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A B S T R A C T

Throughput bottleneck analysis is important in prioritising production and maintenance measures in a pro-
duction system. Due to system dynamics, bottlenecks shift between different production resources and across
production runs. Therefore, it is important to predict where the bottlenecks will shift to and understand the root
causes of predicted bottlenecks. Previous research efforts on bottlenecks are limited to only predicting the
shifting location of throughput bottlenecks; they do not give any insights into root causes. Therefore, the aim of
this paper is to propose a data-driven prognostic algorithm (using the active-period bottleneck analysis theory)
to forecast the durations of individual active states of bottleneck machines from machine event-log data from the
manufacturing execution system (MES). Forecasting the duration of active states helps explain the root causes of
bottlenecks and enables the prescription of specific measures for them. It thus forms a machine-states-based
prescriptive approach to bottleneck management. Data from real-world production systems is used to demon-
strate the effectiveness of the proposed algorithm. The practical implications of these results are that shop-floor
production and maintenance teams can be forewarned, before a production run, about bottleneck locations, root
causes (in terms of machine states) and any prescribed measures, thus forming a prescriptive approach. This
approach will enhance the understanding of bottleneck behaviour in production systems and allow data-driven
decision making to manage bottlenecks proactively.

1. Introduction

Manufacturing companies are constantly looking for ways to im-
prove the productivity of production systems. Doing this requires an
accurate performance estimate of the production system. Throughput is
one of the main indicators for evaluating performance in a production
system but is often constrained by one or more machines, referred to as
“throughput bottlenecks” [1]. Previous research has shown that im-
provement measures on throughput bottlenecks, such as cycle time
reduction [2,3] and prioritisation of maintenance measures [4,5] in-
crease overall throughput in production systems.

With the development of digital technologies, many manufacturing
companies have started collecting machine data in digital format [6].
This data enables the use of data-driven algorithms to detect
throughput bottlenecks [7]. In general, such data-driven algorithms can
be classified into two main categories of algorithm: 1) descriptive and
2) predictive. In descriptive algorithms, historical machine data is
analysed to detect bottlenecks in a production system [8–11]. Due to

the dynamics of the production system, historical bottlenecks may not
behave like bottlenecks in the future [12]. Therefore, it is important to
use predictive algorithms to predict future bottlenecks. In the predictive
algorithms category (also called “prognostic methods”, as prognostics is
the discipline of forecasting future performance [13]), historical ma-
chine data is used to predict the location of bottlenecks in the pro-
duction system. Such prediction can be made using statistically-based
[12,14] or machine-learning-based methods [15]. It can also be made
on a real-time basis, using buffer levels [16,17].

Prescriptive bottleneck management extends beyond predicting the
location of throughput bottlenecks in a production system. It prescribes
the necessary improvement measures in the predicted throughput
bottlenecks. In the literature, considerable results have been achieved
in developing data-driven predictive algorithms to predict future bot-
tlenecks [12,15,17,10]. These are important contributions to advancing
prescriptive bottleneck management. However, these research efforts
focus only on predicting the location of future bottlenecks in a pro-
duction system. Although predicting the bottlenecks leads to a generic
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prescription of measures (such as buffering the main bottlenecks, or
scheduling around them [2,1]), implementation of these measures is
more effective when there is knowledge of the bottlenecks’ root causes
[18]. Thus, further development of data-driven bottleneck prediction
algorithms is required, to provide insights into those root causes.
Moreover, understanding the root causes leads to the prescription of
specific throughput improvement measures.

One way to understand the possible root causes of bottlenecks at
production-system level is by analysing the different states of the ma-
chine during a production run. The state represents the activity carried
out by, or on, the machines such as “producing”, “breakdown” and
“changeover” [19]. A machine can be a bottleneck because it is “pro-
ducing” for most the scheduled production time [3], or due to random
breakdowns and stoppages which contribute to greater down-time [20],
or a combination of these states. Forecasting the average duration of a
machine state for future production run helps in prescribing specific
improvement measures based on the states.

Therefore, the purpose of this study is to advance the field of data-
driven throughput bottleneck analysis towards prescriptive bottleneck
management. The aim of this paper is to propose a data-driven prog-
nostic algorithm using the active-period bottleneck analysis theory as
explained in [19]. This forecasts the individual active state durations of
bottleneck machines using their event-log data. Forecasting the active
states explains the root causes of bottleneck machines and enables de-
velopment of a machine-state-based prescriptive approach to
throughput bottleneck management. The proposed data-driven prog-
nostic algorithm uses time-series modelling of machine states and
supports the usage of any time-series forecasting methodology to be
employed. To show an example, in this study, Auto regressive moving
average (ARIMA) time-series forecasting methodology [21] is em-
ployed. This study advances the field of data-driven throughput bot-
tleneck analysis. In contrast to previously published approaches to
bottleneck location prediction, the bottlenecks’ root causes in terms of
machine active states are predicted and measures prescribed, thus
forming a prescriptive approach to bottleneck management.

2. Literature review

Firstly, the need for a machine-states-based prescriptive approach is
presented from an academic and industrial point of view. Secondly, as
the proposed algorithm in this study is based on the active-period
theory of bottleneck detection, this theory is briefly discussed. Thirdly,
different predictive algorithms that use the active-period theory to
predict bottlenecks are briefly discussed. Lastly, time-series modelling,
forecasting and evaluation techniques are briefly presented.

2.1. Need for prescriptive approach for throughput bottleneck management

From a real-world, industrial practice point of view, when multiple
machines are detected as probable bottlenecks, proactive planning of
throughput improvement measures becomes complex and challenging.
This raises the need to rank those machines for throughput improve-
ment [11]. As a result, the production and maintenance teams often

need more information on the bottlenecks to identify the right im-
provement measures for them. Not having enough bottleneck in-
formation can lead to an ambiguous situation between the production
and maintenance teams on the shop floor. This is because it is unclear
whether the anticipated bottlenecks require maintenance or production
improvement measures, or both, to improve throughput. This could be
disadvantageous, because incorrect improvement measures in bottle-
necks may reduce production system throughput [22]. The conven-
tional approach to making the most of throughput improvement deci-
sions in a production system is based on expert experience [23].
Instead, better results would be achieved if the subjective judgement
were to be reduced and complemented with data-driven judgement
from the algorithms. There is, therefore, a need for a data-driven sup-
port tool to help shop-floor teams make the right decisions on im-
proving throughput. This was also reported as a result by [24] in the
study of future shop-floor operators in Swedish manufacturing in-
dustries. One way to support production and maintenance teams in
their decision-making processes in bottlenecks is to provide deeper
insights into the different states of bottleneck machines and their an-
ticipated behaviour in future production runs.

2.2. Previous work on prescriptive approaches to throughput bottleneck
management

To address the above need, [25] developed a discrete-event, simu-
lation-based optimisation solution based on the established bottleneck
detection technique known as the “active-period theory” of bottleneck
analysis (as proposed by [26]). This solution automatically identifies
bottlenecks and prescribes improvement measures, based on machine
states. The method prescribes improvement measures from historical
machine data. This data is then input into a discrete-event simulation
model of the production system, with no predictions on future perfor-
mance. Moreover, as the simulation is a constrained environment,
measures triggered by it may not always conform to the real-world
constraints under which they will be used. Altogether, these factors
limit their practical application in throughput bottleneck analysis in
general, and in the context of the purpose of this paper in particular.
Data-driven algorithms can further improve the practical applications,
as it can overcome some of the limitations of discrete-event simulations.
Thus, to make industrial practice more effective, a practical data-driven
prognostic algorithm is needed to predict the machine states’ behaviour
and prescribe any improvement measures. The need for such data-
driven prescriptive solutions, aligned to real-world requirements, was
also emphasised by [27,28].

2.3. Active-period theory of bottleneck detection

The active-period theory of bottleneck detection was proposed by
[19]. The machine states shown in Fig. 1 are divided into “active” and
“inactive”. The active state is that state of the machine when something
happens on the machine – when it is “producing”, or when it is in
“breakdown” or “changeover”. Once the active times for a production
run are computed, the active-period percentage of the machines in the

Fig. 1. Machine states during a production run (adapted from [19]).
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production system may be determined. Once these percentages for
machines are compared, the average bottleneck machines for the pro-
duction run may be determined. And once the bottlenecks have been
detected using active-period percentages, their root causes (in terms of
duration of individual active states) may be determined. This is ad-
vantageous, as it provides insight into the type of improvement mea-
sures needed in the bottlenecks [10].

2.4. Throughput bottleneck prediction using active-period theory

[17] proposes a bottleneck prediction algorithm based on the active-
period theory of bottleneck detection [26]. This uses the active states of
the machine and buffer information as inputs and predicts bottlenecks
in real-time. Even though the approach detailed in [17] predicts bot-
tlenecks in real-time, the reason that a bottleneck must be determined
manually, is that an internal active state can be caused by a “producing”
state, “breakdown” state, or “setup” state of a machine. When pre-
dicting bottlenecks in real-time, it can be overwhelming for production
and maintenance teams to plan and carry out improvement measures in
bottlenecks. Particularly so when there is a high degree of bottleneck
shift between machines in a production run. It is therefore of more
practical use to find the throughput bottlenecks over a set period such
as a shift, or a day.

Recently, in [14], an event-log-based data-driven algorithm was
developed to predict the average bottlenecks for the next production
run by combining active-period bottleneck analysis theory (as proposed
by [19]) with ARIMA methodology. Also, the advantages of the active-
period bottleneck analysis theory compared to other bottleneck detec-
tion theories have been shown exclusively in [10]. Those are: (1) de-
tecting potential throughput bottlenecks in a system and (2) indicating
probable root causes of bottlenecks in terms of different machine states,
which can be used to prescribe measures. However, the prediction al-
gorithm developed in [14] only addressed the prediction of bottleneck
locations in the production system.

Therefore, in this paper, we extend the work reported in [10] by
proposing a prognostic algorithm to indicate the probable root causes of
bottlenecks and develop a prescriptive approach to bottleneck man-
agement. The novelty of this study is its integration of the proposed
prognostic algorithm with measures which form a prescriptive ap-
proach to throughput bottleneck management, using the active-period
bottleneck analysis theory.

2.5. Time-series-based ARIMA forecasting models

A time series is a set of observations on a variable collected at
regular time intervals [29]. ARIMA models are the most commonly
used statistical-based forecasting techniques for time series as they
explicitly account for autocorrelation [29]. Moreover, ARIMA models
are easy to interpret and can produce unbiased forecasts. ARIMA
models can be expressed as ARIMA (p, d, q) where p, d and q are non-
negative integers representing the order of autoregressive (AR), in-
tegrated (I), and moving average (MA) parts of the model. The AR part
indicates that the variable is regressed on its own historical values
while MA refers to the regression error terms that occurred in the past.
In the real world, most of the data is non-stationary; not following AR
or MA models, but a mixture of them [29]. Therefore, AR, MA or ARMA
models cannot be used directly. The data can be made stationary by
differencing d times before fitting the ARMA model. (I) denotes the
number of non-seasonal differencing operations. Given a finite time-
series sequence, X1, X2, X3…., Xt, one can find the continuation of Xt+1,

Xt+2,… using an ARIMA model where {Xt}is the stochastic variable. An
ARIMA model (p,d,q) can be expressed as:

= + + …+ + …X X X X e e e et t t P t p t t t q t q1 1 2 2 1 1 2 2

(1)

Where { t } and { t } are autoregressive and moving average

parameters respectively. Xt is the modelled variable and represents
proportions of active states such as “producing”, “breakdown” and so
on and et is a disturbance random variable following normal in-
dependent distribution, et ∈ (0,σ2). The input to the ARIMA models is
the time series observation, whilst the ARIMA output is the point
forecasts for the future and various other parameters associated with
point forecasts (including prediction interval, error associated with
prediction and so on).

3. Methodology

In this section, the overall research approach is first presented. This
is followed by the presentation of the proposed data-driven prognostic
algorithm.

3.1. Research approach

The research approach is divided into two broad stages. In the first
stage, the active-period-theory-based prognostic algorithm is devel-
oped, to forecast the durations of individual active states of the pre-
dicted bottleneck machines. This step also includes a detailed analysis
of different ways in which the algorithmic results can be used to
identify the root causes, which then helps prescribe machine-state-
based measures. The algorithm development is based on the detailed
literature study of the data-driven throughput bottleneck prediction
field and a study of the real-world MES-type data, taken from an au-
tomotive component machining line. The detailed procedure followed
during this stage is explained in Section 3.2 of the paper.

In the second stage, the developed algorithm is tested using real-
world industrial data to check its performance. The entire test was
accomplished by uploading the real-world dataset into R software and
using libraries (such as forecast and tseries) and ARIMA functions such
as auto.arima() [30]. The detailed procedure followed during this stage
is explained in Section 5 of the paper.

3.2. Proposed data-driven prognostic algorithm to understand the root
causes of bottlenecks

The proposed algorithm requires the event-log data containing
machine states and time stamps from all machines in the production
system, collected over a given period. The algorithm starts by pre-
dicting bottlenecks in the production system for a future production run
using the algorithm presented in [14]. A “production run” is defined as
one production cycle; a shift or day, for example. Thereafter, the al-
gorithm identifies the active states of predicted bottleneck machines
from their event-log data, computes the duration of active states and
converts this into the proportion of active time across different pro-
duction runs to form a time series. Any time series forecasting metho-
dology can be applied but, in this study, we apply ARIMA forecasting
methodology to forecast the future values of individual active states.
The results obtained from the algorithm are analysed in different ways
to understand the root causes. This, in turn, is used to prescribe state-
based throughput improvement measures. The different steps of the
proposed algorithm are shown in Fig. 2. The proposed algorithm is
designed to study the bottlenecks and root causes on a production-run
level, as this study is designed to recommend measures for the next
production run.

The notation used to construct the algorithm is explained in Table 1.
The detailed computations under each step shown in Fig. 2 are

explained below:
Step 1: Application of throughput bottleneck algorithm
The throughput bottleneck prediction algorithm as developed by

[14] gives a set of predicted throughput bottlenecks, their corre-
sponding mean active-period percentages and a window size. Window
size defines the number of historical production runs needed to make a
prediction for the next run.
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Let us apply this algorithm at the tth production run to get the
predictions for (t+ 1)th production run. The three outputs from the
algorithm are sets B and A and window size k. These three outputs form
the input to our proposed algorithm in this study. We then move to Step
2.
Step 2: Computation of each of the active states’ duration as a

proportion of active time
This step formally marks the beginning of the proposed algorithm in

this study. The first thing we need to calculate is the total active
duration for every production run of a bottleneck machine. In other

words, we need to calculate Ebi for all b∈B and i ∈ I. To do that, the
cartesian product of the bottleneck machines with the set of production
runs is calculated: {1,2,…,r}x{(t-k+1),(t-k+2),…,t-1,t}. The total ac-
tive duration for a machine b∈B on a production run i ∈ I is calculated
using the following formula:

= EE ; b B, i I
j s

jbibi

b (2)

We then need to calculate the elapsed time of each active state of a
bottleneck machine, as a proportion of the total active time for a

Fig. 2. Step-by-step procedure for the proposed prognostic algorithm.

Table 1
Notation used to construct the algorithm.

Notations Explanations

The following notation is used to develop Step 1 of the prognostic algorithm.
n Number of machines in the production system.
M Set of machines, i.e. M = {1, 2, 3,…,n} in the production system. To consider any machine, we write m∈M.
r Number of predicted bottleneck machines for a production run.
B Set of predicted bottleneck machines, i.e. B = {1,2,3,…,r} for a production run in the production system. To consider any bottleneck machine, we write b∈B.
A Set of predicted mean active-period percentages of the machines in the set B for a production run, i.e. A={a1, a2, a3,…, ar}.
t Last production run.
k Window size (i.e. number of historical production runs used for bottleneck prediction in the production system).
I An ordered set of k production runs, i.e. I = {(t-k+1),(t-k+2),…,t-1,t}. To consider any production run, we write i∈I.
The following notation is used to develop Step 2 of the prognostic algorithm.
Sb Set of active states of every b∈B. (This is represented as a set, as every machine may have a distinct number of active states). E.g S1 will represent the active states of

bottleneck machine 1.
j An index used to iterate the set of active states for any Sb where b∈B.
Jb Cardinality of the set Sb i.e. | Sb | = Jb and 1≤ j≤ Jb (every machine in the production system has at least one active state). E.g. for the bottleneck machine 1, S1 =

{1,2,…, J1}, where J1 is the number of distinct active states on bottleneck machine 1.
Ejbi Elapsed time of an active state j∈ Sb for a bottleneck machine b∈B in a production run i∈I. E.g. E111 represents the elapsed time of active state 1 for bottleneck

machine 1 in the first production run.
Ebi Total active duration for a machine b∈B in a production run i∈I. E.g. E11 represents the total active duration of bottleneck machine 1 in the first production run.
f jbi Values of an active state j∈ Sb of a bottleneck machine b∈B for every production run, with i∈I as a proportion of the active time.
Cb Matrix of size k x Jb that stores every active state’s value j∈ Sb as a proportion of active time of the bottleneck machine b∈B.
The following notation is used to develop Step 4 of the prognostic algorithm.
f jbi Forecast values of an active state j∈ Sb of a bottleneck machine b∈B for every production run i∈I as a proportion of the active time.

pb
j( ) Number of autoregressive terms of the active state j∈ Sb of a bottleneck machine b∈B.

qb
j( ) Number of logged forecast error terms of the active state j∈ Sb of a bottleneck machine b∈B.

Db A list of size Jb that stores the forecast values of each active state j∈ Sb of a bottleneck machine b∈B for (t+ 1)th production run. E.g., D1 = [ f 11(t+1), f 21(t+1)]
The following notation is used to develop Step 5 of the prognostic algorithm
f( )jb c Pre-defined cut-off value for the active state j∈ Sb of a bottleneck machine b∈B.

O Represents a set of options to choose from in order to analyse the forecast. O = {O1, O2, O3, …}. E.g. O1 represents the first possible option.
G Against every option, there are 3 or more conditions, represented as G∈{G1,G2,G3,…}.
OG For every possible option-condition pair, we define a group of pre-defined recommended actions. It is given by the cartesian product of the sets O and G, written as OG

= {O1G1, O1G2,}.
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production run and do this for all production runs. Let f jbi represent
the values of an active state j∈ Sb of a bottleneck machine b∈B for every
production run i ∈ I, as a proportion of the active time Ebi using the
following formula:

=f
E
E

S; j , b B, I Ijbi

bi
bjbi (3)

For a fixed b∈B and for every active state j∈ Sb, when the above
formula is iterated for k production runs, we get a matrix Cb of size k x
|Sb|, where each column corresponds to one particular active state. A
sample matrix for a bottleneck machine b is shown below:

(4)

For every bottleneck machine b ∈ B, a matrix Cb is generated.
Step 3: Time series generation of individual active states
For a fixed b∈B, each column of the matrix Cb represents a uni-

variate time series for the corresponding active state j∈ Sb. This is under
the assumption that each active state j∈ Sb is dependent on its own
historical values. Yet another assumption of the every state j∈ Sb is
independent of other states was made according to the theory of active-
period proposed in [31]. These assumptions are in accordance with the
assumptions defined in [14].
Step 4: Time series forecasting of individual active states using

the ARIMA method
For a fixed b∈B, the time series forecasting is carried out for the

(t+ 1)th production run of each active state proportion fjbi, j∈ Sb in
matrix Cb from (t-k+1)th to t, using an ARIMA model. In other words,
given a state proportion for every production run up to the time t, a
forecast can be made for (t+ 1)th production run. Separate ARIMA
models are deployed for every distinct time series in Cb. This is shown
in Eq. (5). The results of the forecasting for (t+ 1)th production run are
stored in a matrix Db, which is of size 1x|Sb|.

=

… … …
+ … … … +

… … …
+ … … … +… … … … …… … … … …… … … … …
+ … … … +

… … …
+ … … … +

… … …
… … … …
… … … …
… … …… … … … …… … … … …… … … … …
… … …
… … …

( ) ( )

( ) ( )

f f

f f

f f

e e

e

e e

D

.b t t J b t J b t

b t t J b t J b t

b t p t p J b t p J b t p

b t J b t

b t b t

b t q b t q J b t q J t q

b

1 ( 1) 11( 1) ( 1) ( 1)

1 ( 2) 11( 2) ( 2) ( 2)

1 ( ) 11( )

1 ( ) ( )

1 ( 1) 1 ( 1)

1 ( ) 1 ( ) 1

b b

b b

b b b b
J

b b
J

b

b b
b b

Jb
b b

Jb

(1) (1) ( 1) ( 1)

(1) (1) ( ) ( )
(5)

For a fixed b∈B, the forecast value of each active state for (t+ 1)th

production run may be denoted by f jb(t+1), where j∈ Sb. Thus, the
final D matrix containing the forecast values for (t+ 1)th production
run for a bottleneck machine b is shown in Equation 6.

= … … …+ +f fD [ . ]b t J b tb 1 ( 1) ( 1)b (6)

Step 5: Decision-making based on algorithmic results
The next step is to explore the different ways in which forecast

values of individual active states of the bottleneck machines can be
used to understand the possible root causes and base decisions. The
analysis of the forecast values represented in this step is generic. For the
demonstration purpose, we have shown a use case consisting of three
options and three conditions for each of them. More options and con-
ditions can be added, based on the nature of the production system.

The input for this step is the forecast value of each active state for
(t+ 1)th production run, given by f jb(t+1), where j∈ Sb for a fixed b∈B.
For a fixed b∈B and a fixed active state j∈ Sb, there are three different
options by which the forecast f′jb(t+1) can be used to understand the
root causes of the bottleneck behaviour of b in terms of active states.
This allows prescription of state-based improvement measures. The
three different options are represented in Fig. 3 and briefly discussed
below. For a fixed b∈B and a fixed active state j∈ Sb :

i The forecast for (t+ 1)th production run can be compared with the
actuals of tth production to analyse the increasing or decreasing
trends. In other words, f jb(t+1) can be compared with f jb(t). Based

Fig. 3. A use case with three options for using the forecast results for decision-making.
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on these trends for an active state, the root causes of b can be un-
derstood and a group of measures G recommended for O1. In other
words, if f jb(t+1)> f jb(t), then the group of measures G is re-
commended.

ii The forecast for (t+ 1)th production run can be compared with the
cut-off value pre-defined for that active state. Let the pre-defined
cut-off value defined for that active state be f( )jb c, where j∈ Sb. If f
jb(t+1) exceeds the cut-off value f( )jb c, then the corresponding active
state is dominant in contributing to the root causes of b and a group
of measures G can be recommended for O2. In other words, if f
jb(t+1)> f( )jb c, then group of measures G is recommended.

iii The forecast for (t+ 1)th production run can be manually assessed
using the engineer’s tacit knowledge and experience to understand
the root causes of b. They may then plan the required measures G
under the option O3 for different machine states, based on their
experience.

From the group of recommended measures, the production and
maintenance engineers can choose the most appropriate measures and
proactively plan resources for them. They may then execute them on
the bottleneck machines during the production run, to reduce the
bottleneck effects on system throughput.

4. Evaluation and benchmarking metrics to assess algorithm
performance

The forecasting performance of the proposed algorithm is evaluated
using mean squared error (MSE) and mean absolute error (MAE) me-
trics. These are the standard metrics for evaluating time-series-fore-
casting algorithms [32]. The purpose of MAE is to capture the accuracy,
whereas MSE captures bias and variance. The mathematical equations
for MSE and MAE are shown in (2) and (3), where Ft denotes the
forecast based on the previous values at time t and Yt denotes the true
value at t and t= 1,…, T:

=
=

MAE T F y| |
t

T

t t
1

1 (7)

=
=

MSE T F y( )
t

T

t t
1

1

2

(8)

We benchmark the proposed algorithm using the naïve method, as
these are the most commonly used benchmarking models in univariate
time series forecasting [33,34]. This method uses the most recent ob-
servation to forecast the future, without adjusting for causal factors.
Though the naïve method is simple, it is still very helpful in assessing
whether the different sophisticated forecasting models add any value
for the decision-maker. In real-world production systems, it is common
for production and maintenance teams to examine the most recent
historical data and base their decisions and planned improvement
measures on that. Therefore, it is logical that any forecasting model
exceeding the naïve performance should be deemed to add value to the
forecasts. The naïve method assumes that all the effects of historical
data values on the future are contained in the present value. For ex-
ample, in a discrete time stochastic process, X0, X1, X2, …, Xt, the
forecast at t+ 1 is given by:

Ft+1 = Xt (9)

Any forecasting model should be benchmarked with that of the
naïve (in terms of performance evaluation metrics such as MAE and

MSE), to assess the value of the forecasting models. The performance
stability of absolute error and squared error of the proposed algorithm
and naïve should be checked and the statistical significance of the mean
difference assessed. A common test of statistical significance of the
difference in mean is t-tests [35]. It is reasonable to assume that the
absolute error values are independent of each other and follow normal
distribution. Likewise, the squared error values are independent of each
other and follow normal distribution. The mathematical expression of
the t-test is shown in Eq. 6, where X is the mean of the proposed al-
gorithm’s performance metric and Y is the mean of the naïve algorithm.
SEX is the standard error of the proposed algorithm and SEY the stan-
dard error of the naïve algorithm.

=
+

t X Y
SE SE

stat
x y
2 2

(10)

5. Real-world industrial test study

An industrial test study of an automotive component machining line
is used to illustrate implementation of the proposed algorithm. Fig. 4
shows an automated machining production system in an automotive
manufacturing company in Sweden, with machines M1 to M5. All
machines are computer numerical control (CNC) machines. The pro-
duction and maintenance teams wanted to know the future bottlenecks
in the production system, plus the durations of different active states
which explain the root causes of bottlenecks. Fig. 5 shows the different
steps followed to test the proposed algorithm on the production system.

5.1. Data collection and data cleaning

Table 2 shows a sample MES record of a production run. This
contains event log information from the machines, in terms of their
states, classification of active/inactive state, duration of each machine
state and corresponding timestamps of machine M2. The active states
include “producing” and “down”, whereas the inactive states constitute
“blocked”/”starved”/”idle”. “Producing” refers to the state when the
machine is engaged in producing a product, whereas “down” represents
the stoppages in the machine (including random small and long stops).
The MES stores production run data from the machines; no more than
two years at any point in time. One production run constitutes 17
scheduled production hours. The MES data is cleaned by removing the
information outside the scheduled production hours, plus all other

Fig. 4. Production line layout.

Fig. 5. Steps for testing the proposed algorithm.
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obvious outliers (such as weekends, or long stops caused by any kind of
failure). The number of useful production runs after data cleaning is
315.

5.2. Application of proposed algorithm

The step-by-step procedure of the proposed algorithm as explained
in Section 3.2 is applied over the test dataset.
Step 1: Application of throughput bottleneck prediction algo-

rithm on historical data
From MES data, the active-period percentages of each machine are

calculated for each of the 315 production runs. Thereafter, the bottle-
neck prediction algorithm (as developed in [14]) is applied to predict
the bottlenecks for 171st and 172nd production runs. The following are
the outputs from the algorithm:

• For the production line, the machines’ active-period percentages for
the past 50 production runs is a better predictor of the future.

The following are the results of the 171st production run:

• Set of predicted bottleneck machines: M5.
• Set of active-period percentages of the predicted bottleneck ma-
chines: 85.38%.

The following are the results of the 172nd production run:

• Set of predicted bottleneck machines: M4, M5.
• Set of active-period percentages of the predicted bottleneck ma-
chines: 87.12%, 87.94%.

Detailed results of the 171st and 172nd production runs are shown in
Table 3.

From Table 3, we observe that the actual bottleneck for a 170th

production run is M5. Furthermore, it is predicted that for a 171st

production run, the bottleneck machine will be the same machine, as it
has the highest predicted active-period percentage. This indicates that
the dynamics of M5’s active period are expected to affect system per-
formance more significantly. Thus, the various individual active states
of M5 need to be predicted, so as to better understand the bottleneck’s
root causes in terms of the machine active states. Similarly, it can be

noted that for a 172nd production run, M4 and M5 are predicted as a
group of bottlenecks. So, there is a possibility that M4 or M5’s active-
period dynamics will affect system performance more significantly. The
dynamics of the individual active states of these machines need pre-
dicting, so as to better understand the root causes of bottlenecks.
Step 2: Computation of active states’ durations as a proportion

of active time
From the bottleneck prediction algorithm, the bottleneck for the

next production run is predicted using data from the previous 50 runs.
The same number of historical production runs is also used to predict
different actives states for each of the bottlenecks, so as to explain the
nature of the predicted bottleneck. Thus, the proportion of each active
state for each bottleneck machine is computed for each of the 50 his-
torical production runs’ data using Eq. (2). To predict the 171st pro-
duction run, examples of historical proportion data from two active
states of machine M5 (“producing” and “down”) are shown in Table 4
(Table 4 represents the matrix, as shown in Eq. (4)).
Step 3: Time series generation of individual active states
The historical proportion data of each active state for every pro-

duction run (shown in Table 4) is considered a time series.
Step 4: Time-series forecasting of individual active states using

the ARIMA method
In this step, forecasting of the “producing” and “down” states of the

machine is conducted separately using the ARIMA technique, as ex-
plained in Eq. (5). Using one-step-ahead prediction, we forecast the
“producing” and “breakdown” components of M5 for 171st production
run. Because “producing” and “down” are the only two active states
contributing to the machine’s active period, forecasting the “producing”
state also leads to “down” state forecasts, as they are mirrored values.
These forecasting results are recorded in Table 5. This table shows that
the machine is “producing” for 86.73% of its active time and “down”
for 13.27%. For 170th production run, the actuals of the “down” state
(as a proportion of active time) are 0.07% Therefore, it can be inferred
that the “down” state of the machine is expected to increase; this re-
quires attention.

Similarly, forecasting of the “producing” and “down” states is car-
ried out on a 172nd production run of M4 and M5 to predict their
“producing” and “down” states. The results are recorded in Table 5. It
can be seen that machine M5 is predicted to be in a “producing” state
for 76.56% of its active time and “down” for 23.44%. Likewise, ma-
chine M4 is predicted to be in “producing” state for 78.45% of its active

Table 2
Sample MES record of machine M2.

Machine Machine state Active state Duration(s) Date and time

M2 Producing Active 80 01-07-2016 06:02:18
M2 Down Active 997 01-07-2016 06:03:38
M2 Blocked/starved/idle Inactive 39 01-07-2016 06:20:15
M2 Producing Active 997 01-07-2016 06:20:54
M2 Blocked/starved/idle Inactive 39 01-07-2016 06:37:31

Table 3
Actuals for bottleneck prediction results, production runs 171 and 172 (Table format adapted from [14]).

Production run Machine M1 M2 M3 M4 M5

170 Actual active period (%) 67.47 65.47 89.37 84.26 94.36
171 ARIMA model order(p,d,q) 1, 0, 1 1, 0, 0 3, 0, 0 1, 1, 1 2, 1, 1

Forecast active period % 70.41 68.60 78.81 79.59 85.38
Standard error 1.30 1.29 1.36 1.27 1.45
t-value 7.69 8.67 3.31 2.99 –
Actual active period % 68.99 58.45 88.44 90.63 96.09

172 ARIMA model order(p,d,q) 0, 1, 1 1, 0, 0 1, 0, 1 4, 1, 1 3, 1, 1
Forecast active period % 70.22 68.54 78.94 87.12 87.94
Standard error 1.29 1.28 1.37 1.30 1.47
t-value 9.06 9.95 4.49 0.41 –
Actual active period % 71.01 67.29 72.97 75.03 69.89
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time and “down” for 21.55%. Moreover, machine M5’s “down” state
proportion is predicted to increase from production runs 171 to 172,
which could entail an alert to the maintenance teams. Similarly, the
actual value for M4’s “down” proportion for a 171st production run is
14.14%, while the forecast value for a 172nd production run is predicted
as 21.55%; this also shows an increasing trend.
Step 5: Decision-making based on algorithmic results
Using the proposed prognostic algorithm, the locations of future

bottlenecks are predicted and the active state durations forecast for the
next production run (as a proportion of active time) are made. A dia-
gram of the bottleneck prediction results and forecast active states’ time
proportion results appears in Fig. 6.

From the test study, it can be noted that there is no one root cause of
bottlenecks, in terms of machine active states. Rather, there are several
states. Therefore, understanding the behaviour of each active state is
critical when it comes to planning specific improvement measures. The
forecast individual active states’ durations can be interpreted in three
different options, as a basis for improvement decisions. These are pre-
sented in Fig. 3.

Option 1 in Fig. 3 is to compare the duration of active states in the
previous production run with the forecasts for future on bottleneck
machines. This helps in identify increasing or decreasing trends in the
individual active states of a bottleneck machine. The trends are more
important than the absolute numbers. The increasing trends of different
active states are used to understand why machines are likely to behave
like bottlenecks. If a bottleneck machine is predicted to have greater
downtime compared to the previous production run, maintenance
teams can be alerted and any maintenance measures can be planned. An
example from Table 3: in the 172nd production run, the forecast
downtime proportion of machine M5 is expected to increase compared
to the 171st production run actuals. Using these data-driven trends, the
teams can make a Pareto chart of improvement measures, similar to the
results in [25].

Option 2 in Fig. 3 is using historical data to establish a standard cut-
off ratio of different active-state durations (such as “producing” and
“down” states), exploring whether the forecast value is higher or lower
than the cut-off value and making improvement decisions accordingly.
For example, Table 3 shows that for the 171st production run, machine
M5’s forecast “down” state duration is 13.27% of its total active time. If
we assume that the cut-off time for the “down” state is 10% of the total
active time, then the forecast value is higher than the cut-off value. This
requires attention, with measures focussed on reducing the “down”

state’s duration. If these options are not feasible, then the focus might
shift to addressing the “producing” state. This might entail looking at
various measures to further improve the “producing” state, such as
analysing variations in cycle time, maximising utilisation of M5, ex-
ploring opportunities for reducing cycle time and improving the quality
of products before M5.

Option 3 in Fig. 3 is manually assessing the forecast values of in-
dividual active states, using the production and maintenance teams’
experience as a decision basis.

Though there are different options, their aim is to guide production
and maintenance teams in taking the right improvement measures. If
multiple machine active states are contributing to a machine’s bottle-
neck behaviour, trade-offs can be made. Following careful considera-
tion of the upsides and downsides, an evaluation can be made of which
bottleneck machine states need more attention.

After assessing the specific active state that needs the most atten-
tion, appropriate throughput improvement measures can be prescribed.
Ideally, the prescription of the improvement measures can be based on
previous historical measures in bottlenecks. As there was no data
available on historical improvement measures in MES by the manu-
facturing company, Table 6 presents a generic list of shop-floor
throughput improvement measures based on the machines’ most
common active states. These should be seen as generic guidelines to
assist production and maintenance teams in proactive planning, thereby
allowing them to manage the bottleneck effectively. However, these
improvement measures need adaptation, based on the nature of the
machines and production system.

5.3. Evaluation

To test the proposed algorithm’s forecasting accuracy for each ac-
tive state, the individual active states’ proportion as a percentage of
active time (“producing”, “down” states) for all machines are predicted
for every production run in the test dataset. As the prediction window
(meaning the historical data) is only the past 50 production runs, the
algorithm is tested for 265 out of 315 production runs. As “producing”
and “down” states are the only active-period states, predicting one state
leads to predicting the other. Thus, the evaluation metric values of the
“producing” state will be equal to those of the “down” state.

Table 7 has a summary of the MSE and MAE values in the proposed
algorithm (including their standard errors) for the forecast proportion
of “producing” state in all machines. Moreover, these MSE and MAE
values are then compared with the naïve algorithm to assess the value
added by the algorithm, in terms of predicting machine states (also
summarised in Table 7). The overall performances of the two algo-
rithms are then tested using a t-test to assess the statistical significance
of their performance.

The t-values in Table 7 show that, statistically, the proposed algo-
rithm significantly outperforms the naïve method in predicting future
values of individual active machine states. This indicates that the al-
gorithm may potentially explain variations in the “producing” state
much better (in time order) than the naïve method, thus adding value
towards prediction.

Table 4
Proportion of individual active states of machine M5.

Production run “Producing” as % of total active
period

“Down” as % of total active
period

121 92.57 7.43
122 75.15 24.85
… … …
… … …
… … …
170 98.22 1.78

Table 5
Individual active state forecasts for predicted bottleneck machines.

Production run Predicted bottleneck machine Predicted active period % Individual active states forecast (% of total active period)

Producing Down

ARIMA model order Forecast Actual ARIMA model order Forecast Actual

170 – – – – 99.93 – – 0.07
171 M5 85.38 0, 1, 1 86.73 83.69 0, 1, 1 13.27 16.31
172 M4 87.12 0, 1, 1 78.45 74.64 0, 1, 1 21.55 25.36

M5 87.94 1, 0, 1 76.56 73.06 1, 0, 1 23.44 26.94
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6. A data-driven prescriptive approach to bottleneck management

A diagram of the overall approach to realising prescriptive bottle-
neck management in the 171st production run of the test study appears
in Fig. 7. Probable bottlenecks in the system are predicted from MES
data, followed by forecasting of the individual active state as a pro-
portion of active time. Finally, the forecast proportions (for example)
are compared with the earlier production run to identify trends and
suggest suitable prescriptive bottleneck management measures. This
forms a prescriptive approach to throughput bottleneck management.
The prognostic algorithmic insights are useful in assisting the produc-
tion and maintenance teams in choosing the right measures, based on
forecast machine active-state durations. The production and main-
tenance teams are experts when it comes to implementing specific
measures. The suggested measures shown in Table 5 should be eval-
uated by the teams and relevant options explored. This integrates the
experience-based knowledge of the production and maintenance teams
within the prescriptive approach. Thus, this prescriptive approach aims
to provide necessary assistance to the teams in making their final de-
cisions. Moreover, the improvement measures taken by different teams
can be updated continuously, to improve the prescription of different
measures in different machines. Overall, this prescriptive approach
reduces the ambiguity between production and maintenance teams by
prioritising specific throughput improvement measures in bottlenecks.
This approach is a step towards making the right throughput im-
provement decisions. It adapts the prescriptive information content
(based on measures taken by different teams) and forecast future be-
haviour of the machine [24]. This type of systematic prescriptive

approach enables joint production and maintenance planning.

7. Discussion

This study contributes to the development of the prognostic algo-
rithm in predicted bottleneck machines, by which the root causes of
bottlenecks (in terms of machine active states) can be understood.
Furthermore, it enables prescription of improvement measures. The
developed algorithm has been tested on a real-world production line.
From this real-world test study, it is understood that there are multiple
root causes of bottlenecks and decisions on improvement measures
must be made after analysing the trends in bottlenecks. A practical
explanation of the usage of the algorithm insights is also made through
the test study. Compared to previous studies on data-driven bottleneck
prediction (as proposed by [12,15,17] which provide no guidelines as
to what measures can be taken based on active states), the algorithm
proposed in this study explains the root causes of bottlenecks. It does so
in terms of machines’ active-state durations and provide guidelines on
specific measures. This advances the understanding of data-driven
bottleneck analysis, specifically by using predictive algorithms to pre-
scribe measures before a production run, based on historical digital
machine-state data. Moreover, the solution presented in this paper
aligns with industry’s need to develop data-driven solutions and pre-
scribe potential throughput improvement measures. This is an alter-
native to using discrete event simulation models of bottleneck analysis,
as presented by [25].

An additional novelty of the proposed algorithm in this paper is its
structured conversion of event-log-type machine data into a set of

Fig. 6. Diagram of prediction results for production runs 171 and 172.

Table 6
Generic, practical shop-floor improvement measures based on active states of predicted bottleneck machines.

Production resource Active state Specific measures

Machine Producing • Maximising utilisation by running machines in scheduled and unscheduled breaks [2] or even over- time.

• Checking cycle time variations of the machine [3].

• Exploring opportunities to reduce cycle time [3].

• Buffering before bottlenecks to ensure a continuous supply of materials [2].

• Improving quality before the bottleneck.

• Prioritising reactive maintenance [4] to improve response time.

• If an operator is involved, training operators, having an extra operator to share the workload or having relief staff.
Down • Prioritising preventative (daily preventative measures) and reactive maintenance [4] to improve response time.

• Checking the condition and monitoring component data (e.g. sensor data, logistics).

• Estimating windows of opportunity during the production run to carry out maintenance measures and reduce overall downtime [5].
Changing tools • Reducing tool-changing time by implementing lean practices.

• Predicting tool changeover time and exploring whether it can be done when machine is idle.
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matrices. This allows the forecasting algorithms to predict the future
and recommend machine active-state-based measures in bottlenecks. In
the proposed prognostic algorithm, only step 4 shown in Fig. 2 is spe-
cific to the forecasting methodology and in this study, we have used
ARIMA. Ideally, any other univariate time-series forecasting meth-
odologies such as recurrent neural networks or even any ensemble
forecasting methodology can be substituted in this step. In other words,
matrix C (as shown in Eq. (4)) serves as the base model to which other
forecasting methodologies can be applied. Moreover, the evaluation
and benchmarking framework proposed in this study can be used to
evaluate other forecasting algorithms when durations of active states
are to be predicted. Thus, the evaluation framework can be considered
as a tool to benchmark the performance of different algorithms. Overall,
it should be noted that, to add value to the forecast, the different
forecasting algorithms should be benchmarked with that of the naïve
method [34]. In practice, this will help companies evaluate whether to
have a predictive algorithm for bottleneck analysis.

There are some working limitations that to be factored in when
considering the institutionalisation of this algorithm. MES data must
record the individual active states and their timestamps, if they are to
predict the future values. As the algorithm is based only on machine
states, it can explain predicted bottlenecks only in relation respect to
those states; there is no other information. There may be many factors
that affecting each machine state, but no further insights into them.
However, the algorithm can indicate trends in machine states. This can
lead to further exploration of other factors, using other data sources to

investigate the changing trends. Finally, the proposed algorithm as-
sumes that the existing historical patterns will continue into the future
and that accounting for other causal factors of external events will be
factored into future work.

8. Conclusion

The production and the maintenance teams have many difficult
decisions to make regarding bottleneck management. Having advance
notice of a bottleneck’s location and possible root causes in terms of
machine active states can help them make better-informed decisions.
Previous data-driven research efforts were focused on predicting the
location of throughput bottlenecks in the production system. They don’t
give much information about the root causes of the bottlenecks to
production and maintenance teams. Therefore, in this study, a data-
driven prognostic algorithm was developed to forecast the individual
active-state duration of a predicted bottleneck machine and explain the
multiple root causes of bottlenecks. This was tested in a real-world
production system. Explaining possible root causes allows prescription
of specific potential machine-state-based throughput improvement
measures.

Several areas of further research are needed to effectively prescribe
improvement measures.

Firstly, in addition to the connection between system-level decisions
on bottleneck machine detection and machine-level decisions on dif-
ferent bottleneck machine states from MES data (as presented in this

Table 7
Performance comparison of proposed diagnostic predictive algorithm with the naïve method.

Proposed algorithm Naïve algorithm

Machines Machines

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

MAE 9.81 9.60 8.17 6.97 8.21 12.96 12.39 11.82 9.65 11.07
Standard error 0.58 0.75 0.77 0.40 0.76 0.77 0.83 0.80 0.62 0.84
t-state at 95% confidence level – – – – – 3.27 2.50 3.29 3.65 2.52
MSE 186.45 157.96 158.20 90.56 119.02 322.48 333.42 309.77 194.12 307.31
Standard error 18.10 54.63 49.75 15.42 63.58 38.24 52.45 46.34 26.10 62.37
t-state at 95% confidence level – – – – – 3.22 2.32 2.23 3.42 2.11

Fig. 7. A Data-driven prescriptive approach for throughput bottleneck management using active-period theory for a 171st production run.
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paper), the research should focus on combining sensor information
from components in the bottleneck machine with machine-state in-
formation. This will allow root causes of bottlenecks to be better de-
scribed and measures to be prescribed. Doing this allows prescriptive
algorithms to be used to recommend even more detailed specific,
proactive measures for the shop-floor production and maintenance
teams.

Secondly, the research presented in this paper forms the basis to
develop a recommender system, based on active-states of bottleneck
machines. This can recommended specific measures, based on historical
measures conducted in bottleneck machines. This can be achieved using
collaborative filtering or content-based, filtering-type recommender
systems. However, to achieve this, manufacturing companies are en-
couraged to store detailed digital work records on bottlenecks.
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