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Saeed Asadi and Håkan Johansson
Chalmers University of Technology, Department of Mechanics and Maritime Sciences

SE-412 96 Gothenburg, Sweden
e-mails: saeed.asadi@chalmers.se, hakan.johansson@chalmers.se

ABSTRACT

Wind turbines normally have a long operational lifetime and experience a wide range of operating conditions. A representative
set of these conditions is considered as part of a design process, as codified in standards. However, operational experience
shows that failures occur more frequently than expected, the more costly of these including failures in the main bearings and
gearbox. As modern turbines are equipped with sophisticated online systems, an important task is to evaluate the drive train
dynamics from online measurement data. In particular, internal forces leading to fatigue can only be determined indirectly from
other locations’ sensors. In this contribution, a direct wind turbine drive train is modelled using the floating frame of reference
formulation for a flexible multibody dynamics system. The purpose is to evaluate drive train response based on blade root
forces and bedplate motions. The dynamic response is evaluated in terms of main shaft deformation and main bearing forces
under different wind conditions. The model was found to correspond well to a commercial wind turbine system simulation
software (ViDyn).

Keywords: Wind turbine drive train dynamics, Flexible multibody dynamics, Floating frame of reference (FFR) formula-
tion, Beam elements, Bearing damage index, Main shaft deflection.

1 Introduction

The demand for fossil free and renewable energy sources has boosted the wind power industry significantly in recent decades.
To ensure economic growth and the sustainable future of the wind as energy source, one specific challenge is to reduce drive
train failures in multi-MW horizontal axis wind turbines (HAWT), which are the predominant turbine type in terms of wind
energy production. Despite the fact that wind turbines are designed and certified based on detailed predictions of the dynamic
loads, there is still a need for improved modelling of the wind turbine drive train to understand the dynamic behavior and, thus,
to gain new knowledge and, consequently, design more reliable drive lines [1].
This paper studies the HAWT drive train dynamic modelling to predict its behavior during operation and its implication on direct
drive train components’ fatigue life. The ultimate goal is to come closer to a tool that can evaluate measured turbine operational
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data in terms of drive train dynamics and its effect on drive train performance and components’ fatigue life, based on blade root
forces and moments, as well as bedplate motion. This analysis is crucial in evaluating different operation conditions. It can
also be used as a priori to evaluate different proposed sensor positions.
Multibody dynamics techniques are commonly used to analyze the component loads in mechanical systems [2, 3]. Wind
turbine drive trains could be considered to constitute a multibody system with flexible and rigid components interconnected
with each other by kinematic constraints, and which experience force during different operating conditions. For instance, in
[4], a flexible multibody dynamic system modelling is employed to study the dynamic response of a horizontal wind turbine
gearbox composed of planetary and conventional parallel axis gear sets. In [5], the dynamic stability analysis of a horizontal axis
wind turbine (HAWT) is presented. The analysis framework is established based on separation of the complete HAWT system
model into rigid and flexible body subsystems. The most popular methods within flexible multibody dynamics modelling are
floating frame of reference (FFR) formulation [2, 6, 7, 8, 9], absolute nodal coordinates formulation (ANCF) [10, 11], and
corotational frame of reference (CFR) [12, 13].

The FFR formulation is based on separating the overall motion of the elastic body into a large rigid body motion (or
reference motion), and superimposing small deformations by introducing a body fixed coordinate system, which translate and
rotate with the body and experience small deformations (measured relative to this coordinate system). In [10], the traditional
FFR approach combined with linear elastic finite element (FE) models is illustrated. In contrast, the ANCF does not separate the
total elastic body motion into a reference motion and elastic deformations relative to the reference motion [10]. Consequently,
ANCF leads to nonlinear expressions for the elastic forces and, in general, linear expressions for the inertia terms. Moreover,
the element nodal coordinates are defined in the inertial frame used with a global shape function, and have a complete set of
rigid body modes [14, 15, 16]. Thus, the global position vector of an arbitrary point on the element could be described by
applying the global shape function and the absolute nodal coordinates. Another advantage of ANCF is that it is convenient
when the deformations within the body are not small, for instance, in the case of long and slender wind turbine blades.

Comparing FFR with CFR, the major advantage of FFR is that it allows model order reduction, whereby the local general-
ized coordinates can be expressed as a linear combination of a small number of eigenmodes [17].

The multibody system simulation becomes computationally expensive by introducing a large number of degrees of freedom
(DOF) upon FE discretization of elastic bodies within the FFR approach, especially when the internal forces are nonlinear.
Thus, the reduction of elastic DOF is essential. In [18, 10], MOR methods have been applied in the FFR formulation. One
approach is to select specific low-frequency bending vibration modes, besides torsional and axial modes, and to include them
in the reduction basis and consequently, for the nonlinear response [19]. However, the fundamental axial modes’ frequencies
extraction of such modes is difficult and expensive, since they are much higher than the frequencies of the bending modes
[20, 21].

Since the goal is to evaluate the drive train over long periods of time and under different operating conditions, a set of
objective functions are defined. These functions are measures evaluated from the time-series solutions of the mathematical
model. The purpose of these measures is that they can be used to quantify some aspects of the drive train system dynamics’
behavior. In this study, the objective functions chosen are estimated damage in front and rear main bearings, and motion of
main shaft at rotor hub and generator.

In the current study of the system dynamics model, the bearing forces causing the bearing damage, and the deflection fields,
representing the system dynamics, are in focus. The outcome of the current research contributes to modelling wind turbine
drive train dynamics’ behavior in different operational scenarios, quantifying the effects on the drive train objective functions
such as bearing forces and damage index, and could be applied as a methodology to contribute to virtual condition monitoring
in order to detect and predict faults, and prevent failures in early stages in different components of drive trains.

The paper is outlined as follows: First, the multibody formalism of a direct drive wind turbine is presented. Particular at-
tention is given to the parameterization of the main shaft flexibility. Afterwards, the comparison between the full and simplified
(without flexible modes) mathematical models is demonstrated with respect to defined output functions (deflection fields and
bearing forces). Also, a comparison with another simulation tool, ViDyn, is made. The drive train dynamics are quantified
by suitably defined output functions related to tip deflection and bearing forces, allowing the different model assumptions and
operating conditions to be assessed.
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2 Multibody formulation of direct drive train wind turbine

2.1 Model description
The structure of the studied direct drive wind turbine is shown in Fig. 1. The drive line includes the flexible main shaft with
one inertia at each end, representing the rotor inertia and the generator inertia, respectively. The main shaft passes through two
main bearings which are connected to the bedplate. The weight of the generator is carried by the main shaft while the generator
counter-torque is transferred via a torque arm to the bedplate. The main shaft (ms) is considered to be a separate flexible body
within the multibody dynamics formalism, while the bedplate including the stator is assumed to be one rigid body (bp). The
bearings including housing flexibilities, are modelled as point flexibilities.

’

Fig. 1 Illustration of studied direct drive wind turbine (left) engineering model (right)

Following floating point of reference formulation ([23]), the position of a point P on the bedplate is expressed as:

rP
bp = Rbp +A(θbp) ūP

bp (1)

where R is the position of the body fixed frame, A is the body fixed rotation matrix and ū is the position vector in the body
fixed frame. Correspondingly, a point Q on the main shaft is expressed as:

rQ
ms = Rms +A(θms) ūQ

ms = Rms +A(θms)
(

ū0
msQ

+S(xQ)qms

)
(2)

such that the flexibility of the main shaft is parameterized in terms of a space-dependent shape matrix S and a vector of a time-
dependent elastic generalized coordinates q f ms. By adopting θms and θbp as Euler angles parameterization of rotation matrix
A, the motion of the considered system is described by the set of time-dependent variables q, defined as:

q =


RT

ms, θ T
ms, q f

T
ms︸ ︷︷ ︸

qT
ms

, RT
bp, θ T

bp︸ ︷︷ ︸
qT

bp




T

(3)

Since it can be expected that the rotation around the Y -axis will be small, the Bryant ”X−Y −Z” convention of Euler angles
is adopted in contrast to the ”Z−X−Z” classical Euler convention to avoid the problem of singularity [24].
Below, the drive train system performance is studied under prescribed bedplate motion, in which case Rbp and θbp are given
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functions of time. Hence the set of degrees of freedom for the considered system is collected in the vector qms as:

qms = [RT
ms, θ T

ms, q f
T
ms]

T
(4)

2.2 Equation of motion
Following [23], the principal of virtual work is here expressed as δWi = δWe where δWi is the virtual work from inertia forces
and δWe is the virtual work from applied forces. The applied forces are separated into conservative δWc and non-conservative
δWnc virtual work. In order to obtain a formulation suitable for numerical implementation using an explicit time-stepping
algorithm, we follow [23] and split δWi into two parts as

δWi =

(
d
dt

(
∂T
∂ q̇

)T

−
(

∂T
∂q

)T
)

δq =


Mq̈−Ṁq̇+

(
∂T
∂q

)T

︸ ︷︷ ︸
−Qv




T

δq (5)

where T is the system kinetic energy (cf. sec. 2.3), M is a system mass matrix and Qv is the force vector of centrifugal and
Coriolis forces. The virtual work from applied forces is expressed as

δWe = δWc +δWnc = δWe +δWb +δWg︸ ︷︷ ︸
δWc

+δWnc = (Qc +Qext)δq = (Qe +Qb +Qg +Qext)δq (6)

where Qc(= Qe +Qb +Qg) are the forces due to elastic deformation of the main shaft (Qe) and the bearings mounting (Qb)
and Qext is externally applied forces. Eq. (5) and Eq. (6) give rise to the equation of motion on matrix form:

Mq̈ms = Qext(qms)+Qe(qms)+Qb(qms,qbp)+Qg +Qv(qms) (7)

The numerical simulation is performed using a variable-order time-stepping method as implemented in the function ode15s
in Matlab R2013b.

2.3 Inertia forces
The kinetic energy of the system can be written as

T = T ms +T bp. (8)

Upon considering the parameterization of material points of the main shaft (Eq. (2)), kinetic energy related to the main shaft is:

T ms =
1
2

∫

V
ρ(ṙms)

T ṙmsdV =
1
2

q̇T
msMq̇ms (9)

Using the definition of kinetic energy T ms and the mass matrix M, the quadratic velocity centrifugal and Coriolis force vector
Qv can be expressed from the Lagrange equation in a closed form as indicated by Eq. (5), as detailed in App. A, in Eq. (32)
and Eq. (61). The specific formulation of the velocity-dependent inertia forces was based on [22], which was shown to require
less arithmetic operations than the formulation of Shabana [23].

2.4 Elastic forces
In this section, the formulation of the generalized applied forces is briefly stated. This includes the main shaft deformation due
to elastic forces, the bearing forces, and the gravity.

2.4.1 Main shaft deformation

The virtual work from elastic forces of the main shaft considering bending, elongation, and torsion under an assumption of
small strains, is given as

δWe =−δU (10)
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where the shaft is assumed to be adequately described by the Euler-Bernoulli theory as

U =
1
2

∫ L

0

[
EIz

(
∂ 2wY

∂x2

)2

+EIy

(
∂ 2wZ

∂x2

)2

+EA
(

∂uX

∂x

)2

+GJ
(

∂uT

∂x

)2
]

dx =
1
2

q f
T
msK

ms
f f q f ms (11)

where Kms
f f is a symmetric positive definite stiffness matrix associated with the elastic coordinates of the main shaft. The

detailed derivation of Kms
f f definition is presented in App. B (Eq.(39)-(40)). By introducing material damping matrix C f f , the

main shaft force vector Qe becomes:

Qe =−
(
Kms

f f qms
f +Cms

f f q̇ms
f
)

(12)

2.4.2 Bearing generalized forces

The virtual work for bearing and bearing housing deformation is obtained from

δWb =−δUF
b −δUR

b (13)

where
U i

b =
1
2

KBHX li
X

2
+

1
2

KBHY li
Y

2
+

1
2

KBHZ li
Z

2
, i = {F,R} (14)

for the front (F) and rear (R) bearings respectively. Here, li
X , li

Y , li
Z are the bearing deformation expressed by the difference of

the bearings’ location in the main shaft and the bedplate coordinate, i.e

li =
(
Rms +A(θms) ūi

ms
)
−
(
Rbp +A(θbp) ūi

bp
)

(15)

where i denotes the location of the bearing in front (i = F) or rear (i = R) according to Fig. 1. The derivation of generalized
force vector Qi

b associated with bearing deformation and damping is given in App. 6.4.

2.4.3 Gravity

The virtual work for gravity is obtained from:

δWg =−δUg, where Ug =
∫

V
ρrzgdV (16)

which gives Qg as
Qi

g = MigT (17)

where M is the mass matrix, and i denotes rotor, generator, and the main shaft, and g (= [0, 0, −g, 0, 0, 0, 0, 0, 0, 0, 0, 0])
is the gravity vector.

2.5 Main shaft flexibility parameterization
In order to construct the shape function matrix S, the eigenmodes of an Euler-Bernoulli beam with point mass inertia at ends
and residing on two rigid supports are calculated considering bending, elongation and torsion. The main shaft includes the
following structural parameters: E, G, I, ρ , A, mms, m2, m2, L, L1, L2.

For bending mode shapes, the following parameterization is chosen:

mn
Bi
(x) =Ci

1 cos(βnx)+Ci
2 sin(βnx)+Ci

3 cosh(βnx)+Ci
4 sinh(βnx) (18)

where i denotes the different deflection fields corresponding to the sides and middle part of the shaft (i = 1,2,3). βn refers to
the nth bending eigenmode. Ci

1,2,3,4 s are obtained from the boundary conditions and continuity equations at bearing locations.

The eigenvalues are calculated via the relationship ωn = β 2
n c, where c =

√
EI
ρA .

For the axial elongation, considering that the front bearing is connected via a longitudinal spring along the shaft direction,
there are 2 regions for elongation field (i = 1,2) parameterized by

mn
Xi
(x) =Ci

1 cos(λ n
X x)+Ci

2 sin(λ n
X x) (19)
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where λ X
n = ωn

cE
and cE =

√
E/ρ .

For the torsional eigenmodes, the same type of parameterization is used:

mn
Ti
(x) =Ci

1 cos(λ n
T x)+Ci

2 sin(λ n
T x) (20)

where λ T
n = ωn

cS
and cS =

√
G/ρ .

The eigenmodes and eigenvalues are calculated using the Finite element method, and the respective coefficients Ci in Eq.
(18)- (20) are determined by curve fit. The bending, elongation and torsional mode shapes are shown in Fig. 2.
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Fig. 2 The first Nm = 2 Mode shapes for the beam element in bending (left), elongation (middle), and torsion (right) in both
analytical and FE solution

Table. 1 shows the value of eigenmodes for the bending, elongation and torsional cases in both FE and analytical solutions:

Table 1 Eigenmodes for analytical and FE approaches

FE solution

Mode. 1 Mode. 2 1st Eigenfreq
(Hz)

2nd Eigenfreq
(Hz)

Bending modes βn 0.2156 0.4751 6.0816 29.5397
Elongation modes λ X

n 0.1591 0.5756 127.8008 462.4371
Torsional modes λ T

n 0.0760 0.5354 37.8392 266.7413

Upon checking the eigenfrequencies corresponding to stated modes, it is sufficient to consider the first two modes in the
bending, and only the first modes in the torsion and elongation for the current study. It could also be demonstrated that the
axial modes have higher frequencies even than rigid modes, thus they could be ignored. The advantage of having an analytical
relation of the eigenmodes compared to FE shape functions is that the analytical relation could be utilized for the shape function
by expressing them through defined mode shapes and higher order derivatives. The drawback of the current analytical approach
in the main shaft is that it cannot capture the modes where there is motion in bearing locations, since the simply supported
boundary conditions are assumed in these coordinates.
The elastic deformation due to elongation, torsion, and bending are expressed in terms of the shape functions as:
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uX (x)≈ m1
X (x)q

1
X , (21a)

uT (x)≈ m1
T (x)q

1
T , (21b)

wY (x)≈ m1
B(x)q

1
Y +m2

B(x)q
2
Y , (21c)

wZ(x)≈ m1
B(x)q

1
Z +m2

B(x)q
2
Z . (21d)

where uX , uT , wY , wZ and qi
X , qi

T , qi
BY

, qi
BZ

are displacement fields and DOF denotes the elongation, torsion and bending in
Y and Z directions respectively. Here, it is assumed that it is sufficient to capture the main shaft flexibility using one mode for
elongation and torsion, and two modes for bending. Hence, the shape matrix is obtained as:

ū≈




X
Y
Z




︸ ︷︷ ︸
ū0

+




m1
X (x) 0 Z(m1

B(x))
′ Z(m2

B(x))
′ −Y (m1

B(x))
′ −Y (m2

B(x))
′

0 −Zm1
T (x) m1

B(x) m2
B(x) 0 0

0 Y m1
T (x) 0 0 m1

B(x) m2
B(x)




︸ ︷︷ ︸
S(x)




qX
qT
q1

BY
q2

BY
q1

BZ
q2

BZ




︸ ︷︷ ︸
q f

(22)

where (•)′ denotes derivatives with respect to x.

2.6 Excitation
The imposed excitation to the system is defined next. The excitation from wind is represented by a 6-component time-series
consisting of the 3D force vector (in global frame) and the respective torque vector acting on the hub. In addition, there is a
countertorque from the generator and the prescribed motion of the bedplate.

2.6.1 Rotor loads

The force and torque imposed on the hub is given as external excitation forces to the system. The external virtual work by force
and torque components (Fhub, Thub) due to the wind loads at the hub (Xms = 0), is defined as follows:

δWF = FT δrhub = QF
R δRms +QF

θ δθms +QF
f δq f , (23a)

δWT = TT δΘhub = QM
R δRms +QM

θ δθms +QM
f δq f . (23b)

where Θhub = Θ(0) and rhub =
(
Rms +A(θms)(ū0

ms +S(0)q f )
)
. Note that the rotation matrix Θ including rigid rotations θ

and the flexible components related to the rotation, is defined as follows:

Θ(0) =


θms +A




uT (0)
−W ′Z(0)
W ′Y (0)




 (24)

The detailed derivation of the aforementioned definitions is presented in App. 6.5.

2.6.2 Generator excitation

The generator excitation Tgen is imposed as axial rotation at the main shaft end at X = L and is assumed to be proportional to
the difference between a desired ’set’ speed ωset

g and the actual rotational speed of the shaft ωg as

Tgen(t) =Cgen
(
ωset

g −ωm
)

(25)
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where ωm denotes the rotational speed at shaft end, and Cgen = 828.26 kNm s/ rad.

WT (L) = TT Θgen (26)

where Θgen = Θ(L).
and the corresponding virtual work done by WM(t) is:

δWM = QM
R δRms +QM

θ δθms +QM
f δq f = T T

genδΘgen (27)

The detailed derivation of the aforementioned definitions is presented in App. 6.6.

3 Model adaptation and verification

In the present study, the model is adapted to a multi-MW direct drive wind turbine. In order to test and verify the model under
different turbine operating conditions, a system simulation model of the whole turbine, including wind field, blade aerodynamic
loads, tower and control system was developed in ViDyn [27]. Simulations using this model were carried out for a number of
turbulent wind fields following the IEC standard. From these simulations, the forces acting on the hub, the generator speed and
bedplate motion were extracted and used as input in the mathematical model described in sec. 2 above. For model verification,
the forces at bearings as well as shaft motion were also extracted from the ViDyn simulations. The parameters and their nu-
merical values assumed in the mathematical model intended to be representative for a multi-Mw direct drive wind turbine are
given in Table 3.

Tab. 2 Structural parameters for the direct drive train

Parameter Symbol Value Unit
Total length of the main shaft in X axis L 6 m
Front bearing location in X axis L1 1 m
Rear bearing location in X axis L2 5 m
Bedplate height from the ground in Z axis h 80 m
Hub tilting angle from vertical Z axis θ H

y 4 deg
Main shaft center line height from the bedplate center Obp hms 0.8 m
Rotor hub mass m1 40000 kg
Generator rotor mass m2 30000 kg
Main shaft inertia mass mms 1000 kg
Rotor equivalent radius R1 7 m
Generator equivalent radius R2 0.5 m
Main shaft radius Rms 0.3258 m
Generator inertia with respect to X axis Jg 0.087 kg m2

Rotor inertia with respect to X axis Jr 0.095 kg m2

Main shaft bending stiffness EI 1000 MPa m4

Main shaft front bearing longitudinal stiffness in X direction KB
F
X 10000 MN/m

Main shaft front bearing longitudinal stiffness in Y direction KB
F
Y 3000 MN/m

Main shaft front bearing longitudinal stiffness in Z direction KB
F
Z 10000 MN/m

Main shaft rear bearing longitudinal stiffness in X direction KB
R
X 0 MN/m

Main shaft rear bearing longitudinal stiffness in Y direction KB
R
Y 3000 MN/m

Main shaft rear bearing longitudinal stiffness in Z direction KB
R
Z 10000 MN/m

Main shaft bearings longitudinal damping ratio ζ 0.01 sec

3.1 The full model and simplified model simulation responses
As discussed earlier in sec. 2.1, the constructed mathematical model includes both rigid DOF (R and θ ), and flexible DOF (q f ).
To compare the system dynamic response of a full mathematical model (including all aforementioned DOF) and a simplified
model (considering only the rigid DOF), the hub and generator deflection time histories are evaluated as shown in Fig. 5. As
can be seen, there is a strong correspondence between the two models, thus the simplified model response is quite close to the
full model.
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mean wind speed of 11 m/s
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As demonstrated in Fig. 4, it is noted that in the elongation mode, the range for qX is negligible compared to the other
flexible DOF. This is somehow expectable, since the elongation modes have very minor effects in the system response here. It
is also noted that the second modes in both bending DOF (qBy2 and qBz2) have insignificant range compared to the first modes
(qBy1 and qBz1), since the dominant capture in the motion is abstracted mostly in the first modes. Moreover, the bending modes
in Y (q1,2

BY
) have similar behavior to Z (q1,2

BZ
), since they have the same mode shapes. High frequency behavior (especially in

q2
BY,Z

) are seen in flexible DOF which could be ignored. Also the range of the behavior is generally small in these DOF.

The deflection fields at the rotor hub (X = 0) and the generator (X = L) are shown in both full and simplified models.
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Fig. 5 The deflection fields at generator (up) and rotor hub (down), at 11 m/s, full mathematical model ———, and simplified
model ———

3.2 Model verification
The current study considers several operational scenarios within a wind turbine community such as normal operation (with
different wind speeds), turbulent cases, vertical inclination case, to evaluate the system dynamic responses in each scenario.

The system response is verified against the ViDyn model in terms of the deflection at the rotor hub and the generator (the
endpoints of the main shaft), the front and rear bearing forces. Theses responses are shown for 3 different operational scenarios,
corresponding to a turbine operating normally at mean wind speeds 6, 11 and 18 m/s, respectively (turbulence intensity 0.12).
In Figures Fig. 6- 11. namely ”Normal operation” at different wind speeds ([6,11,18] m/s).
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• Normal operation at mean wind speed 6 m/s (OS1):
For the operational scenario OS1, the system response in both the mathematical model and the ViDyn simulation model
is illustrated in terms of deflections at the hub and the generator (Fig. 6), and the front and rear bearing forces in 3
directions (Fig. 7).
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Fig. 6 The deflection fields at generator (up) and rotor hub (down), in OS1 (6 m/s), Math ———, and ViDyn ——— models
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Fig. 7 The bearing forces in rear (up) and front (down), in OS1 (6 m/s), Math ———, and ViDyn ——— models
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• Normal operation at mean wind speed 11 m/s (OS2):
For the operational scenario OS2, the system response in both the mathematical model and the ViDyn simulation model
is illustrated in terms of deflections at the hub and the generator (Fig. 8), the front and rear bearing forces in 3 directions
(Fig. 9).
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Fig. 8 The deflection fields at generator (up) and rotor hub (down), in OS2 (11 m/s), Math ———, and ViDyn ——— models
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Fig. 9 The bearing forces in rear (up) and front (down), in OS2 (11 m/s), Math ———, and ViDyn ——— models
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• Normal operation at mean wind speed 18 m/s (OS3):
For the operational scenario OS3, the system response in both the mathematical model and the ViDyn simulation model
is illustrated in terms of deflections at the hub and the generator (Fig. 10), the front and rear bearing forces in 3 directions
(Fig. 11).
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Fig. 10 The deflection fields at generator (up) and rotor hub (down), in OS3 (18 m/s), Math ———, and ViDyn ——— models
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Fig. 11 The rear (left) and front (right) bearing forces, in OS3 (18 m/s), Math ———, and ViDyn ——— models
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Comparing the time domain results of the developed mathematical model and the ViDyn simulation, the two models were
observed to correspond substantially. Thus, the mathematical simulation model is capable of capturing the dynamic response of
the system to an acceptable level of accuracy in different operational scenarios. It should be noted that the mathematical model
includes the hub and the generator deflections in X direction, while in Vidyn this output of the system is not measured.

3.2.1 Objective functions

In order to survey a large number of different operations, objective functions can be defined in order to numerically quantify
the system response. Depending on the specific application in mind, different objectives can be constructed. In this study, the
following four objective functions are chosen:

• [OF1, OF2]
RMS values of tip deflection at the hub and at the generator:
The tip deflection is assessed in order to evaluate and quantify the motion of the hub and the generator. To this end,
the deflection filed for the quasi-static solution with constant wind speed in all time domains is gathered (•st ), and is
subtracted from the original deflection field for each specific wind speed. The definition of the ultimate deflection field
is presented as follows:

R =

√
(X−Xst)

2 +(Y −Yst)
2 +(Z−Zst)

2 (28)

where Xst , Yst , and Zst are the quasi-static equilibrium solutions for each specific mean wind speed. The static solution
shows that for all cases there is a small increase in Zst while increasing the wind speed. Xst and Yst show no changes with
wind speed.

• [OF3, OF4]
Bearing fatigue life index corresponding to the loads in the front and rear bearings:
The fatigue criteria used are based on the Palmgren-Miller rule, where the bearing forces lead to the damage index
corresponding to the bearing fatigue estimation. The equivalent fatigue load P is calculated based on the contribution of
the radial forces and axial forces:

P = A1Fr +A2FX = A1

√
FY

B
2
+FZ

B
2
+ A2FX

B (29)

where A1 = 2.5 and A2 = 3.7 are chosen for spherical roller bearings [29]. Calculating a time-history of bearing forces
from the mathematical model, the damage index DI rate is computed using the Palmgren-Miner rule as:

DI =
1

Tsim

Nrev

∑
i=1

1
Li
, (30a)

Li = a1a2︸︷︷︸
1

a3(Pi)

(
C
Pi

)P

. (30b)

where Tsim is the simulation time (600 sec for OS1−3), Nrev is the number of revolutions during the simulation, Li is the
L10 - life associated with an equivalent load P (Eq. (29)) obtained from the bearing-specific combination of axial and
radial forces where A1, A2, a1 a2 C, P are parameters, and a3(•) is a function specified by the bearing design [30].

Of course, this is a rather crude measure of bearing damage and excludes several other mechanisms leading to failures in
bearings [31].
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The following figure illustrates the response of both mathematical and ViDyn models in terms of equivalent radial deflection
and equivalent bearing force, defined in Eq. (28) and Eq. (29), respectively.
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Fig. 12 The equivalent radius (up) in the hub (left) and the generator (right) locations, and the equivalent bearing forces (below)
in front (left) and rear bearings (right), in a normal operational scenario at mean wind speed OS2 (11 m/s), Math ———, and
ViDyn ——— models

To estimate the agreements between mathematical (full and simplified) model with the ViDyn model, the time domain
values presented in Fig. 12, namely the equivalent radial deflections at the hub and the generator, as well as the front and rear
bearing forces, have been used to calculate the radial deflections (Fig. 13), and the bearings damage indices DI (Fig. 14),
respectively.
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The comparison between the full and simplified models versus the ViDyn model has been illustrated in terms of the com-
puted objective functions in Figs. 13- 14.
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Fig. 13 The scaled radial deflection in the rotor hub (left) and the generator (right), for full (———) and simplified (———)
mathematical models, and ViDyn model (———) in all operational scenarios (OS1−3), Rmax is the maximum value of the radial
deflection encountered in all studied scenarios.
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Fig. 14 The scaled damage index in the front (left) and rear (right) bearings, for full (———) and simplified (———)
mathematical models, and ViDyn model (———) in all operational scenarios (OS1−3), DImax is the maximum value of bearing
damage encountered in all studied scenarios.
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As seen the mathematical response prediction, in terms of shaft deflection at the generator and the hub, as well as damage
index in bearings, there is quite good agreement with the ViDyn model. The damage indices in both the full and simplified
mathematical models are also quite similar, in particular with the bearing forces, which is understandable since the flexibility
of the main shaft does not directly affect the bearing forces.

As demonstrated in Figs. 13- 14, the tip deflection differences in both the full and simplified models are insignificant
compared to the minimum radius in the ViDyn model ([0.6, 1.6, 2.5] mm) at 3 different wind speeds. The tip deflection in
the vertical direction is larger than in the lateral deflection, and thus dominates the output function.

4 System response under different wind conditions

In this section, the system response quantified by the objective functions is studied under different wind conditions, where the
effect of wind speed, turbulence intensity and incoming wind vertical inclination is reported. For each specific wind speed,
Nreal = 20 wind realization samples are studied. The wind fields for a specific wind speed are obtained from random realiza-
tions based on the Kaimal spectra as described in the standard IEC-61400 [33] characterized by turbulence intensity factor Ire f .
The following cases are studied:

• Turbulence intensity factor Ire f = [0.05, 0.12, 0.20] for wind speeds [5, 6, ..., 20] m/s, each for Nreal (= 20) different
wind realization, The results are reported in Fig. 16 - 18.

• Vertical inclinations α = [0, 10, 20]◦ for Nreal (= 20) different wind realization, for wind speeds [5, 6, ..., 20] m/s
and different turbulence intensity factor. The results are shown in Fig. 19 - 22.

The turbine system model has been adjusted to avoid cut-out due to high wind or large yaw forces which otherwise occur at
the higher wind speeds. Note that the damage and deflection functions in Fig. 16- 22 are scaled with respect to DImax (maximum
DI value encountered in the studied scenarios), and Rmax (maximum R value encountered in the studied scenarios).

17



• Wind scenarios in different turbulence intensity factors Ire f = [0.05, 0.12, 0.20], for 20 different wind realizations, for
wind speeds [5, 6, ..., 20] m/s.
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Fig. 15 The scaled damage index DI in the mathematical model in front (above) and rear (below) bearings for the turbulence
intensity factors 1 (left), 2 (middle), and 3 (right)
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Fig. 16 The scaled damage index DI in the mathematical model in front (left) and rear (right) bearings, for different turbulence
intensity factors Ire f = [0.05, 0.12, 0.20]
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For the tip deflection radius in the hub and the generator the same set of simulations has been performed and the results
are shown below (Fig. 17- 18):
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Fig. 17 The scaled tip deflection radius R in the mathematical model in the hub (above) and the generator (below), for the
turbulence intensity factors 1 (left), 2 (middle), and 3 (right)
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Fig. 18 The scaled tip deflection radius R in the mathematical model in the hub (left) and the generator (right), for different
turbulence intensity factors Ire f = [0.05, 0.12, 0.20]
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• Wind scenarios in different wind vertical inclinations α = [0, 10, 20]◦, for 20 different wind realizations, for wind
speeds [5, 6, ..., 20] m/s and different turbulence intensity factors.
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Fig. 19 The scaled damage index DI in the mathematical model in front (above) and rear (below) bearings for the vertical
inclination angles 0◦ (left), 10◦ (middle), and 20◦ (right)
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Fig. 20 The scaled damage index DI in the mathematical model in front (left) and rear (right) bearings, for different vertical
inclination angles [0, 10, 20]◦
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Fig. 21 The scaled tip deflection R in the mathematical model in the hub (above) and the generator (below), for the vertical
inclination angles 0◦ (left), 10◦ (middle), and 20◦ (right)
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Fig. 22 The scaled tip deflection radius R in the mathematical model in the hub (left) and the generator (right), for different
vertical inclination angles [0, 10, 20]◦
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As can be seen in Figs 15 and 20, the largest damage index rate for the front bearing occurs at 11 m/s in all operational
scenarios, which is the region where rotor blade pitch control starts. The pitch control reduces the axial thrust load, and
consequently, the equivalent load P. For the rear bearing, the mean damage index rate and variability increase accordingly with
increased mean wind speed. It has been seen that for each wind speed, both a higher turbulence intensity factor and vertical
inclination angle cause more damage in both bearings. However, in Fig. 20, the damage rate in the front main bearing above 11
m/s is decreased by increasing vertical inclination. The radial deflections at the hub and the generator increase for higher wind
speeds, when the turbulence intensity factor or the vertical inclination angle is increased (Figs. 18, 22). This is in some ways
to be expected, since with higher turbulence factor and vertical inclination angle, the wind turbine experiences more extreme
loads, and ultimately higher deflection ranges at the hub and generator. In higher turbulence cases as well as inclination angles,
the range of measured outputs is increased, especially for higher wind speeds, which appears reasonable as the turbulence and
effect of inclination scales with wind speed. It is noted that Figs. 15, 17, 19, 21, also illustrate the standard deviation for each
scenario separately.

5 Conclusions and outlook

In this paper, a mathematical model for a direct drive train wind turbine was developed. The intended use of the developed
model is to evaluate drive train performance from measured blade root forces and moments. The model was shown to agree
well with the turbine system simulation tool ViDyn in terms of bearing forces and deflection at main shaft ends. The developed
mathematical model was further used to quantify drive train performance under varying wind speed, turbulence and vertical
inclination of incoming wind. This quantification was performed in terms of objective functions measuring a representative
value of shaft deflection at hub and generator, as well as bearing forces (in terms of fatigue index). The results are in agreement
with other studies and give further confidence in the model.

From the present study of a direct drive wind turbine, the following was observed:

• The predicted bearing forces were almost identical considering the main shaft as either a rigid or a flexible body, con-
cluding that shaft flexibility has little effect on bearing fatigue.

• The objective functions displayed an increase in variation between wind speed realizations for increased wind speed,
meaning that there is a much larger degree of uncertainty in predicted drive train behavior at higher wind speeds.

• The shaft axial flexibility was shown to have a negligible effect on the drive train performance, and can be skipped
(which, due to its high frequency, saves substantial computational time)

Proposals for further studies include

• A study of extreme and transient events, such as start-up, shut-down, grid faults, etc. However, such a study would
require a more careful model of the generator, in particular separating the generator stator and rotor into separate bodies
with inertia.

• Additional cases with respect to wind parameters such as turbulence characteristics should be explored, as well as other
conditions (start-up and shut-downs, extreme gust with direction change, ice on blades, etc.). One example could be the
scenario with wakes in the wind field that may appear randomly in the swept area and how these affect the objective
functions.

• Apply global sensitivity analysis to the developed multibody dynamic model, in order to assess the sensitivity of input
structural and excitation parameters to the objective functions. For instance, since many of the structural parameters
come with a large level of uncertainty (e.g. bearing stiffness), it is of interest to see how this uncertainty carries over to
objective functions.

• Considering the front main bearing, it seems that wind speeds around the start of pitching require most attention, whereas
for the rear main bearing it is not as obvious, as high wind speeds are significantly less frequent.

• If to adopt the present approach to indirect drive turbine, additional objectives should be studied, in particular with respect
to gearbox life.
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6 Appendix

The following section contains the detailed derivation of governing equation within the developed mathematical model of the
direct drive wind turbine based on floating reference frame. The section includes the mass matrix derivation and arguments
(sec. 6.1), derivation of elastic forces (sec. 6.2), the damping coefficients (sec. 6.3), the bearing forces (sec. 6.4), the wind
loads (sec. 6.5), the generator loads (sec. 6.6), derivation of the quadratic velocity vector (sec. 6.7).

6.1 Inertia of deformable bodies
This section contains a detailed formulation of the mass matrix and quadratic velocity vector. The mass matrix M can be written
in a partitioned form as

M =




mRR mRθ mR f
mθθ mθ fSym m f f


 (31)

where the mass matrix arguments are defined as followed:

mi
RR =

∫

V i
ρ iIdV i =




mi 0 0
0 mi 0
0 0 mi


= mI≈

n j

∑
j=1

mi jI, (32a)

mi
Rθ =

∫

V i
ρ iBidV i =−

∫

V i
ρ iAi ˜̄uiḠidV i =−Ai

[∫

V i
ρ i ˜̄uidV i

]

︸ ︷︷ ︸
˜̄S

i

Ḡi ≈
n j

∑
j=1

mi jBi j T , (32b)

mi
R f = Ai

∫

V i
ρ iSidV i ≈

n j

∑
j=1

mi jI≈
n j

∑
j=1

mi jNi j T Ai T , (32c)

mi
θθ =

∫

V i
ρ iḠi T ˜̄ui T ˜̄uiḠidV i = Ḡi T

[∫

V i
ρ i ˜̄ui T ˜̄uidV i

]

︸ ︷︷ ︸
˜̄I
i
θθ

Ḡi ≈
n j

∑
j=1

mi jBi j T Bi j, (32d)

mi
θ f =

∫

V i
ρ iB̄i T AiSidV i =−

∫

V i
ρ iḠi T ˜̄ui T Ai T AiSidV i = Ḡi T

∫

V i
ρ i ˜̄uiSidV i

︸ ︷︷ ︸
˜̄I
i
θ f

≈
n j

∑
j=1

mi jNi j T Ai T Bi j, (32e)

mi
f f =

∫

V i
ρ iSiT SidV i = Si

11 +Si
22 +Si

33 ≈
n j

∑
j=1

mi jNi j T Ni j. (32f)

Here, i denotes the bodies in the system structure containing the main shaft, generator and hub at both ends.
Note that •̃ is skew symmetric matrix (•̃= •−•T ).

The definition of the A matrix:

AT = RX (φ)RY (θ)RZ(ψ) (33)

where Ri s are rotational matrices around different axes.
where the three angles φ , θ , and ψ are the Euler angles. The matrix A in Eq. 33 is the transformation matrix expressed in terms
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of Euler angles.

Moreover, Bi = Bi(θ i,qi
f ) is defined as:

Bi =

[
∂

∂θ i
k
(Aiūi)

]
=−Ai ˜̄uiḠi (34)

where k = 1, . . . ,nk. nk is total number of rotational coordinates of the reference of body i.

Following up mθθ derivation, ˜̄I
i
θθ represents the inertia tensor of the deformable body i and is defined as follows:

˜̄I
i
θθ =

∫

V i
ρ i ˜̄ui T ˜̄uidV i (35)

Noting that ˜̄ui T =− ˜̄u the following holds for ˜̄I
i
θθ :

˜̄I
i
θθ =

∫

V i
ρ i




(ūi
2)

2
+(ūi

3)
2 −ūi

2ūi
1 −ūi

3ūi
1

(ūi
1)

2
+(ūi

3)
2 −ūi

3ūi
2Sym

(ūi
1)

2
+(ūi

2)
2


dV i (36)

Following up mθ f derivation, ˜̄I
i
θ f could be defined as follows:

˜̄I
i
θ f =

∫

V i
ρ i




qi
f

T (Si
2

T Si
3−Si

3
T Si

2)

qi
f

T (Si
3

T Si
1−Si

1
T Si

3)

qi
f

T (Si
1

T Si
2−Si

2
T Si

1)


dV i +

∫

V i
ρ i




(xi
2Si

3− xi
3Si

2)
(xi

3Si
1− xi

1Si
3)

(xi
1Si

2− xi
2Si

1)


dV i (37)

Note that G and A are not space-dependent and thus could be extracted from the integral. The definition for transformation
matrix A is based on Euler angles which are widely used and it is a rotation of an angle φ about the Xi

1 axis, followed b rotation
θ about the Xi

2 axis, followed b rotation ψ about the Xi
3 axis. Consequently, the definition for the Ḡ matrix, which is dependent

of the generalized rotational parameters would be as follows:

Ḡ =




cosθ cosψ sinψ 0
−cosθ sinψ cosψ 0

sinθ 0 1


 (38)

6.2 Elastic forces components
The stiffness matrix associated with the elastic coordinates of the main shaft is presented as follows:

Kms
f f =

∫ l

0
(DS)T E DS dx (39)

where the stiffness matrix is defined as follows:

E =




EA 0 0 0
0 GJ 0 0
0 0 EIy 0
0 0 0 EIz


 (40)

The DS matrix represents the higher derivations of the shape function S defined in Eq. (22) and is:

DS(x) =




(m1
X (x))

′ 0 0 0 0 0
0 (m1

T (x))
′ 0 0 0 0

0 0 (m1
B(x))

′′
(m2

B(x))
′′ 0 0

0 0 0 0 (m1
B(x))

′′
(m2

B(x))
′′


 (41)
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The flexible parts of the mass matrix M f f , the stiffness matrix K f f , and the damping matrix C f f components could be
defined as follows:

M f f = diag(Mx
f f , Mt

f f , Mb
f f ), (42a)

K f f = diag(Kx
f f , Kt

f f , Kb
f f ), (42b)

C f f = diag(Cx, Ct , Cb). (42c)

The arguments of the damping matrix C f f are derived and defined in Eq.(43a)-(44b).

6.3 Damping coefficients (Rayleigh damping factor)
Upon imposing the Rayleigh damping factor [25, 26], the corresponding damping coefficient for the flexibility DOF is computed
as follows:

Cb = ηMb
f f +δKb

f f , (43a)

Cx = 2ζ
√

Kx
f f Mx

f f , (43b)

Ct = 2ζ
√

Kt
f f Mt

f f . (43c)

where Cb, Cx and Ct are the contribution of bending, elongation and torsional modes within the flexible DOF into the system
damping. Note that δ , and η are the Rayleigh damping coefficients, and are defined as follows:

δ = 2ζ (ω1 +ω2), (44a)

η = 2ζ
ω1ω2

(ω1 +ω2)
. (44b)

where ωi is the eigenfrequencies of the system.
Finally, for C f f the following relation holds

C f f = diag(Cx, Ct , Cb) (45)

6.4 Bearing forces
This section addresses the forces appearing in the bearings mounted along the main shaft, attaching the main shaft (•ms) to the
bedplate (•bp). In this section, the derivation of bearing forces is presented. First, the front and rear bearing locations with
respect to the bedplate are given in terms of qms as follows:

rF
bp = Rbp +A(θbp) ūF

bp, (46a)

rR
bp = Rbp +A(θbp) ūR

bp. (46b)

where the locations of the front and rear bearings in the bedplate coordinate system are ūF
bp = [−Lm , 0 , hms]

T and
ūR

bp = [Lm , 0 , hms]
T , respectively. Also, Lm = 1

2 (L1 + L2) is the middle point of the bedplate (position of yaw bearing).
Correspondingly, the bearing location with respect to the main shaft is:

rF
ms = Rms +A(θms) ūF

ms(L1), (47a)

rR
ms = Rms +A(θms) ūR

ms(L2). (47b)

In case S(L1) = 0, the expression ūF
ms = [L1 , 0 , 0]T holds. The relative position of an attached point in main shaft with

respect to the attached point in the bedplate is expressed in Eq. (15).
By defining the spring length between two bodies as a vector in 3 coordinates (here main shaft and bearing housing intercon-
nected to the bedplate) and its time derivative, the force along the spring-damper element is defined as follows:

F = Ki
BH l+Ci

BH l̇ (48)

25



where stiffness Ki
BH and damping Ki

BH are defined as follows:

Ki
BH = diag(Ki

BHX
, Ki

BHY
, Ki

BHZ
), (49a)

Ci
BH = diag(Ci

BHX
, Ci

BHY
, Ci

BHZ
). (49b)

and for the displacement vector we have:
l = [lX , lY , lZ ]

T (50)

The generalized force vector for body i contributing the bearing forces to the dynamics of the system could be defined as
follows:

Qi =
[
(Qi)

T
R , (Qi)

T
θ , (Qi)

T
f

]T
(51)

where the corresponding arguments are determined below:

(Q)R
T =−FT , (52a)

(Q)θ
T =−FT Bi, (52b)

(Q) f
T =−FT AS. (52c)

6.5 Wind loads
The more detailed derivation related to the sec. 2.6.1 is presented here. The force and moment components of the wind loads
are defined as follows:

QF
R = FT , (53a)

QF
θ = FT B, (53b)

QF
f = FT AS(0). (53c)

QM
R = 0, (54a)

QM
θ = TT +TT Bhub, (54b)

QM
f = TT A




0 m1
T (0) 0 0 0 0

0 0 0 0 −(m1
B(0))

′ −(m2
B(0))

′

0 0 (m1
B(0))

′
(m2

B(0))
′ 0 0


 . (54c)

where Bhub =−A ˜̄uhubḠ (see Eq. (34)).
Moreover, based on Eq.(22), the value for the shape function at the hub (Shub = S(0)) is defined as follows:

S(0) =




m1
X (0) 0 0 0 0 0
0 0 m1

B(0) m2
B(0) 0 0

0 0 0 0 m1
B(0) m2

B(0)


 (55)

Finally, the contribution of wind excitation could be defined after specifying Qwind components corresponding to the forces and
the moments:

(Qw)T
• = QF

• +QM
• (56)

where •= {R,θ , f}. Finally, the external load due to the wind loads will be:

Qw
ext =

[
(Qw)T

R , (Qw)T
θ , (Qw)T

f

]T
(57)
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6.6 Generator loads
The more detailed derivation related to the sec. 2.6.2 is presented here. The force and moment components of the wind loads
are defined as follows:

QM
R = 0, (58a)

QM
θ = TT +TT Bgen, (58b)

QM
f = TT A




0 m1
T (L) 0 0 0 0

0 0 0 0 −(m1
B(L))

′ −(m2
B(L))

′

0 0 (m1
B(L))

′
(m2

B(L))
′ 0 0


 . (58c)

where Bgen =−A ˜̄ugenḠ (see Eq. (34)).

Finally, the external load contributed from the generator will be:

Qw
ext =

[
(QG)

T
R , (QG)

T
θ , (QG)

T
f

]T
(59)

6.7 Quadratic velocity force vector
The quadratic velocity vector consists of centrifugal, gyroscopic, and Coriolis force components, which are considered as
velocity-dependent inertia forces. One can also obtain this vector by using the virtual work of the inertia forces. The full
derivation of the arguments in quadratic velocity vector is presented in [22], which is based on Lagranges equations. The
velocity force vector is updated in each time step of the numerical integration procedure. Deriving closed-form expression for
the quadratic velocity force vector in terms of generalized vector q is shown as follows:

QV =
[
(QV )

T
R , (QV )

T
θ , (QV )

T
f

]T
(60)

where QV is the quadratic velocity vector which contains the gyroscopic, centrifugal, and Coriolis force components.
The subvectors (QV )R and (QV )θ are the velocity-dependent inertia forces associated, respectively, with the translational and
rotational coordinates of the selected body coordinate system, and (QV ) f is the vector of velocity-dependent inertia forces
associated with the elastic generalized coordinates of the body.

Subvector (QV )R, (QV )θ , (QV ) f

(QV )R = Ȧ
[∫

V i
ρ ˜̄udV i

]
ω̄ +A

[∫

V i
ρ ˙̄̃udV i

]
ω̄ +A

[∫

V i
ρ ˜̄udV i

]
˙̄Gθ̇ − Ȧ

[∫

V i
ρ ˙̄udV i

]
, (61a)

(QV )θ =−ḠT ˜̄ω
[∫

V i
ρ ˜̄uT ˜̄udV i

]
ω̄−2ḠT

[∫

V i
ρ ˜̄uT ˙̄̃udV i

]
ω̄− ḠT

[∫

V i
ρ ˜̄uT ˜̄udV i

]
˙̄Gθ̇ , (61b)

(QV ) f =

[∫

V i
ρST ˜̄ω ˜̄udV i

]
ω̄−2

[∫

V i
ρST ˙̄̃uT dV i

]
ω̄−

[∫

V i
ρST ˜̄uT dV i

]
˙̄Gθ̇ . (61c)
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