relationship [64, 65], or sometimes reverse it depending
on timescale or modularity [66]. Another example of reversal is ex-
panding to higher order interactions including multiple species [67].
It is not an easy solvable problem to evaluate which features can be
simplified without losing the connection to real systems.

The problem of evaluation lies in the limited capacity to compare
against data. Such a comparison is limited in at least two ways, first
by the difficulties in measuring the interactions among species [68],
especially non-trophic interactions. The intraspecific interactions,
which have a large stabilising role in the GLV models, are notoriously
hard to observe/measure [69]. The other reason is shared with many
complex systems, it is hard to do controlled experiments to validate
theory. Although some experiments have been done, including the
classic removal experiment [3], which lead to the concept of keystone
predator. Another demonstrated the role of interspecific competition
[70], although important contributions they are too few and particular
for generalisations to be drawn. In addition, very few collapses of
ecosystems have been observed since humans started keeping records.
One rare example being in the 1993 when the biomass of the Northern
Cod fell to 1% of earlier levels. So few recorded collapses is maybe
an indication that ecosystems are rather resilient and structurally
unstable, since in contrast extinctions are routinely observed.

Thus, it is not an easy task to validate or invalidate many of the
theoretical predictions. Despite this, many studies with GLV models
do compare to the data available [46, 47, 71]. Another way to "the-
oretically" increase the belief in these models would be to construct
agent-based models to see if the behaviour of the GLV and the Extinc-
tion Continuum can be reproduced. This is an avenue worth exploring
in the remaining years of my doctoral studies.

Other choices we made in the GLV model, such as only positive
intrinsic growth rates (leading to a stable community of independent
primary producers whenσ= 0) and revisiting the random structure of
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an interaction matrix after much effort has been spent since the days
of May on understanding structure, is a way of starting again from the
basics without being circumscribed by the assumption of feasibility.
Once a better understanding has been gained on this basic level, ex-
tensions can be done to more realistically structured systems. The
next step is to combine more ecologically informed structures based
on metabolic theories, hierarchies and clusters in combination with
realistically chosen growth rates and global constraints of different
kinds.
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