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EDITORIAL FOCUS
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We increasingly interact with the world via links that are
unique to us. So we hear more about personalized medicine,
personalized advertising, personalized training, and more.
Such links are becoming more sophisticated and widespread in
their use. They range from our fingerprints, our facial and iris
images, our electrocardiogram (8), and of course our DNA
(Fig. 1A). What about recognition based on our patterns of
motion? We can recognize individuals from their gait—do
they limp? Are their hip movements symmetrical? Not surpris-
ingly, algorithms can detect individuals from the forces and
movements they generate while walking (e.g., 3), forces and
movements that must result from patterns of activity in groups
of muscles. More than three decades ago we had reports that
individuals differ in leg muscle activity in common tasks (1, 9).
What was unclear was whether these differences were associ-
ated with muscle activation patterns unique to each individual,
another personalized biometric link.

In a paper published in this issue of the Journal of Applied
Physiology, Hug and colleagues (4) have explored the capacity
of a machine learning approach (using support vector machine
analysis) to identify individuals from a group of 80 based on
the patterns of electromyographic activity (EMG) of eight
muscles in one leg. Their approach, which relied on the
temporal pattern of surface EMGs rather than their magnitude,
was applied equally successfully to walking on a treadmill at
1.1 m/s or pedaling on a cycle ergometer at different power
outputs (up to 150 W and up to 15% maximum; 80 rpm). A
schematic representation of the approach is shown in Fig. 1B.
The chosen tasks—walking and cycling—are of interest as
walking is arguably a more innate task than cycling (10),
although both are likely to access a similar set of motor
“modules” (2, 5). While considerable attention was given to
controlling the motor tasks, the surface EMG electrodes were
placed in standard locations and their position was not marked.
Of the 80 participants, 53 returned for a second study.

To recognize an individual from data collected in one
session, it was not necessary to use EMG activity from all eight
muscles; cyclic activity in only three muscles gave ~90%
recognition in both pedaling and walking. Remarkably, the
algorithm was almost as accurate at recognizing individuals
when they repeated the pedaling and walking a couple of
weeks later. Here activity in six muscles gave accurate recog-

nition in �80% of EMG cycles. In this way, muscle activation
patterns were unique motor signatures.

The work leaves unanswered some basic questions: what
does it mean when some combinations of muscles perform
better than others? Compared with EMG patterns, how well
does this form of machine learning perform when applied to
task kinetics and kinematics? Would such kinetic and kine-
matic signatures be linked to motor signatures? What can be
learned from cycles that could not be correctly identified?
Although there must be a nexus between profiles of muscle
activity and the forces needed to generate body motion, there is
an envelope of solutions that allows for the individuality
highlighted here. Having said this, at what stage do our motor
patterns become unique? How distinct are motor patterns
identifiable in newborns, and how do they develop over time
and change based on the changing mechanics of the limbs and
characteristics of their muscles (e.g., 6)?

Finally, your signature’s idiosyncratic form is instantly rec-
ognizable whether it is written with a pen on paper, with a
stylus on a tablet, or a brush on a billboard. This level of
uniqueness transcends even motor signatures of the type de-
scribed by Hug and colleagues (4)—it represents a truly ad-
vanced level of motor programming and personalization (7).
Thus there remains much to learn about the generation, devel-
opment, and malleability of motor “programs” from their
high-level selection right down to the motoneuronal output to
the muscles and the limits imposed by mechanical constraints.

It is interesting to speculate about the impact of measuring
the uniqueness of muscle patterns in clinical and rehabilitation
settings—here the concept of individual signatures and the
new methods to measure them may be useful in identification
and treatment of pathological locomotor patterns.
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Fig. 1. A: depicts three ways by which a person can
be recognized: fingerprint, iris scan, and genome
sequencing. B: shows schematically the procedure
used by Hug and colleagues (4). Cyclic EMGs were
recorded from leg muscles during walking on a
treadmill. The algorithm (based on support vector
machine analysis) was able to match successfully
the “signature” of EMGs from one step cycle with
those of an individual participant.
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