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Abstract—We consider private information retrieval (PIR)
for distributed storage systems (DSSs) with noncolluding nodes
where data is stored using a non maximum distance separable
(MDS) linear code. It was recently shown that if data is stored
using a particular class of non-MDS linear codes, the MDS-PIR
capacity, i.e., the maximum possible PIR rate for MDS-coded
DSSs, can be achieved. For this class of codes, we prove that the
PIR capacity is indeed equal to the MDS-PIR capacity, giving
the first family of non-MDS codes for which the PIR capacity is
known. For other codes, we provide asymmetric PIR protocols
that achieve a strictly larger PIR rate compared to existing
symmetric PIR protocols.

I. INTRODUCTION

The concept of private information retrieval (PIR) was first
introduced by Chor et al. [1]. A PIR protocol allows a user
to privately retrieve an arbitrary data item stored in multiple
servers (referred to as nodes in the sequel) without disclosing
any information of which item is requested to the nodes. The
efficiency of a PIR protocol is measured in terms of the total
communication cost between the user and the nodes, which
is equal to the sum of the upload and download costs. In
distributed storage systems (DSSs), data is encoded by an
[n, k] linear code and then stored on n nodes in a distributed
manner. Such DSSs are referred to as coded DSSs [2], [3].

One of the primary aims in PIR is the design of efficient
PIR protocols from an information-theoretic perspective. Since
the upload cost does not scale with the file size, the download
cost dominates the total communication cost [3], [4]. Thus,
the efficiency of a PIR protocol is commonly measured by
the amount of information retrieved per downloaded symbol,
referred to as the PIR rate. Sun and Jafar derived the maximum
achievable PIR rate, the so-called PIR capacity, for the case of
DSSs with replicated data [5], [6]. In the case where the data
stored is encoded by an MDS storage code (the so-called MDS-
coded DSS) and no nodes collude, a closed-form expression
for the PIR capacity, referred to as the MDS-PIR capacity, was
derived in [7].

In the earlier work [8]–[10], the authors focused on the
properties of non-MDS storage codes in order to achieve the
MDS-PIR capacity. In particular, in [9], [10] it was shown that
the MDS-PIR capacity can be achieved for a special class of
non-MDS linear codes, which, with some abuse of language,
we refer to as MDS-PIR capacity-achieving codes (there might
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exist other codes outside of this class that achieve the MDS-
PIR capacity). However, it is still unknown whether the MDS-
PIR capacity is the best possible PIR rate that can be achieved
for an arbitrarily coded DSS. In particular, an expression for
the PIR capacity for coded DSSs with arbitrary linear storage
codes is still missing.

In this paper, we consider the noncolluding case and first
prove that the PIR capacity of coded DSSs that use the class of
MDS-PIR capacity-achieving codes introduced in [9] is equal
to the MDS-PIR capacity. We then address the fundamental
question of what is the maximum achievable PIR rate for an
arbitrarily coded DSS. To this purpose, we mainly consider
non-MDS-PIR capacity-achieving codes. Most of the earlier
works focus on designing symmetric PIR protocols and it was
shown in [5], [7], [11] that any PIR scheme can be made
symmetric for MDS-coded DSSs. However, this is in general
not the case for non-MDS codes. Specifically, we propose an
asymmetric PIR protocol, Protocol A, that allows asymmetry
in the responses from the storage nodes. For non-MDS-
PIR capacity-achieving codes, Protocol A achieves improved
PIR rates compared to the PIR rates of existing symmetric
PIR protocols. Furthermore, we present an asymmetric PIR
protocol, Protocol B, that applies to non-MDS-PIR capacity-
achieving codes that can be written as a direct sum of MDS-
PIR capacity-achieving codes. Finally, we give an example
showing that it is possible to construct an improved (compared
to Protocol A) asymmetric PIR protocol. The protocol is
code-dependent and strongly relies on finding good punctured
MDS-PIR capacity-achieving subcodes of the non-MDS-PIR
capacity-achieving code.

II. PRELIMINARIES AND SYSTEM MODEL

A. Notation and Definitions

We denote by N the set of all positive integers and define
Na , {1, 2, . . . , a}. Vectors are denoted by lower case bold
letters, matrices by upper case bold letters, and sets by
calligraphic upper case letters, e.g., x, X , and X denote
a vector, a matrix, and a set, respectively. In addition, X c

denotes the complement of a set X in a universe set. The fonts
of random and deterministic quantities are not distinguished
typographically since it should be clear from the context. We
denote a submatrix ofX that is restricted in columns by the set
I by X|I . The function LCM(n1, n2, . . . , na) computes the
lowest common multiple of a positive integers n1, n2, . . . , na.
The function H(·) represents the entropy of its argument and
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I(· ; ·) denotes the mutual information of the first argument with
respect to the second argument. (·)T denotes the transpose of
its argument. We use the customary code parameters [n, k] to
denote a code C over the finite field GF(q) of blocklength n
and dimension k. A generator matrix of C is denoted by GC ,
while CG represents the corresponding code generated by G.
The function χ(x) denotes the support of a vector x, while the
support of a code C is defined as the set of coordinates where
not all codewords are zero. A set of coordinates of C, I ⊆ Nn,
of size k is said to be an information set if and only if GC |I is
invertible. The s-th generalized Hamming weight of an [n, k]
code C, denoted by dCs , s ∈ Nk, is defined as the cardinality
of the smallest support of an s-dimensional subcode of C.

B. System Model

We consider a DSS that stores f files X(1), . . . ,X(f),
where each file X(m) = (x

(m)
i,l ), m ∈ Nf , can be seen as a

β × k matrix over GF(q) with β, k ∈ N. Each file is encoded
using a linear code as follows. Let x(m)

i =
(
x
(m)
i,1 , . . . , x

(m)
i,k

)
,

i ∈ Nβ , be a message vector corresponding to the i-th row
of X(m). Each x(m)

i is encoded by an [n, k] code C over
GF(q) into a length-n codeword c(m)

i =
(
c
(m)
i,1 , . . . , c

(m)
i,n

)
.

The βf generated codewords c(m)
i are then arranged in the

array C =
(
(C(1))T| . . . |(C(f))T

)T
of dimensions βf × n,

where C(m) =
(
(c

(m)
1 )T| . . . |(c(m)

β )T
)T

. The code symbols
c
(m)
1,l , . . . , c

(m)
β,l , m ∈ Nf , for all f files are stored on the l-

th storage node, l ∈ Nn.

C. Privacy Model

To retrieve fileX(m) from the DSS, the user sends a random
query Q(m)

l to the l-th node for all l ∈ Nn. In response to the
received query, node l sends the response A(m)

l back to the
user. A(m)

l is a deterministic function of Q(m)
l and the code

symbols stored in the node.
Definition 1: Consider a DSS with n noncolluding nodes

storing f files. A user who wishes to retrieve the m-th
file sends the queries Q(m)

l , l ∈ Nn, to the storage nodes,
which return the responses A(m)

l . This scheme achieves perfect
information-theoretic PIR if and only if

Privacy:

I
(
m ;Q

(m)
l , A

(m)
l ,X(1), . . . ,X(f)

)
= 0, ∀ l ∈ Nn, (1a)

Recovery:

H
(
X(m)

∣∣A(m)
1 , . . . , A(m)

n , Q
(m)
1 , . . . , Q(m)

n

)
= 0. (1b)

D. PIR Rate and Capacity

Definition 2: The PIR rate of a PIR protocol, denoted by R,
is the amount of information retrieved per downloaded symbol,
i.e., R , βk

D
, where D is the total number of downloaded

symbols for the retrieval of a single file.
We will write R(C) to highlight that the PIR rate depends

on the underlying storage code C. It was shown in [7] that for

the noncolluding case and for a given number of files f stored
using an [n, k] MDS code, the MDS-PIR capacity is

C
[n,k]
f ,

n− k
n

[
1−

(k
n

)f]−1
, (2)

where superscript “[n, k]” indicates the code parameters of
the underlying MDS storage code. When the number of files
f tends to infinity, (2) reduces to C[n,k]

∞ , limf→∞ C
[n,k]
f =

n−k
n , which we refer to as the asymptotic MDS-PIR capacity.

Note that for the case of non-MDS linear codes, the PIR
capacity is unknown.

E. MDS-PIR Capacity-Achieving Codes

In [9], two symmetric PIR protocols for coded DSSs, named
Protocol 1 and Protocol 2, were proposed. Their PIR rates
depend on the following property of the underlying storage
code C.

Definition 3: Let C be an arbitrary [n, k] code. A ν × n
binary matrix Λκ,ν(C) is said to be a PIR achievable rate
matrix for C if the following conditions are satisfied.

1) The Hamming weight of each column of Λκ,ν is κ, and
2) for each matrix row λi, i ∈ Nν , χ(λi) always contains

an information set.
The following theorem gives the achievable PIR rate of

Protocol 1 from [9, Thm. 1].
Theorem 1: Consider a DSS that uses an [n, k] code C to

store f files. If a PIR achievable rate matrix Λκ,ν(C) exists,
then the PIR rate

Rf, S(C) ,
(ν − κ)k
κn

[
1−

(κ
ν

)f]−1
(3)

is achievable.
In (3), we use subscript S to indicate that this PIR rate is

achievable by the symmetric Protocol 1 in [9]. Define R∞, S(C)
as the limit of Rf, S(C) as the number of files f tends to infinity,
i.e., R∞, S(C) , limf→∞ Rf, S(C) = (ν−κ)k

κn . The asymptotic
PIR rate R∞, S(C) is also achieved by the file-independent
Protocol 2 from [9].

Corollary 1: If a PIR achievable rate matrix Λκ,ν(C) with
κ
ν = k

n exists for an [n, k] code C, then the MDS-PIR capacity
in (2) is achievable.

Definition 4: A PIR achievable rate matrix Λκ,ν(C) with
κ
ν = k

n for an [n, k] code C is called an MDS-PIR capacity-
achieving matrix, and C is referred to as an MDS-PIR capacity-
achieving code.

The following theorem from [9, Thm. 3] provides a nec-
essary condition for the existence of an MDS-PIR capacity-
achieving matrix.

Theorem 2: If an MDS-PIR capacity-achieving matrix
exists for an [n, k] code C, then dCs ≥ n

k s, ∀ s ∈ Nk.

III. PIR CAPACITY FOR MDS-PIR CAPACITY-ACHIEVING
CODES

In this section, we prove that the PIR capacity of MDS-PIR
capacity-achieving codes is equal to the MDS-PIR capacity.



TABLE I
PROTOCOL 1 WITH A [5, 3] NON-MDS-PIR CAPACITY-ACHIEVING CODE FOR f = 2

Node 1 Node 2 Node 3 Node 4 Node 5

y
(1)
2(2−1)+1,1

y
(1)
2(1−1)+1,2

y
(1)
2(1−1)+1,3

y
(1)
2(1−1)+1,4

y
(1)
2(1−1)+1,5

y
(1)
2(2−1)+2,1

y
(1)
2(1−1)+2,2

y
(1)
2(1−1)+2,3

y
(1)
2(1−1)+2,4

y
(1)
2(1−1)+2,5

ro
un

d
1

y
(2)
3·0+2,1 y

(2)
3·0+1,2 y

(2)
5·0+1,3 y

(2)
3·0+1,4 y

(2)
3·0+1,5

re
pe

tit
io

n
1

y
(2)
3·0+3,1 y

(2)
3·0+3,2 y

(2)
3·0+3,3 y

(2)
3·0+2,4 y

(2)
3·0+2,5

rnd. 2 y
(1)
2·3+2,1 + y

(2)
3·0+1,1 y

(1)
2·3+1,2 + y

(2)
3·0+2,2 y

(1)
2·3+1,3 + y

(2)
3·0+2,3 y

(1)
2·3+1,4 + y

(2)
3·0+3,4 y

(1)
2·3+1,5 + y

(2)
3·0+3,5

y
(1)
2(3−1)+1,1

y
(1)
2(3−1)+1,2

y
(1)
2(3−1)+1,3

y
(1)
2(2−1)+1,4

y
(1)
2(2−1)+1,5

y
(1)
2(3−1)+2,1

y
(1)
2(3−1)+2,2

y
(1)
2(3−1)+2,3

y
(1)
2(2−1)+2,4

y
(1)
2(2−1)+2,5

ro
un

d
1

y
(2)
3·1+2,1 y

(2)
3·1+1,2 y

(2)
3·1+1,3 y

(2)
3·1+1,4 y

(2)
3·1+1,5

re
pe

tit
io

n
2

y
(2)
3·1+3,1 y

(2)
3·1+3,2 y

(2)
3·1+3,3 y

(2)
3·1+2,4 y

(2)
3·1+2,5

rnd. 2 y
(1)
2·3+3,1 + y

(2)
3·1+1,1 y

(1)
2·3+3,2 + y

(2)
3·1+2,2 y

(1)
2·3+3,3 + y

(2)
3·1+2,3 y

(1)
2·3+2,4 + y

(2)
3·1+3,4 y

(1)
2·3+2,5 + y

(2)
3·1+3,5

Theorem 3: Consider a DSS that uses an [n, k] MDS-PIR
capacity-achieving code C to store f files. Then, the maximum
achievable PIR rate over all possible PIR protocols, i.e., the
PIR capacity, is equal to the MDS-PIR capacity C

[n,k]
f in (2).

Proof: See [12, App. A].
Theorem 3 provides an expression for the PIR capacity

for the family of MDS-PIR capacity-achieving codes (i.e.,
(2)). Moreover, for any finite number of files f and in the
asymptotic case where f tends to infinity, the PIR capacity can
be achieved using Protocols 1 and 2 from [9], respectively.

IV. ASYMMETRY HELPS: IMPROVED PIR PROTOCOLS

In this section, we present three asymmetric PIR protocols
for non-MDS-PIR capacity-achieving codes, illustrating that
asymmetry helps to improve the PIR rate. By asymmetry
we mean that the number of symbols downloaded from the
different nodes is not the same, i.e., for any fixed m ∈ Nf ,
the entropies H(A

(m)
l ), l ∈ Nn, may be different. This is in

contrast to the case of MDS codes, where any asymmetric
protocol can be made symmetric while preserving its PIR
rate [5], [7], [11]. We start with a simple motivating example
showing that the PIR rate of Protocol 1 from [9] can be
improved for some underlying storage codes.

A. Protocol 1 From [9] is Not Optimal in General

Example 1: Consider the [5, 3] code C with generator matrix

G =

1 0 0 1 0
0 1 0 1 0
0 0 1 0 1

.
The smallest possible value of κ

ν for which a PIR achievable
rate matrix exists is 2

3 and a corresponding PIR achievable rate
matrix is

Λ2,3 =

0 1 1 1 1
1 0 0 1 1
1 1 1 0 0

.
It is easy to verify that Λ2,3 above is a PIR achievable rate
matrix for code C. Thus, the largest PIR rate for f = 2 files
with Protocol 1 from [9] is R2, S = 33

5·10 = 27
50 . In Table I

(taken from [9, Sec. IV]), we list the downloaded sums of

code symbols when retrieving file X(1) and f = 2 files are
stored. In the table, for each m ∈ N2 and β = νf = 32, the
interleaved code array Y (m) with row vectors y(m)

i = c
(m)
π(i),

i ∈ N32 , is generated (according to Protocol 1 from [9]) by a
randomly selected permutation function π(·).

Observe that since {2, 3, 4} ⊂ χ(λ1) = {2, 3, 4, 5} is an
information set of C, the five sums of{
y
(1)
2(1−1)+1,5, y

(1)
2(1−1)+2,5, y

(2)
3·0+1,5, y

(1)
2·3+1,5 + y

(2)
3·0+3,5, y

(2)
3·1+1,5

}
are not necessarily required to recover X(1). For privacy
concerns, notice that the remaining sums of code symbols from
the 5-th node would be{
y
(2)
3·0+2,5, y

(1)
2(2−1)+1,5, y

(1)
2·(2−1)+2,5, y

(2)
3·1+2,5, y

(1)
2·3+2,5 + y

(2)
3·1+3,5

}
.

This ensures the privacy condition, since for every combina-
tion of files, the user downloads the same number of linear
sums. This shows that by allowing asymmetry in the responses
from the storage nodes, the PIR rate can be improved to
27

50−5 = 27
45 = 3

5 , which is much closer to the MDS-PIR
capacity C

[5,3]
2 = 1

1+ 3
5

= 5
8 .

Example 1 indicates that for a coded DSS using a non-MDS-
PIR capacity-achieving code, there may exist an asymmetric
PIR scheme that improves the PIR rate of the symmetric
Protocol 1 from [9].

B. Protocol A: A General Asymmetric PIR Protocol

In this subsection, we show that for non-MDS-PIR capacity-
achieving codes, by discarding the redundant coordinates that
are not required to form an information set within χ(λi), i ∈
Nν , it is always possible to obtain a larger PIR rate compared
to that of Protocol 1 from [9].

Theorem 4: Consider a DSS that uses an [n, k] code C to
store f files. If a PIR achievable rate matrix Λκ,ν(C) exists,
then the PIR rate

Rf,A(C) ,
(
1− κ

ν

)[
1−

(κ
ν

)f]−1
(4)

is achievable.
Proof: See [12, App. B].

Proposition 1 below can be easily verified using [9, Lem. 2].



Proposition 1: Consider a DSS that uses an [n, k] code C to
store f files. Then, Rf, S(C) ≤ Rf,A(C) ≤ C

[n,k]
f with equality

if and only if C is an MDS-PIR capacity-achieving code.
In the following, we refer to the asymmetric PIR protocol

that achieves the PIR rate in Theorem 4 as Protocol A
(thus the subscript A in Rf,A(C) in (4)). Similar to Theo-
rem 1, there also exists an asymmetric file-independent PIR
protocol that achieves the asymptotic PIR rate R∞,A(C) ,
limf→∞ Rf,A(C) = 1− κ

ν and we simply refer to this protocol
as the file-independent Protocol A.1

C. Protocol B: An Asymmetric PIR Protocol for a Special
Class of Non-MDS-PIR Capacity-Achieving Codes

In this subsection, we focus on designing an asymmetric
PIR protocol, referred to as Protocol B, for a special class of
[n, k] non-MDS-PIR capacity-achieving codes, where the code
is isometric to a direct sum of P ∈ Nn MDS-PIR capacity-
achieving codes [13, Ch. 2]. Without loss of generality, we
assume that the generator matrix G of an [n, k] non-MDS-
PIR capacity-achieving code C has the structure

G =


G1

G2

. . .

GP

, (5)

where Gp, of size kp×np, is the generator matrix of a punc-
tured MDS-PIR capacity-achieving subcode CGp , p ∈ NP .

Theorem 5: Consider a DSS that uses an [n, k] non-MDS-
PIR capacity-achieving code C to store f files. If the code C
is isometric to a direct sum of P ∈ Nn MDS-PIR capacity-
achieving codes as in (5), then the PIR rate

Rf,B(C) ,

(
P∑
p=1

kp
k

(
C

[np,kp]
f

)−1)−1
is achievable. Moreover, the asymptotic PIR rate

R∞,B(C) , lim
f→∞

Rf,B(C) =

(
P∑
p=1

kp
k

(
C[np,kp]
∞

)−1)−1
is achievable by a file-independent PIR protocol.

Proof: See [12, App. C].
We remark that Protocol B requires β = LCM(β1, . . . , βP )

stripes, where βp, p ∈ NP , is the smallest number of stripes
of either Protocol 1 or Protocol 2 for a DSS that uses only the
punctured MDS-PIR capacity-achieving subcode CGp to store
f files [12, App. C].

Theorem 5 can be used to obtain a larger PIR rate for the
non-MDS-PIR capacity-achieving code in Example 1.

Example 2: Continuing with Example 1, by elementary
matrix operations, the generator matrix of the [5, 3] code of
Example 1 is equivalent to the generator matrix1 0 1 0 0

0 1 1 0 0
0 0 0 1 1

 =

(
G1

G2

)
.

1As for Protocol 1 and Protocol 2 from [9, Remark 2], Λκ,ν(C) can be
used for both Protocol A and the file-independent Protocol A.

It can easily be verified that both CG1 and CG2 are MDS-
PIR capacity-achieving codes. Hence, from Theorem 5, the

asymptotic PIR rate R∞,B =
(

2
3

1
1− 2

3

+ 1
3

1
1− 1

2

)−1
= 3

8 is
achievable. The rate R∞,B = 3

8 is strictly larger than both
R∞, S = 3

10 and R∞,A = 1
3 .

D. Protocol C: Code-Dependent Asymmetric PIR Protocol

In this subsection, we provide a code-dependent, but
file-independent asymmetric PIR protocol for non-MDS-PIR
capacity-achieving codes that cannot be decomposed into a
direct sum of MDS-PIR capacity-achieving codes as in (5).
The protocol is tailor-made for each class of storage codes. The
main principle of the protocol is to further reduce the number
of downloaded symbols by looking at punctured MDS-PIR
capacity-achieving subcodes. Compared to Protocol A, which
is simpler and allows for a closed-form expression for its PIR
rate, Protocol C gives larger PIR rates.

The file-independent Protocol 2 from [9] utilizes interfer-
ence symbols. An interference symbol can be defined through
a summation as [9]

I(h−1)k+h′ ,
f∑

m=1

mβ∑
j=(m−1)β+1

uh,jx
(m)
j−(m−1)β,h′ ,

where h, h′ ∈ Nk and the symbols uh,j are chosen indepen-
dently and uniformly at random from the same field as the
code symbols.

Example 3: Consider a [9, 5] code C with generator matrix

G =


1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 1 1 0
0 0 0 1 0 1 0 1 1
0 0 0 0 1 1 1 1 1

.

It has dC2 = 3 < 9
5 · 2, thus it is not MDS-PIR capacity-

achieving (see Theorem 2). Note that this code cannot be
decomposed into a direct sum of MDS-PIR capacity-achieving
codes as in (5).

The smallest κν for which a PIR achievable rate matrix exists
for this code is 2

3 , and a corresponding PIR achievable rate
matrix is

Λ2,3 =

0 1 0 0 0 1 1 1 1
1 0 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0

.
The idea of the file-independent Protocol 2 from [9] is to
use the information sets I1 = {2, 6, 7, 8, 9} and I2 =
{1, 3, 4, 5, 9} to recover the βk = 1 · 5 requested file sym-
bols that are located in I3 = {1, 2, 3, 4, 5}. Specifically,
we use the information set I1 to reconstruct the required
code symbols located in χ(λ1)

c
= {1, 3, 4, 5} and I2 ⊆

χ(λ2) = {1, 3, 4, 5, 6, 7, 8, 9} to reconstruct the required code
symbol located in χ(λ2)

c
= {2}. Since the code coordinates



TABLE II
RESPONSES BY PROTOCOL C WITH A [9, 5] NON-MDS-PIR CAPACITY-ACHIEVING CODE

Subresponses Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9

Subresponse 1 I1 + x
(m)
1,1 I2 I3 + x

(m)
1,3 I4 + x

(m)
1,4 I5 + x

(m)
1,5 I4 + I5 I3 + I5 I3 + I4 + I5 I1 + I2 + I4 + I5

Subresponse 2 I6 I7 + x
(m)
1,2 I9 I10 I6 + I7 + I9 + I10

TABLE III
PIR RATE FOR DIFFERENT CODES AND PROTOCOLS

Code κ
ν

R∞, S R∞, A R∞, B R∞, C C
[n,k]
∞

C1 : [5, 3] 2/3 0.3 0.3333 0.375 0.375 0.4
C2 : [9, 5] 2/3 0.2778 0.3333 − 0.3571 0.4444
C3 : [7, 4] 3/5 0.3810 0.4 − 0.4 0.4286
C4 : [11, 6] 3/4 0.1818 0.25 − 0.2824 0.4545

{1, 2, 4, 5, 9} form an [n′, k′] = [5, 4] punctured MDS-PIR
capacity-achieving subcode CG′

with generator matrix

G′ =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

,
it can be seen that the code coordinates {1, 4, 5, 9} are
sufficient to correct the erasure located in χ(λ2)

c. Therefore,
compared to Protocol A, we can further reduce the required
number of downloaded symbols. The responses from the nodes
when retrieving fileX(m) are listed in Table II. The PIR rate of
Protocol C is then equal to R∞,C = 1·5

n+n′ =
5
14 <

4
9 = C[9,5]

∞ ,
which is strictly larger than R∞,A = 1

3 . It can readily be seen
from Table II that the privacy condition in (1a) is ensured.

Finally, we remark that, using the same principle as outlined
above, other punctured MDS-PIR capacity-achieving subcodes
can be used to construct a valid protocol, giving the same PIR
rate. For instance, we could pick the two punctured subcodes
CG1 and CG2 with generator matrices

G1 =

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 1

 and G2 =

(
1 0 1
0 1 1

)
,

respectively.
Example 3 above illustrates the main working principle of

Protocol C and how the redundant set of code coordinates is
taken into account. Its general description is given in [12].
However, some numerical results are given below, showing
that it can attain larger PIR rates than Protocol A.

V. NUMERICAL RESULTS

In Table III, we compare the PIR rates for different protocols
using several binary linear codes. The second column gives
the smallest fraction κ

ν for which a PIR achievable rate
matrix exists. In the table, code C1 is from Example 1, code
C2 is from Example 3, C3 is a [7, 4] code with generator
matrix (1, 2, 4, 8, 8, 14, 5) (in decimal form, e.g., (1, 0, 1, 1)T

is represented by 13) and dC33 = 5 < 7
4 ·3, and C4 is an [11, 6]

code with generator matrix (1, 2, 4, 8, 16, 32, 48, 40, 24, 56, 55)
and dC43 = 4 < 11

6 · 3. Note that C2, C3, and C4 cannot be
decomposed into a direct sum of MDS-PIR capacity-achieving

codes as in (5). For all presented codes except C3, Protocol C
achieves strictly larger PIR rate than Protocol A, although
smaller than the MDS-PIR capacity.

VI. CONCLUSION

We proved that the PIR capacity for MDS-PIR capacity-
achieving codes is equal to the MDS-PIR capacity for the
case of noncolluding nodes, giving the first family of non-
MDS codes for which the PIR capacity is known. We also
showed that allowing asymmetry in the responses from the
storage nodes yields larger PIR rates compared to symmetric
protocols in the literature when the storage code is a non-
MDS-PIR capacity-achieving code. We proposed three asym-
metric protocols and compared them in terms of PIR rate for
different storage codes.
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