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Abstract: The first example of a quantum group was introduced by P. Kulish and
N. Reshetikhin. In the paper Kulish et al. (J Soviet Math 23:2435–2441, 1983), they
found a new algebra which was later called Uq(sl(2)). Their example was developed
independently by V. Drinfeld and M. Jimbo, which resulted in the general notion of
quantum group. Later, a complimentary approach to quantum groups was developed
by L. Faddeev, N. Reshetikhin, and L. Takhtajan in Faddeev et al. (Leningr Math J
1:193–225, 1990). Recently, the so-called Belavin–Drinfeld cohomology (twisted and
non-twisted) have been introduced in the literature to study and classify certain families
of quantum groups and Lie bialgebras. Later, the last two authors interpreted non-twisted
Belavin–Drinfeld cohomology in terms of non-abelian Galois cohomology H1(F,H)

for a suitable algebraic F-groupH. Here F is an arbitrary field of zero characteristic. The
non-twisted case is thus fully understood in terms of Galois cohomology. The twisted
case has only been studied using Galois cohomology for the so-called (“standard”)
Drinfeld–Jimbo structure. The aim of the present paper is to extend these results to all
twisted Belavin–Drinfeld cohomology and thus, to present classification of quantum
groups in terms of Galois cohomology and the so-called orders. Low dimensional cases
sl(2) and sl(3) are considered in more details using a theory of cubic rings developed by
B. N. Delone and D. K. Faddeev in Delone and Faddeev (The theory of irrationalities of
the third degree. Translations of mathematical monographs, vol 10. AMS, Providence,
1964). Our results show that there exist yet unknown quantum groups for Lie algebras of
the types An, D2n+1, E6, not mentioned in Etingof et al. (J Am Math Soc 13:595–609,
2000).

1. Introduction

The “linearization problem” in quantum groups, proposed by Drinfeld [6], and solved
in the seminal work of Etingof and Kazhdan [7] and [8], leads naturally (see [15] for
details) to the study of Lie bialgebra structures where the underlying Lie algebra is a
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finite dimensional split simple Lie algebra g(K) over the (algebraic) Laurent series field
K = C((t)). The classification of the Lie bialgebra structures that such an algebra g(K)

can carry is closely related to the structure of its Drinfeld double. Indeed, the double
of g(K) is always a Lie algebra of the form g(K) ⊗K A, where A is either K × K,

the quadratic field extension L = C(( j)), where j = t
1
2 , or, finally, the algebra K[ε]

of dual numbers of K. The latter case is related to Frobenius algebras and will not be
discussed in the presentwork. For the first two cases (see again [15] for details and further
references), the classification is given in terms of what the authors call non-twisted and
twisted Belavin–Drinfeld cohomology, and the corresponding Lie bialgebra structures
are called of non-twisted and of twisted type respectively. It was also noticed in [16] that
certain non-twisted Belavin–Drinfeld cocycles are Galois cocycles.

The general connection between Belavin–Drinfeld and Galois cohomology were
found in [18]. The main ingredient of the appearance of the Galois cohomology in
the quantum groups theory is the study of the centralizers C(G, r) ⊂ G. Here G is an
algebraicK-group corresponding to g(K) and r is an r -matrix, a solution of the modified
classicalYang-Baxter equation classifiedbyBelavin andDrinfeld in [1],whichwedenote
by rBD.

The main results of [18] assert that:

(a) Non-twisted Belavin–Drinfeld cohomology H(G, rBD) introduced in [15] are noth-
ing but the usual Galois cohomology H1(K,C(G, rBD)).

(b) For the Drinfeld–Jimbo r -matrix rDJ (it will be defined later), the twisted Belavin–
Drinfeld cohomology can be interpreted in terms of the ordinaryGalois cohomology
H1(K,˜C(G, rDJ)), where ˜C(G, rDJ) is a twisted form of the K-algebraic group
C(G, rDJ) split by the quadratic extension L mentioned above (however, this result
was obtained in the case G is a group of the adjoint type).

(c) H1(K,C(G, rDJ)) = 1 (by Hilbert 90) and H1(K,˜C(G, rDJ)) = 1 (by a theorem
of Steinberg, a result that is also used to establish the correspondence mentioned in
(b) above).

(d) In [15,16,21], non-twisted and twisted Belavin–Drinfeld cohomology H(G, rBD)

and H(G, rBD)were computed for the following classical groups:GL,SL,SO, and
for the simply connected Sp.

The main objective of the present paper is to deal with (b) and (c) for arbitrary
Belavin–Drinfeld matrices. This completes the classification of the Lie bialgebras under
consideration. We also discuss the classification problem of the corresponding quantum
groups.

Remark 1.1. In defining Belavin–Drinfeld cohomology, the groupG need not be adjoint.
In the non-twisted case, the base field K could be taken to be arbitrary (of characteristic
0), and some interesting results can de derived in this generality. In the twisted case,
the quadratic extension is crucial. So is the fact that K is of cohomological dimension
1 and that its Galois group is pro-cyclic. These facts, together with the connection with
quantum groups for the case of K = C((t)), explains why we will restrict our attention
to this particular base field.

The rest of the paper is organized as follows. After establishing some notation in
Sect. 2 and reminding the readers the Belavin–Drinfeld classification in Sect. 3, we pass
to the main part of the paper. In Sect. 4 we define and discuss some basic properties
of twisted Belavin–Drinfeld cohomology. In Sect. 5 we establish a connection between
twistedBelavin–Drinfeld cohomology andGalois cohomologyof a twistedquasitorus. In
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Sect. 6 we apply the above results to classify the corresponding Lie bialgebra structures
on g(K) up to gauge equivalence. In Sect. 7 we classify the corresponding quantum
groups in terms of certain double cosets in the group G(K). In Appendix A, written by
by Juliusz Brzezinski and A. S., the theory of orders is applied to describe the double
cosets mentioned above in the case G = GL(n). Finally, in Appendix B, written by
E. K. and Aleksandra Pirogova, Belavin–Drinfeld cohomology for exceptional simple
Lie algebras are discussed.

2. Notation

Throughout this paper K will denote C((t)) and L its quadratic extension C(( j)), where

j = t
1
2 . We fix an algebraic closure of K, which will be denoted by K. The (absolute)

Galois group Gal(K) of the extension K/K will be denoted by G. For future reference
we recall the explicit description of G.

Fix a compatible set of primitive mth roots of unity ξm , namely such that ξ e
me = ξm

for all integer e > 0.1 Fix also, with obvious meaning, a compatible set t
1
m of mth roots

of t in K.
Let Km = C((t

1
m )). Then we can identify Gal(Km/K) with Z/mZ, where for each

e ∈ Z the corresponding element e ∈ Z/mZ acts on Km via et
1
m

i = ξ e
mt

1
m

i .
We have K = lim−→Km . The absolute Galois group G of K is the profinite completion

̂Z understood as the inverse limit of the Galois groups Gal(Km/K) as described above.
If γ1 denotes the standard profinite generator of ̂Z, then the action of γ1 on K is given
by

γ1 t
1
m = ξmt

1
m .

Note for future reference that γ2 := 2γ1 is the canonical profinite generator of GL =
Gal(L).

If V is a K-space (resp. Lie algebra), we will denote the K-space (resp. Lie algebra)
V ⊗K K by V .

IfK is a (smooth) linear algebraic group overK, then the corresponding (non-abelian)
étale Galois cohomology will be denoted by H1(K,K) (see [20] for details). We recall
that H1(K,K) coincides with the usual non-abelian continuous cohomology of the
profinite group G acting (naturally) on K(K).

Let g be a split finite dimensional simple Lie algebra over C, g(K) = g ⊗C K. In
what follows the adjoint group of g(K) (viewed as an algebraic group over K) will be
denoted by Gad.

We fix once and for all a Killing couple (Bad,Had) of Gad, whose corresponding
Borel and split Cartan subalgebras will be denoted by b and h respectively. Our fixed
Killing couple leads, both at the level of Gad and g(K), to a root system � with a fixed
set of positive roots �+ and the base � = {α1, . . . , αn}.2

The Lie bialgebra structures that we will be dealing with are defined by r -matrices,
which are elements of g(K)⊗K g(K) satisfying CYB(r) = 0 where CYB is the classical
Yang–Baxter operator (see Sect. 3 below and [10] for definitions).

1 For example, ξm = e
i2π
m .

2 The elements of � are to be thought as characters of Had or elements of h∗ depending on whether we
are working at the group or Lie algebra level. This will always be clear from the context.
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The action of Gad on g(K) ⊗K g(K) induced by the adjoint action of Gad on g(K)

will be denoted by AdX . Along similar lines, if σ ∈ G, then we will write σ(r) instead
of (σ ⊗ σ)(r).

Fix r ∈ g(K) ⊗K g(K). The centralizer of r in Gad (under the adjoint action) will
be denoted by C(Gad, r). It is an algebraic K-group and a closed subgroup of Gad. Its
functor of points is as follows. Let R be a commutative ring extension ofK. View r as an
element of (g(K)⊗Kg(K))(R) = (g(K)⊗Kg(K))⊗KR � (g(K)⊗KR)⊗R(g(K)⊗KR)

in a natural way. Then

C(Gad, r)(R) = {X ∈ Gad(R) : AdX (r) = r}.

3. Belavin–Drinfeld Classification

Let F be an arbitrary field extension of C. For the time being we replace K by F.
Consider a Lie bialgebra structure δ on g(F). ByWhitehead’s Lemma the cocycle δ :

g(F) → g(F)⊗Fg(F) is a coboundary. Thus, δ = δr for some element r ∈ g(F)⊗Fg(F),
namely

δ(a) = [r, a ⊗ 1 + 1 ⊗ a]
for all a ∈ g(F). It is well known when an element r ∈ g(F) ⊗F g(F) determines a Lie
bialgebra structure of g(F). See [10] for details.

We assume until further notice that F is algebraically closed. Then we have the
Belavin–Drinfeld classification [1], which is useful to recall now. Following [1], we
define an equivalence relation between two r -matrices r, r ′ ∈ g(F)⊗F g(F) by declaring
that r is equivalent to r ′ if there exist an element X ∈ Gad(F) and a scalar b ∈ F

× such
that

r ′ = bAdX (r). (3.1)

Furthermore, if b = 1, these two r -matrices are called gauge equivalent.
Belavin and Drinfeld provide us with a list of elements rBD ∈ g(F) ⊗F g(F) (called

Belavin–Drinfeld r-matrices) with the following properties:

1. Each rBD is an r -matrix (i.e. a solution of the classical Yang–Baxter equation) satis-
fying r + r21 = � (where � is the Casimir operator of g(F) ⊗F g(F)).

2. Any non-skewsymetric r -matrix for g(F) is equivalent to a unique rBD.

For the readers’ convenience we recall the structure of the Belavin–Drinfeld r -
matrices.With respect to our fixed (b, h), any rBD depends on a discrete and a continuous
parameter. The discrete parameter is an admissible triple (�1, �2, τ ), which is an isom-
etry τ : �1 → �2. Here �1, �2 ⊂ � and for any α ∈ �1 there exists k ∈ N satisfying
τ k(α) /∈ �1. The continuous parameter is a tensor r0 ∈ h⊗F h satisfying r0 + r210 = �0
and (τ (α) ⊗ 1 + 1⊗ α)(r0) = 0 for any α ∈ �1. Here �0 denotes the Cartan part of the
quadratic Casimir element �. Then

rBD = r0 +
∑

α>0

eα ⊗ e−α +
∑

α∈(Span�1)+

∑

k∈N
eα ∧ e−τ k (α) (3.2)

where eα and e−α are parts of a fixed Chevalley system of (g, h) in the sense of [3, Ch.
VIII, Sects. 2 and 12]. We will sometimes write rBD = r0 + r ′

BD.
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We return to the case of our field K = C((t)). Let δ be a Lie bialgebra structure on
g(K). Clearly, it is of the form δ(a) = δr (a) = [r, a ⊗ 1 + 1 ⊗ a], where a ∈ g(K) and
r ∈ g ⊗

K
g is an r -matrix. We will assume that (g(K), δ) is not triangular, i.e. r is not

skew-symmetric.
By the Belavin–Drinfeld classification there exists a unique rBD such that

r = bAdX (rBD) (3.3)

for some X ∈ Gad(K) and b ∈ K
×
. Since r + r21 = b �, we can apply [16, Theorem

2.7] to conclude that b2 ∈ K.
This leads to two cases, depending onwhether b is inK or not. The first case is treated

with the non-twisted Belavin–Drinfeld cohomology, and it is dealt in full generality by
means of the Galois cohomology H1(K,C(G, rBD)) in [18].

Our interest is in the second case with b = j . The corresponding twisted Belavin–
Drinfeld cohomology and their relation to quantum groups and Galois cohomology are
the contents of the next two sections.

Definition 3.4. The discrete parameter (�1, �2, τ ) of the unique Belavin–Drinfeld ma-
trix rBD in (3.3) will be called the discrete parameter of r .

Lemma 3.5. Let r ∈ g ⊗
K
g be an r-matrix. Then

(i) r21 is an r-matrix.
(ii) γ (r) is an r-matrix for all γ ∈ G.
(iii) Let rBD be a Belavin–Drinfeld matrix as in (3.2). Then γ (rBD) is also a Belavin–

Drinfeld matrix for all γ ∈ G. Furthermore, these two r-matrices differ only on
their continuous parameter. In particular, they have the same discrete parameter.

Proof. The first statement is well known, the second and third are obvious. 
�

4. Twisted Belavin–Drinfeld Cohomology

In the remainder of our paper we will assume that in (3.3) we have b = j = t1/2 ∈ L
×.

Thus,

r = j AdX (rBD) (4.1)

and

r + r21 = j �. (4.2)

Recall the following result proved in [15, Theorem 3]:

Theorem 4.3. Assume that r = bAdX (rBD), b ∈ K, induces a Lie bialgebra structure on
g(K). Then both rBD and r are rational, i.e. they belong to g(K)⊗K g(K). Furthermore,
X−1γ (X) ∈ C(Gad, rBD)(K) for all γ ∈ G. 
�

This allows us to establish the following

Proposition 4.4. Assume that jAdX (rBD) induces a Lie bialgebra structure on g(K).
Then

1. (i) γ2(rBD) = rBD,
(ii) Adγ2(X)(rBD) = AdX (rBD), and
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(iii) X−1γ2(X) ∈ C(Gad, rBD(K).
2. γ1(AdX (rBD)) = Adγ1(X)(γ1(rBD)) = (AdX (rBD))21. In particular, r-matrices

γ1(rBD) and r21BD have the same discrete parameter.

We remind the reader that γ1 is a fixed progenerator of G = Gal(K) and γ2 = 2γ1 is
a progenerator of Gal(L).

Proof. (1) This follows from Theorem 4.3 using L instead of K as the base field.

(2) The second statement follows from the following lemma, which will also be used
later. 
�

Lemma 4.5. Assume that r satisfies the CYBE and r + r21 = �. Then the following two
conditions are equivalent:

• (a) jr induces a Lie bialgebra structure on g(K).
• (b) γ1(r) = r21 and γ2(r) = r .

Proof. (a) ⇒ (b). Indeed, for any a ∈ g(K)

γ2([ jr, a ⊗ 1 + 1 ⊗ a]) = [ jr, a ⊗ 1 + 1 ⊗ a] = [ jγ2(r), a ⊗ 1 + 1 ⊗ a].
Therefore, r = γ2(r)+ p� and r21 = γ2(r21)+ p�. Since γ2(r + r21) = �, we see that
p = 0.

Now, we will prove that γ1(r) = r21. Since γ1( j) = − j , we have

γ1([ jr, a ⊗ 1 + 1 ⊗ a]) = [− jγ1(r), a ⊗ 1 + 1 ⊗ a] = [ jr, a ⊗ 1 + 1 ⊗ a].
The last equality implies immediately that r + γ1(r) = q� with q ∈ K. Applying γ1
again to the latter equality, and taking into account that by the first part of the proof we
have 2γ1(r) = r , we see that q ∈ K.

Since r + r21 = � and γ1(r + r21) = �, we deduce that q = 1, i.e., that γ1(r) = r21.
(b) ⇒ (a). To prove that jr induces a Lie bialgebra structure on g(K), we have to

verify that γi ([ jr, a ⊗ 1 + 1⊗ a]) = [ jr, a ⊗ 1 + 1⊗ a] for i = 1, 2 and any a ∈ g(K).
If i = 2, then it is clear. It remains to prove the above statement for i = 1. In this

case we have:

γ1([ jr, a ⊗ 1 + 1 ⊗ a]) = [− jr21, a ⊗ 1 + 1 ⊗ a] = [ jr, a ⊗ 1 + 1 ⊗ a],
since jr + jr21 = j� and [�, a ⊗ 1 + 1 ⊗ a] = 0. 
�

Let c be the Chevalley involution of (g(K), b, h). By definition, this is the unique
automorphism of g(K) that maps eα to e−α for all simple roots α. Of course c2 = Id
and c acts on h as−Id. The following result shows that the last condition of the previous
proposition imposes sharp necessary conditions for the existence of non-trivial discrete
parameters on rBD.

Proposition 4.6. Assume that c ∈ Gad(K). Then the equation

γ1(AdX (rBD)) = (AdX (rBD))21

has no solutions unless the admissible triple for rBD satisfies �1 = �2 = ∅.
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Proof. Let (�1, �2, τ ) be the discrete parameter of rBD. First of all, let us notice
that Adγ1(X)(γ1(rBD)) has the same discrete parameter as rBD. Indeed, this is true for
Adγ1(X)(γ1(rBD)) and γ1(rBD) by definition, and for γ1(rBD) and rBD byLemma3.5.Our
assumption then implies that the discrete parameter of the r -matrix r21BD is (�1, �2, τ ).

We claim, however, that the discrete parameter of r21BD is (�2, �1, τ
−1). This clearly

forces �1 = �2 = ∅.
Since c ∈ Gad(K), the discrete parameter of r21BD coincideswith the discrete parameter

of Adc(rBD)21. Since Adc(h1 ⊗ h2) = h1 ⊗ h2 for any h1, h2 ∈ h (because c acts on h
by −Id), we have

Adc(rBD)21 = r210 +
∑

α>0

eα ⊗ e−α +
∑

α∈(Span�1)+

∑

k∈N
eτ k (α) ∧ e−α.

Since τ k(α) belongs to the span of �2, the discrete parameter of this last r -matrix is
(�2, �1, τ

−1) as claimed. 
�
Remark 4.7. The Chevalley involution is inner, i.e. c ∈ Gad(K), if and only if g is of
type A1, Bn, Cn, D2n, G2, F4, E7, E8.

Remark 4.8. The last proposition says nothing about the existence of an element X ∈
Gad(K) for which r = jAdX (rBD) generates a Lie bialgebra structure on g(K). What it
does say is that, if such an X exists and c is inner, then rBD must necessarily have a trivial
discrete parameter. The rest of the paper deals with the existence and classification of
such elements.

Let Out(g) be the finite group of automorphisms of the Coxeter–Dynkin diagram of
our simple Lie algebra g(K). IfOut(g) is the corresponding constantK-group, we know
[22] that there exists a split exact sequence of algebraic K-groups

1 → Gad → Aut(g) → Out(g) → 1. (4.9)

We fix a sectionOut(g) → Aut(g) that stabilizes (B,H). This gives a copy of Out(g) =
Out(g)(K) inside Aut(g) = Aut(g)(K) that permutes the fundamental root spaces
g(K)αi , and which stabilizes both our chosen Borel and Cartan subalgebras. Of course,
Aut(g) is the semi-direct product of Gad(K) and Out(g).

As explained in [18, Lemma 5.9], if the Chevalley involution c is not inner, then there
exists an element d ∈ Out(g) of order 2 such that cd = S is an inner automorphism of
g(K). The elements c and d commute, hence, S has order 2. Of course, if c is inner, then
d = Id and c = S.

Proposition 4.10. Let S = cd be as above. Let rBD be a Belavin–Drinfeld matrix with
discrete parameter (�1, �2, τ ) and continuous parameter r0. Assume that jAdX (rBD)

induces a Lie bialgebra structure on g(K) for some X ∈ Gad(K). Then the following
four conditions are satisfied:

1. �2 = d(�1),
2. τ = dτ−1d−1,
3. γ2(rBD) = rBD. In particular, γ2(r0) = r0,
4. γ1(r0) = AdS(r0)21.
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Proof. By Proposition 4.4 (2) we have γ1(AdX (rBD)) = (AdX (rBD))21. Then it follows
from Lemma 3.5 that γ1(rBD) and AdS(r21BD) have the same discrete parameter. We
know that the discrete parameter of γ1(rBD) is (�1, �2, τ ). The same reasoning that we
used in the proof of Proposition 4.6 shows that the discrete parameter of AdS(r21BD) is
(d(�2), d(�1), dτ−1d−1). This proves the first two statements.3

(3) is a direct consequence of Proposition 4.4 (1.i).
Let us prove (4) now. First, we observe that AdS(rBD)21 and γ1(rBD) belong to the

Belavin–Drinfeld list. Since jAdX (rBD) induces a Lie bialgebra structure on g(K), by
Lemma 4.5 we have

AdX−1γ1(X)(γ1(rBD)) = r21BD. (4.11)

Hence, we get the following equality:

AdSX−1γ1(X)(γ1(rBD)) = AdS(rBD)21. (4.12)

Thus, two r-matrices from the Belavin–Drinfeld list, γ1(rBD) and AdS(rBD)21, are gauge
equivalent and, therefore, equal (by the Belavin–Drinfeld classification). In particular,
their continuous parameters are equal, which proves that γ1(r0) = AdS(r0)21. 
�
Corollary 4.13. Assume that jAdX (rBD) induces a Lie bialgebra structure on g(K).
Then

(1) SX−1γ1(X) ∈ C(rBD,Gad)(K).
(2) C(rBD,Gad)(K) is stable under the action of AdS.

Proof. The first statement follows from the equality γ1(rBD) = AdS(rBD)21 and (4.12).
The second statement is a consequence of the following facts:

• C(rBD,Gad) = C(γ1(rBD),Gad),
• C(rBD,Gad) = C(r21BD,Gad),
• C(γ1(rBD),Gad) = C(AdS(rBD)21,Gad) = AdS(C(r21BD,Gad)). 
�

Definition 4.14. X ∈ Gad(K) is called a twisted Belavin–Drinfeld cocycle if there exist
D1, D2 ∈ C(rBD,Gad)(K) such that γ2(X) = X D2 and γ1(X) = X SD1.

The set of all twisted Belavin–Drinfeld cocycles is denoted by Z(Gad, rBD).

Remark 4.15. Assume that rBD is rational, that is rBD ∈ g(K) ⊗K g(K). Then the above
definition of a twistedBelavin–Drinfeld cocycle coincideswith the one given in [18,Def-
inition 5.4]. Indeed, for γ2 ∈ Gal(L), we have X−1γ2(X) = D2 ∈ C(rBD,Gad)(K). Fi-
nally, by Proposition 4.4, AdX (r21BD) = (

AdX (rBD)
)21 = Adγ1(X)(γ1(rBD)) = Adγ1(X)

(rBD). This yields

AdX−1γ1(X)(rBD) = r21BD.

Now we are ready to prove that if rBD satisfies the conclusions of Proposition 4.10,
then Z(Gad, rBD) is non-empty. The crucial ingredient of the proof is the existence of
the element J ∈ Gad(L) such that γ1(J ) = J S, see [18, Proposition 5.11].

3 If c is inner, these two statements are clear. Indeed, d = Id and by Proposition 4.6 �1 = �2 = ∅. By
convention, τ = Id.
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Proposition 4.16. Let rBD satisfies the conclusions of Proposition4.10. Then jAdJ (rBD)

induces a Lie bialgebra structure on g(K).

Proof. Lemma 4.5 implies that we need only to verify that γ2(AdJ (rBD)) = AdJ (rBD)

and γ1(AdJ (rBD)) = AdJ (rBD)21.
The first equality is clear since J ∈ Gad(L) and γ2(rBD) = rBD (because rBD satisfies

Proposition 4.10 (3)).
For the second one we have

γ1(AdJ (rBD)) = AdJ (AdS(r ′
BD + γ1(r0))) = AdJ (r ′

BD)21 + AdJ (AdS(γ1(r0))),

where r ′
BD = rBD − r0. Here we have used the following facts:

• γ1(AdJ ) = AdJ S ,
• γ1(r ′

BD) = r ′
BD,

• AdS(r ′
BD) = (r ′

BD)21 (because if α ∈ Span(�1), β ∈ Span(�2) and β = τ k(α),
then AdS(eα ⊗ e−β) = e−d(α) ⊗ ed(β), d(α) ∈ Span(�2), d(β) ∈ Span(�1), and
τ−k(d(β)) = d(α)).

Since S2 = Id, then by Proposition 4.10 (4) we conclude that AdS(γ1(r0)) = (r0)21.
Hence, we get γ1(AdJ (rBD)) = AdJ (rBD)21. 
�
Corollary 4.17. The set Z(Gad, rBD) is non-empty if and only if rBD satisfies the con-
clusions of Proposition 4.10. 
�
Remark 4.18. It is not so easy to describe explicitly all discrete parameters in the case
g = An that satisfy the conclusions of Proposition 4.10. On the other hand, all possible
discrete parameters for D2n+1 were found in [16]. There, it was also noticed that if
the discrete parameter satisfies the conclusions of Proposition 4.10, then the set of the
corresponding continuous parameters is non-empty.

Definition 4.19. Two twisted cocycles X1 and X2 in Z(Gad, rBD) are called equivalent
if there exist Q ∈ Gad(K) and C ∈ C(Gad, rBD)(K) such that X1 = Q X2C .

Definition 4.20. The twisted Belavin–Drinfeld cohomology related to Gad and rBD is
the set of equivalence classes of the twisted cocycles. We will denote it by H(Gad, rBD).

For a motivation of these two definitions see [14,15]. The twisted Belavin–Drinfeld
cohomology provides a classification of quantum groups modulo the action of the gauge
group Gad(K).

5. From Twisted Belavin–Drinfeld Cocycles to H1 of a Twisted K-group

Throughout this section rBD satisfies the conclusions of Proposition 4.10. One of the
most important r -matrices is the so-called Drinfeld–Jimbo one given by

Definition 5.1. rDJ = ∑

α>0 eα ⊗ e−α + 1
2 �0.

Here �0, as it has already been mentioned, stands for the h ⊗K h-component of the
Casimir operator � of g(K) written with respect to our choice of (b, h).

Recall thatC(Gad, rBD)(K) is always a closed subgroupofH(K) and thatC(Gad, rDJ)
(K) = H(K).

The following theorem of [18] plays a crucial role in this part of the paper.
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Theorem 5.2. The set H(Gad, rDJ) consists of one element. 
�
More precisely, our element J is an element of Z(Gad, rDJ) and any other twisted

cocycle is equivalent to J . The crucial importance of this result is the following

Corollary 5.3. Assume that X ∈ Z(Gad, rBD). Then X = Q J D, where Q ∈ Gad(K)

and D ∈ H(K).

Proof. It was proved in [15] that

C(Gad, rBD)(K) ⊂ H(K) = C(Gad, rDJ)(K).

This means that any twisted Belavin–Drinfeld cocycle X for rBD is simultaneously a
twisted Belavin–Drinfeld cocycle for rDJ.

As explained above, X is equivalent to J , but this means by definition that X = Q J D
for some Q ∈ Gad(K) and D ∈ H(K). 
�

Our next aim is to find necessary and sufficient conditions for D such that Q J D is
a twisted cocycle for rBD.

Proposition 5.4. X = Q J D ∈ Z(Gad, rBD) if and only if the following two inclusions
hold:

1. D−1γ2(D) ∈ C(Gad, rBD)(K),
2. D−1γ1(SDS) ∈ C(Gad, rBD)(K).

Proof. Assume that X = Q J D is a twisted cocycle for rBD. Then the first statement is
clear because γ2(Q J ) = Q J .

Let us prove the second one. By definition we have X−1γ1(X) = SC = (SC S)S for
some C ∈ C(Gad, rBD)(K). On the other hand,

X−1γ1(X) = D−1 J−1γ1(J )γ1(D) = D−1Sγ1(D) = D−1(Sγ1(D)S)S.

Hence, SC S = D−1Sγ1(D)S ∈ C(Gad, rBD)(K) because the centralizer is stable under
action of AdS .

Conversely, consider Y = Q J D, where D satisfies conditions of the proposition.
Then Y −1γ2(Y ) = D−1γ2(D) and γ2(Y ) = Y D−1γ (D) = Y C .

As for γ1, we have to prove that Y = Q J D satisfies γ1(Q J D) = Q J DSC for some
C ∈ C(Gad, rBD). Since γ1(Q) = Q, it suffices to prove that γ1(J D) = J DSC . We
have

γ1(J D) = J Sγ1(D) = J DD−1Sγ1(D) = J DS(SD−1Sγ1(D)).

Therefore, it remains to prove that SD−1Sγ1(D) ∈ C(Gad, rBD). Since

D−1γ1(SDS) ∈ C(Gad, rBD),

then

AdS(D−1γ1(SDS)) = SD−1Sγ1(D) ∈ C(Gad, rBD),

because the centralizer is AdS-invariant.
This relation implies that Y is a twisted cocycle for rBD. 
�
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Nowwe discuss necessary and sufficient conditions for two twisted Belavin–Drinfeld
cocycles X = Q1 J D1 and Y = Q2 J D2 to be equivalent, namely, when Y = Q3XC ,
where Qi ∈ Gad(K), i = 1, 2, 3, and D j , j = 1, 2, satisfy conditions of Proposition 5.4,
and C ∈ C(Gad, rBD)(K).

Theorem 5.5. Let X and Y be two equivalent twisted Belavin–Drinfeld cocycles for rBD.
Then there exists C ∈ C(Gad, rBD)(K) for which the following two conditions hold:

1. D−1
1 γ2(D1) = D−1

2 γ2(D2)C−1γ2(C),
2. D−1

1 γ1(SD1S) = D−1
2 γ1(SD2S)C−1γ1(SC S).

Proof. Assume that X, Y are two equivalent twisted Belavin–Drinfeld cocycles. Then
Y = Q3 J D1C for some C ∈ C(Gad, rBD)(K) and Q3 ∈ Gad(K). It follows that

• Y −1γ2(Y ) = C−1D−1
1 γ2(C D1),

• Y −1γ1(Y ) = C−1D−1
1 Sγ1(C D1).

On the other hand,

• Y −1γ2(Y ) = D−1
2 γ2(D2),

• Y −1γ1(Y ) = D−1
2 Sγ1(D2).

An easy comparison of the equalities above completes the proof. 
�
Nowwe are motivated to introduce the following twisted action of G onH(K). There

is a unique group homomorphism

uS : G → Gad(K) ⊂ Aut(Gad)(K)

such that uS : γ1 �→ AdS . Since S2 = 1, this homomorphism is continuous. Further-
more, since G acts trivially on AdS , our map uS is a cocycle in Z1(G,Aut(Gad))(K).
SinceH(K) is stable under AdS , we can consider the corresponding twistedK-algebraic
group HuS and its Galois cohomology H1(K,HuS ). Recall that by the definition of the
twisted action (which we denote by ∗)

γ ∗ D = uS(γ )
(

γ (D)
)

. (5.6)

In our case, for D ∈ H(K) the explicit nature of the twisted action is

γ2 ∗ D = γ2(D)

and

γ1 ∗ D = Sγ1(D)S = γ1(SDS).

Similar considerations can be applied to C(Gad, rBD)(K), because this group is also
AdS-stable by Corollary 4.13. The corresponding twisted K-group will be denoted by
C(Gad, rBD)uS . Now, Proposition 5.4 can be reformulated.

Proposition 5.7. Let Q ∈ Gad(K) and D ∈ H(K). Then X = Q J D ∈ Z(Gad, rBD) if
and only if D−1(σ ∗ D) ∈ C(Gad, rBD)(K) for all σ ∈ G. 
�

Theorem 5.5 can be reformulated too.
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Theorem 5.8. Let X = Q1 J D1 and Y = Q2 J D2 be two equivalent twisted Belavin–
Drinfeld cocycles for rBD. Then there exists C ∈ C(Gad, rBD)(K) such that D−1

1 (σ ∗
D1) = D−1

2 (σ ∗ D2)C−1(σ ∗ C) for any σ ∈ Gal(K). 
�
We need one more result.

Theorem 5.9. Let D1, D2 ∈ H(K) be as in Proposition 5.4. Let us assume that there
exists C ∈ C(Gad, rBD)(K) such that D−1

2 (σ ∗ D2) = D−1
1 (σ ∗ D1)C−1(σ ∗ C) for

all σ ∈ Gal(K). Then for any Q1, Q2 ∈ Gad(K) the elements X = Q1 J D1 and
Y = Q2 J D2 are equivalent as twisted Belavin–Drinfeld cocycles.

Proof. Clearly, it is sufficient to prove that X1 = J D1 and Y1 = J D2 are equivalent
Belavin–Drinfeld cocycles. In other words, we have to prove that Y1 = Q X1C1 for some
Q ∈ Gad(K) and C1 ∈ C(Gad, rBD)(K).

We have Y1 = J D2 = (J D1)(D−1
1 D2C−1)C . By the conditions of the theorem,

D = D−1
1 D2C−1 satisfies σ ∗ D = D. Then we claim that J D = Q J for some

Q ∈ Gad(K).
Let us prove this claim. It follows immediately that D ∈ H(L) because σ ∗ D =

σ(D) = D for all σ ∈ Gal(L). Further, γ1(J D) = J Sγ1(D)SS = J (Sγ1(D)S)S =
J DS because Sγ1(D)S = D. Taking into account that γ1(J ) = J S we obtain

γ1(J D J−1) = (J DS)(S J−1) = J D J−1.

Hence, J D J−1 = Q ∈ Gad(K).
Finally, Y1 = J D2 = (J D1)DC = Q(J D1)C = Q X1C . 
�
Theorems 5.5 and 5.9mean that two twisted Belavin–Drinfeld cocycles X = Q1 J D1

and Y = Q2 J D2 for rBD are equivalent if and only if

u D1(γ ) = D−1
1 (γ ∗ D1) and u D2(γ ) = D−1

2 (γ ∗ D2)

induce one and the same element in H1(K,C(Gad, rBD)uS ).

Corollary 5.10. The map w(Q J D) = u D defines an injective map from the set H(Gad,

rBD) to H1(K,C(Gad, rBD)uS ).

Proof. We need to show that the map

w : H(Gad, rBD) → H1(K,C(Gad, rBD)uS )

is well defined and injective. To be precise, we need to show that if Q1 J D1 and Q2 J D2

are equivalent Belavin–Drinfeld cocycles, then there exists C ∈ C(Gad, rBD)(K) such
that for all σ ∈ Gal(K) we have

u D1(σ ) = C−1u D2(σ )(σ ∗ C).

In other words,

D−1
1 (σ ∗ D1) = C−1D−1

2 (σ ∗ D2)(σ ∗ C).

But this is exactly Theorem 5.8. 
�
Our next aim is to prove

Proposition 5.11. The map w is surjective.
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Proof. We have an exact sequence of algebraic K-groups

1 → C(Gad, rBD)uS → HuS

obtained by twisting the closed immersion C(Gad, rBD) → H. Let v be a cocycle in
Z1(K,C(Gad, rBD)uS ). The image of v in H1(K,HuS ) is trivial since H1(K,HuS ) is
trivial by a theorem of Steinberg (Serre Conjecture I), see [20] and [23, p. 185]. Thus,
there exists D ∈ H(K) such that v(γ ) = D−1(γ ∗ D) for all γ ∈ G. Then J D is a
twisted Belavin–Drinfeld cocycle in Z(Gad, rBD) andw(X) = u D = v. This shows that
w is surjective. 
�
Corollary 5.12. The map w provides a bijection of sets

H(Gad, rBD) → H1(K,C(Gad, rBD)uS ).


�
The corollary generalizes (for our particular base field K) one of the main results of

[18] about non-twisted Belavin–Drinfeld cohomology. Namely, there exists a bijection
of sets H(Gad, rBD) → H1(K,C(Gad, rBD)).

Our final result in this section is the following theorem, which compares twisted and
non-twisted Belavin–Drinfeld cohomology.

Theorem 5.13. Assume that rBD satisfies the conclusions of Proposition 4.10 (i.e. the
set H(Gad, rBD) is non-empty). Then the set H(Gad, rBD) is finite and its number of
elements does not exceed the number of elements in H(Gad, rBD).

Proof. Since C(Gad, rBD) is a closed subgroup of H, it is of the form

C(Gad, rBD) = T × μm1 × · · · × μmn ,

where T is a split torus over K and μmk is the finite multiplicative K-group of mk-roots
of unity. Thus,

H1(K,C(Gad, rBD)) = K
×/(K×)m1 × · · · × K

×/(K×)mn = Z/(m1) × · · · × Z/(mn).

We consider rBD satisfying conclusions of Proposition 4.10. It is clear that the subtorus
T is stable under the action of AdS .

Therefore, we can consider the following exact sequence of the twisted K-groups:

1 → TuS → C(Gad, rBD)uS → C(Gad, rBD)uS /TuS → 1.

The last group in the sequence above is a twisted form of the finite constant group
corresponding to Z/(m1) × · · · × Z/(mn). Let us denote this K-group by M.

Now, consider

H1(K,TuS ) → H1(K,C(Gad, rBD)uS ) → H1(K,M).

Since TuS is reductive, we obtain H1(K,TuS ) = {1} by Steinberg’s theorem and con-
sequently we get an embedding H1(K,C(Gad, rBD)uS ) → H1(K,M).

Let us estimate the number of elements of H1(K,M). Any element of Z1(M) is
uniquely defined by the image of γ1 in M(K) because Gal(K) is pro-cyclic and γ1 is
its pro-generator. Therefore, Z1(M) contains m1 . . . mn elements, and the number of
elements of H1(K,M), and thus of H(Gad, rBD) � H1(K,C(Gad, rBD)uS ), is at most
m1 . . . mn .

As we have seen, H(Gad, rBD) � H1(K,C(Gad, rBD)) has exactly m1 . . . mn ele-
ments. This completes the proof. 
�
Corollary 5.14. Assume that rBD satisfies the conclusions of Proposition 4.10 and H1

(K,C(Gad, rBD)) = {1}. Then H(Gad, rBD) consists of one element, which is J . 
�
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6. Classification of Lie Bialgebras

Let G be a split simple algebraic group over any field F of characteristic zero, H ⊂ G
a Cartan subgroup, Q ⊂ P the root and weight lattices. Let χ(H) be the group of
(algebraic) characters of the torus H. The map λ �→ dλ, where d is the differential at
the identity, is an isomorphism of χ(H) onto a lattice X with Q ⊂ X ⊂ P .

Let γ1, . . . , γn be a Z-basis of X , t1, . . . , tn ∈ χ(H) the corresponding characters.
Then the map h �→ (t1(h), . . . , tn(h)) defines an isomorphismH → (Gm)n of algebraic
tori.4

Proposition 6.1. Let X = Q, i.e. the group G is of adjoint type. Then C(G, rBD) is
connected for any Belavin–Drinfeld r-matrix rBD.

Proof. Let the discrete parameter of rBD be (�1, �2, τ ). It follows from [15, Theorem 2]
thatC(G, rBD) consists of all h ∈ H such that for any α ∈ �1 we have eα(h) = eτ(α)(h).
Here eα is the character of H related to the simple root α.

If X = Q, we can choose γi = αi , where αi are simple roots. Then the centralizer
C(Gad, rBD) ⊂ H � (Gm)n is defined by equations of the form ti1 = . . . = tik for any
string

{αi1, αi2 = τ(αi1), . . . , αik = τ k−1(αi1)}

of the r-matrix rBD. Therefore, C(Gad, rBD) � (Gm)n(rBD), where n(rBD) is the number
of strings of rBD (including strings which consist of one element only, i.e. the corre-
sponding α is not contained in �1). 
�
Remark 6.2. If the lattice X is bigger than Q, then each αi = ∑

ni jγ j with ni j ∈ Z.
Let G = GX be the corresponding group and let h = (h1, . . . , hn) ∈ C(GX , rBD)(R)

for a ring extension R ⊃ F. Let αi ∈ �1 and τ(αi ) = αk = ∑

nkmγm . Then we get the
following equation on the elements hs :

∏

j

h
ni j
j =

∏

m

hnkm
m . (6.3)

Consequently, we get a system of equations which might lead to non-connectedness of
C(G, rBD) as it happened for G = SO2n , see [16]. See also Appendix B with computa-
tions for E6 and E7.

By [18, Remark 4.11 and Corollary 4.13] we have

Corollary 6.4. Let the base field F be of cohomological dimension 1 (eg., F = K). If
G is of adjoint type, then H(G, rBD) = {1} for any Belavin–Drinfeld r-matrix rBD with
r0 ∈ h ⊗F h. 
�

Therefore, by Theorem 5.13 we have

Corollary 6.5. Let the base field be K. Assume thatG is of adjoint type. Then H(G, rBD)

= {J } for any Belavin–Drinfeld r-matrix rBD with Z(G, rBD) non-empty. 
�
4 By definition, ti ∈ Hom(H, Gm ). Here h ∈ H(R) for any ring extension R ⊃ F.
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Remark 6.6. Note that in the non-trivial classical cases Corollary 6.5 also follows from
the explicit calculation of twisted Belavin–Drinfeld cohomology obtained in [15,16].
Namely:

1) Let g be of type An−1, n ≥ 3. Then it follows from results of [15] thatC(GLn, rBD)

is a split sub-torus ofGLn for any rBD. Consequently,C(PGLn, rBD) is a split sub-torus
of PGLn and H(PGLn, rBD) is either empty or contains one element J if rBD satisfies
the conclusions of Proposition 4.10.

2) Let g be of type Dn with n odd and the vertices of the corresponding Coxeter–
Dynkin diagram αn−1, αn be such that d(αn−1) = αn . It follows from results of [16]
that rBD satisfies the conclusions of Proposition 4.10 if and only if �1 = {αn−1},
�2 = {αn} or �1 = {αn−1, αk}, �2 = {αk, αn}, τ(αn−1) = αk , τ(αk) = αn . Then
for the corresponding rBD its centralizer in SO2n is isomorphic to T × {±I }, where
T is a split sub-torus. It is clear that for the corresponding adjoint group we have
H1(K,C(SO2n/{±I }, rBD)) = {1}. Consequently, if rBD satisfies the conclusions of
Proposition 4.10, then H(SO4p+2/{±I }, rBD) = {J }.

We now return to our classification. Let g(K) be as above, and G the algebraic K-
group of adjoint type corresponding to g(K). By Corollary 6.4, for any Belavin–Drinfeld
triple (�1, �2, τ ) and a continuous Belavin–Drinfeld parameter r0 we have a unique, up
toG-equivalence, Lie bialgebra structure on g(K) of non-twisted type. Namely, letR be
the set of all quadruples (�1, �2, τ, r0), where (�1, �2, τ ) is a Belavin–Drinfeld triple,
and r0 ∈ h ⊗K h is a continuous Belavin–Drinfeld parameter.

Theorem 6.7. Up to G-equivalence, Lie bialgebra structures on g(K) of non-twisted
type are parameterized by R. 
�

Let us say that r-matrices r and r ′ (and the corresponding Lie bialgebras) areAut(g)-
equivalent if r ′ = b ϕ(r), where ϕ ∈ Aut(g), b ∈ K

×. In order to classify Lie bialgebras
up toAut(g)-equivalence, we need to describe an action of Out(g) onR. Let d ∈ Out(g).
Clearly, d acts on the Cartan subalgebra of h ⊂ g(K) as d(hα) = d([eα, e−α]) = hd(α),
where α is a simple root. Then there is a natural action of Out(g) on the setR given by

d(�1, �2, τ, r0) = (d(�1), d(�2), dτd−1, d(r0)).

Thus, we have the following

Theorem 6.8. Up to Aut(g)-equivalence, Lie bialgebra structures on g(K) of non-
twisted type are parameterized by Out(g)\R. 
�

Let us pass to the twisted type now. LetR be the set of all quadruples (�1, �2, τ, r0),
where a Belavin–Drinfeld triple (�1, �2, τ ) and a continuous Belavin–Drinfeld param-
eter r0 satisfy the conclusions of Proposition 4.10. By Corollary 6.5, we have

Theorem 6.9. Up to G-equivalence, Lie bialgebra structures on g(K) of twisted type
are parameterized by R. 
�

Now we classify twisted Lie bialgebra structures on g(K) up to Aut(g)-equivalence.

Theorem 6.10. Up to Aut(g)-equivalence, Lie bialgebra structures on g(K) of twisted
type are parameterized by Out(g)\R.

Proof. We have to prove that d(r0) satisfies the condition

γ1(d(r0)) = AdS(d(r0)
21),
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while γ1(r0) = AdS(r0)21. It is sufficient to prove that d commutes with γ1, which is
obvious, and with AdS .

Case 1: the Chevalley involution c is not inner. Let us recall that in this case S = cd,
where d is the only automorphism of the Coxeter–Dynkin diagram which has order 2.
Notice that c commutes with d, see (4.9). Then, clearly, d commutes with AdS .

Case 2: c is inner. Then, by construction of S, we have S = c, see [18], and AdS acts
identically on discrete parameters because it acts as −Id on the Cartan subalgebra. This
observation completes the proof. 
�
Remark 6.11. 1) If the Chevalley involution c is inner, then, by Proposition 4.6, �1 =
�2 = ∅ for any (�1, �2, τ, r0) ∈ R. In other words,

R = RDJ := {r0 ∈ h(L) ⊗L h(L) : r0 + r210 = �0, γ1(r0) = AdS(r0)
21}.

Therefore, in this case Lie bialgebra structures on g(K) of twisted type are parameterized
by RDJ up to G-equivalence and by Out(g)\RDJ up to Aut(g)-equivalence.

2) Let the Chevalley involution c be outer. In this case we have |Out(g)| = 2, and
d ∈ Out(g) of order 2 acts on R by

d(�1, �2, τ, r0) = (�2, �1, τ
−1, d(r0)). (6.12)

Therefore, in this case Lie bialgebra structures on g(K) of twisted type are parameterized
up to Aut(g)-equivalence by R modulo the relation (6.12).

The Chevalley involution is outer if and only if g is of type An+1, D2n+1, E6. For the
An+1 and D2n+1 cases, see Remark 6.6. For the E6 case, see Appendix B.

7. Classification of Quantum Groups5

According to [7,8], classification of quantum groups such that their classical limit is
g(K) is equivalent to classification of Lie bialgebra structures on g(O) = g⊗CO, where
O = C[[t]].

First recall [15] that any Lie bialgebra structure on g(O) can be naturally extended to
g(K). Conversely, for any Lie bialgebra structure δ on g(K) there exists a non-negative
integer n such that tn f (t)δ for any invertible element f (t) ∈ O

× can be restricted onto
g(O) and defines a Lie bialgebra structure on it.

Let us start with the non-twisted case.

Theorem 7.1. Let r = a AdX (rBD) and r ′ = a′ AdX ′(r ′
BD) be two r-matrices of non-

twisted type defining Lie bialgebra structures on g(O). Write non-twisted Belavin–
Drinfeld cocycles X and X ′ as X = Q D, X ′ = Q′ D′, where Q, Q′ ∈ Gad(K),
D ∈ C(Gad, rBD)(K), D′ ∈ C(Gad, r ′

BD)(K). Then r and r ′ define Gad(O)-equivalent
Lie bialgebra structures on g(O) if and only if the following conditions hold:

(1) a = a′,
(2) rBD = r ′

BD,

5 In this and the following sections we consider algebraic groups over C.
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(3) Q and Q′ are in the same double coset in

Gad(O)\Gad(K)/C(Gad, rBD)(K).

Proof. Assume that r and r ′ defineGad(O)-equivalent Lie bialgebra structures on g(O).
Notice that since rBD + r21BD = a�, r ′

BD + (r ′
BD)21 = a′�, and � is invariant with respect

to automorphisms of g(O), we have a = a′ and rBD = r ′
BD.

Further, let us study when r = a AdX (rBD) and r ′ = a AdX ′(rBD) induce Gad(O)-
equivalent Lie bialgebra structures on g(O). This condition is equivalent to X ′ = Y XC ,
where Y ∈ Gad(O), C ∈ C(Gad, rBD)(K). Therefore, we have Q′ = Y Q Z , where
Z = DC(D′)−1 ∈ C(Gad, rBD)(K). Conversely, having Q′ = Y Q Z with Y ∈ Gad(O),
Z ∈ C(Gad, rBD)(K), we define C = D−1Z D′ ∈ C(Gad, rBD)(K) and obtain X ′ =
Y XC . 
�
Remark 7.2. The theorem above means that the quantum groups are parameterized by
two parameters:

• a continuous parameter a = tn f (t),
• a double coset in Gad(O)\Gad(K)/C(Gad, rBD)(K). This parameter is discrete for
sl(2) and is not discrete already for sl(3) as we will see later.

Since Aut(g(O)) is a semi-direct product of Gad(O) and a finite group Out(g), up to
isomorphism quantum groups are classified by the continuous parameter a = tn f (t)
and the set

Out(g)\(Gad(O)\Gad(K)/C(Gad, rBD)(K)).

The action of Out(g) can be easily described: clearly Out(g) acts canonically on the
simply connected Gsc(K) and the action preserves the center, so it acts on Gad(K).

Consider the case g = sl(n) and rBD = rDJ. Notice that the natural projection
GL(n, K) → PGL(n, K) induces a bijection

GL(n, O)\GL(n, K)/Diag(n, K)
∼→ PGL(n, O)\PGL(n, K)/H(K).

Let us discuss the set GL(n, O)\GL(n, K)/Diag(n, K) for small values of n.

Proposition 7.3. The set of representatives of GL(2, O)\GL(2, K)/Diag(2, K) is
{

Ti =
(

1 t−i

0 1

)

: i = 0, 1, 2, . . .

}

.

Proof. Using considerations similar to the Gauss algorithm we can conclude that any
double coset has a representative of the form above. Let us prove that they are distinct in
the set of double cosets. Indeed, let Ti = PTk H , with P ∈ GL(2, O) and H diagonal. It

follows that P is upper triangular and hence has the form P =
(

y1 p
0 y2

)

with invertible

elements yi ∈ O
× and p ∈ O. Furthemore, we see that H = diag (y−1

1 , y−1
2 ). Multi-

plying, we get p = y2t−k − y1t−i . Recall that p ∈ O. This can never happen unless
i = k. 
�

From the above proof also follows
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Corollary 7.4. Let P, Ti , H be as above. If PTi H = Ti , then

P =
(

y1 (y2 − y1)t−i

0 y2

)

,

H = diag (y−1
1 , y−1

2 ), and y1 ≡ y2 (mod t i ). 
�
Proposition 7.5. Representatives of GL(3, O)\GL(3, K)/Diag(3, K) can be chosen of

the form Ti j (q) =
⎛

⎝

1 t−i q(t−1)

0 1 t− j

0 0 1

⎞

⎠, where i, j = 0, 1, 2, . . . and q is a polynomial

such that q(0) = 0.

Proof. One can apply a Gauss type algorithm. 
�
It follows from Proposition 7.3 and Corollary 7.4 that if Ti j (q1) and Tkl(q2) are

contained in the same double coset, then i = k, j = l. Furthermore, it follows that if
PTi j (q1)H = Ti j (q2), then

P = Pi j (y1, y2, p) =
⎛

⎝

y1 t−i (y2 − y1) p
0 y2 t− j (1 − y2)
0 0 1

⎞

⎠

and H = diag (y−1
1 , y−1

2 , 1) with p ∈ O, y1, y2 ∈ O
× such that y2 ≡ 1 (mod t j ),

y2 ≡ y1 (mod t i ).
Let f (t) = ∑M

−N asts ∈ K. Define [ f ] = ∑−1
−N asts .

Theorem 7.6. Ti j (q1) and Ti j (q2) are in the same double coset if and only if q2 =
[y1q1 + (y2 − y1)t−i− j ] for some y1, y2 ∈ O

× such that y2 ≡ 1 (mod t j ) and y2 ≡ y1
(mod t i ).

Proof. Calculating the product Pi j (y1, y2, p) · Ti j (q1) · diag (y−1
1 , y−1

2 , 1), we can get
positive degrees of t in the upper right corner only. Now, applying an elementary row
operation we can “kill” the polynomial part in the upper right corner. 
�

So, we have constructed an action of the group

Ni j = {(y1, y2) ∈ O
× × O

× : y2 ≡ 1 (mod t j ), y2 ≡ y1 (mod t i )}
on the set of polynomials P0 = tC[t].
Corollary 7.7. Double cosets GL(3, O)\GL(3, K)/Diag(3, K) are in a bijection with
the following data:

(1) A pair of non-negative integers i, j .
(2) An orbit of the action of the group Ni j on the set P0. 
�
Remark 7.8. A description of these orbits is an elementary problem, which we leave to
the readers. One can check that the orbit of the zero polynomial Ni j (0) consists of all
polynomials of degree ≤ j .

Now let us turn to the twisted case.
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Theorem 7.9. Let r = aj AdX (rBD) and r ′ = a′ j AdX ′(r ′
BD) be two r-matrices of

twisted type defining Lie bialgebra structures on g(O). Write twisted Belavin–Drinfeld
cocycles X and X ′ as X = Q J D, X ′ = Q′ J D′, where Q, Q′ ∈ Gad(K), D ∈
C(Gad, rBD)(K), D′ ∈ C(Gad, r ′

BD)(K). Then r and r ′ define Gad(O)-equivalent Lie
bialgebra structures on g(O) if and only if the following conditions hold:

(1) a = a′,
(2) rBD = r ′

BD,
(3) Q and Q′ are in the same double coset in

Gad(O)\Gad(K)/(J · C(Gad, rBD)(K) · J−1) ∩ Gad(K).

Proof. Similar to the proof of Theorem 7.1. 
�
If C ∈ (J · C(Gad, rBD)(K) · J−1) ∩ Gad(K), then JC J−1 = γ1(JC J−1) =

J Sγ1(C)S J−1. Therefore, γ1(C) = SC S. Consequently, γ2(C) = C and C ∈ C
(Gad, rBD)(L).

Let us concentrate on the case g = sl(2). It is easy to show that in this case C =
diag (d, γ1(d)) with d ∈ L. Another easy remark is that in this case we can substitute

Gad(O)\Gad(K)/(J · C(Gad, rBD)(K) · J−1) ∩ Gad(K)

by

GL(2, O)\GL(2, K)/JD2 J−1 ∼= JD2 J−1\GL(2, K)/GL(2, O)

∼= D2\J−1GL(2, K)J/J−1GL(2, O)J,

where D2 = {diag (d, γ1(d)) : d ∈ L} and J =
(

1 1
− j j

)

, see [15].

To study the latter set we need the theory of orders, see [19]. The description is given
in the appendix below.
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A. Double Cosets and Orders (by Juliusz Brzezinski and A. Stolin)

A.1. Double Cosets and Orders in K
n. In this subsection, we considerK

n as aK-algebra
withK embedded diagonally intoK

n . Our purpose is to describe the double cosets which
we discussed in the preceding section in terms of O-orders in the algebra K

n .

Definition A.1. An O-module M ⊂ K
n is called a lattice on K

n if its rank over O is
equal to n.

Clearly,GL(n, K) acts transitively on the set of lattices in K
n because any lattice has

a form M = G · O
n for some G ∈ GL(n, K). Hence,

GL(n, K)/GL(n, O) ∼= {lattices in K
n}.



1118 E. Karolinsky, A. Pianzola, A. Stolin

Definition A.2. An order in K
n is a subring � of K

n containing O, finitely generated
as an O-module and such that �K = K

n .

Definition A.3. Let M ⊂ K
n be a lattice. Then I (M) = {x ∈ K

n : x M ⊂ M} is called
the set of multipliers of M .

The following lemma is well known.

Lemma A.4. 1) Any order � is contained in O
n.

2) For any order �, we have I (�) = �.
3) For any lattice M, I (M) is an order. 
�
Proposition A.5. There is a canonical surjection

GL(n, O)\GL(n, K)/Diag(n, K) ∼= Diag(n, K)\GL(n, K)/GL(n, O) →
{orders in K

n}.
Proof. Consider two lattices in K

n , M1 = G · O
n and M2 = H · G · O

n , where
H ∈ Diag(n, K). Clearly, multiplication by H = diag (a1, . . . , an) coincides with mul-
tiplication by h = (a1, . . . , an) ∈ K

n . Let g ∈ I (M1). Since the ringK
n is commutative,

it follows that g ∈ I (M2) and so, by symmetry we have I (M1) = I (M2). Thus, the
correspondence G �→ I (M1) defines the required map

ωn : Diag(n, K)\GL(n, K)/GL(n, O) → {orders in K
n}.

It is a surjection because for any order � we have I (�) = �. 
�
Generally speaking, the map defined above is not injective. Let us define its kernel

in the sense of sets. More exactly, for any order � we will find the subset ω−1
n (�).

Definition A.6. Given an order �, we say that a lattice M belongs to � if � = I (M).

It is clear that M and h · M , h ∈ K
n , belong to the same order � = I (M).

Definition A.7. We say that two lattices M1 and M2 are in the same lattice class of � if
M1 = hM2 for some h ∈ K

n .

Let us consider a canonical map ω : {lattices in K
n} → {orders in K

n} defined as
M �→ I (M). The following proposition is obvious.

Proposition A.8. ω(M1) = ω(M2) if M1 and M2 belong to the same lattice class. 
�
Remark A.9. Weremind readers thatGL(n, K)/GL(n, O) ∼= {lattices inK

n}. Therefore,
we can define a map

d : {lattices in K
n} → Diag(n, K)\GL(n, K)/GL(n, O)

and it is easy to see that ω(M) = ωn(d(M)). Moreover,

Diag(n, K)\GL(n, K)/GL(n, O) ∼=
⋃

�⊂On

{lattice classes belonging to �}.

Let us fix an order � and consider the set of lattices L(�) belonging to �. If M ∈
L(�), then hM ∈ L(�). Therefore, L(�) is a disjoint union of lattice classes. Let us
denote the number of such classes by lc(�). The number lc(�) is finite because � is
finitely generated over O, which is a discrete valuation ring. The following proposition
is a direct consequence of the remark above.

Proposition A.10. ω−1
n (�) = {lattice classes belonging to �} and hence, ω−1

n (�) con-
sists of lc(�) elements. 
�

The result below was proved by Brzezinski in [4].

Theorem A.11. lc(�) = 1 if and only if � is a Gorenstein ring. 
�
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A.2. Quantum Groups Over sl(2). We begin with a corollary to Brzezinski’s theorem.

Corollary A.12. The map ω2 is a bijection.

Proof. Let � be an order in O
2. Then it is of the form � = O[y], where y satisfies

a quadratic equation y2 + ay + b = 0 with a, b ∈ O. It is known that such a ring is
Gorenstein. Therefore, lc(�) = 1 and ω2 is a bijection. 
�
Proposition A.13. Any order� ⊂ O

2 is a free O-module�n with a basis {(1, 1), (tn, 0)},
n = 0, 1, . . .. The orders �n1 and �n2 are not isomorphic if n1 �= n2 and hence, quantum
groups of non-twisted type over sl(2) are indexed by non-negative integers.

Proof. Let � have a basis {(1, 1), (a, b)} with a, b ∈ O. Then {(1, 1), (a − b, 0)} is
also a basis. Let a − b = xtn , where x ∈ O is invertible and n is a non-negative integer
number. Therefore, {(1, 1), (tn, 0)} is a basis. The rest is clear. 
�

Let us also discuss the twisted case, in other words the double cosets

D2\J−1GL(2, K)J/J−1GL(2, O)J,

where D2 = {diag (d, γ1(d)) : d ∈ L}.
The lemma below is straightforward.

Lemma A.14. J−1GL(2, K)J = U(1, 1). 
�
Here, in an analogywith the real numbers, we denote byU(1, 1) the groupwhich consists
of matrices of the form

P =
(

x y
γ1(y) γ1(x)

)

with x, y ∈ L.
The group U(1, 1) acts naturally on L via the formula Pd = xd + yγ1(d). In fact,

this action comes from the natural action of U(1, 1) on L
2 and the embedding L → L

2,
d �→ (d, γ1(d)).

Now we can repeat the non-twisted considerations above.

Definition A.15. M ⊂ L is a lattice in L if it is an O-submodule of L of rank 2.

It is not difficult to show that

J−1GL(2, K)J/J−1GL(2, O)J ∼= {lattices in L}.
Definition A.16. � ⊂ L is an order in L if it is a lattice and a sub-ring of L which
contains the unit of L.

Remark A.17. One can show that in fact � ⊂ OL = O[ j].
Using the result by Brzezinski [4], we deduce the final classification of the twisted

quantum groups for sl(2).

Theorem A.18. There is a canonical bijection

ρ : D2\J−1GL(2, K)J/J−1GL(2, O)J → {orders in L} = {O[tn+ 1
2 ] : n ∈ Z+}.

Proof. As in the non-twisted case, we have to show that any order� inL is a Gorenstein

ring, which is clear because it can be easily shown that in this case � = O[tn+ 1
2 ],

n ∈ Z+. 
�
Corollary A.19. Quantum groups such that their classical limit is sl(2) are in a one-to-
one correspondence with the set of orders in separable quadratic rings, i.e. O

2 and OL.
The corresponding orders were described above. 
�
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A.3. Quantum Groups Over sl(3) and Orders in Cubic Rings. The aim of this subsection
is to classify quantum groups such that their classical limit is sl(3)with the Lie bialgebra
structure defined by rDJ and jrDJ in terms of cubic rings.

Our considerations are based on results about orders in cubic rings obtained in [5] and
[11], see also [2] and [13]. We begin with the non-twisted case. If n = 3, the bijection

Diag(3, K)\GL(3, K)/GL(3, O) ∼=
⋃

�⊂O3

{lattice classes belonging to �}.

has been already constructed.
Let us turn to the twisted case. We have

J = J3 =
⎛

⎝

1 0 1
0 1 0

− j 0 j

⎞

⎠

(see [15]). Because of this particular form of J3, our treatment of the case n = 3 is very
similar to the case n = 2.

Let us present an element of L ⊕ K in the form (x, a, γ1(x)), where x ∈ L, a ∈ K.
Then, it is clear that there is a bijection of sets

J−1
3 GL(3, K)J3/J−1

3 GL(3, O)J3 ∼= {lattices in L ⊕ K}.
Let us define D3 = {diag (d, a, γ1(d)) : d ∈ L, a ∈ K}.

Let N be a lattice in L ⊕ K. Let us define the ring of multipliers of N as I (N ) =
{x ∈ D3 : x N ⊂ N }. Clearly, I (N ) ⊂ OL ⊕ O is an order. The following result takes
place.

Theorem A.20. 1) Quantum groups of the twisted type which quantize the Lie bialgebra
structure on sl(3) defined by jrDJ are parameterized by

D3\J−1
3 GL(3, K)J3/J−1

3 GL(3, O)J3

2) There is a natural surjection

ρ3 : D3\J−1
3 GL(3, K)J3/J−1

3 GL(3, O)J3 → {orders in OL ⊕ O}.

�

Given an order � ⊂ OL ⊕ O, we say that a lattice N belongs to � if I (N ) = �.
Further, we say that two lattices N1 and N2 are in the same lattice class if N2 = x N1
for some x ∈ L ⊕ K. Clearly, I (N1) = I (N2) and the set of lattices belonging to � is a
disjoint union of lattice classes.

Corollary A.21.

D3\J−1
3 GL(3, K)J3/J−1

3 GL(3, O)J3
∼=

⋃

�⊂OL⊕O

{lattice classes belonging to �}.


�
Further, we need to study orders in cubic rings K

3 and L ⊕ K. In the next two
subsections, we give two approaches to this description.
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A.4. Classification of Cubic Orders Contained in Separable Cubic Algebras I. Webegin
with a general construction of cubic rings following [5], see also [2,13]. Let R be a
discrete valuation ring (e.g., R = O) and K its quotient field. Assume that any quadratic
field extension of K is generated by an element of R whose square equals a generator of
the maximal ideal of R. Let A be a cubic separable K -algebra. For every R-order � in
A, write � = R + Rω + Rθ . Translating ω and θ by appropriate elements of R, we can
achieve that ωθ = n ∈ R. Such a basis we will call normal. So, we got the following
multiplication table:

ωθ = n, ω2 = m + bω − aθ, θ2 = l + dω − cθ,

wherea, b, c, d, l, m, n ∈ R.One can show that the associative law implies that (n, m, l) =
(−ad,−ac,−bd), i.e., we get

ωθ = −ad, ω2 = −ac + bω − aθ, θ2 = −bd + dω − cθ. (A.22)

Now let us consider the index form f (x, y) = ax3 + bx2y + cxy2 + dy3 of �. Notice
that the index form f determines � = �( f ) = �abcd uniquely up to an isomorphism.

Let Pω(X) = X3 − bX2 + acX − a2d and Pθ (X) = X3 + cX2 + bd X + ad2.

Lemma A.23. Pθ (θ) = 0 and Pω(ω) = 0.

Proof. To derive the first equation, we multiply both sides of the third relation in the
multiplication table above by θ and take into account that ωθ = n = −ad. We get the
second equation similarly. 
�
Remark A.24. If ad �= 0, then Pθ (−ad/X) = (ad2/X3)Pω(X). If a = 1, then Pω(X) =
f (X,−1).

Theorem A.25. If A = K�( f ), then A is a field if and only if Pω(X) is irreducible over
K .

Proof. Let A be a field. Since ω ∈ A\K is a zero of the polynomial Pω(X) of degree
3, this polynomial is minimal for ω over K . Thus, it is irreducible over K . Conversely,
if Pω(X) is irreducible over K , then K (ω) is a field extension of degree 3 over K , so
K (ω) = A. 
�
Remark A.26. Clearly, if Pω(X) is irreducible, then Pθ (X) is also irreducible because
irreducibility of Pω(X) implies that ad �= 0, and then we can use Remark A.24.

As we know, if A is a separable algebra of degree 3 over K , then A is either a
(separable) field extension of K , or A is isomorphic to a product of a quadratic (separable)
field extension L of K by K , or A is isomorphic to K 3. If A = K�( f ), then we already
know that A is a field if and only if Pω(X) (and Pθ (X)) are irreducible. Moreover, the
algebra A = K�( f ) is separable if and only if the discriminant

�( f ) = 18abcd + b2c2 − 4ac3 − 4db3 − 27a2d2 �= 0.

Now we want to distinguish between the two remaining cases using the index form
f (X, Y ).

We need the following auxiliary result:

Lemma A.27. The elements 1, ω, ω2 form a basis of A over K if and only if a �= 0,
while 1, θ, θ2 form a basis of A if and only if d �= 0.
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Proof. Follows immediately from the relations (A.22) taking into account that 1, ω, θ

is a basis of A. 
�
Proposition A.28. If a �= 0 and the polynomial Pω(X) is reducible over K , then

(a) A is isomorphic to L ⊕ K if Pω(X) has only one zero in K ,
(b) A is isomorphic to K 3 if Pω(X) has three (different) zeros in K .

The same is true when d �= 0 and Pω(X) is replaced by Pθ (X).

Proof. If a �= 0, then by the lemma above, the elements 1, ω, ω2 generate A, which
implies that A ∼= K [X ]/(Pω(X)) and both (a) and (b) are evident. The same arguments
work when d �= 0 and Pω(X) is replaced by Pθ (X). 
�

It remains the case when a = d = 0. The multiplication rules (A.22) reduce then to

ωθ = 0, ω2 = bω, θ2 = −cθ.

Notice that �( f ) = b2c2 �= 0, since A is separable.

Proposition A.29. If a = d = 0 and A = K�( f ) is a separable algebra, then A ∼= K 3.

Proof. It is easy to see that A ∼= K [X, Y ]/(X2−bX, Y 2+cY, XY ). Since A is separable,
we have to exclude a possibility that A contains a quadratic field extension of K . In our
case, such a quadratic field extension is generated by an element of Awhose square equals
a generator t of the maximal ideal of R. A general element of K [X, Y ]/(X2 − bX, Y 2 +
cY, XY ) has the form α+βx +γ y, where α, β, γ ∈ K and x2 = bx, y2 = −cy, xy = 0.
Thus (α + βx + γ y)2 = t implies that α2 = t , where α ∈ K , which is impossible. 
�

Notice that in the case a = d = 0 the polynomials Pω(X), Pθ (X) have all their zeros
in K . Thus, we have

Corollary A.30. (a) The separable algebra A = K�( f ) is isomorphic to K 3 if and
only if both polynomials Pω(X) and Pθ (X) have all their zeros in K .

(b) The separable algebra A = K�( f ) is isomorphic to L ⊕ K if and only if at least
one of the polynomials Pω(X) or Pθ (X) has a root in L.

Now return to the case R = O. We are almost ready to complete our description of
double cosets (and therefore, our classification of the corresponding quantum groups)
in terms of quadruples (a, b, c, d).

First, we define an action of GL(2, O) on the set of index forms and hence, on the
set of quadruples (a, b, c, d). Let g ∈ GL(2, O). The action is defined as follows:

f (u, v) �→ g · f (u, v) = 1

det(g)
f ((u, v)g).

Here, we consider (u, v) as a row.
The result below was proved in [13], see also [2] and [5].

Proposition A.31. Let S be either a local ring or a principal ideal domain. Then there
is a bijection between the set of orbits of the action of GL(2, S) on the set of index forms
(and hence, on the set of quadruples (a, b, c, d)) and the set of isomorphism classes of
cubic rings over S. 
�

Let us make the following observation:
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Lemma A.32. Let r : � → �′ be an O-algebra isomorphism. Then we can extend r
to a K-isomorphism r ′ : K� → K�′ of the corresponding enveloping algebras (and
therefore, they are isomorphic).

Proof. Clearly, r can be extended to r ′ : K� → K�′ as r ′(a ⊗ k) = r(a) ⊗ k. 
�
Let us denote the set of quadruples (a, b, c, d) such that the corresponding cubic

order is contained in K
3 (resp. L ⊕ K) by P (resp. Q).

Corollary A.33. The sets P , Q are invariant under the action of GL(2, O). 
�
Let AutK(K�) be the group of K-automorphisms of the enveloping algebra K�.

Corollary A.34. There are two bijections of sets

AutK(L ⊕ K)\{orders in OL ⊕ O} ∼= GL(2, O)\Q,

AutK(K3)\{orders in O
3} ∼= GL(2, O)\P.

Proof. It is sufficient to notice that any K-automorphism of the enveloping algebra
preserves the corresponding maximal order, O

3 or OL ⊕ O. 
�
Remark A.35. It is easy to show thatAutK(L⊕K) ∼= AutK(L) ∼= Z/2Z andAutK(K3) ∼=
S3, the symmetric group.

Now, we can describe the set of quantum groups related to the orders contained in
K

3 as follows.

• Choose a representative (a, b, c, d) in GL(2, O)\P .
• Construct �abcd ⊂ K

3.
• Quantum groups corresponding to the orbit of the quadruple (a, b, c, d) are in a
one-to-one correspondence with lattices in K

3 such that their ring of multipliers is
γ (�abcd), where γ is an automorphism of K

3.

The set of quantum groups related to the orders contained in K ⊕ L has an almost
identical description.

Example A.36. Assume that ad �= 0 and (a, b, c, d) ∈ P . The equation Pθ (x) = 0
has three roots x1, x2, x3 ∈ O and we can set θ = (x1, x2, x3) ∈ K

3. Then ω =
(−ad/x1,−ad/x2,−ad/x3) andAutK(K3) = S3 acts on�abcd as a permutation group.
It is not necessary that all six orders γ (�abcd), γ ∈ S3 are distinct. It might happen that
some of them coincide.

In order to complete our description of quantum groups in terms of quadruples, we
have to describe the set of lattice classes belonging to an order � in terms of a, b, c, d.

The result below is a consequence of general results of [11] applied to the ring O.

Theorem A.37. If a, b, c, d ∈ tO, then lc(�abcd) = 2. Otherwise, lc(�abcd) = 1. 
�
Remark A.38. Notice that, according to Theorem A.11, if a, b, c, d ∈ tO, then �abcd is
not Gorenstein. Otherwise, �abcd is Gorenstein.
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A.5. Classification of Cubic Orders Contained in Separable Cubic Algebras II. Here,
we give a different approach to the classification problem of cubic orders. Again, let
R be a discrete valuation ring (e.g., R = O) and K its quotient field. Denote by t a
generator of the maximal ideal of R. If �′ ⊂ � are two R-orders in a K -algebra A,
then the product of the invariant factors (see [19, (4.14)]) of this pair (of R-lattices) is a
power of the ideal (t). We write [� : �′] = tk if this product of the invariant factors is
(tk) and we call tk or simply k for the index of �′ in �.

Description of all R-orders in the K -algebra K 3.
We consider the field K as diagonally embedded into K 3. The maximal order in this

algebra is � = R3. Choose as a basis of R3 the following elements: e1 = 1 = (1, 1, 1),
e2 = (0, 1, 0) and e3 = (0, 0, 1). Of course, we have e22 = e2, e23 = e3 and e2e3 = 0.
Let �′ ⊂ � be any R-suborder of �. Let 1, f2, f3 be an R-basis of �′. It is clear that
1 always can be chosen as a part of such a basis since �′/R is torsion-free and �′ is
R-projective (even free). Thismeans that we can choose f2 = αe2+βe3, f3 = γ e2+δe3,
where α, β, γ, δ ∈ R.

Assume now that �′ is a Gorenstein order, that is, α, β, γ, δ are relatively prime.
Otherwise, we have�′ = R+ t�′′, where�′′ is a suborder of�. When�′ is Gorenstein,
at least one of α, β, γ, δ is invertible in R, say α, and we can assume that α = 1. Thus,
we may choose γ = 0, so that f3 = δe3. Further, we may assume that δ = tk for a
nonnegative integer k. Since �′ is an order, we have f 22 , f 23 , f2 f3 ∈ �′. Only the first
condition puts some restrictions on β:

f 22 = e2 + β2e3

implies that there exist k, l ∈ R such that e2 + β2e3 = k(e2 + βe3) + ltke3. Hence, we
get k = 1 and β2 = β + ltk . The second equation shows that β ≡ 0, 1 (mod tk). Thus,
we get two possibilities: f2 = e2, f3 = tke3 or f2 = e2 + e3, f3 = tke3. It is easy to
check that the orders �k = R + Re2 + Rtke3 and �′

k = R + R(e2 + e3) + Rtke3 are
Gorenstein and different if only k > 0 (if k = 0, we get the maximal order �). Thus,
we have proved the following

Theorem A.39. For every index [� : �′] = tk , where k > 0, we have exactly two
Gorenstein suborders of � = R3, namely �k and �′

k . All other proper suborders of �

are not Gorenstein and are �k,l = R + t l�k and �′
k,l = R + t l�′

k , where k > 0, l > 0.

The number of all suborders of � of given index n = k + 2l equals
[ n
2

]

+ 1, n ≥ 0. 
�
Description of all R-orders in the K -algebra K ⊕ L , where L is a quadratic field
over K .

Let L = K ( j), where j2 = t . We consider the field K as embedded diagonally into
K ⊕ L . The maximal order in this algebra is� = R⊕S, where S is the maximal R-order
in L . Choose as a basis of R ⊕ S the following elements: e1 = 1 = (1, 1), e2 = (0, 1)
and e3 = (0, j). Of course, we have e22 = e2, e23 = te2 and e2e3 = e3. Let �′ ⊂ � be
any R-suborder of� = R ⊕ S. Let 1, f2, f3 be an R-basis of�′. It is clear that 1 always
can be chosen as a part of basis of �′ for the same reasons as in the case of � = R3.
This means that we can choose f2 = αe2 + βe3, f3 = γ e2 + δe3, where α, β, γ, δ ∈ R.

Assume now that �′ is a Gorenstein order, that is, α, β, γ, δ are relatively prime.
Otherwise, we have�′ = R+ t�′′, where�′′ is a suborder of�. When�′ is Gorenstein,
at least one of α, β, γ, δ is invertible in R.

Case I. If one of α, γ is invertible in R, then without loss of generality we can assume
that α = 1. Thus, we may choose γ = 0, so that f3 = δe3. Further, we may assume that
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δ = tk for a nonnegative integer k. Since �′ is a suborder, we have f 22 , f 23 , f2 f3 ∈ �′.
As before, only the first condition puts some restrictions on β:

f 22 = e2 + 2βe3 + β2te2 = (1 + β2)te2 + 2βe3

implies that there exist k, l ∈ R such that e2 + 2βe3 + β2te2 = k(e2 + βe3) + ltke3.
Hence, we get k = 1+β2t and 2β = kβ + ltk , which gives 2β = (1+β2t)β + ltk . Thus,
we have β ≡ 0 (mod tk). As a consequence, we get that �k = R + Re2 + Rtke3 is the
only Gorenstein suborder of � of index [� : �k] = tk . All other proper suborders of
� are not Gorenstein and are �k,l = R + t l�k , where k > 0, l > 0. Observe also that
in this case the number of all suborders of � of given index n = k + 2l equals

[ n
2

]

+ 1,
n ≥ 0.

Case II. If t divides both α, γ and one of β, δ is invertible in R, then without loss of
generality we can assume that β = 1. Thus, we may choose δ = 0, so that f2 = αe2 +e3
and f3 = γ e2. As before, since �′ is a suborder, we have f 22 , f 23 , f2 f3 ∈ �′. We easily
check that also this time only the first condition puts some restrictions on the coefficients
(this time α, γ ):

f 22 = α2e2 + 2αe3 + te2 = (α2 + t)e2 + 2αe3

implies that there exist k, l ∈ R such that (α2 + t)e2 +2αe3 = k(αe2 +e3)+ lγ e2. Hence,
we get k = 2α and α2 + t = kα + lγ , which implies that lγ = t − α2. Since t | γ

and t2 | α2, we get l ∈ R only if t2 � γ . Hence, we can choose f2 = e3 and f3 = te2,
so �′ = R + Rte2 + Re3 is the only Gorenstein suborder of � in this case. The order
�′

k = R + tk�′ for integer k > 0 is not Gorenstein and has index [� : �′
k] = t2k+1.

To summarize, we get the following

Theorem A.40. The maximal order � = R ⊕ S = R + Re2 + Re3, where e22 = e2, e23 =
te2 and e2e3 = e3 in K ⊕ L contains exactly one Gorenstein suborder �k = R + Re2 +
Rtke3 of every index k > 1, while for k = 1, there are two Gorenstein suborders of index
1, �1 = R + Re2 + Rte3 and �′

1 = R + Rte2 + Re3. All non-Gorensteins suborders of
� are �k,l = R + t l�k , where k > 0, l > 0 (of index k +2l) and �′

k = R + tk�′
1, where

k > 0 (of index 2k + 1). The total number of suborders of � of given index n is equal
[ n
2

]

+ 1 for even n and
[ n
2

]

+ 2 for odd n. 
�
Remark A.41. At this point we would like remind the reader that in the case R = O we
have one quantum group corresponding to a Gorenstein order and two quantum groups
which correspond to a non-Gorenstein order.

Our results are quite unexpected: there are “too many” quantum groups which are not
isomorphic as Hopf algebras overO. However, wemake a conjecture that after tensoring
by K there will be only two Hopf algebras over K related to non-twisted and twisted
Belavin–Drinfeld cohomology.

B. Belavin–Drinfeld Cohomology for Exceptional Simple Lie Algebras
(by E. Karolinsky and Aleksandra Pirogova)

In this appendix we discuss Belavin–Drinfeld cohomology for exceptional simple Lie
algebras.Wekeepnotation introduced inSect. 6. LetG be a split simple simply connected
(i.e., X = P) algebraic group of exceptional type. If G is of type G2, F4, or E8, then
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P = Q, i.e., G is of adjoint type, and therefore, by Proposition 6.1, the centralizer
C(G, rBD) is connected for any Belavin–Drinfeld r-matrix rBD. The remaining cases are
E6 and E7. In the E6 case,� = {α1, . . . , α5, α6} is enumerated in away that {α1, . . . , α5}
is the simple root system of type A5 (with the standard enumeration).

Theorem B.1. 1) In the E6 case, the centralizer C(G, rBD) is not connected if and only
if one of the following (mutually non-exclusive) conditions hold: either α1 and α2
are in the same string and α4 and α5 are also in the same string, or α1 and α5
are in the same string and α2 and α4 are also in the same string. In these cases
C(G, rBD) = T × μ3, where T is a split torus and μ3 is the group of cubic roots of
unity.

2) In the E7 case, the centralizer C(G, rBD) is connected for any Belavin–Drinfeld
r-matrix rBD.

Proof. The proof is via brute force aided by a computer. Namely, first, using a program
written in C++, we list all possible admissible triples and compute the corresponding
strings. Then, using Wolfram Mathematica, in each case we solve the corresponding
system of equations (6.3) and compute the centralizer. 
�

Applying [18, Remark 4.11 and Corollary 4.13], we get

Corollary B.2. Let the base field F be of cohomological dimension 1. Let rBD be a
Belavin–Drinfeld r-matrix with r0 ∈ h ⊗F h.

1) In the E6 case, H(G, rBD) = F
×/(F×)3 in the cases when C(G, rBD) = T × μ3.

Otherwise, H(G, rBD) = {1}.
2) In the G2, F4, E7, and E8 cases, H(G, rBD) = {1}. 
�
For the E6 case, totally there are 406 = 203× 2 admissible triples (with non-empty

�1 and �2). Among these, 70 = 35 × 2 triples satisfy the condition of Theorem B.1.
They are listed below (up to interchanging �1 and �2). First, we list the corresponding
strings, and then the admissible triples having the given string structure.

• {α1, α2}, {α4, α5}
∗ �1 = {α1, α4}, �2 = {α2, α5}, τ(α1) = α2, τ(α4) = α5;
∗ �1 = {α1, α5}, �2 = {α2, α4}, τ(α1) = α2, τ(α5) = α4.

• {α1, α5}, {α2, α4}
∗ �1 = {α1, α2}, �2 = {α5, α4}, τ(α1) = α5, τ(α2) = α4;
∗ �1 = {α1, α4}, �2 = {α5, α2}, τ(α1) = α5, τ(α4) = α2.

• {α1, α2}, {α3, α4, α5}
∗ �1 = {α1, α3, α4}, �2 = {α2, α4, α5},

τ(α1) = α2, τ(α3) = α4, τ(α4) = α5.
• {α1, α2, α3}, {α4, α5}

∗ �1 = {α1, α2, α4}, �2 = {α2, α3, α5},
τ(α1) = α2, τ(α2) = α3, τ(α4) = α5.

• {α1, α5}, {α2, α3, α4}
∗ �1 = {α1, α3, α4}, �2 = {α5, α2, α3},

τ(α1) = α5, τ(α3) = α2, τ(α4) = α3.
• {α1, α3, α5}, {α2, α4}

∗ �1 = {α1, α2, α3}, �2 = {α3, α4, α5},
τ(α1) = α3, τ(α2) = α4, τ(α3) = α5;

∗ �1 = {α1, α2, α5}, �2 = {α3, α4, α1},
τ(α1) = α3, τ(α2) = α4, τ(α5) = α1;
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∗ �1 = {α1, α4, α5}, �2 = {α5, α2, α3},
τ(α1) = α5, τ(α4) = α2, τ(α5) = α3.

• {α1, α2}, {α4, α5, α6}
∗ �1 = {α1, α4, α6}, �2 = {α2, α6, α5},

τ(α1) = α2, τ(α4) = α6, τ(α6) = α5;
∗ �1 = {α1, α5, α6}, �2 = {α2, α6, α4},

τ(α1) = α2, τ(α5) = α6, τ(α6) = α4.
• {α1, α2, α6}, {α4, α5}

∗ �1 = {α1, α4, α6}, �2 = {α6, α5, α2},
τ(α1) = α6, τ(α4) = α5, τ(α6) = α2;

∗ �1 = {α1, α5, α6}, �2 = {α6, α4, α2},
τ(α1) = α6, τ(α5) = α4, τ(α6) = α2.

• {α1, α5}, {α2, α4, α6}
∗ �1 = {α1, α2, α4}, �2 = {α5, α4, α6},

τ(α1) = α5, τ(α2) = α4, τ(α4) = α6;
∗ �1 = {α1, α2, α6}, �2 = {α5, α4, α2},

τ(α1) = α5, τ(α2) = α4, τ(α6) = α2;
∗ �1 = {α1, α4, α6}, �2 = {α5, α6, α2},

τ(α1) = α5, τ(α4) = α6, τ(α6) = α2.
• {α1, α5, α6}, {α2, α4}

∗ �1 = {α1, α2, α5}, �2 = {α5, α4, α6},
τ(α1) = α5, τ(α2) = α4, τ(α5) = α6;

∗ �1 = {α1, α2, α6}, �2 = {α5, α4, α1},
τ(α1) = α5, τ(α2) = α4, τ(α6) = α1;

∗ �1 = {α1, α4, α6}, �2 = {α6, α2, α5},
τ(α1) = α6, τ(α4) = α2, τ(α6) = α5.

• {α1, α2, α4, α5}
∗ �1 = {α1, α2, α4}, �2 = {α4, α5, α2},

τ(α1) = α4, τ(α2) = α5, τ(α4) = α2;
∗ �1 = {α1, α2, α4}, �2 = {α5, α4, α1},

τ(α1) = α5, τ(α2) = α4, τ(α4) = α1;
∗ �1 = {α1, α2, α5}, �2 = {α4, α5, α1},

τ(α1) = α4, τ(α2) = α5, τ(α5) = α1;
∗ �1 = {α1, α2, α5}, �2 = {α5, α4, α2},

τ(α1) = α5, τ(α2) = α4, τ(α5) = α2.
• {α1, α2}, {α3, α6}, {α4, α5}

∗ �1 = {α1, α3, α5}, �2 = {α2, α6, α4},
τ(α1) = α2, τ(α3) = α6, τ(α5) = α4.

• {α1, α5, α6}, {α2, α3, α4}
∗ �1 = {α1, α2, α3, α5}, �2 = {α6, α3, α4, α1},

τ(α1) = α6, τ(α2) = α3, τ(α3) = α4, τ(α5) = α1;
∗ �1 = {α1, α2, α3, α6}, �2 = {α6, α3, α4, α5},

τ(α1) = α6, τ(α2) = α3, τ(α3) = α4, τ(α6) = α5;
∗ �1 = {α1, α3, α4, α5}, �2 = {α5, α2, α3, α6},

τ(α1) = α5, τ(α3) = α2, τ(α4) = α3, τ(α5) = α6.
• {α1, α2}, {α3, α4, α5, α6}

∗ �1 = {α1, α3, α5, α6}, �2 = {α2, α5, α6, α4},
τ(α1) = α2, τ(α3) = α5, τ(α5) = α6, τ(α6) = α4.

• {α1, α2, α3, α6}, {α4, α5}
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∗ �1 = {α1, α2, α4, α6}, �2 = {α3, α6, α5, α1},
τ(α1) = α3, τ(α2) = α6, τ(α4) = α5, τ(α6) = α1.

• {α1, α2, α3, α4, α5}
∗ �1 = {α1, α2, α3, α4}, �2 = {α2, α3, α4, α5},

τ(α1) = α2, τ(α2) = α3, τ(α3) = α4, τ(α4) = α5.
• {α1, α2, α4, α5, α6}

∗ �1 = {α1, α2, α4, α6}, �2 = {α4, α5, α6, α2},
τ(α1) = α4, τ(α2) = α5, τ(α4) = α6, τ(α6) = α2;

∗ �1 = {α1, α2, α4, α6}, �2 = {α5, α4, α6, α1},
τ(α1) = α5, τ(α2) = α4, τ(α4) = α6, τ(α6) = α1;

∗ �1 = {α1, α2, α5, α6}, �2 = {α4, α5, α6, α1},
τ(α1) = α4, τ(α2) = α5, τ(α5) = α6, τ(α6) = α1;

∗ �1 = {α1, α2, α5, α6}, �2 = {α5, α4, α6, α2},
τ(α1) = α5, τ(α2) = α4, τ(α5) = α6, τ(α6) = α2.

We also list the admissible triples that satisfy the conclusions of Proposition 4.10.
There are 40 = 20 × 2 such triples (with non-empty �1 and �2). Their list (up to
interchanging �1 and �2) is given below.

• �1 = {α1}, �2 = {α5}, τ(α1) = α5;
• �1 = {α2}, �2 = {α4}, τ(α2) = α4;
• �1 = {α1, α2}, �2 = {α4, α5}, τ(α1) = α4, τ(α2) = α5;
• �1 = {α1, α2}, �2 = {α5, α4}, τ(α1) = α5, τ(α2) = α4;
• �1 = {α1, α3}, �2 = {α3, α5}, τ(α1) = α3, τ(α3) = α5;
• �1 = {α1, α4}, �2 = {α2, α5}, τ(α1) = α2, τ(α4) = α5;
• �1 = {α1, α4}, �2 = {α5, α2}, τ(α1) = α5, τ(α4) = α2;
• �1 = {α1, α6}, �2 = {α6, α5}, τ(α1) = α6, τ(α6) = α5;
• �1 = {α2, α3}, �2 = {α3, α4}, τ(α2) = α3, τ(α3) = α4;
• �1 = {α2, α6}, �2 = {α6, α4}, τ(α2) = α6, τ(α6) = α4;
• �1 = {α1, α2, α3}, �2 = {α3, α4, α5},
τ(α1) = α3, τ(α2) = α4, τ(α3) = α5;

• �1 = {α1, α2, α4}, �2 = {α4, α5, α2},
τ(α1) = α4, τ(α2) = α5, τ(α4) = α2;

• �1 = {α1, α2, α5}, �2 = {α4, α5, α1},
τ(α1) = α4, τ(α2) = α5, τ(α5) = α1;

• �1 = {α1, α3, α4}, �2 = {α5, α2, α3},
τ(α1) = α5, τ(α3) = α2, τ(α4) = α3;

• �1 = {α1, α4, α6}, �2 = {α5, α6, α2},
τ(α1) = α5, τ(α4) = α6, τ(α6) = α2;

• �1 = {α1, α4, α6}, �2 = {α6, α2, α5},
τ(α1) = α6, τ(α4) = α2, τ(α6) = α5;

• �1 = {α1, α2, α3, α4}, �2 = {α2, α3, α4, α5},
τ(α1) = α2, τ(α2) = α3, τ(α3) = α4, τ(α4) = α5;

• �1 = {α1, α2, α3, α6}, �2 = {α6, α3, α4, α5},
τ(α1) = α6, τ(α2) = α3, τ(α3) = α4, τ(α6) = α5;

• �1 = {α1, α2, α4, α6}, �2 = {α4, α5, α6, α2},
τ(α1) = α4, τ(α2) = α5, τ(α4) = α6, τ(α6) = α2;

• �1 = {α1, α2, α5, α6}, �2 = {α4, α5, α6, α1},
τ(α1) = α4, τ(α2) = α5, τ(α5) = α6, τ(α6) = α1.
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