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We introduce the discrete dipole approximation (DDA) for efficiently calculating the two-dimensional electric field distribution
for our microwave tomographic breast imaging system. For iterative inverse problems such as microwave tomography, the forward
field computation is the time limiting step. In this paper, the two-dimensional algorithm is derived and formulated such that the
iterative conjugate orthogonal conjugate gradient (COCG) method can be used for efficiently solving the forward problem. We
have also optimized the matrix-vector multiplication step by formulating the problem such that the nondiagonal portion of the
matrix used to compute the dipole moments is block-Toeplitz. The computation costs for multiplying the block matrices times a
vector can be dramatically accelerated by expanding each Toeplitz matrix to a circulant matrix for which the convolution theorem
is applied for fast computation utilizing the fast Fourier transform (FFT).The results demonstrate that this formulation is accurate
and efficient. In this work, the computation times for the direct solvers, the iterative solver (COCG), and the iterative solver using
the fast Fourier transform (COCG-FFT) are compared with the best performance achieved using the iterative solver (COCG-FFT)
in C++. Utilizing this formulation provides a computationally efficient building block for developing a low cost and fast breast
imaging system to serve under-resourced populations.

1. Introduction

The mortality rate due to the breast cancer in women
worldwide has led numerous research groups to investigate
early diagnosis programs. Along with other imagingmethods
such as X-ray computed tomography [1], positron emission
tomography [2], and magnetic resonance imaging [3, 4],
microwave imaging has been tested in multiple settings.
In this context, microwave imaging is performed in four
primary forms: radar, holography, thermoacoustic imaging,
and tomography. The radar approaches have been studied
in an array of simulation experiments and have advanced to
several clinical tests [5–8]. Holography approaches have been
primarily tested in simulation and phantom experiments
[9, 10]. Thermoacoustic imaging work has been evaluated
in several phantom experiments along with early clinical

studies [11, 12]. In this report, we focus on microwave
tomography (MWT) which has been tested in several breast
imaging clinical trials and has provided relevant diagnostic
information regarding diagnosis of cancer and monitoring
of tumor progression during neoadjuvant chemotherapy [13,
14].

In spite of the demand and interest for microwave
tomography, the computational costs of various algorithms
have remained a primary obstacle in translation to real
applications [15, 16]. The choice of three or two-dimensional
imaging algorithms has considerable impact on the com-
putation time and necessary hardware resources [17, 18].
Investigations into 3D imaging are considerably more com-
mon than that for 2D because of the superior measurement
model match despite the associated costs [16, 19]. For many
groups investigating microwave imaging, the amount of
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measurement data required is often a significant barrier
to real 3D implementations [20, 21]. For most numerical
techniques, solving the 3D imaging problem can be com-
putationally expensive and requires use of multiprocessor
computers working over many hours to even days to generate
single images [16, 22]. While these 3D efforts are useful and
necessary to advance the science of microwave imaging, the
practical barriers to implementation, includingmeasurement
data costs and computation time, have greatly hindered its
translation into the clinic and limited them primarily to
simulation studies. Alternatively, 2D approaches have proved
viable and have been demonstrated in numerous phantom
and clinical studies [23–26]. In fact, largely due to continuing
computer efficiency advances, 2D techniques are poised to
be viable alternatives for conventional modalities in under-
resourced settings where cost and portability are significant
concerns. In this context, reducing memory requirements
and computation time for the 2D algorithm is an important
concern.

2D imaging algorithms and system implementations are
not new to the microwave imaging community. One notable
example is the Semenov group when they were associated
with the Carolinas Medical Center in Charlotte, North Car-
olina. In a relatively early work, they concluded that the rea-
son their imaging technique did not work as well as desired
was because of themismatch between their 2D algorithm and
the inherent 3D nature of the actual propagating fields [27].
From that experience, they surmised that they would achieve
improved results by transitioning to 3D imaging to avoid
the measurement/model mismatch. However, no proof of
this being a general conclusion was given. Notwithstanding,
significant technological advances have made 2D imaging
feasible and attractive. These include: (1) the use of the lossy
coupling medium to suppress unwanted multipath signal
corruption [28], (2) the use of monopole antennas which
can be positioned very close to the target and which we
have demonstrated improving the overall images [29], and (3)
the use of the log transform which improves the algorithm
convergence behavior, eliminates the conversion to local
minima, and makes a priori information unnecessary [30,
31]. As such, 2D imaging is poised for an expanded clinical
role.

Microwave tomographic imaging algorithms require
solving two problems—forward and inverse problems. The
forward solver is by far the more computationally expensive
part of an iterative image reconstruction algorithm and
requires substantial attention to reduce its impact. Addition-
ally, the need to perform many iterations to recover accurate
images further motivates the requirement for improving
computation time. The most common numerical methods
used to solve the forward problem are the finite-difference
time-domain (FDTD) [32], finite element method (FEM)
[33], and volume integral equations such as the method
of moments (MoM) [34]. Recently, the 3D discrete dipole
approximation was used as a forward solver for 3D imaging
and was found to be highly efficient regarding computational
cost and accuracy [35]. We have also introduced the 2DDDA
as a forward solver for 2D imaging [36]. As part of that paper,
comparisons were performed between the 2D DDA results

and those modeled using COMSOL Multiphysics along
with comparisons with actual measurements. The agreement
was quite good for both. Each numerical method provides
important advantages that can be exploited depending on
the circumstances. For instance, the finite element method
is particularly well suited for situations where nonuniform
shaped scatterers are involved. Likewise, the uniformgrid for-
mulation of the FDTD problem facilitates fast computation
times. While the DDA can be utilized on both uniform and
nonuniform grid configurations, as will be demonstrated in
this paper, the computational advantages are most significant
for the uniform setting. In addition, the associated uniform
setting is optimal when the objects in the domain are mostly
dielectric in nature.While it would be possible to incorporate
metallic scatterers in the domain, for an accurate repre-
sentation, extra dipoles would need to be deployed on the
boundaries of the objects. This would immediately preclude
the uniform grid representation. Conveniently, the imaging
system developed at Dartmouth [26] essentially provides this
feature. The array of monopole antennas is naturally made
of metal; however, their radar cross section is sufficiently
small that they only slightly perturb the field distribution
when another antenna is radiating. In addition, the use of a
very lossy coupling medium (glycerin and water mixtures)
further dampens any perturbations from scattering off the
antennas.

In this work, the two-dimensional discrete dipole approx-
imation (2D-DDA) for calculating the electric field distri-
bution for our microwave imaging system is proposed. The
iterative solver for 2D-DDA has the potential to significantly
improve the computational speed. A conjugate gradient based
method, i.e., the conjugate orthogonal conjugate gradient
method (COCG), is used for which the computational cost
of the COCG is remarkably reduced when incorporating
the fast Fourier transform (FFT). This is made possible
because the coefficient matrix for the 2D-DDA is complex,
symmetric, and block-Toeplitz after removal of the main
diagonal and enables the possibility for employing the FFT
after expansion of the block matrices to circulant form. The
computation times for the direct and iterative solvers are
calculated and have been investigated in this comparison
using both MATLAB and C++ implementations. It is useful
to compare performance both with an interpretive language
such as MATLAB and a classic compiler-based code. While
the interpretive code struggles computation time-wise with
constructs such as loops, it contains highly optimized matrix
operations which can often overcome such disadvantages.
These examinations show that the computation time for
the 2D-DDA is significantly decreased in the COCG-FFT
approach and that the best performance is achieved in C++
using an open source C++ package, FFTW, for fast Fourier
transform calculations [37].

2. Derivations

In this section, we formulate the 2D-DDA and discuss
possible computational efficiency for it as a forward solver of
the reconstruction algorithms.
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2.1.�e 2D-DDA for the Forward Problem. The three-dimen-
sional discrete dipole approximation (3D-DDA) has been
widely used for calculation of scattering and absorption
properties caused by an external electromagnetic field [38–
40]. In the volume integral equations for techniques such as
the discrete dipole approximation, an arbitrary geometry Ω
is assumed to be a union of small volumes Ω𝑖 such that Ω =
lim𝑁→∞⋃𝑁𝑖=1Ω𝑖 [41]. For the purpose of microwave tomog-
raphy, the electromagnetic field distribution is expressed in
the imaging domain with the forward solver, the discrete
dipole approximation. The total electric field at a point 𝜌 in
the imaging domain is𝐸𝑡𝑜𝑡 (𝜌) = 𝐸𝑖𝑛𝑐 (𝜌) + 𝐸𝑠𝑐𝑎𝑡 (𝜌) (1)

where 𝐸𝑖𝑛𝑐 and 𝐸𝑠𝑐𝑎𝑡 are the incident and scattered electric
fields, respectively. The term 𝐸𝑖𝑛𝑐 represents the electric
field propagation due to a waveguide or an antenna for a
homogeneous domain. The scattered electric field 𝐸𝑠𝑐𝑎𝑡 is
the electric field caused by scatterers in the domain. The
Helmholtz equation solution in form of (1) is usually written
as [42]𝐸𝑡𝑜𝑡 (𝜌) = 𝐸𝑖𝑛𝑐 (𝜌)

+ ∫
Ω
𝐺(𝜌, 𝜌) [𝑘2 (𝜌) − 𝑘2𝑏𝑘] 𝐸𝑡𝑜𝑡 (𝜌) 𝑑Ω (2)

where 𝐺(𝜌, 𝜌) is the dyadic Green’s function, 𝑘(𝜌) is
wavenumber at 𝜌 ∈ Ω𝑖, and 𝑘𝑏𝑘 is the background wavenum-
ber. The wavenumbers are expressed in terms of the material
property and frequency as 𝑘2 = 𝜔2𝜇0𝜀0𝜀𝑟 + 𝑗𝜔𝜇0𝜎. For
the DDA, the idea is to approximate the total electric field,𝐸𝑡𝑜𝑡(𝜌) on the right-hand side of (1) such that we assume
that the forward model zone consists of multiple number of
dipoles. Each dipole represents the macroscopic field 𝐸𝑡𝑜𝑡(𝜌)
at the position of the dipole.

On the macroscopic level, the total electric field is
proportional to the polarization 𝑃 via𝑃 = 𝜀0𝜒𝐸𝑡𝑜𝑡 (3)

where 𝜀0 is the permittivity of a vacuum and 𝜒 = 𝜀𝑟 − 1 is the
electric susceptibility. The term 𝑘2(𝜌) − 𝑘2𝑏𝑘(𝜌) in Equation
(2) is related to 𝜒 such that

𝑘2 (𝜌) − 𝑘2𝑏𝑘 (𝜌) = 𝜔2𝜇0 (𝜀 (𝜌) − 𝜀𝑏 (𝜌))= 𝜔2𝜇0𝜀0 (𝜒 (𝜌) − 𝜒𝑏 (𝜌)) (4)

On the microscopic level, the polarization field is related
to dipole moments of individual molecules. Each individual
molecule is affected by a local electric field 𝐸𝑙𝑜𝑐 and gets
correspondingly polarized to exhibit dipole moment 𝑝. The
total contribution from all molecules in a unit volume is
defined as the polarization P:𝑃 = 𝑁𝑝 = 𝑁𝜀0𝛼𝐸𝑙𝑜𝑐 (5)

Here𝑁 is number of molecules per unit volume. The polar-
izability, 𝛼, expresses the relationship between the local and

macroscopic field. In multiple applications, this interaction
has been modeled by the Clausius-Mossotti relation. In
the following section, we discuss the polarizability 𝛼 for
microwave breast imaging systems.

(1) Constant Polarizability (𝛼) for the 2D DDA. The most
common and well-known molecular polarizability, 𝛼, for the
3D-DDA is the Clausius-Mossotti relationship [43] and is
defined for a sphere as

𝛼𝐶𝑀 = 3V𝜀𝑟 − 1𝜀𝑟 + 2 (6)

where 𝜀𝑟 and V are the relative permittivity and volume of
the sphere. The constant term 𝛼 has different formulations
depending on the volume and concentration of the medium
[41, 44, 45]. Previously, Grzegorczyk et al. [35] used the
following 3D Clausius-Mossotti relation for the microwave
imaging system at Dartmouth:

𝛼3𝐷 = 3V 𝜀𝑡 − 𝜀𝑏𝜀𝑡 + 2𝜀𝑏 (7)

where 𝜀𝑏 and 𝜀𝑡 are the complex permittivities of the back-
ground and inclusion, respectively.

Since our imaging system shown in Figure 1 consists of a
tank filled with a liquid mixture of glycerin and water with
different polarization behavior on the molecular level, we
select a more general form of the Clausius-Mossotti rela-
tionship, the Maxwell-Garnett formula. The main advantage
of the Maxwell-Garnett model is that it is also valid for
composite media which is the normal situation for many
applications including our microwave imaging system. The
Maxwell-Garnett formula can be expressed as

𝜀𝑚𝑖𝑥 − 𝜀𝑏𝜀𝑚𝑖𝑥 + 2𝜀𝑏 = 𝐾∑𝑘=1𝑐𝑘 𝜀𝑘 − 𝜀𝑏𝜀𝑘 + 2𝜀𝑏 (8)

In (8), 𝜀𝑚𝑖𝑥 denotes the composite medium consisting of 𝐾
media with permittivities, 𝜀𝑘. The coefficients, 𝑐𝑘, relate the
volume of the inclusion to its concentration which is defined
as 𝑚/𝑀𝑟𝑉 where 𝑉, 𝑚, and 𝑀𝑟 are volume, mass, and the
molecular weight of the inclusion, respectively. The general
formula for the dimensionless 𝛼 in m-dimensions is [46]

𝛼 = 𝑚 𝜀𝑡 − 𝜀𝑏𝜀𝑡 + (𝑚 − 1) 𝜀𝑏 (9)

Based on (8) and (9), the two-dimensional 𝛼 in the form of
the Maxwell-Garnett formula is expressed as

𝛼2𝐷 fl 𝜀𝑚𝑖𝑥 − 𝜀𝑏𝜀𝑚𝑖𝑥 + 𝜀𝑏 = 𝐾∑𝑘=1𝑐𝑘 𝜀𝑘 − 𝜀𝑏𝜀𝑘 + 𝜀𝑏 (10)

The concentration coefficients 𝑐𝑘 are modified based on the
area of the inclusion for the 2D case.

(2) Incident Electric Field (𝐸𝑖𝑛𝑐) for theMicrowave Breast Imag-
ing.Themicrowave imaging system at ChalmersUniversity of
Technology has a circular array of monopole antennas acting
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Figure 1: Photograph of the measurement setup including the tank, antennas, and the phantom cylinders.

as both transmitters and receivers (Figure 1).The transmitting
antenna is modeled via the electric field distribution caused
by an electrical line source (ELS). In this formulation, the 2D
ELS is written in the form of

𝐸𝑖𝑛𝑐 (𝜌) = 𝐼0𝜔𝜇04 𝐻20 (𝑘𝑏 𝜌 − 𝜌𝑎) (11)

where 𝐼0, 𝜔, and 𝜇0 are the current amplitude, operating
frequency, and free-space permeability, respectively.The term|𝜌 − 𝜌𝑎| is the distance of a dipole located at position 𝜌 from
an antenna position 𝜌𝑎.
2.2. Two-Dimensional Discrete Dipole Approximation as a
System of Equations. The governing equation for the two-
dimensional discrete dipole approximation is [36, 39]:

𝐸𝑡𝑜𝑡 (𝜌) = 𝐸𝑖𝑛𝑐 (𝜌) + ∑
Ω𝑖

𝐺 (𝜌, 𝜌) 𝑃 (𝜌) (12)

Inserting (5) into (12) yields

𝐸𝑖𝑛𝑐 (𝜌) = 𝑃 (𝜌)𝛼 (𝜌) −∑Ω𝑗𝐺(𝜌, 𝜌) 𝑃 (𝜌) (13)

For the 2D-DDA, 𝐺(𝜌, 𝜌) is the scalar Green’s function for
the 2D Helmholtz equation and describes the interaction
between two dipoles located at 𝜌 and 𝜌. The relationship is
given by

𝐺 (𝜌, 𝜌) = −𝑗4 𝐻20 (𝑘𝑏 𝜌 − 𝜌) (14)

where 𝐻20 is the zero-order Hankel function of the second
kind. Discretizing the forward model zone into 𝑁 subdo-
mains, (Figure 2), transforms Equation (13) into its matrix
format of

((((((((
(

1𝛼1 −𝐺12 −𝐺13 ⋅ ⋅ ⋅ −𝐺1𝑁−𝐺21 1𝛼2 −𝐺23 ⋅ ⋅ ⋅ −𝐺2𝑁−𝐺31 −𝐺32 1𝛼3 ⋅ ⋅ ⋅ −𝐺3𝑁... ... ... d
...−𝐺𝑁1 −𝐺𝑁2 −𝐺𝑁3 ⋅ ⋅ ⋅ 1𝛼𝑁

))))))))
)

(((
(

𝑃1𝑃2𝑃3...𝑃𝑁
)))
)

=(((
(

𝐸𝑖𝑛𝑐 (𝜌1)𝐸𝑖𝑛𝑐 (𝜌2)𝐸𝑖𝑛𝑐 (𝜌3)...𝐸𝑖𝑛𝑐 (𝜌𝑁)
)))
)

(15)

One problematic aspect of this formulation is that some
terms on the diagonal can approach infinity when any one
of the 𝛼’s goes to zero. This happens when the permittivity
at a dipole is exactly the same as that of the background
(see Equation (7)). One way to eliminate this problem is to
multiply both sides of the equation by 𝛼. However, this has
the unintended consequence of placing the 𝛼 quantities in the
off-diagonal terms of the matrix. As will be shown later, we
exploit the fact that the off-diagonal terms are only functions
of distance and the background permittivity which allows
these portions of the matrix to become block Toeplitz and
subsequently allows for important optimizations. In fact, for
our imaging configuration, we regularly encounter instances
where 𝛼 approaches zero. Because of this conflict, we assume
a uniform background medium outside of the dipoles where
the properties are set to 𝜀𝑏𝑘. Simultaneously, for our actual
measurement system, we utilize a uniform coupling bath
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Figure 2: Schematic imaging plane with 𝑛2 equally spaced dipoles
on it.

everywhere outside the imaging domain, 𝜀𝑏𝑎𝑡ℎ. Since our
forward model zone is a uniform grid, the properties at all
dipoles outside of the imaging domain (a circle in this case)
are set to 𝜀𝑏𝑎𝑡ℎ. Ideally 𝜀𝑏𝑎𝑡ℎ would be set to 𝜀𝑏𝑘 to eliminate
all reflections at the grid boundary. However, allowing the𝛼’s to go to zero would make the diagonal terms go to
infinity. To overcome this, we artificially set 𝜀𝑏𝑎𝑡ℎ and 𝜀𝑏𝑘
to be slightly different. This essentially sets many diagonal
terms to a large number. In addition, it also implies that
there will be nonsignificant signal reflections at the outer
boundary of the dipole domain. For the latter challenge, we
are fortunate in that our imaging system only uses a highly
lossy coupling bath ensuring that waves reflecting back into
the DDA and imaging domains will be sufficiently attenuated
such that they effectively have no impact on the forward
solution. The primary trade-off in this situation is between
the level of reflections that can be tolerated and whether the
accuracy of the forward solution is adversely affected because
the condition number of thematrix in (15) becomes too great.
An analysis of this issue is presented in Section 3.1.

2.3. Computational Efficient Implementation. The task of
computing the electric field distribution utilizing the DDA
involves two primary steps: (a) solving the dipole moments
(P) and (b) multiplying P by the matrix in (15) with the
diagonal, 1/𝛼, terms removed to compute the fields. Because
the matrix in (15) is full, the computational order can be as
high as 2𝑁3/3when using the standard Gaussian elimination
technique [47]. As 𝑁 gets large, this becomes prohibitive
and alternatives such as iterative solvers become attractive. In
these cases, because the time limiting step involves repetitive
multiplication of a length 𝑁 vector by an 𝑁 × 𝑁 matrix,
the computational cost is 𝑂(𝑁𝑖𝑡𝑒𝑟𝑁2), where 𝑁𝑖𝑡𝑒𝑟 is the
number of iterations required for the solution to converge.
For this implementation, we exploit the special nature of the

matrix derived for the DDA which ultimately allows us to
employ the FFT as part of the matrix-vector multiplication
to dramatically reduce the computation time within each
iteration.

Different iterative solvers have been suggested with most
derived from the Krylov subspace methods [39, 48, 49].
Among these methods the conjugate gradient method (CG)
is the most popular. In the derivation of the CG algorithm,
symmetry and positive definiteness (SPD) are assumed; how-
ever, if one of these conditions is not satisfied for the system of
equations, the algorithm does not converge to a solution. In
our case, thematrix in (15) is symmetric since the off-diagonal
terms 𝐺𝑖𝑗 are only a function of the background medium
and the distances between dipoles 𝑖 and 𝑗. Unfortunately, the
matrix does notmeet the requirement of positive definiteness.
Alternatively, there are a class of Krylov subspace methods
that have been suggested for these conditions [50–57]. For our
problem, we have chosen the conjugate orthogonal conjugate
gradient method (COCG); it requires one time matrix-vector
multiplication per iteration, but similar alternatives such as
the conjugate orthogonal conjugate residual (COCR) can also
be used with equivalent computational costs [57, 58].

Examination of (15) provides important insights into how
best to exploit the COCGmethod. By breaking the matrix in
Equation (15) into its diagonal and off-diagonal components,
the left-hand side of (15) can be rewritten as

((((((((
(

1𝛼1 0 0 ⋅ ⋅ ⋅ 0
0 1𝛼2 0 ⋅ ⋅ ⋅ 0
0 0 1𝛼3 ⋅ ⋅ ⋅ 0... ... ... d

...
0 0 0 ⋅ ⋅ ⋅ 1𝛼𝑁

))))))))
)

(((
(

𝑃1𝑃2𝑃3...𝑃𝑁
)))
)

+(((
(

0 −𝐺12 −𝐺13 ⋅ ⋅ ⋅ −𝐺1𝑁−𝐺21 0 −𝐺23 ⋅ ⋅ ⋅ −𝐺2𝑁−𝐺31 −𝐺32 0 ⋅ ⋅ ⋅ −𝐺3𝑁... ... ... d
...−𝐺𝑁1 −𝐺𝑁2 −𝐺𝑁3 ⋅ ⋅ ⋅ 0
)))
)

(((
(

𝑃1𝑃2𝑃3...𝑃𝑁
)))
)

(16)

The first important observation is that the matrix-vector
multiplication in the first term can easily be reduced to
an 𝑂(𝑁) vector-vector multiplication. For the right-hand
matrix, multiplication times the vector P is normally an𝑂(𝑁2) operation. However, in this situation, the right-hand
side matrix, 𝐺, is block Toeplitz. That is, each of the 𝑁 𝑛 × 𝑛
(where 𝑛 = √𝑁) portions of the matrix are themselves
Toeplitz matrices (Figure 3). To complete the full matrix-
vector multiplication of 𝐺 × 𝑃, it can be performed by mul-
tiplying the smaller Toeplitz matrices times the appropriate
portion of 𝑃 and summing the results together afterwards.
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Figure 3: Block-Toeplitz matrix G.

Toeplitz matrices are unique in that they are not nec-
essarily symmetric, but they have regular repetition of the
individual coefficients, for example:

((
(

𝑎 𝑏 𝑐 𝑑 𝑒𝑓 𝑎 𝑏 c 𝑑𝑔 𝑓 𝑎 𝑏 𝑐ℎ 𝑔 𝑓 𝑎 𝑏𝑖 ℎ 𝑔 𝑓 𝑎
))
)

(17)

For our case, the Toeplitz matrices are symmetric and are
closely related to circulant matrices for which there are
highly optimized means for performing matrix-vector mul-
tiplications (i.e., the convolution theorem). In this case, the
symmetric Toeplitz matrix can be padded both in columns
and rows (Figure 4) to produce a circulant matrix:
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where the upper left-hand side, 𝑛 × 𝑛matrix was the original
block-Toeplitz matrix. By transforming the Toeplitz matrix
to this form, several key observations can be made. First,
since each row is identical to the next except for a modulo
shift, only one row of the matrix needs to be computed and

stored. This is a substantial savings in terms of memory
requirements. Secondly, because the matrix is now circulant,
the convolution theorem can be used to multiply it by the
associated portion of the vector (in this case the vector also
needs to be padded similarly to the matrix). Taking the
inverse FFT of the product of the FFT’s of the first row of the
matrix times the associated portion of the vector is equivalent
to multiplying the whole matrix times the vector.

3. Computational Results

In this section, we discuss two different approaches to
optimize the forward solver of the reconstruction algorithms.
Additionally, the effects of background medium dielectric
properties are investigated and its impact on the electric field
distribution is presented.

3.1. Study of the Field Distributions as a Function of Permit-
tivity Difference. As mentioned in Section 2.2, one challenge
in using Equation (15) is the treatment of the diagonal of the
system of equations coefficient matrix. As the 𝛼 terms tend
to zero, implying that the electrical properties of background
liquid are the same as those of the dipoles, the corresponding
diagonal terms go to infinity. Formedical microwave imaging
systems, a coupling liquid reducing the contrast between
skin tissues and its surrounding is used. Utilizing a coupling
liquid that has identical dielectric properties to that of the
outside results in amatrix with infinity values on its diagonal.
To accommodate this challenge, we set the properties of
the dipoles within the grid to something slightly different
than that for the background. This problem motivates us
to study the range of acceptable permittivity values for
its surrounding. For this analysis, the permittivities of the
background and coupling medium are denoted as 𝜀𝑏𝑘 and𝜀𝑏𝑎𝑡ℎ, respectively.

In this situation, we set the permittivity values for the grid
region directly surrounding the imaging domain to 𝜀𝑏𝑎𝑡ℎ and
that for the surrounding background to a value slightly lower
than that. We compute the electric field distributions for a
single, large inclusion (𝜀𝑖𝑛𝑐 = 40, and 𝜎= 1.0 S/m) and the bath
properties of 𝜀𝑏𝑎𝑡ℎ= 22 and 𝜎= 1.0 S/m. The imaging domain
consists of 6561 dipoles. The antenna array is located on a
circle of diameter 15.2 cm and the target is positioned at the
origin. In this situation, the background permittivity is varied
from 21.9999 down to 21 where the difference between 𝜀𝑏𝑎𝑡ℎ
and 𝜀𝑏𝑘 is increased in increments of multiples 10 (i.e., 𝜀𝑏𝑘=
21.9999, 21.999, 21.99, 21.9, and 21.0) and the conductivity is
kept constant at 𝜎= 1.0 S/m. Figure 5 shows plots of (a) the
condition number of the matrix using the formulation in (15),
(b) the condition number of the matrix using the formulation
where (15) has been multiplied by 𝛼, and (c) the relative error
for the first formulation, all as a function of the difference
in permittivity between the bath and background (log scale).
The condition number is a useful metric because it provides a
good measure of the digital accuracy of the inversion process
utilizing a particular matrix [47]. Note that the condition
number of the case where the matrix is multiplied by 𝛼
does not change appreciably since the values on the diagonal
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remain within a relatively tight bound.The field distributions
(both amplitude and phase) for the cases of background
permittivities of 21, 21.9, 21.99, 21.999, and 21.999 are shown
inFigures 6(a)–6(e). For themost part, these distributions are
quite similar. Except for 𝜀𝑏𝑘 = 21, the amplitude plots all show
a primary lobe towards 12:00 (clock-face orientation) with
slight nulls to either side of it.The 𝜀𝑏𝑘 = 21 case does exhibit a
slight bulge towards 12:00, but the nulls have been smoothed
over. The phase distributions show roughly circular patterns
with the sharp changes from red to blue designating phase
wrapping as the distributions jump from −180∘ to +180∘.
These distributions are roughly circular, with the cases for𝜀𝑏𝑘 ≥ 21.9 exhibiting a slight flattening in the 12:00 direction.
The 𝜀𝑏𝑘 = 21 distribution is more circular for the entire
region. From the visual examination in Figures 6(a)–6(e) and
the error and condition number plots in Figure 5, it would
appear that background permittivity values of 21.99 or greater
would be suitable. However, our preference is to keep the
condition number to a modest level, so we choose a value of21.99 to restrain the condition number while simultaneously
keeping the error low.

3.2. Computational Efficiency with the FFT. We have imple-
mented the 2D-DDA using both MATLAB and C++. The

iterative and direct solutions for the given system of equa-
tions have also been calculated. Since the main concern
on the choice of these algorithms stems from optimizing
computation time to obtain vector 𝑃, we have calculated and
compared the computation times for each implementation
and method with different numbers of dipoles. The compu-
tation times are divided into three categories based on the
complexities 𝑁3, 𝑁2, and 𝑁 log (𝑁) for the direct solvers,
theCOCG iterative algorithmand the FFT-COCGalgorithm,
respectively. The computation time for the COCG-FFT
implemented in C++ is processed in two separate software
packages, Armadillo and FFTW. Armadillo is an open source
C++ library for linear algebra and scientific computing which
provides a high level syntax and is balanced between speed
and user friendliness [59, 60]. FFTW is a C subroutine library
for computing the discrete Fourier transform (DFT) in one or
more dimensions, of arbitrary input size, and of both real and
complex data [37].These two packages have been used in our
implementation in this study. Table 1 shows the computation
times for different solvers in MATLAB and C++. For these
simulations, the forward model zone contains 𝑁 number of
dipoles, where 𝑁 = 441, 1681, and 6561. The computation
times for these cases are given in Table 1. Table 1 shows that
the MATLAB direct solver is more efficient compared to that
of the C++ implementation using the Armadillo package.
Generally, for the two smaller matrices, MATLAB is more
efficient than C++. However, when using larger matrices
with sufficient numbers of dipoles in the imaging domain
(𝑁 = 6561) to ensure accuracy, the computation times
for the direct and iterative solvers in MATLAB show that
the time savings are on the order of a factor of two. Using
the FFT-COCG in MATLAB, the time decreases by a factor
of three. Our observations show that there is a significant
difference in computation time between the Armadillo and
FFTW packages using the built-in FFT algorithm.

3.3. two orders of magnitude faster than a conFurther Opti-
mizations for Our Specific Microwave Imaging Problem. In
this section, the optimal number of dipoles utilized in the
imaging domain is investigated. In the previous section, it was
convenient to sequentially double the number of dipoles to
more easily identify the optimal number of dipoles. However,
there may be more convenient intermediate values which
have improved efficiency, especially with respect to the FFT.

For the block-Toeplitz matrices in the case with 6561
dipoles, the square Toeplitz matrices are 81 × 81. To convert
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Figure 6: Plots of magnitude (top) and phase (bottom) distributions for 𝑓 =1.3 GHz, 𝜎 = 1, 𝜀𝑟,𝑡 = 40, 𝑑 = 6 (cm), forward zone of size of 40
cm and #6561 number of dipoles, for multiple background permittivity values, 𝜀𝑟,𝑏𝑘, in range of 21 to 21.9999. The inclusion is located at (0m,
0m) and its outline is indicated by the dashed lines.

these matrices to circulant ones, the size of the matrix
needs to be nearly doubled in width and height along
with duplication of coefficients to that in (18). In this case,
the conversion means adding 79 columns with appropriate
coefficients, before performing the actual FFT. In this form,
the number of columns and the length of each column
increases to 160.

The fast Fourier transformations of the first row of the
matrix and the column vector also require zero-padding
procedures to the next power of 2 to allow use of the FFT.
In this way, a vector with the size of 160 would be converted
to the one of size 256. One way to optimize these cases is
to restrict our number of dipoles in a way that does not
require significant zero-padding. One example of exploiting
this observation is to reduce the overall grid size to 65 × 65
dipoles. Without reducing the physical size of the grid, this
would imply a node-to-node spacing of 6.3 mm instead of
the previous 5.0 mm spacing, an increase of 25%. However,
by decreasing the grid size by only 12% (corresponding to
spacings of 5.5mm and an overall grid size of 35.2cm x
35.2cm), the overall change to the accuracy is only minor, and
we accomplish the goal of improved efficiency. Figure 7 shows
the magnitude and phase distributions for the same case in
Figure 6(c), the background permittivity of 21.99, except that
the overall grid size is 35.2 (cm) × 35.2 (cm). While the
physical boundary is closer to the antennas, the artifacts from
the boundary still have minimal impact on the fields inside
the array of antennas. In terms of efficiency, Table 2 shows
the performance times for this grid size. For all solution
techniques, this size has substantial time improvement over
the previous 6561 case, especially when the FFT is exploited,
by as mush as a factor of 3𝑥 depending on method. This is a
substantial improvement.

Moreover, for the iterative algorithms such as COCG,
the number of iterations is not independent of prescribed
accuracy tolerance levels. To reduce the computation time,
we studied the effects of the error tolerance level on the
computation time as well as the overall accuracy. Table 3
shows the corresponding computation times for tolerances of

1e-5 and 1e-3 for the 6561 dipole grid. For all implementations,
there are significant time improvements, with the C++ times
utilizing the FFT algorithm improving on the order of 35%.

4. Conclusion

We have implemented a version of the DDA for computing
the forward solutions for a configuration used in our current
2D tomographic imaging system. 2D is intriguing in that it
has already been successfully implemented for phantom and
animal experiments along with considerable clinical studies.
Even without the speed enhancements from the techniques
presented here, the 2D approach is already considerably faster
than any existing 3D inverse technique which positions it
well with regard to being the foundation for a low cost and
portable system that would be suitable for under-resourced
settings.

We have previously demonstrated that the DDA is
accurate for forward solution computation for our imaging
algorithm. This study builds on that experience and for-
mulates the problem in ways that facilitate dramatic speed
optimization. Chief among these enhancements is the notion
of utilizing conjugate gradient based iterative solvers in
conjunction with breaking the core matrix into a simple
diagonal matrix and a separate one that can be further broken
into block-Toeplitz matrices. Through standard techniques,
these smaller matrices can be easily expanded into circulant
matrices for which the FFT can be employed to speed up
the matrix/vector multiplications utilizing the convolution
theorem.

Further enhancements including judicious selection of
the grid size and analysis of appropriate error tolerance
levels for the conjugate gradient type iterative process allow
the forward solution time to decrease to the order of 0.1
second which is almost two orders of magnitude faster than
a conventional COMSOL approach that is considered to be
efficient. These computation time improvements along with
significant reductions inmemory usage because of the nature
of circulant matrices make this an attractive approach for
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Table 3: Comparison of computation times as a function of conjugate gradient scheme accuracy tolerances.

Tolerance = 1e-5 Tolerance = 1e-3
COCG COCG-FFT COCR COCR-FFT COCG COCG-FFT COCR COCR-FFT

MATLAB 0.3351 0.4090 0.3749 0.4042 0.2061 0.2694 0.2344 0.2613
C++ 0.3470 0.1655 0.3741 0.1665 0.3237 0.1073 0.2648 0.1080
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Figure 7: Plots of magnitude (left) and phase (right) distributions for 𝑓 =1.3 GHz, 𝜎 = 1, 𝜀𝑟,𝑡 = 40, 𝑑 = 6 (cm), for forward zone of size35.2 × 35.2 cm and 4225 dipoles, for background permittivity value of 𝜀𝑟,𝑏𝑘 = 21.99.
simplifying and greatly speeding up the image reconstruction
process.
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