
Gravitational deformation of ring-focus antennas for VGOS: first
investigations at the Onsala twin telescopes project

Downloaded from: https://research.chalmers.se, 2020-01-17 16:07 UTC

Citation for the original published paper (version of record):
Lösler, M., Haas, R., Eschelbach, C. et al (2019)
Gravitational deformation of ring-focus antennas for VGOS: first investigations at the Onsala
twin telescopes project
Journal of Geodesy
http://dx.doi.org/10.1007/s00190-019-01302-5

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Journal of Geodesy
https://doi.org/10.1007/s00190-019-01302-5

ORIG INAL ART ICLE

Gravitational deformation of ring-focus antennas for VGOS: first
investigations at the Onsala twin telescopes project

Michael Lösler1 · Rüdiger Haas2 · Cornelia Eschelbach1 · Ansgar Greiwe3

Received: 12 December 2018 / Accepted: 16 September 2019
© The Author(s) 2019

Abstract
The receiving properties of radio telescopes used in geodetic and astrometric very long baseline interferometry (VLBI)
depend on the surface quality and stability of the main reflector. Deformations of the main reflector as well as changes in
the sub-reflector position affect the geometrical ray path length significantly. The deformation pattern and its impact on the
VLBI results of conventional radio telescopes have been studied by several research groups using holography, laser tracker,
close-range photogrammetry and laser scanner methods. Signal path variations (SPV) of up to 1cm were reported, which
cause, when unaccounted for, systematic biases of the estimated vertical positions of the radio telescopes in the geodetic
VLBI analysis and potentially even affect the estimated scale of derived global geodetic reference frames. As a result of the
realization of the VLBI 2010 agenda, the geodetic VLBI network is currently extended by several new radio telescopes, which
are of a more compact and stiffer design and are able to move faster than conventional radio telescopes. These new telescopes
will form the backbone of the next generation geodetic VLBI system, often referred to as VGOS (VLBI Global Observing
System). In this investigation, for the first time the deformation pattern of this new generation of radio telescopes for VGOS
is studied. ONSA13NE, one of the Onsala twin telescopes at the Onsala Space Observatory, was observed in several elevation
angles using close-range photogrammetry. In general, these methods require a crane for preparing the reflector as well as for
the data collection. To reduce the observation time and the technical effort during the measurement process, an unmanned
aircraft system (UAS) was used for the first time. Using this system, the measurement campaign per elevation angle took less
than 30min. The collected data were used to model the geometrical ray path and its variations. Depending on the distance
from the optical axis, the ray path length varies in a range of about± 1mm. To combine the ray path variations, an illumination
function was introduced as weighting function. The resulting total SPV is about − 0.5 mm. A simple elevation-dependent
SPV model is presented that can easily be used and implemented in VLBI data analysis software packages to correct for
gravitational deformation in VGOS radio telescopes. The uncertainty is almost 200µm (2σ ) and is derived by Monte Carlo
simulations applied to the entire analysis process.
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1 Introduction

Radio telescopes are large technical facilities, that are, among
other possible applications such as radio astronomy and
astrophysics, deep space tracking or astrometry, used as
space geodetic instruments for geodetic very long baseline
interferometry (VLBI) observations. Due to various effects,
the geometry of these space geodetic instruments can devi-
ate significantly from their ideal geometric representation.
These deviations restrict the reliability of the derived geode-
tic VLBI products, e.g., the estimated station coordinates.
For instance, variations of the environmental temperature
cause thermal expansion of the telescope structure (e.g., Haas
et al. 1999), thus influencing the dimension of the instru-
ments. Automated one-dimensionalmeasuring systems yield
seasonal variations of the vertical component of several mil-
limeters caused by changes in temperature (e.g., Johansson
et al. 1996; Zernecke 1999). According to Wresnik et al.
(2007), the thermal expansion can be modeled, if represen-
tative expansion coefficients of the structure are known and
the relevant temperature is recorded.Moreover, strategies for
continual estimation of the geometrical reference point have
been derived (e.g., Lösler 2009; Kallio and Poutanen 2012;
Ning et al. 2015; Lösler et al. 2018a) and allow for monitor-
ing the spatial position of the telescope. Mähler et al. (2018)
recently report seasonal horizontal variations of about 0.2–
0.4mm. Neidhardt et al. (2010) derived daily variations of
the telescope tower caused by the path of the Sun and corre-
sponding unidirectional warming.

Besides external influences, the geometry of the main
reflector surface may deform by the reflector’s structural
weight. During a geodetic VLBI observation session, a radio
telescope points sequentially to several radio sources in
different directions. Depending on the pointing direction,
different structural loads may occur. For large conventional
radio telescopes, variations of the focal length between sev-
eral millimeters up to the centimeter level have been detected
(e.g., Sarti et al. 2009;Nothnagel et al. 2013; Bergstrand et al.
2019). TheGlobalGeodeticObserving System (GGOS) calls
for high-accuracy station positions at the millimeter level
for deriving a reliable global geodetic reference frame (e.g.,
Rothacher et al. 2009). Deviations in the signal path affect
the accuracy of VLBI and result in systematic biases of the
estimated vertical positions of the radio telescopes and, there-
fore, potentially even affect the estimated scale of derived
global geodetic reference frames such as the International
Terrestrial Reference Frame (ITRF) (cf. Sarti et al. 2011).
To reach the GGOS requirements, these signal path varia-
tions (SPV) should be taken into account in the analysis of
geodetic VLBI data. For that reason, the VLBI community
has been encouraged to include structural gravitational defor-
mation models for VLBI radio telescopes for the upcoming
ITRF2020 (cf. Altamimi et al. 2018). Therefore, the Interna-

tional VLBI Service for Geodesy and Astrometry as well as
the IERS Working Group on Site Survey and Co-location
focus on measuring and modeling gravitational deforma-
tions for as many VLBI radio telescopes as possible (cf.
Bergstrand 2018; Gross and Herring 2018). An important
point in this context is that the telescopes in general show
individual deformation behavior (cf. Sarti et al. 2009; Noth-
nagel et al. 2013; Bergstrand et al. 2019), and thus each type
of telescope has to be measured and modeled individually.

In the framework of the VLBI 2010 agenda (Niell et al.
2006), several new radio telescopes have been planned,
are under construction, or have already been installed. The
goal is to improve the existing network of the International
VLBI Service for Geodesy and Astrometry (e.g., Schlüter
and Behrend 2007; Nothnagel et al. 2017) and to reach the
accuracy requirements that are specified by GGOS. VGOS
radio telescopes are new generation VLBI instruments with
a more compact design, stiffer mechanical structure, and
faster drive systems than conventional radio telescopes. Usu-
ally, the diameter of the main reflector is about 12–13 m
(e.g., Haas 2013). So far, the deformation of the reflec-
tor system and its possible impact on the optical ray path
have not yet been investigated, except from finite element
analysis performed by the manufacturers. The investigation
presented in this manuscript focuses therefore on observa-
tions of the deformational behavior of a VGOS-specified
radio telescope, exemplified at the Onsala twin telescopes
(OTT) project of the Onsala Space Observatory (OSO). The
OTT are equipped with ring-focus paraboloids as the main
reflectors and rotational-symmetricGregorian sub-reflectors.
Often this kind of telescope type is referred simply to as ring-
focus telescope.

Section 2 discusses methods for measuring the main
reflector surface of VLBI radio telescopes in terms of spatial
restriction, expected uncertainties, and the accuracy require-
ments that shall be achieved. Moreover, the UAS-based data
collection and the data preparation are described. The math-
ematical model of the ring-focus paraboloid is derived in
Sect. 3. Similarities of this model to the simplified rota-
tionally symmetric paraboloid are highlighted. Section 4
introduces the applied SPVmodel of a ring-focus paraboloid.
The data analysis and the results are explained in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 Surfacemeasurement methods

The goal in the framework of reverse engineering is to derive
model-specific geometric parameters, e.g., dimension, cur-
vature or orientation, by measuring an object. To quantify
the parameters of the signal path of VLBI radio telescopes
and their possible variations, several measurement methods
with various limitations exist. The choice of the measure-
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ment method depends on the surrounding conditions, the
accuracy requirements, and the size of the expected deforma-
tions. The measurement effort increases, if the main reflector
is observed in several elevation angles, i.e., from 0◦ to 90◦.
For instance, the use of tactile observation methods such
as theodolite measurement systems or laser trackers is not
suitable because of the time-consuming single-point mea-
surement mode. Moreover, a stable platform is needed to
carry outmeasurements in several elevation positions. Close-
range photogrammetric methods usually require a crane for
mounting coded targets on the reflector surface and for the
data acquisition itself (e.g., Shankar et al. 2009; Süß et al.
2012). Furthermore, the spatial restrictions around the radio
telescope limit this method, especially if the radio telescope
is enclosed by a protecting radome like for the 20m telescope
at Onsala.

As an alternative to close-range photogrammetry, the
capability of terrestrial laser scanners as a targetless method
was investigated in recent years (e.g., Dutescu et al. 2009;
Sarti et al. 2009). Technical innovations and a deeper under-
standing of instrument-dependent systematic errors were
introduced to the measurement and analysis process in order
to achieve reliable results (e.g., Lichti 2007, 2010;Holst et al.
2017). The possible mounting points of the laser scanner are
limited by the construction parts of the radio telescope. In
general, a single position close to the sub-reflector is cho-
sen, which allows observing nearly the full reflector surface
and avoiding glancing intersections (cf. Holst et al. 2017;
Bergstrand et al. 2019).

The OTT are free-standing radio telescopes designed as
ring-focus paraboloids with fixed rotational-symmetric Gre-
gorian sub-reflectors (e.g., Haas 2013). The system focal
point is located close to the sub-reflector and enclosed inside
the receiver conewhere the feedhorn and receiver are located.
Due to shading effects of this construction, measurements
taken from a single position are incomplete. For this rea-
son, in case laser scanning should be performed, several laser
scanner positionswould be needed to achieve a complete 3D-
point cloud that covers the entire surface of themain reflector.

Photogrammetric methods on the other hand are unaf-
fected by such constructional restrictions, because the
observed points are derived from a large number of images
taken at different camera positions. Advantageous camera
positions induce additional reliable intersection conditions
during image processing. Moreover, the camera positions
vary without changing the radio telescope configuration.

As pointed out before, besides the limiting construc-
tional conditions, there are further aspects, i.e., the accuracy
requirements and the expected deformations. To reach the
VLBI 2010 goal of 1mm position accuracy, Petrachenko
et al. (2009) advise sub-millimeter for surface accuracy
and path length stability for VGOS-specified radio tele-
scopes. If these stability requirements cannot be fulfilled,

corresponding correction functions for compensating sig-
nal path variations are needed that can be applied in the
VLBI data processing. Due to the compact construction of
VGOS-specified radio telescopes, i.e., the diameter of the
main reflector is about 12–13 m, deformations of about
1mm are expected. For comparison, the reported SPV of
the conventional 100m radio telescope Effelsberg is about
1 cm (cf. Artz et al. 2014). Following the 3σ -rule of thumb
in geodesy and metrology, which states that the measure-
ment system should be at least three times better than the
expected deformations (cf. Koch 2007, p. 47), the measure-
ment method for VGOS-specified radio telescopes should be
on the level of 0.3mm. Optical methods such as close-range
photogrammetry or laser tracker systems fulfill this rule of
thumb (e.g., Baars 2007, p. 167f; Luhmann 2018, p. 696f)
but need a stable platform or a crane. To overcome the neces-
sity of a crane during the measurement process, we used an
unmanned aircraft system (UAS) in this investigation.

2.1 Photogrammetric measurements using UAS

A UAS consists of an unmanned aerial vehicle (UAV) and a
ground-based station for remote control. Usually, the UAV is
operated in a semiautomatic mode using a predefined flight
plan. The flight plan schedules the waypoints to be achieved,
the velocities of the UAV, the trigger points for the camera,
etc. Several onboard sensors such as an inertial measure-
ment unit (IMU), a global navigation satellite system (GNSS)
antenna/receiver, and amagnetometer are used for automated
orientation and positioning. Typically, critical flight phases
such as take off and landing as well as unforeseen deviations
from the flight plan have to be operated manually.

The time of flight of a UAV is restricted by the capac-
ity of its batteries and depends on the weight of the camera.
On the one hand, the use of a heavy weight, geometric sta-
bilized and calibrated photogrammetric camera yields more
reliable image measurements, but on the other hand, reduces
the possible flight time. This reduces the number of images
and, therefore, the redundancy of the observations as well
as the reliability of the adjusted coordinates. Thus, the pos-
sible accuracy benefit of such a calibrated photogrammetric
camera has to be balanced with respect to the possible oper-
ational time. In this campaign, the use of a lightweight 380g
consumer camera increases the flight time from 10 min to
at least 25min, allowing the acquisition of up to approxi-
mately 250 images. The used Sigma DP3Merrill is equipped
with a fixed 50mm medium-telephoto lens (equivalent to a
75 mm lens on a 35 mm Single Lens Reflex (SLR) camera)
and has an APS-C Sensor (16mm × 24mm) based on the
Foveon chip (e.g., Greiwe and Gehrke 2013a). This image
sensor captures full color information for each pixel in con-
trast to color filter arrays such as Bayer pattern, where each
element of the photodiode array is only sensitive for one
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Fig. 1 Differences in spectral information acquirement between
Foveon-based sensor (left) and color filter arrays such as Bayer pat-
tern (right) (Verhoeven 2010)

waveband. Using a Foveon chip, the full color is observed
without interpolations (e.g., Hubel et al. 2004; Verhoeven
2010). Figure 1 depicts the differences in acquired spectral
information between a Foveon-based sensor and a color fil-
ter array such as the Bayer pattern. As a result of this sensor
technique, the images have better micro-contrast compared
toBayer pattern sensorswhich leads to better imagemeasure-
ments, e.g., target detection (cf. Greiwe and Gehrke 2013b;
Meißner et al. 2017).

Photogrammetric measurement campaigns were carried
out two times from elevation 0◦ up to 90◦ using a step-size of
10◦, as well as once at 34◦. The latter was done since the tele-
scope manufacturer adjusted the reflector panels at this ele-
vation. For each elevation angle, the flight path consisted of
two centered flight lines crossing the center of the paraboloid
and two additional concentric spatial circles around the axis
of symmetry of the main reflector. The distance between the
geometrical reference point and the flight lines as well as the
inner circle is about 20 m. The distance of the outer circle is
about 25m. Both circles have different radii, i.e., rin = 6.5m
and rout = 11.5m. Figure 2 depicts the flight schedule of the
UAV for elevation angle 30◦, using the topocentric UTM sys-
tem. To avoid critical flight phases at lower elevation angles,
the altitude of waypoints was limited and, here, the outer cir-
cle was planed as shell shape. However, the reflector could be
captured even in this configuration by tilting the camera gim-
bal, since the camera was controlled and triggered remotely
by the pilot. The gimbal-mounted camera allowed to point
the camera nearly to the diametrical part of the main reflector
for each taken image. Thus, the sub-reflector was pictured in
every image. Due to the close distance to the telescope, each
image contained only a part of the main reflector surface. On
average, 40 coded targets were captured per image.

The main reflector was observed in 21 elevation angles by
single measurement campaigns. Each campaign was taken
during one flight. In total, 21 separate image blocks con-
taining about 200 images were recorded. To avoid varying
shading and illumination effects caused by the Sun, the tele-
scope was pointed to the north, sheltering a part of the UAV
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Fig. 2 The flight schedule of the UAV for elevation angle 30◦, consist-
ing of two flight lines as well as two concentric circles. The flight lines
as well as the circles are parallel to the XY -plane of the defined object
coordinate frame. The distance of the inner circle and the flight lines to
the reference point is about 20 m. The distance between the reference
point and the outer circle is about 25 m. The radii of the inner and the
outer circle are about 6.5 m and 11.5 m, respectively

Fig. 3 ONSA13NE during the UAV measurement campaign. The tele-
scope is equipped with photogrammetric targets, coordination cross at
the sub-reflector, and scale-bars located at the sub-reflector, the strut
elements, and at the rim of the main reflector. The UAV (HP-TS960)
carrying the photogrammetric camera is visible in the upper left corner
of the photo

flight path from wind. Unpredictable wind gusts led to about
25% of the images being blurred, so that for each campaign
at least 150 images remained for further processing.

Figure 3 depicts ONSA13NE that was equipped with 76
discrete black and white, non-reflecting 12-bit coded tar-
gets. The main reflector of ONSA13NE consists of 60 panels
mounted in three concentric rings, whereas the outer and the
middle rings have 24 panels each, the inner ring consists of
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12 panels. Sixty coded targets were glued at the outer parts
of the panels, i.e., one target per panel. To improve the dis-
tribution of the points, additionally 12 coded targets were
glued at the inner part of the panels of the inner ring close
to the receiver cone. Four coded targets were attached at the
sub-reflector. Moreover, a coordinate cross, which approxi-
mately defines the global datum of the resulting point sets by
six coded targets, was mounted close to the sub-reflector. As
shown in Fig. 2, the origin of the resulting global frame is
close to the sub-reflector, the Z -axis points approximately in
the direction of the symmetry axis of the main reflector, the
X -axis is approximately parallel to the elevation axis, and
the Y -axis is perpendicular to X and Z , respectively.

To transform the resulting point sets of the bundle adjust-
ment (see Sect. 2.2) into a metric system (cf. Luhmann 2018,
Ch. 7.1.5.2), six scale-bars with coded targets were attached.
The scale-bars aremade of carbon fiberwith a thermal expan-
sion coefficient of about γc = 10−7 K−1. Three scale-bars
were evenly distributed at the rim of the main reflector,
covering the measurement space in the XY -plane of the
image–block configuration defined by the coordinate cross.
To avoid block deformations in the Z -direction, two scale-
bars were mounted on the struts, and one at the sub-reflector.
To avoid possible unanticipated time-dependent effects and
to decorrelate the campaigns observed by equal elevation
angles, no direct repetition was carried out, cf. Table 1. The
photogrammetric camera, the Sigma DP3, was carried by the
hexacopter HP-TS960 (HEXAPILOTS) and appears in the
left upper corner of Fig. 3.

2.2 Data preparation

The well-known collinearity equations yield the functional
relation of the planar image coordinates ( x ′

i y′
i )

T and the
corresponding three-dimensional object coordinates Pi =(
Xi Yi Zi

)T
by (e.g., Luhmann 2018, Ch. 4.2.2)

x ′
i = x ′

0 − c
q11

(
Xi − X ′

0
) + q21

(
Yi − Y ′

0
) + q31

(
Zi − Z ′

0
)

q13
(
Xi − X ′

0
) + q23

(
Yi − Y ′

0
) + q33

(
Zi − Z ′

0
) + �x ′,

(1a)

y′
i = y′

0 − c
q12

(
Xi − X ′

0
) + q22

(
Yi − Y ′

0
) + q32

(
Zi − Z ′

0
)

q13
(
Xi − X ′

0
) + q23

(
Yi − Y ′

0
) + q33

(
Zi − Z ′

0
) + �y′.

(1b)

Here, the interior orientation parameters, which are usually
constant for all images of a photogrammetric bundle, are the
principal distance c, the principal point x ′

0, y
′
0 and the distor-

tion effect parameters �x ′, �y′, which compensate for the
radial–symmetric lens distortion and the decentering distor-
tion (e.g., Luhmann 2018, Ch. 3.3.2). The parameters of the
exterior orientation refer to the position ( X ′

0 Y ′
0 Z ′

0 )T and
the orientation Q of the camera w.r.t. the global reference
frame. Here,Q is the orthogonal rotation matrix, which ful-

Fig. 4 Schematic representation of an image–block configuration con-
sisting of three images which take two object points. The two object
points and the three camera positions are depicted by red circles and
diamonds, respectively. The six resulting planar coordinates are sym-
bolized by red squares

fills the conditions QTQ = QQT = I and QT = Q−1 (e.g.,
Nitschke and Knickmeyer 2000), having elements qk,l , i.e.,

Q =
⎛

⎝
q11 q12 q13
q21 q22 q23
q31 q32 q33

⎞

⎠ .

Whereas the coordinates of an object are uniquelymapped
on theplanar image coordinates byEq. (1) , the reconstruction
of object coordinates from planar image coordinates needs
two images picturing the same object. To increase the reli-
ability of the derived object coordinates, usually images are
taken from several camera positions and a bundle adjust-
ment is used to solve the resulting over-determined equation
system. Figure 4 illustrates the functional relation of the pla-
nar image coordinates and corresponding three-dimensional
object coordinates of an image–block configuration.

The recorded images of each single campaign were intro-
duced to a bundle adjustment using the AICON 3D Studio
software package. Besides the coded targets, natural circu-
lar targets at the telescope, e.g., screws, were detected by the
software. On average, more than 500 points were used during
the adjustment process. These natural targetswere introduced
only to improve the estimation of the interior and exterior ori-
entations during the bundle adjustment. For further analysis,
only coded targets were stored after the bundle adjustment.
Figure 5 shows the high number of image measurements per
coded target (between 13 and 136). The average value is
about 55 images per coded target. The variation in the num-
ber of image measurements per coded target results from the
environmental conditions (e.g., wind) during the flight of the
UAV and the flight configuration (flight lines and circles).
Coded targets, which are located closer to the center of the
main reflector, were more frequently measured than targets
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Fig. 5 Distribution of the coded targets per image. The number of
images is accumulated. The minimum number is colored in dark gray.
The average number of images per coded target is given by summing
the dark gray and the red bars. Accumulating all bars yields the maxi-
mum number of images per coded target. The minimum, maximum and
average are pictured by horizontal lines, respectively

at the rim (circular flights around the telescope). However,
each estimated position was derived from highly redundant
observations. Thus, a consecutive hypothesis test strategy
was applied (e.g., Lehmann and Lösler 2016) to evaluate the
reliability of the observed planar image coordinates and to
eliminate outliers during the bundle adjustment.

Consumer cameras such as the Sigma DP3 Merrill are
not geometrically stabilized. Turning off the camera after a
flight (to exchange the battery of the UAV) may change the
interior orientation of the camera. As a result, all images
that were acquired in an image–block configuration were
taken without turning off the camera, whichmeans they were
taken in one flight for each elevation angle. Additionally,
the interior orientation of the camera model, including the
principal distance, the coordinates of the principal point, the
radial–symmetric lens distortion and the decentering distor-
tion, were calibrated in situ, during the bundle adjustment
for each single campaign (e.g., Förstner and Wrobel 2016,
Ch. 15.5; Luhmann 2018, Ch. 4.4.2).

Each photogrammetric bundle was processed separately
as a free-network adjustment. The formal error of the coor-
dinate components of the coded target positions in the global
framewas about 10µmw.r.t. the datum.However, the formal
error does not take into account the limited accuracy of the
GNSS sensor, the unpredictable slight wind gusts, or differ-
ent illumination environments, which all affect the resulting
image–block configuration. Moreover, the in situ-derived
calibration parameters as well as the telescope tempera-
ture may slightly change during the flight campaigns. Based
on extensive additional experience with the measurement
system, more reliable uncertainties for the coordinate com-
ponents of the coded target positions were estimated to
be between 80 and 120µm w.r.t. the datum. These single-
point uncertainties are slightly larger than for high-precision
photogrammetric cameras (e.g., Subrahmanyan 2005; Baars
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Fig. 6 Recorded air temperature close to ONSA13NE is plotted in gray
color for the measuring period in August 2018. A red dot with error bars
(2σ ) depicts the average temperature of each campaign. The uncertain-
ties are derived by assuming a uniform distribution of the temperature
during each campaign

2007, p. 167f; Luhmann 2018, p. 696f) but fulfill the require-
ments for detecting the expected deformations.

The telescopemonument, i.e., the base and themechanical
structure of a radio telescope, is made of concrete and metal
parts which are affected by temperature changes (e.g., Haas
et al. 1999; Nothnagel 2009). In contrast to the thick struc-
tural elements of the monument, where the time between a
change in the air temperature and the corresponding expan-
sion is delayed by several hours, the construction parts of the
main reflector are thinner. Therefore, the time delay between
a temperature change and the corresponding expansion has
been assumed to be less than 30 min.

Figure 6 depicts the temperatures that were recorded close
to the telescope during the measurement period. A represen-
tative value for each campaign was derived by averaging the
temperature over the time span of the campaign and is plotted
as a red dot, see Table 1. The error bars indicate the 2σ (stan-
dard deviation) interval of the campaign temperature and are
derived by assuming a uniform distribution (e.g., JCGM100
2008), i.e.,

σ 2 = 1

12
(bmax − bmin)

2 . (2)

Here, bmin and bmax define the two boundaries of the distri-
bution and are selected accordingly to the recordedminimum
and maximum campaign temperatures.
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The variation in the campaign temperature is < 2K
but yields an expansion sensitivity of 20µm m−1 if γs =
10−5K−1 is used as the expansion coefficient of steel. In
accord with Artz et al. (2014), the estimated point sets of
each campaign are scaled uniformly to the reference temper-
ature1 T0 = 9 ◦C, even if a small delay may exist. In total,
21 point sets were prepared for evaluating possible changes
in the ray path of ONSA13NE.

3 Ring-focus paraboloid

The main reflector of most of the conventional radio tele-
scopes is designed as a rotationally symmetric paraboloid
(RSP). Depending on the radio telescope type, either the
sub-reflector or the receiver, which is located close to the
unique focal point of the RSP, will shade the main reflector
and result in a field of decreased intensity (cf. Cutler 1947).
Depending on the dimension of the main reflector, the shad-
ing effect may become significant. The new generation of
the so-called VGOS-specified radio telescopes is character-
ized by drive systems that allow high rotational velocities of
about 12◦ s−1 and 6◦ s−1 in azimuth and elevation, respec-
tively, and also by a small diameter of about 12–13 m for
the main reflector (e.g., Petrachenko et al. 2009). Due to the
small diameter of themain reflector, the lower signal strength
becomes significant if a RSP is used. For this reason, many
of the VGOS-specified radio telescopes are designed as rota-
tionally symmetric ring-focus paraboloids (RSRFP).

Figure 7 depicts a cross-sectional view of a RSRFP with
ray paths.Whereas a RSP focuses the rays into a unique focal
point, the RSRFP has an infinite number of focal points lying
on a spatial circle. Similarly, the unique apex of the RSP
becomes a circle in the RSRFP design. If the sub-reflector
is located behind the focal-ring, an elliptic torus reflects the
ray to the unique system focal point F0 (e.g., Milligan 2005,
Ch. 8–16). Such a configuration is known as Gregorian-type
radio telescope. The implicit equation of an elliptic torus in
canonical form reads

ζ 2
1

A2
1

+ ζ 2
2

A2
2

= 1, (3)

where

ζ1 = cos θ

(√
x2i + y2i − R

)
+ sin θ zi , (4)

ζ2 = cos θ zi − sin θ

(√
x2i + y2i − R

)
. (5)

1 http://vlbi.geod.uni-bonn.de/Analysis/Thermal/antenna-info.txt.

CylinderParaboloid Paraboloid

Fig. 7 Cross-sectional view of a ring-focus paraboloid with ray paths
(right side). On the left side, a ray path is subdivided into segments.
Whereas the normal unit vectors ẑ, î, r̂ are the directions of the path
segments, respectively, d1, d2, d3 denote the length of the respective
segments. The incidence angle at the system focal point F0 w.r.t. the
axis of symmetry of the paraboloid is γ . The elliptic torus of the sub-
reflector is implied by two gray-dotted ellipses, while the physical parts
of the sub-reflector, i.e., the elliptic arcs, are shown in solid black. The
focal points of the ellipses are plotted as red dots and denoted by F0
and F1, where F0 is the unique system focal point of the antenna. F⊥
is the orthogonal projection of F1 onto the (tangent) plane of the apex
circle, and P0 is the circle center, i.e., the system apex

Here, R is the distance between the center of the ellip-
tic tube and the center of the torus, A1 and A2 are the
semi-major and semi-minor axes of the elliptic tube, respec-
tively, and θ describes the twist of the tube. The coordinates
pTi = (

xi yi zi
)
represent a surface point of the elliptic

torus.
The sub-reflector utilizes the geometrical properties of an

ellipse, i.e., the summed distances of the focal points F0 and
F1 to each point Pi lying on the ellipse are equal to the dou-
bled semi-major axis A1 (e.g., Lösler and Nitschke 2010),
i.e.,

|F0Pi | + |F1Pi | = 2A1. (6)

3.1 Double-elliptic ring-focus paraboloid

The ring-focus paraboloid results by combining the geome-
tries of a paraboloid and a cylinder. The axis of symmetry
of the paraboloid is replaced by an integrated cylinder, so
that rays of this area do not participate in the signal. Con-
struction parts inside the cylinder do not disturb the ray path
of the signal, i.e., the sub-reflector or the receiver does not
shade the main reflector. A closed mathematical description
of a common ring-focus paraboloid was recently derived by
Lösler et al. (2017, 2018b, c). The canonical form of the
double-elliptic ring-focus paraboloid reads

a21(xi − ri nx,i )
2 + a22(yi − ri ny,i )

2 = zi , (7)
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where

nx,i = xi√
x2i + y2i

, (8)

ny,i = yi√
x2i + y2i

. (9)

The parameters of the elliptic paraboloid are a1 and a2.
The normal unit vector nTi = (

nx,i ny,i 0
)
points in the

direction of the axis of symmetry nRF of the elliptic cylin-
der, and the coordinate components of the i th surface point
pTi = (

xi yi zi
)
are shifted by ri . The length of the shift

is given by (cf. Lösler et al. 2018b)

ri = 1
√
b21m

2
x,i + b22m

2
y,i

, (10)

where b1 and b2 are the inverse semi-major and the inverse
semi-minor axes of the elliptic cylinder, respectively, φ

describes the orientation of the elliptic cylinder w.r.t. to the
elliptic paraboloid, and

mx,i = nx,i cosφ + ny,i sin φ, (11)

my,i = ny,i cosφ − nx,i sin φ. (12)

Besides the five datum-invariant parameters, six addi-
tional parameters are necessary to parameterize an arbitrarily
oriented surface in space, i.e., three translation parameters
summarized in vector P0 and three rotation parameters in
matrix Q. The transformation reads

pi = Q (Pi − P0) , (13)

where pi and Pi are corresponding points of the canonical
representation and the arbitrarily oriented representation of
the ring-focus paraboloid, respectively. Usually, Pi is related
to the reference frame of the measurement system.

The RSP as well as the RSRFP are two possible sub-
models of Eq. (7). The RSRFP design results by introducing
the parameter constraints a1 = a2 and b1 = b2. Moreover,
the RSP design is a special type of the RSRFP and results
from the further simplification ri = 0 (cf. Lösler et al. 2017,
2018b).

Due to structural deformations induced by gravity, the
focal length F of the radio telescope may change when it
rotates around the elevation axis (e.g., Sarti et al. 2009; Noth-
nagel et al. 2013; Bergstrand et al. 2019). According to Artz
et al. (2014), two deformation patterns can exist. The first one
describes an unpredictable deformation of the main reflector.
This pattern cannot bemodeled byquadric surfaces andneeds
a specific compensation model. The second one describes an
affine deformation. Here, the resulting deformations provide

surfaces that are similar to each other and can therefore be
modeled geometrically. Whereas Artz et al. (2014) assume a
homologous deformation, i.e., the focal lengths changewhile
the main reflector maintains its parabolic shape, the use of
Eq. (7) extends this homologous deformation pattern to a
wider range of applications because Eq. (7) also allowsmod-
eling changes in the surface type (Lösler et al. 2018b, c).

Having a discrete set of observed spatial points lying on
the paraboloid surface of the ring-focus antenna, the datum-
invariant parameters, as well as the isometric parameters, are
estimable using an errors-in-variables model. In Sect. 3.2,
the sequential quadratic programming (SQP) is proposed for
the data analysis.

An elevation-dependent model of the focal lengths F(ε)

can be derived by providing point sets observed in several
elevation positions. The focal lengths F1, F2 of an elliptic
paraboloid depend on the parameter a1, a2, respectively, by

F (a) = 1

4a2
(14)

and represent the extreme values of the varying focal lengths.
In the case of a rotationally symmetric main reflector design,
the restriction a1 = a2 holds and Eq. (14) results in a single
focal length F .

3.2 Parameter estimation

To estimate the parameters of the implicit Eq. (7) of a double-
elliptic ring-focus paraboloid, an errors-in-variables (EIV)
model is needed. In numerical optimization, a well-known
solver that belongs to the class of EIVmodels is the SQP. The
SQP approach is recommended for nonlinear constrained
optimization and estimates the unknown parameters u by
solving sequences of quadratic sub-problems (cf. Nocedal
and Wright 2006, Ch. 18).

Based on the adjusted surface points Pi from the bundle
adjustment, the parameters to be estimated for the ring-focus
paraboloid are given by

uT = [
xTSF xTISO vT

]
. (15)

The vector u is subdivided into the two datum-invariant
surface parameters of the elliptic paraboloid as well as
the three datum-invariant surface parameters of the elliptic
cylinder, i.e., xTSF = (

a1 a2 b1 b2 φ
)
, the six datum-

dependent isometric parameters concerning P0 and Q that
transform the surface by Eq. (13) into its canonical rep-
resentation xTISO = (

X0 Y0 Z0 ξx ξy ξz
)
, and the

residuals of the coordinate components of the surface points
vT = (

vxi vyi vzi . . .
)
. The isometric parameters of the

rotation sequence Q in Eq. (13) are denoted by ξx , ξy , ξz ,
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and describe Euler angles of basic rotation matrices (e.g.,
Nitschke and Knickmeyer 2000).

Byminimizing the target function
(u) subject to the con-
straint function c(u) given by Eqs. (7), (13), the unknown
parameters are estimated iteratively. The a priori weight
matrix Wx of the model parameters xT = [

xTSF xTISO
]
is

unknown, i.e., Wx = 0, and the target function 
 becomes,
cf. Eq. (46),


 = vTWvv. (16)

Here, W−1
v describes the dispersion of the observations and

is composed of the derived uncertainties of the estimated
points Pi of the bundle adjustment, cf. Sect. 2.2. According
to Eq. (43), the normal equation of the SQP approach reads

[∇2
uuL JT

J 0

] [
�u
�λ

]
= −

[∇uL
c

]
, (17)

where ∇2
uuL and ∇uL are the Hessian and the gradient

of the Lagrangian w.r.t. the unknown parameters u, respec-
tively, cf. Eq. (37). J represents the Jacobian matrix of the
constraint equations given by Eq. (45), and λ is the vector
of Lagrangian multipliers. A detailed description of the SQP
approach, including the derivation of the normal equations
system, is presented in “Appendix.”

To avoid an over-parameterization, the number of model
parameters should only be expanded to the maximum size
if the realized surface type significantly deviates from its
ideal surface type. Usually, the surface type is restricted to
the designed rotationally symmetric ring-focus paraboloid
that yields the seven model parameters to be estimated xT =(
a b X0 Y0 Z0 ξx ξy

)
.

The residuals v of the adjustment process depend on
the datum of the global frame and are meaningless for the
evaluation of the accuracy of the shape. A datum-invariant
representation of the observational residuals yields (e.g.,Ghi-
lani and Wolf 2006, p. 439)

vc = Jvv, (18)

where the Jacobian matrix Jv results from Eq. (45). Jv trans-
forms the residuals v of the coordinate components to the
constraint equations space. Due to the datum invariance of
the constraint equations of the ring-focus paraboloid c, the
corresponding (equivalent) residuals vc must be invariant,
too. Thus, the use of vc instead of v is recommended to ana-
lyze the accuracy of the shape.

3.3 Sub-reflector variations

As a consequence of the variation of the focal length, the
sub-reflector position, which is usually mounted by tripod or

Fig. 8 Cross-sectional view of the right paraboloid, see Fig. 7. Dis-
placements of the focal point F1, the sub-reflector position R as well
as the mounting position of the strut S as a consequence of reflector
deformations. The quantities of the reference state are denoted by an
apostrophe and are colored in gray when they change. F⊥ and S⊥ are
the orthogonal projections of F1 and S1, respectively, onto the (tan-
gent) plane of the apex circle. The arc length is denoted by Û·, and |·|
symbolizes the Euclidean norm

quadrupod strut elements at the supporting reflector backup
structure, may also vary. The changes in the distance�R′(ε)
between the apex F⊥ and the sub-reflector R are limited by
the length of the struts |SR| and the perpendicular distance
from the mounting position of the struts S to the axis of sym-
metry of the paraboloid |F⊥S⊥|. In general, these variations
depend on F(ε) but have smaller magnitudes than the corre-
sponding focal length variation.

The arc length ¯F⊥S between the apex of the paraboloid
and the mounting position of the strut is given by (e.g., Gray
1994, Ch. 1.6)

¯F⊥S = hq

F
+ ln

(
h + q

F

)
, (19)

where q = √
F2 + h2 and h = 1

2 |F⊥S⊥|.
Assuming that |SR| and ¯F⊥S are invariant quantities w.r.t.

the elevation angle ε, changes in |F⊥S⊥| and, therefore,
|F⊥R| depend only on the variations of the focal length F(ε).
By invertingEq. (19), the elevation-dependent length |F⊥S⊥|
can be derived and introduced to approximate the distance
between the apex and the sub-reflector |F⊥R|. In canonical
form, �R′(ε) is given by

�R′ (ε) =
√

|SR|2 − |F⊥S⊥|2 + zS − zR′ . (20)

Figure 8 depicts the counter-moving deformations of the
focal point F1 of the paraboloid and the sub-reflector posi-
tion R. The focal point moves closer to the apex, while the
curvature increases. The sub-reflector moves in the opposite
direction because the construction and the magnitude of the
shifts are unequal to each other. This geometrical behavior
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is experimentally confirmed by direct measurements of �R′
(cf. Nothnagel et al. 2013; Bergstrand et al. 2019). It should
be mentioned that the struts may be affected by further grav-
itational effects, e.g., an elevation-dependent bending (e.g.,
Sarti et al. 2009). Thus, Eq. (20) is only a first-order approxi-
mation and can be omitted if localmeasurements are feasible.

4 Signal path variation

A reliable representation of the signal path variation �L(ε)

can be described as a weighted sum of three deformation
effects, i.e., the focal length variation �F(ε), the displace-
ment of the sub-reflector �R(ε), and the shift of the vertex
�V (ε) w.r.t. the elevation axis (Clark and Thomsen 1988).
By introducing the corresponding linear weighting coeffi-
cients αF , αR , and αV , the SPV reads

�L(ε) = αF�F(ε) + αV�V (ε) + λαR�R(ε) (21)

where λ = 1 for prime focus telescopes and λ = 2 for
secondary focus telescopes (Abbondanza and Sarti 2010;
Artz et al. 2014). Whereas �F , �V , and �R depend on
the underlying geometrical deformation pattern, the weight-
ing coefficients αF , αR , and αV depend on the geometry
of the reflectors and the illumination intensity I (Clark and
Thomsen 1988).

Following the line of reasoning worked out by Clark and
Thomsen (1988) for prime focus telescopes, and extended
by Abbondanza and Sarti (2010) for secondary focus tele-
scopes, the weighting coefficients are linearly dependent on
each other, i.e.,

αF = λ (1 − αR) , (22a)

αV = −1 − λαR . (22b)

Integrating the individual ray paths, which are scaled by the
telescope-specific normalized illumination function In , over
the entire reflector , yields the parameter to be determined

αR =
∫



In (P) h (P) d, (23)

where the function h describes the changes in the path length
w.r.t. the reflector (e.g., Abbondanza and Sarti 2010).

The OTT are secondary focus Gregorian-type radio tele-
scopes, and the fixed sub-reflector is located behind the focal
point F1 of the main reflector, see Fig. 7. The sub-reflector
is designed as a rotationally symmetric elliptical torus, cf.
Eq. (3), and reflects the signal toward the system focal point
F0. The sub-reflector ofONSA13NEdoes not provide amov-
able mounting to adjust the focal length during observations

Fig. 9 The right part of the sub-reflector, represented by the arc of the
dotted ellipse and defined by the focal points F0 and F1, is displaced
by gravity and results in the solid plotted elliptical arc. The point of
reflection P is shifted by �R to P�R . P′ is the projected position of
P�R onto the normalized gradient n̂ of  at P. K and J are projections
of P′ onto the incident ray î and the reflected ray r̂, respectively. The
unshifted ray path |F0P|+|F1P| is denoted by straight lines. The vectors
ẑ, î, n̂ and r̂ are normal unit vectors

because in geodetic VLBI, the sub-reflector is kept fixed. As
shown in Figure 7, the cross section of the rotationally sym-
metric elliptical torus yields two ellipses, and the ray path
can be simply modeled in 2D. However, in contrast to a con-
ventional Gregorian-type radio telescope having an axially
parallel ellipse as cross section of the sub-reflector, here, the
ellipses of the sub-reflector of the ring-focus telescope are
tilted. Thus, the incidence angle γ of the ray at the system
focal point F0 becomes zero if the ray is reflected at the rim
of the main reflector.

According to Cha (1987), the resulting path variation
caused by a displacement �R of the sub-reflector can be
approximated by an isosceles triangle, i.e.,

h (P) = |PK| + |PJ| = 2�R
(
−ẑTn̂

) (
n̂T î

)
. (24)

As shown in Fig. 9, the incident ray is represented by a
straight line, defined by the focal point F1 and the normal
unit vector î. The straight line of the reflected ray is param-
eterized by the system focal point F0 and the normal unit
vector r̂. P is the intersection point of both straight lines, i.e.,
the point of reflection. The normalized gradient of  at P is
denoted by n̂ and ẑT = ( 0 1 ). K and J are projections of P′

onto the incident ray î and the reflected ray r̂, respectively,
and P′ is the projected point of the shifted position P�R onto
n̂.

Utilizing the geometric property of an ellipse given by
Eq. (6), an alternative approximation is suggested by Artz
et al. (2014), i.e.,

h′ (P) = ∣∣F′′
0P

′′∣∣ + ∣∣F1P′′∣∣ − 2A1 (25)
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where P′′ is the intersection point of the incident ray î and
the displaced sub-reflector, and F′′

0 is the intersection point of
the focal plane and the reflected ray r̂′′. However, for small
quantity �R w.r.t. the eccentricity of the ellipse 1

2 |F0F1|
both approximations are sufficient and h(P) ≈ h′(P) holds.
Having Eq. (24) or (25), the change in the path length caused
by �R is modeled. In Eq. (23), this variation is weighted by
the telescope-specific illumination function In . The nature
of the illumination function is to amplify the entry sig-
nals close to the rim and to weaken the entry signals close
to the apex. Possible functions to model the illumination
intensity are discussed by Abbondanza and Sarti (2010),
Artz et al. (2014) and evaluated for several conventional
radio telescopes. While for antennas with small subtended
angle a cosine-squared illumination function is suitable, see,
e.g., Artz et al. (2014), for ring-focus antennas with large
subtended angle a Gaussian illumination function is best,
see, e.g., Lopez-Fernandez et al. (2014). ONSA13NE pro-
vides a large subtended angle, i.e., γa = 2γe = 130◦, and
uses a Gaussian illumination function with a − 16dB taper
(personal communication, Jonas Flygare 2018), i.e.,

In(γ ) = k exp

(
−2αe

γ 2

γ 2
e

)
, (26)

where γ is the incidence angle at the system focal point
F0 w.r.t. the axis of symmetry of the paraboloid, αe =
16 dB log 10

20 parameterizes the maximum edge taper, i.e.,
− 16 dB at the maximum angle γe = 65◦, and k is the nor-
malization factor, which is derived by

1

k
= 2π

γ2∫

γ1

exp

(
−2αe

γ 2

γ 2
e

)
dγ. (27)

Substituting Eqs. (24) and (26) into Eq. (23) yields the
coefficient αR(h) = 0.65. Using Eq. (25) instead of Eq. (24),
the resulting αR slightly reduces to αR(h′) = 0.62.

5 Measurement results

To estimate the parameters of the ring-focus paraboloid, the
SQP approach described in Sect. 3.2 was applied. All 21 pre-
pared point sets were introduced separately to Eq. (7) and
iteratively solved by Eq. (17), applying the parameter con-
straints a1 = a2 and b1 = b2 for forcing the RSRFP type.
The uncertainties of about 100µm, derived during the bundle
adjustment (see Sect. 2.2), were applied as stochastic model
Wv, cf. Eq. (47). Preliminary investigations of ONSA13NE
showed small systematical deviations which were describ-
able by an elliptic ring-focus paraboloid (Lösler et al. 2017,
2018b, c). However, these deviations were about 50µm and

Fig. 10 Contour plot of the datum-independent residuals vc of themain
reflector at elevation0◦. The residuals vary in a rangeof about± 0.5mm.
The largest residuals can be found at the rim of themain reflector. Coded
targets are symbolized by red dots
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Fig. 11 Histogram of the datum-independent residuals vc of the surface
points of the estimated ring-focus paraboloid. The histogram is derived
from nv = 1, 491 residuals of the 21 campaigns. For comparison, the
probability density function (PDF) of the normal distribution is plotted
by a solid red curve. The estimated sample mean and empirical standard
deviation are μ̂ = 7µm and σ̂ = 194µm, respectively

could not be detected in the current measurements, since they
were below the sensitivity threshold, see Sect. 2.2.

Figure 10 depicts a contour plot of the datum-independent
residuals vc (derived by Eq. (18)) with the main reflector at
elevation 0◦. The distance between the iso-lines is 0.1 mm.
The largest residuals of about ± 0.5mm can be found at the
rim of the reflector surface.

Due to the small sample size of a single measurement
campaign, the 1, 491 datum-independent residuals vc of all
campaigns are combined in a histogram shown in Fig. 11.
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Table 1 Campaign-wise averaged temperature as well as estimated
overall RMS(vc) w.r.t. different survey elevations ε. During the first
ten measurement campaigns, the rotation direction of the telescope was
upward, and afterward downward. At 34◦, the telescope was measured
only once (rotation direction upward). Horizontal lines indicate the sub-
divided campaigns. The campaign numbers are in chronological order

Campaign ε in ◦ RMS in µm T in ◦C

1 0 204 18.6

2 10 187 18.5

3 20 200 18.1

4 90 282 18.6

5 30 167 17.6

6 40 192 17.8

7 50 182 17.7

8 60 173 17.9

9 70 178 17.9

10 80 221 17.7

11 90 292 17.8

12 80 227 18.1

13 70 167 18.2

14 60 162 18.4

15 50 155 18.6

16 40 154 18.6

17 30 147 18.9

18 20 166 19.0

19 10 194 19.1

20 0 190 19.2

21 34 169 18.3

The number of bins nb is derived by (Scott 1979)

nb = max |vc| − min |vc|
hb

, (28)

where hb = 3.49σ̂n
− 1

3
v , σ̂ is the sample standard deviation

and nv denotes the number of residuals vc. The residuals
are unimodal and symmetrically distributed and follow a
normal distribution. The maximal residual does not exceed
± 0.8mm.The resulting samplemean and the empirical stan-
dard deviation of the probability density function (PDF) of
the normal distribution are μ̂ = 7µm and σ̂ = 194µm,
respectively.

Table 1 summarizes the campaign-wise estimated RMS
values derived by vc. The overall RMS does not exceed
300µm, but there is a relation between the estimated RMS
value and the elevation angle. The smallest values can be
found for the elevation angles from 30◦ to 50◦, while the val-
ues increase for elevation angles close to 0◦ as well as 90◦.
The reflector panels were adjusted at 34◦ elevation during
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Fig. 12 Estimated focal length obtained from Eqs. (7), (14). Red
upward- and downward-pointing triangles symbolize results which
were obtained during increasing and decreasing elevation angles,
respectively, cf. Table 1. The error bars indicate the confidence of a
single measurement value (2σ ), derived by Eqs. (48), (49). For com-
parison, the estimated result of the panels adjustment process of the
main reflector, which was carried out in 2017, is symbolized by a black
star (Lösler et al. 2017). Based on the estimated focal lengths, a predic-
tion cosine function was derived and is shown in black together with the
resulting confidences in gray (2σ ), derived by the law of propagation
of uncertainty

the telescope installation. Thus, smallest deviations can be
expected for elevation angles close to 34◦.

Figure 12 depicts the estimated variations of the focal
length F , derived by Eq. (14). The estimated focal length
varies in a range of ± 1.1mm and is elevation-dependent. A
cosine function was adapted, i.e.,

f (ε) = c0 + c1 cos ε, (29)

which predicts the variations quite well. Here, c0 describes
the offset, which is related to 90◦ elevation, and c1 repre-
sents the amplitude of the cosine function. The uncertainties
of the derived 21 focal lengths as well as the assumed uncer-
tainties of the elevation angles σε = 0.001◦ are taken into
account during the adjustment process, cf. “Appendix.” The
prediction function is given in black color and dash-dotted
style, together with the related confidence interval (2σ). The
maximal focal length occurs at 90◦, which confirms the
assumption that the main reflector becomes flatter in higher
elevation positions. The derived coefficients yield the predic-
tion function

F(ε) = 3.7017m − 2.28mmcos ε. (30)

The uncertainties of the offset and the amplitude are σ̂c0 =
0.2mm and σ̂c1 = 0.3mm, respectively.

In 2017, the surface of the main reflector was observed at
34◦ during the panels adjustment. The resulting focal length
(cf. Lösler et al. 2017) is symbolized by a black star. The
difference of this focal length and the prediction derived by
Eq. (30) is − 0.2mm and confirms the latest results.
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During the first ten measurement campaigns, the rota-
tion direction of the telescope was upward, and afterward
downward for the repeated measurements. By comparing the
derived focal lengths of the upward and the downward config-
urations, a small, but insignificant hysteresis is visible. The
reason might be an unrepresentative temperature compen-
sation. For example, a change of 2K yields a corresponding
focal length change of about 0.1mm.However, further inves-
tigation, including more than one repetition measurement, is
needed to verify this behavior.

To model the ray path to the receiver, the variations of
the sub-reflector must be taken into account, see Sect. 3.3.
To estimate the distance between the system apex and the
sub-reflector, the positions of the four targets mounted at the
sub-reflector were combined with the isometric parameters
xISO of the RSRFP, cf. Eq. (15). The isometric parameters
contain the spatial position of the system apex P0 w.r.t. the
global frame and the rotation sequence Q which transforms
the surface into its canonical form. UsingP0 andQ, a straight
line representing the axis of symmetry of the main reflector
nRF reads

P (t) = P0 + tnRF, (31)

where |nRF| = 1, P (t) is a point lying on the straight line,
and t describes the distance between P (t) and P0. Moreover,
the best-fit plane, i.e.,

nSRTPi = dSR (32)

resulting from the four points mounted at the sub-reflector,
was adjusted. Here, Pi is an arbitrary point on the plane, nSR
is the normal unit vector, and dSR is the shortest distance of
the plane to the origin. The variations of the sub-reflector
were derived from the resulting distances between the sys-
tem apex P0 and the intersection point of the plane and
the axis of symmetry. The uncertainties of each intersection
point were derived by the law of propagation of uncertainty
(cf. JCGM100 2008; JCGM102 2011). The estimated sub-
reflector variations were adjusted by a cosine function, see
Eq. (29), using the SQP approach, cf. “Appendix.” Table 2
summarizes the estimated amplitude c1 of Eq. (29) as well
as the derived uncertainties.

To verify the shape of the curve described by the function,
the variation �R′(ε)was derived independently by Eq. (20).
The nominal position of the strut S as well as the nominal
length of the strut element |SR|were taken from themechan-
ical drawings and provide the nominal arc length ¯F⊥S via
Eq. (19), see Fig. 8.

Figure 13 depicts the results of both approaches. Both
curves decline with increasing elevation. Thus, the sub-
reflector moves closer to the apex and into the opposite
direction compared to the focal length, see Fig. 8. More-
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Fig. 13 Estimated sub-reflector variations �R (top) derived by the
intersection between the best-fit plane and the axis of symmetry as well
as estimated variations�R′ (bottom) derived by Eq. (20). Red upward-
and downward-pointing triangles symbolize results obtained during
increasing and decreasing elevation angles, respectively, cf. Table 1.
Error bars indicate the related confidence interval (2σ ). The curves of
the derived cosine functions are shown in black together with the result-
ing confidences in gray (2σ ). Confidences are derived by applying the
law of propagation of uncertainty

Table 2 Amplitude c1 of the cosine function, cf. Eq. (29), derived by
direct measurements of the sub-reflector variations �R(ε) and evalu-
ated by Eq. (20), which uses basic geometrical conditions �R′(ε). σ̂c1
is derived by applying the law of propagation of uncertainty

Parameter c1 in mm σ̂c1 in mm

�R 0.59 0.1

�R′ 0.65 0.1

over, both approaches result in similar prediction functions.
The position of the sub-reflector varies in a range of about
± 0.3mm. The derived amplitudes of the cosine functions
�R(ε) and �R′(ε) are summarized in Table 2.

Based on the prediction functions concerning �F and
�R, the geometrical ray path to the receiver and its variations
w.r.t. the elevation ε can be parameterized. The surface of the
sub-reflector was not observed. Due to the small dimension
compared to the main reflector, the sub-reflector is assumed
to be stiff.Using the parameters given inTable 3 togetherwith
Eq. (6) yields the parameter of the rotationally symmetric
elliptic torus representing the sub-reflector surface.

At 90◦, the modeled variations become zero and the ray
path length is according to the nominal values. Therefore, 90◦
is recommended as the reference configuration. As already
mentioned, the receiver is not mounted at the sub-reflector,
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Table 3 Nominal values of the construction components of the Onsala
twin telescopes

Name Abbr. Value in mm

Focal length of the paraboloid F̃1 3700.00

Distance from apex to sub-reflector F̃0 3611.66

Diameter of the main reflector D̃m 13,200.00

Diameter of the cylinder D̃c 1480.00

Fig. 14 Map of the geometrical ray path lengths derived by ray tracing
at 0◦

and thus, the sub-reflector variations cannot be transferred to
the system focal point.

For each elevation, the geometrical ray path is sampled

between the boundaries of the paraboloid, i.e., D̃c
2 and D̃m

2 .
Applying the derivations�F(ε) and�R(ε) yields a geomet-
rical raypath lengthmapofONSA13NE.Figure 14 illustrates
the resulting map for 0◦. The ray path length varies over a
range of about 3mm. It should be noted that the yellow part of
themap is the integrated cylinder of the ring-focus paraboloid
and, therefore, is insensitive by definition. However, rays that
are reflected close to this cylinder region are affectedby rather
large variations compared to rays reflected at the rim. Other
areas (dark blue) show almost no ray path variation. This lat-
ter results from the combination of the reflection at the main
reflector and the sub-reflector, respectively, during ray trac-
ing when �F(ε) and �R(ε) have opposite signs and cancel
out for some ranges. In general, Fig. 14 shows clearly that
the largest (outer) part of the map covering the area between
about 3 and 6.5m from the center shows very small variation
in the ray path, i.e., is stable. These areas are weighted high-
est by the illumination function Eq. (26), whereas the more
central parts showing larger ray path variations are weighted
less by the illumination function.
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Fig. 15 Variation of the vertex w.r.t. the elevation axis. The data shown
as red triangles were provided by the antenna manufacturer and were
derived by applying a finite element method (FEM). Based on the FEM
sampling points, a prediction function was derived and is shown in
black. The antenna manufacturer did not provide uncertainties of the
FEM, and, therefore, no uncertainties are given in the graph

According to Clark and Thomsen (1988), the signal path
variation �L is composed of the three geometrical deforma-
tion patterns, i.e., �F , �V , and �R, and the corresponding
weighting coefficients αF , αR , and αV , which depend on the
geometry of the reflector and the illumination intensity I , cf.
Eq. (21). The shift of the vertex�V cannot be derived by the
observed photogrammetric point sets because only the main
reflector and the sub-reflector were observed. For that reason,
�V is derived by a finite element method (FEM) carried out
by the manufacturer during the design of the VGOS antenna.
In total, seven neuralgic FEM sample points were provided
from 0◦ to 100◦ (personal communication, Eberhard Sust
2019), which are well adapted by a sine function, i.e.,

f (ε) = s0 + s1 sin ε, (33)

having coefficients s0 = −0.24mm and s1 = 0.24mm.
Since the prediction function is related to 90◦, both coef-
ficients are identical but have opposite signs. Thus, the
maximum shift is − 0.24mm and corresponds to s0. In
Fig. 15, the FEM sampling points are plotted in red trian-
gles and the derived prediction function is shown in black.

In Sect. 4, the coefficient αR was derived by substituting
Eqs. (24) and (25) into Eq. (23). The average value reads
αR = 0.63 and yields αF = 0.73 as well as αV = −2.27
via Eq. (22). Figure 16 depicts the signal path variation w.r.t.
the elevation angle. Whereas the focal length variation and
the movement of the sub-reflector are modeled by cosine
functions, cf. Figs. 12 and 13, the elevation-dependent shift
of the vertex is given by a sine function, cf. Fig. 15. These
functions are combined by Eq. (21), i.e., a weighted sum.
As a consequence, the resulting signal path variation �L in
millimeters is well adapted by the combined function

�L(ε) = 0.54 − 0.54 sin ε − 0.91 cos ε, (34)

which can be applied to correct the signal path.
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According to Eq. (34), the minimum of the function can
be obtained at 30.7◦, which is close to the 34◦ position of
the panels adjustment performed in 2017. The minimum of
the function corresponds to the maximum deviation of about
− 0.5mm. The corresponding time delay is about

�τ(30.7◦) = 1

c
�L(30.7◦) = −1.7 ps,

where c is the speed of light. To reach the 1mm goal, a delay
measurement precision of about 4ps is required. The VGOS
system is designed to achieve a delay precision of about 2ps
under ideal operating conditions (Petrachenko et al. 2009).
The derived maximum signal path variation of about 1.7ps
is on the same level as this expected best possible delay
measurement precision of the VGOS system. However, SPV
introduces an elevation-dependent systematical error. There-
fore, we recommend to correct for the SPV using Eq. (34) in
the VLBI data processing.

In Fig. 16, the illustrated uncertainties are derived by
Monte Carlo simulation (e.g., JCGM102 2011) starting at
the beginning of the data preparing, see Sect. 2.2, and com-
prising the full analysis process. The SPV approach depends
on several input quantities, i.e., the derived point set of the
bundle adjustment, the campaign temperature, and the eleva-
tion angle of the telescope. The uncertainties of the point set,
as well as the uncertainty of the elevation angle, are assumed
to be normally distributed. The campaign temperature given
in Table 1 is assumed to follow a uniform distribution, cf.
Fig. 6.

Besides the input quantities that are related to the metrol-
ogy part affecting the geometrical deformation pattern in
Eq. (21), the uncertainties of �L also depend on the weight-
ing coefficients. The weighting coefficient αR in Eq. (23)
depends on the selected function h as well as In . Assuming
a uniform distribution of αR within the boundaries given by
αR(h) = 0.65 and αR(h′) = 0.62, the uncertainty derived
by Eq. (2) reads σαR = 0.01. The illumination function In is
known and, thus, no further uncertainty must be specified.

By applying 100, 000 samples, the uncertainties are eval-
uated by a Monte Carlo simulation from 0◦ to 90◦ using a
step-size of 1◦. The resulting error band regarding only the
metrology part is plotted in gray, and the error band, extended
by the assumed uncertainties of the weighted coefficients, is
colored in red.

Since we are interested in the signal path variations, all
values are referred to elevation 90◦. Here, the radio tele-
scope is assumed to be unaffected by gravity deformations
and nominal values are valid. Therefore, the uncertainties
become smaller and are zero for 90◦. The uncertainties (2σ)

are about 200µm and fulfill the requirements for VGOS-
specified radio telescopes (cf. Petrachenko et al. 2009).
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Fig. 16 Derived signal path variations�L(ε) depicted by a solid black
line. The confidence intervals (2σ) are derived by aMonteCarlo simula-
tion, applied to the entire analysis process. The gray pictured confidence
interval results from the metrology part of �L and includes the uncer-
tainties of the coded targets, and the campaign temperatures, as well
as the telescope angles. Assuming further uncertainties of the α coeffi-
cients in Eq. (21) yields the extended confidence depicted in red

6 Conclusion

GGOS aims for 1mm position accuracy on the global scales
for the ITRF. Gravitational deformations of VLBI radio tele-
scopes yield systematic errors and bias the estimated vertical
position of the radio telescopes in the geodetic VLBI analy-
sis and, therefore, potentially affect the ITRF scale. For the
upcoming ITRF2020, theVLBI community has been encour-
aged to include gravitational deformation models for VLBI
radio telescopes to compensate for the undisputed systematic
errors caused by elevation-dependent reflector deformations
for as many VLBI radio telescopes as possible. For that rea-
son,mathematicalmodels aswell asmetrologymethods have
to validate, to capture, and to model the expected structural
deformations.

In this investigation, for the first time, a UAS was used to
study the gravitational deformation behavior of a VLBI radio
telescope. To our best knowledge, it is also the first time that
an observation-based model for the gravitational deforma-
tion of a VGOS-specified radio telescope was derived. This
model can be easily implemented into VLBI data analysis
software packages and used in future VGOS data process-
ing. Several coded targets were mounted at ONSA13NE.
The surface of the main reflector and the position of the
sub-reflector were measured by photogrammetric methods
from elevation 0◦ to 90◦ using a step-size of 10◦. To increase
the reliability, each position was measured twice. In total, 21
measurement campaigns were carried out in August 2018.
In contrast to measurement approaches with laser scanners,
each target position is highly redundantly observed during
a single measurement campaign. This allows for evaluating
the quality of the observed points using established statistical
methods during the bundle adjustment right at the beginning
of the analysis process. The single-point uncertainties of the
bundle adjustment are about 100µm w.r.t. the datum.

Like many of the VGOS-specified radio telescopes,
ONSA13NEmakes use of the improvedmain reflector design
and is manufactured as a so-called ring-focus paraboloid.
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A ring-focus paraboloid results from the combination of two
quadric surfaces and, therefore, cannot be modeled as a com-
mon paraboloid. The mathematical parameterization of a
double-elliptic ring-focus paraboloid was given in detail in
this investigation. Similarities of the presented unified model
to the simplified rotationally symmetric paraboloid, which
has been used in general for modeling the main reflector of
conventional VLBI radio telescopes, were mentioned.

Based on the resulting coordinates of the bundle adjust-
ment, the surface parameters of ONSA13NE were estimated
using the SQP approach. The focal length varies by about
2mm. However, the focal length variation itself is a descrip-
tive parameter and does not represent the variation of the
optical ray path because the physical position of the sub-
reflector also varies. To reconstruct the position variation of
the sub-reflector, two approaches were considered. Whereas
the first one results from a geometrical modeling of the defor-
mation of themain reflector, the second one is based on direct
measurements. Both approaches yield sub-reflector varia-
tions of about ± 0.3mm, which partly counteract the focal
length variations. For ONSA13NE, the variations of the focal
length and the sub-reflector position can both be expressed
by cosine functions.

The model of the main reflector and the model of the
sub-reflector are combinations of quadric surfaces, i.e., a
ring-focus paraboloid and an elliptic torus, respectively. Con-
sidering the geometric properties of both reflectors and the
derived deformation pattern, the length of the geometric ray
path was derived. As shown in Fig. 14, the length of the geo-
metric ray path depends on the distance from the optical axis
and varies over the reflector by about 3mm at 0◦.

The Gaussian illumination function, which is used by
ONSA13NE, was introduced to weight the ray path depend-
ing on the incidence angle at the aperture. The resulting
amplitude of the modeled signal path variations is about
− 0.5mm. For the modeled signal path variations, uncer-
tainties of about 200µm (2σ) were derived by applying a
Monte Carlo simulation to the entire analysis process. For
VGOS-specified radio telescopes, the requested RMS for
modeled path length variations is 300µm (Petrachenko et al.
2009). The measurement and analysis concept presented in
this investigation fulfill these requirements.

Future workwill focus onmetrological methods for deriv-
ing the shift of the vertex to obtain the SPV independent of the
finite element method. Moreover, investigations are needed
to verify the possible hysteresis of the focal length variations.
Furthermore, the Onsala Space Observatory is in the possi-
bility of having the SPV variation model externally validated
by comparing the baseline derived by high-precision terres-
trial observations and the baseline obtained by the VLBI data
analysis (e.g., Carter et al. 1980). For this purpose, terrestrial
measurement campaigns are planed to derive the local base-

line vectors between the hosted space geodetic techniques at
Onsala.

The OTT are just one type of several different VGOS-
type telescopes that have been designed and are currently
deployed at various international observatories. To our best
knowledge, there are at least three other designs of VGOS-
telescopes. We are not aware that any other investigations
corresponding to the one presented here have been per-
formed at any of the other VGOS stations. However, a
first assumption is that other VGOS-designs also fulfill the
VGOS-specifications and will have a similar deformation
behavior as the Onsala twin telescopes. Nevertheless, it is
strongly advised to derive at least type-specific SPV models
for each VGOS telescope type. Regarding the small magni-
tude of the detected SPV and the small uncertainty of the
derived SPV model for the OTT, there are high expectations
that VGOS will be able to live up to the challenging GGOS
requirements.

In general, the use of a UAS provides a promising and
practicable surveying method for free-standing radio tele-
scopes because neither does additional heavy equipment have
to be mounted on the radio telescope structure nor is a crane
required during the measurement process. This method thus
appears very applicable for both VGOS-type and conven-
tional radio telescopes.
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Appendix: Sequential quadratic program-
ming

Parameters of nonlinear constrained optimization problems
are usually estimated by solving sequences of quadratic sub-
problems. One of the most effective methods in the frame-
work of numerical optimization is the sequential quadratic
programming (SQP). The SQP approach belongs to the
class of errors-in-variables (EIV) models and estimates the
unknown parameters u of the nonlinear constrained problem
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min
(u) (35)

subject to

c(u) = 0 (36)

iteratively (cf. Nocedal and Wright 2006, Ch. 18).
The target function 
 and the constraint function c are

combined by the Lagrangian function

L = 1

2

 + λTc, (37)

where λ is the vector of Lagrangian multipliers.
The optimum conditions for a solution in nonlinear pro-

gramming, also known asKarush–Kuhn–Tucker (KKT) con-
ditions, of equality-constrained problems are (e.g., Geiger
and Kanzow 2002, Ch. 5.5.2; Nocedal and Wright 2006,
Ch. 12.3)

� =
[∇uL

c

]
= 0, (38)

where

∇uL = 1

2
∇
 + JTλ (39)

is the gradient of the Lagrangian w.r.t. the unknown parame-
ters u and J represents the Jacobian matrix of the constraints.

Applying Newton’s method to Eq. (38) provides an itera-
tive solver for u and λ (cf. Nocedal andWright 2006, pp 44ff)

�
′
k

[
�u
�λ

]
= −�k, (40)

where �u = uk+1 − uk and �λ = λk+1 − λk are the cor-
rections of the unknown parameters uk and the Lagrangian
multipliers λk , respectively, of the kth step. The Jacobian of
the KKT condition is given by

�
′ =

[∇2
uuL JT

J 0

]
, (41)

where

∇2
uuL = 1

2
∇2
 +

∑

i=1

λ(i)∇2c(i). (42)

Here,∇2
 and∇2c are the Hessian of the target function and
the constraint function, respectively. The normal equation
system of the Lagrange–Newton method reads

[∇2
uuL JT

J 0

] [
�u
�λ

]
= −

[∇uL
c

]
. (43)

The estimated parameters uk+1, as well as Lagrangian multi-
pliersλk+1, are introduced to Eq. (43) as new approximations
to the next iteration step.

In most optimization problems in geodesy and metrology,
the parameter vector u can be divided into model parameters
x and observational residuals v, i.e.,

uT = [
xT vT

]
. (44)

Similarly, the Jacobian matrix J can be separated into
sub-matrices related to the parameters and the residuals,
respectively, i.e.,

J = [
Jx Jv

]
. (45)

The target function
 is defined in the least-squares sense by


 = uTWu = [
x v

] [
Wx 0
0 Wv

] [
x
v

]
, (46)

where x and v are assumed to be stochastically independent,
i.e., Cov(x, v) = 0.

The matrix W is the a priori weighted matrix of u, also
known as a stochastic model (e.g., Ghilani and Wolf 2006,
p. 177). The sub-matrix Wv is usually derived by knowl-
edge of the measurement process (e.g., JCGM100 2008;
JCGM102 2011). By virtue of the Central Limit Theorem,
the residuals tend to be normally distributed (cf. JCGM100
2008), i.e.,

v ∼ N (0,W−1
v ). (47)

In rare cases, the matrix Wx must be known beforehand,
e.g., in the framework of recursive parameter estimation (e.g.,
Koch 2007, Ch. 4.2.7), but usually Wx is unknown and set
to Wx = 0. If W represents a reliable weighted matrix, the
inverted normal equation matrix,

[
C11 C12

C21 C22

]
=

[∇2
uuL JT

J 0

]−1

, (48)

provides the dispersion of the estimated parameters Cu =
C11 and the Lagrangian multipliers Cλ = −C22 (cf. Koch
2007, Ch. 2.3.2; Förstner and Wrobel 2016, p. 106).

Depending on the degrees of freedom, fdof , an estimation
of the variance of the unit weight

σ̂ 2
0 = 


fdof
(49)

can be used to scale C. In general, the use of σ̂ 2
0 should be

avoided if the number of residuals is small or if the variations
of the residuals cover only a small part of the dispersion (cf.
Xu 2013; Lösler et al. 2016; Schwarz and Hennes 2017).
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