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ABSTRACT

Context. The polarization of masers contains information on the magnetic field strength and direction of the regions they occur in.
Many maser polarization observations have been performed over the last 30 years. However, versatile maser polarization models that
can aide in the interpretation of these observations are not available.
Aims. We developed a program suite that can compute the polarization by a magnetic field of any non-paramagnetic maser species
at arbitrarily high maser saturation. Furthermore, we investigated the polarization of masers by non-Zeeman polarizing effects. We
present a general interpretive structure for maser polarization observations.
Methods. We expanded existing maser polarization theories of non-paramagnetic molecules and incorporated them in a numerical
modeling program suite.
Results. We present a modeling program called CHAracterizes Maser Polarization (CHAMP) that can examine the polarization of
masers of arbitrarily high maser saturation and high angular momentum. Hyperfine multiplicity of the maser-transition can also be
incorporated. The user is able to investigate non-Zeeman polarizing mechanisms such as anisotropic pumping and polarized incident
seed radiation. We present an analysis of the polarization of v = 1 SiO masers and the 22 GHz water maser. We comment on the
underlying polarization mechanisms, and also investigate non-Zeeman effects.
Conclusions. We identify the regimes where different polarizing mechanisms will be dominant and present the polarization charac-
teristics of the SiO and water masers. From the results of our calculations, we identify markers to recognize alternative polarization
mechanisms. We show that comparing randomly generated linear versus circular polarization (pL−pV) scatter-plots at fixed magnetic
field strength to the observationally obtained pL−pV scatter can be a promising method of ascertaining the average magnetic field
strength of a large number of masers.

Key words. methods: numerical – masers – stars: magnetic field – polarization

1. Introduction

Observation of the polarized emission from masers is an estab-
lishedmethodofobtaining informationon themagneticfield in the
maser region. Linear polarization reveals the projected magnetic
field direction, and circular polarization reveals information on
the magnetic field strength. Maser polarization observations have
been performed for OH (e.g., Baudry & Diamond 1998; Fish
& Reid 2006), H2O (e.g., Vlemmings et al. 2006a), SiO (e.g.,
Kemball & Diamond 1997; Kemball et al. 2009; Herpin et al.
2006), and methanol (e.g., Vlemmings 2008; Vlemmings et al.
2011a; Lankhaar et al. 2018). These observations have indicated,
among other things, an ordered magnetic field around asy-
mptotic giant branch (AGB) stars, such as TX Cam (Kemball &
Diamond1997);amagneticallycollimated jet fromanevolvedstar
(Vlemmings et al. 2006b); the first extragalactic Zeeman-effect
detection in (ultra)luminous infrared galaxies (Robishaw et al.
2008); and the magnetically regulated infall of mass on a massive
protostellar disk (Vlemmings et al. 2010).

The analysis of maser-polarization observations is often based
on the theories of Goldreich et al. (1973; GKK73), which are
derived analytically for masers under the limiting conditions of
(i) strong saturation, where the rate of stimulated emission, R, is
significantly higher than the isotropic decay rate, Γ (R � Γ);
(ii) very strong magnetic fields, where the magnetic precession
rate gΩ is significantly higher than R (gΩ � R); and (iii) high

thermal widths, where the thermal broadening, ∆ω in frequency
units, is significantly higher than gΩ (∆ω � gΩ). These require-
ments are seldom fulfilled and numerical approaches need to be
invoked to ascertain the maser polarization characteristics at inter-
mediary conditions. Well-known numerical approaches to char-
acterizing maser-polarization have been presented by Deguchi
& Watson (1990; D&W90) and Gray & Field (1995; G&F95).
The latter models are aimed at the polarization of masers aris-
ing from paramagnetic molecules like OH, but can be generalized
to masers from a non-paramagnetic species (Gray 2012). Even
though the G&F95 and the D&W90 models have been shown to
be isomorphic (Gray 2003), they have made different assumptions
in their formulation. For instance, the direct time-dependence of
the population (ρaa and ρbb), coupling elements (ρab), and the
electric field elements have been integrated out in the D&W90
models. This was shown by Trung (2009) to have no impact on
the simulation results. Instead, the G&F95 models do not take
into account the off-diagonal elements of the state-populations
(ρaa′ , a , a′). Especially in the regions where magnetic field inter-
actions become comparable to the rates of stimulated emission
(gΩ ∼ R), or when accounting for non-Zeeman effects such as
anisotropic pumping of the maser or partially polarized incident
radiation, this approximation is not valid.

The D&W90 models have been applied in a number of
incarnations:
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(i) In Nedoluha & Watson (1990; N&W90), the maser polariza-
tion model of D&W90 is applied for one frequency. Circular
polarization cannot be computed. Linear polarization can be
computed in the Stokes U and Q parameters. It is possible
to introduce anisotropic pumping. Only one hyperfine sub-
transition can be accounted for. Nedoluha & Watson (1990)
report that simulations can be made at up to J = 3−2 tran-
sitions. Convergence issues arise for higher angular momen-
tum transitions.

(ii) In Nedoluha & Watson (1992; N&W92), the maser polariza-
tion model of D&W90 is applied under the limiting condi-
tion of gΩ � R. Therefore, the Stokes U component of the
radiation can be ignored, and only diagonal elements of the
density-population matrices need to be regarded. It is in this
respect that this variant of the D&W90 models is similar to
the G&F95 models. Circular polarization and linear polar-
ization can be computed, but the polarization angle can only
be χ = 0◦ or χ = 90◦. Multiple hyperfine sub-transition can
be included.

(iii) In Nedoluha & Watson (1994; N&W94), we find the most
extensive variant of the D&W90 models. The N&W94 mod-
els account for off-diagonal elements in the population-
densities, the Stokes U component of the radiation field, and
multiple frequency bins along the maser-line. Anisotropic
pumping can be introduced, but multiple hyperfine sub-
transitions cannot be included. Because of the computational
costs of this approach, N&W94 only give results for the
J = 1−0 transition.

Only the qualitative results of these approaches are available.
In this paper, we present a program that we call CHAMP1

(CHAracterizing Maser Polarization) that simulates the prop-
agation of maser radiation through a medium permeated by a
magnetic field. The user is able to adopt the three approaches
of N&W90, N&W92, and N&W94. We reproduced these mod-
els, and made two significant improvements: the transition of
arbitrary angular momentum can be simulated, and the N&W94
formalism has been expanded to include multiple (and high-
F) hyperfine transitions. These improvements are vital when
analyzing the polarization of high-frequency masers that have
become more relevant in the era of ALMA and its full polariza-
tion capabilities (see, e.g., Pérez-Sánchez & Vlemmings 2013).

As a way of outlining the capabilities of CHAMP, we per-
form a range of simulations of the non-paramagnetic maser
species SiO and H2O, and comment on their relation to sim-
plified methods of analysis performed in the past. We focus
on a range of SiO v = 1, J − (J − 1) maser transitions, and
the 22 GHz water maser transition. We present simulations of
non-Zeeman polarizing effects, like anisotropy in the maser
pumping and polarized seed radiation. We leave maser polar-
ization simulations and analysis of methanol masers, including
its complex hyperfine structure (Lankhaar et al. 2016), for a
later publication. It is possible to investigate the polarization of
any non-paramagnetic maser (e.g., formaldehyde) with CHAMP.
The paramagnetic OH masers can also be investigated with these
models, but this would be an unnecessary complication of the
maser polarization theory, because simplifications from the com-
plete spectral decoupling of the magnetic sub-transitions are not
used.

This paper is organized as follows. In Sect. 2, we recall the
theory of maser-radiation put forth by GKK73 and D&W90, and
expand their work by considering multiple hyperfine transitions

1 The source code of CHAMP and a number of standard input files are
available on GitHub at https://github.com/blankhaar/CHAMP.

within a certain rotational maser line. In Sect. 3, we present the
three numerical approaches based on N&W90, N&W92, and
N&W94, to solve the polarized maser-propagation simulations.
We pay extra attention in this section to the improvements made
that dealt with previous convergence issues. In Sect. 4 we apply
our models to simulate the polarization of SiO and water masers.
In Sect. 5 the results are evaluated by outlining distinguishable
polarizing mechanisms, along with an evaluation of some of the
existing maser polarization literature. We conclude with a sum-
mary of the results in Sect. 6.

2. Theory

In the following, we give a general derivation of the polariza-
tion of maser radiation through a magnetically aligned medium.
First, we consider the effect of an anisotropic radiation field
on a magnetically aligned maser medium and the subsequent
radiative feedback through the processes of stimulated emis-
sion and absorption. Thereafter, we turn to a brief discussion of
anisotropic pumping.

2.1. Maser polarization by a magnetic field

The theory presented here is based on GKK73, and the exten-
sion for numerical modeling (Western & Watson 1984; Deguchi
& Watson 1990; Nedoluha & Watson 1994). We extend these
formalisms by considering multiple hyperfine transitions that lie
close to each other in frequency. Often, it is a rotational tran-
sition that is masing, and we consider only the states relevant
to this transition, namely the hyperfine manifold and magnetic
substates. Interactions of these states with other molecular states
(collisionally or radiatively) are absorbed into the phenomeno-
logical pumping and decay term. Because the maser-molecules
are permeated by a magnetic field, the degeneracy of the mag-
netic substates is lifted. The consequential spectral decoupling of
the photon-transitions with different helicity will cause a polar-
ization of the radiation. This means that we have to consider all
the magnetic substates of the maser-transitions, as well as all the
modes of polarization in the radiation.

We have not yet mentioned the analytical maser polariza-
tion theory by Elitzur (see Elitzur 1991, 1993, 1995, 1998). In
this elegant formalism, the no-divergence requirement of the
electric component of the radiation field is shown to put con-
straints on the phases of the propagated electric field polar-
izations. These phase-relations yield the polarization solutions
of GKK73; however, they are general to any degree of sat-
uration. This result is very different from the other theories
of maser polarization, including the one we present here. The
idealized presuppositions of the Elitzur models, such as the
equal populations of magnetic substates throughout propagation,
are not reproduced by the D&W90 and the CHAMP models,
while the radiation field is always subject to the constraint of
no-divergence. We work within the D&W90 formalism because
of mutual confirmation between G&F95 and D&W90 on mul-
tiple levels of analysis: the isomorphism of the theories of the
D&W90 and G&F95 models (Gray 2003; Trung 2009), their
reproduction of the earlier derived theories of GKK73, and their
strong resemblance to the non-maser radiative transfer models
of Degl’Innocenti & Landolfi (2006).

Setting up the theory of maser radiation propagation can be
divided into two parts. On the one hand, we present a model
of the occupation of the molecular state-populations under the
influence of a polarized radiation field, and on the other hand,
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we present a model of the propagation of the radiation field that
is dependent on the state-populations.

2.1.1. Evolution of the density operator

Let us consider a maser transition between two (torsion-
)rotational states. The maser medium is permeated by a mag-
netic field and the two states are coupled by the radiation field.
Before considering the interaction of the radiation field and the
two (torsion-)rotation states, we pay special attention to hyper-
fine splitting of the line. When the molecules total nuclear spin,
I, is nonzero, both (torsion-)rotational levels participating in the
maser-transition are split up further by hyperfine interactions in
an ensemble of nF = 2I + 1 hyperfine states,

F(1)
1 , F(1)

2 , · · · F(1)
nF
, F(2)

1 , F(2)
2 , · · · F(2)

nF
,

for the upper and the lower level. As a consequence the single
maser transition splits up in a manifold of hyperfine transitions,
where any transition F(1)

i → F(2)
j is allowed as long as the selec-

tion rule ∆F = 0, ±1 is fulfilled. The hyperfine splitting thus
results in a manifold of hyperfine states, where each upper state
is radiatively coupled to multiple other lower states.

However, it turns out that each upper hyperfine level is radia-
tively coupled most strongly to only one lower hyperfine level,
dominating other transitions by over an order of magnitude. By
virtue of this, we can simplify our problem by decomposing the
maser transition into their strongest transitions, F(1)

i → F(2)
i , and

neglect all other couplings. In this way we are left with nF sys-
tems, all independently interacting with the same radiation field.

The Hamiltonian of the i′th transition is

Ĥi =

(
Ĥ(1)

i V̂ (12)
i

V̂ (21)
i Ĥ(2)

i

)
, (1)

where the elements of the diagonal matrix elements are defined
in the frame where the magnetic field is along the z-axis, and are

〈F(1)
i mF |Ĥ

(1)
i |F

(1)
i mF〉 = E(1)

i + gΩ(1)
i mF ,

〈F(2)
i mF |Ĥ

(2)
i |F

(2)
i mF〉 = E(2)

i + gΩ(2)
i mF , (2)

where E(1,2)
i are the hyperfine energies of the upper and lower

level, and gΩ(1,2)
i their respective Zeeman splittings. The cou-

pling elements are

V̂ (12)
i = −d̂ · E, (3)

where d̂ is the dipole operator, and E is the electric field. With
this decomposition, we can formulate the evolution equation
for the states for the nF independent systems, following the
Liouville–von Neumann equation,

˙̂ρi = −
i
~

[Ĥi, ρ̂i] + Λ̂i − Γ̂iρ̂i, (4)

where we take into account the excitation of both levels by
including a phenomenological term for the pumping of the
maser, Λ̂i, and the decay of the states by Γ̂i. Just as in the Hamil-
tonian in Eq. (1), we can express the density-operator in its parts,

ρ̂i =

(
ρ̂(1)

i ρ̂(12)
i

ρ̂(21)
i ρ̂(2)

i

)
, (5)

so that the evolution of the decomposed density operators is

˙̂ρ(1)
i = −

i
~

(
[Ĥ(1)

i , ρ̂(1)
i ] + V̂ (12)

i ρ̂(21)
i − ρ̂(12)

i V̂ (21)
i

)
− Γ̂

(1)
i ρ̂(1)

i + Λ̂
(1)
i , (6a)

˙̂ρ(2)
i = −

i
~

(
[Ĥ(2)

i , ρ̂(2)
i ] + V̂ (21)

i ρ̂(12)
i − ρ̂(21)

i V̂ (12)
i

)
− Γ̂

(2)
i ρ̂(2)

i + Λ̂
(2)
i , (6b)

˙̂ρ(12)
i = −

i
~

(
Ĥ(1)

i ρ̂(12)
i − ρ̂(12)

i Ĥ(2)
i + V̂ (12)

i ρ̂(2)
i − ρ̂

(1)
i V̂ (12)

i

)
− Γ̂

(1)
i ρ̂(12)

i . (6c)

In D&W90 it is shown how to integrate out the time-
dependence of the off-diagonal elements of Eq. (6c). The solu-
tions of these integrations, are subsequently inserted into the
population-equations of Eqs. (6a) and (6b). We assume a steady
state: ˙̂ρ(1)

i = ˙̂ρ(2)
i = 0. After somewhat involved rearrangements

that are analogous to those used in D&W90, we find the expres-
sions for the upper state-populations

0 = − (Γi + iωaia′i
)ρaia′i

(v) + φ(v)λaia′i

+
π

c~2

∑
bib′i

ρbib′i
(v)

(
〈γ

a′i b′i
− ζa′i bi ,aib′i 〉ω + 〈γaibi

+ ζa′i bi ,aib′i 〉ω

)

−
∑
bia′′i

ρa′′i a′i
(v)〈γ

a′i bi
− (ζaibi ,a′′i bi )∗〉ω −

∑
bia′′i

ρaia′′i
(v)〈γaibi

+ (ζa′i bi ,a′′i bi )∗〉ω

 ,
(7)

where ai and bi are the indices for the magnetic substates of the
upper and lower levels, and the energy difference between mag-
netic substates are represented by ~ωaa′ = Ea − Ea′ . Elements
of the pumping operator are represented as Λaa′ = φ(v)λaa′ ,
where φ(v) stands for the Maxwell-Boltzmann distribution. Fur-
thermore, we use the simplified notations

ζ i j,kl = I(ω)δi j,kl
I − Q(ω)δi j,kl

Q − iU(ω)δi j,kl
U + V(ω)δi j,kl

V , (8)

and (I,Q,U,V) are the Stokes parameters as defined in D&W90.
The delta-operators are related to the dipole elements by

δ
i j,kl
I = (di j

+ )∗dkl
+ + (di j

− )∗dkl
− , (9a)

δ
i j,kl
Q = (di j

+ )∗dkl
− + (di j

− )∗dkl
+ , (9b)

δ
i j,kl
U = (di j

+ )∗dkl
− − (di j

− )∗dkl
+ , (9c)

δ
i j,kl
V = (di j

+ )∗dkl
+ − (di j

− )∗dkl
− , (9d)

with explicit elements (D&W90)

dab
± = ±dab

M=1
1 ± cos θ

2
+ idab

M=0
sin θ
√

2
∓ dab

M=−1
1 ∓ cos θ

2
, (10)

where θ is the angle between the magnetic field and propagation
directions. We also use a simplified notation for the integral

〈γ
i j
±ζ

kl,mn〉ω =

∫
dω γ

i j
± (ω, v)ζkl,mn(ω), (11)

with

γaibi
± =

1

Γi ± i
[
ωaibi − ω(1 − v

c )
] · (12)

The lower state-populations follow from a similar derivation.
The population equations for the upper- and lower-level of the
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hyperfine transition F(1)
i → F(2)

i , are mutually dependent, but
do not depend directly on other hyperfine transitions within
our approximation, as was motivated at the beginning of this
section. We thus have a set of nF-independent population equa-
tions for the hyperfine substates of the rotational transition under
investigation.

2.1.2. Evolution of the radiation field

The evolution of polarized radiation has been derived else-
where (e.g., Goldreich et al. 1973; Deguchi & Watson 1990;
Degl’Innocenti & Landolfi 2006). We re-iterate the expressions
here, while also taking into account the feed of multiple close-
lying hyperfine transitions to the radiation field. By using the
well-known relation between the propagation of the electric field
and the polarization of the medium, it is possible to find the
connection between the radiative propagation and the molecu-
lar states by expressing the medium polarization in terms of the
expectation value of the molecular dipole moment of the ensem-
ble. After expressing the polarization in terms of the molecular
states, while maintaining attentive to polarization, we arrive at
the propagation relation for the Stokes parameters (Goldreich
et al. 1973; Nedoluha & Watson 1992)

d
ds


I(ω)
Q(ω)
U(ω)
V(ω)

 =


A(ω) B(ω) F(ω) C(ω)
B(ω) A(ω) E(ω) G(ω)
F(ω) −E(ω) A(ω) D(ω)
C(ω) −G(ω) −D(ω) A(ω)




I(ω)
Q(ω)
U(ω)
V(ω)

 , (13)

The expressions for the propagation coefficients are

A(ω) =
−πω

c~

∑
i

∑
aibi

∫
dv

∑
b′i

〈ρb′i bi (γ
aibi
+ + γ

aib′i
− )〉δaibi,aib′i

I

−
∑

a′i

〈ρaia′i (γ
aibi
+ + γ

aib′i
− )〉δaibi,a′i bi

I

 , (14a)

B(ω) =
πω

c~

∑
i

∑
aibi

∫
dv

∑
b′i

〈ρb′i bi (γ
aibi
+ + γ

aib′i
− )〉δaibi,aib′i

Q

−
∑

a′i

〈ρaia′i (γ
aibi
+ + γ

aib′i
− )〉δaibi,a′i bi

Q

 , (14b)

C(ω) =
−πω

c~

∑
i

∑
aibi

∫
dv

∑
b′i

〈ρb′i bi (γ
aibi
+ + γ

aib′i
− )〉δaibi,aib′i

V

−
∑

a′i

〈ρaia′i (γ
aibi
+ + γ

aib′i
− )〉δaibi,a′i bi

V

 , (14c)

D(ω) =
−iπω

c~

∑
i

∑
aibi

∫
dv

∑
b′i

〈ρb′i bi (γ
aibi
+ − γ

aib′i
− )〉δaibi,aib′i

Q

−
∑

a′i

〈ρaia′i (γ
aibi
+ − γ

aib′i
− )〉δaibi,a′i bi

Q

 , (14d)

E(ω) =
iπω
c~

∑
i

∑
aibi

∫
dv

∑
b′i

〈ρb′i bi (γ
aibi
+ − γ

aib′i
− )〉δaibi,aib′i

V

−
∑

a′i

〈ρaia′i (γ
aibi
+ − γ

aib′i
− )〉δaibi,a′i bi

V

 , (14e)

F(ω) =
iπω
c~

∑
i

∑
aibi

∫
dv

∑
b′i

〈ρb′i bi (γ
aibi
+ + γ

aib′i
− )〉δaibi,aib′i

U

−
∑

a′i

〈ρaia′i (γ
aibi
+ + γ

aib′i
− )〉δaibi,a′i bi

U

 , (14f)

G(ω) =
−πω

c~

∑
i

∑
aibi

∫
dv

∑
b′i

〈ρb′i bi (γ
aibi
+ + γ

aib′i
− )〉δaibi,aib′i

U

−
∑

a′i

〈ρaia′i (γ
aibi
+ − γ

aib′i
− )〉δaibi,a′i bi

U

 , (14g)

where the sum i runs over all hyperfine transitions, and ai and
bi are the magnetic sublevels of the upper and lower level,
respectively, of the i′th hyperfine transition. The tight relation
between the molecular states and the feed to the radiation field
is also reflected in these equations as again, the radiative cou-
pling between the two states is represented by the δ-operators.
In Sect. 3 we outline the three approaches to numerically solve
Eqs. (7) and (14).

2.2. Anisotropic pumping

The pumping-operator is a phenomenological term that, together
with the decay-operator, absorbs all the interactions with molec-
ular states that are not participating in the maser-transition. The
decay-operator is concerned with the decay of the maser-levels
to other states. The pumping-operator encapsulates the colli-
sional and radiative (de-)excitations that will eventually populate
our two maser-levels.

Alignment will manifest itself in a molecular state when a
(de-)excitation to it has a preferred direction. An example of a
directional excitation would be the directional pumping radia-
tion, like the radiation from central stellar object that leads to the
SiO maser (Gray 2012). The introduced alignment in the direc-
tionally excited molecular state will be transferred (with some
depolarization) from state to state in the cascade to our maser
levels. The reflection of this anisotropy in the pumping opera-
tor was already formulated by Nedoluha & Watson (1990) and
Western & Watson (1983, 1984), who defined the elements of a
the anisotropic pumping operator as

Λmm′ = λ

(
1 + ε

[
F2 + F − 1 + m2

(2F − 1)(2F + 3)
− 1

])
δmm′ , (15)

where λ is the overall pumping, F is the total angular momentum
of the associated state, m is the magnetic quantum number, δmm′

is the Kronecker-delta, and ε is the degree of anisotropy in the
pumping. In Eq. (15) we assume the direction of the anisotropic
pumping to be along the magnetic field direction. If the pumping
direction has a different orientation with respect to the magnetic
field, the pumping matrix can be obtained by the simple rotation

Λ′ = D†(α′β′γ′)ΛD(α′β′γ′) (16)

over the Euler-angles (α′β′γ′) that describe the rotation from the
pumping-direction to the magnetic field direction.

The partial alignment of the directionally pumped maser
will result in the emittance of partially polarized radiation. The
polarization will depend not only on the degree of anisotropy
in the pumping, ε, but will also be dependent on the pumping
efficiency,

η =
ε

δ
, (17)
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where we let η be the anisotropy parameter, and

δ = 2
λu − λl

λu + λl
(18)

is the pumping-efficiency, with the overall-pumping of the upper
and lower level given by λu,l. The pumping efficiency was inves-
tigated for water masers. Estimation of the mean population
inversion ∆n from high-resolution observations of water masers
around AGB stars revealed for most masers ∆n . 0.01. The
most luminous masers had higher degrees of population inver-
sion, up to δ ∼ 0.1 (Richards et al. 2011). It is to be expected
for the more saturated masers that the population inversion will
decrease. Richards et al. (2011) estimated that most masers in
the sample, though, were unsaturated. For unsaturated masers,
their mean population inversion reflects the pumping efficiency
2∆n ∼ δ; thus, we estimate δ ∼ 0.02. The anisotropy degree ε
of anisotropically pumped masers is estimated to be of the same
order of magnitude (Nedoluha & Watson 1990).

3. Methods

The maser polarization equations that we have derived in the
theory section have to be solved numerically. In the following,
we outline three numerical approaches that we adopt in CHAMP.
We dedicate extra attention on the method we use to solve the
density equations in Sect. 2.2. After an outline of the methods
we use in CHAMP, we discuss the set-up of the experiments we
perform to present the capabilities of CHAMP in Sect. 3.2.

3.1. Three numerical approaches

In this work, we reproduce and extend the numerical approxi-
mations reported in N&W90, N&W92, and N&W94. The dif-
ferences between the approaches can be traced back to different
approximations to the integrals in Eqs. (7) and (14):
(i) In N&W90, integrals are approximated to peak sharply

around the maximum of γi j
± ,∫

dω γ
i j
± (ω, v)ζkl,mn(ω) ≈ πζkl,mn(ωi j), (19)

where ωi j is the transition frequency between levels i and j.
Similarly, the integration over density matrix elements is∫

dv ρi j(v)γkl
± (ω, v) =

πc
ω0
ρi j(v0). (20)

We only account for one frequency and velocity bin in
the Stokes parameters and density matrix elements. A con-
sequence of this approximation is that only one hyperfine
transition can be included and that circular polarization is
not computed. Within this approximation we are left with
the following simplified density equations (ρi j = ρi j(v0) and
ζ i j,kl = ζ i j,kl(ω0)),

0 = − (Γ + iωaa′ )ρaa′ + λaa′ +
2π2

c~2

∑
bb′

ρbb′ζ
a′b,ab′

−
∑
ba′′

ρa′′a′ (ζab,a′′b)∗ −
∑
ba′′

ρaa′′ (ζa′b,a′′b)∗
 , (21)

where we dropped the i-indices because we cannot treat a
hyperfine manifold in this method. Similarly, the propagation
coefficients are

A(ω) =
−2π2

~

∑
ab

∑
b′
ρb′bδ

ab,ab′
I −

∑
a′
ρaa′δ

ab,a′b
I

 , (22a)

B(ω) =
2π2ω

c

∑
ab

∑
b′
ρb′bδ

ab,ab′
Q −

∑
a′
ρaa′δ

ab,a′b
Q

 , (22b)

C(ω) =
−2π2ω

c

∑
ab

∑
b′
ρb′bδ

ab,ab′
V −

∑
a′
ρaa′δ

ab,a′b
V

 , (22c)

F(ω) =
−2iπ2

~

∑
ab

∑
b′
ρb′bδ

ab,ab′
U −

∑
a′
ρaa′δ

ab,a′b
U

 , (22d)

and D(ω) = E(ω) = G(ω) = 0.
(ii) N&W92 assume a strong magnetic field. Thus, from Eq. (7),

under the limiting condition gΩ � R, it follows that diag-
onal elements dominate the density-populations and that we
can neglect off-diagonal elements. Through this simplifica-
tion we can assume the Stokes U component of the radiation
absent. Integrals are simplified in the following way:∫

dω γab
± (ω, v)ζa′b′,a′′b′′ (ω) ≈ πζa′b′,a′′b′′ (ωab/(1 − v/c)),

(23a)∫
dv γab

± (ω, v)ρkk(v) ≈
πc
ω0
ρkk(c(ω − ωab)/ω). (23b)

The populations and ζ parameters are evaluated for 2N + 1
channels

ω = {ω−N , ω−N+1, · · · , ω0, · · · , ωN},

where ω j = ω0 + j∆ω, and ∆ω is the width of the frequency
channel. The frequency channels are related to the velocity
channels as u =

c0
ω0
ω, so that v j = j∆v = j c0

ω0
∆ω. For each

channel, the population and ζ parameters are

ρkk(c(ω j − ωab)/ω) ≈ ρkk(v j)

−
c
ω0

∂ρkk

∂v

∣∣∣∣∣
v j

(magΩ1/2 − mbgΩ2/2)

ζa′b′,a′′b′′ (ωab/(1 − v j/c)) ≈ ζa′b′,a′′b′′ (ω j)

+
∂ζa′b′,a′′b′′

∂ω

∣∣∣∣∣∣
ω j

(magΩ1/2 − mbgΩ2/2), (24)

leading to simplified density equations and to simplified prop-
agation coefficients, where D(ω) = E(ω) = F(ω) = G(ω) =
0. Thus, within this method, propagation of the Stokes U part
of the radiation does not occur and can be left out.

(iii) If we follow N&W94, we do not make any of the approx-
imations outlined above. Rather, we endeavor to solve the
Eqs. (7) and (14) by making a numerical approximation to
the integral∫

dω γab
± (ω, v j)ζa′b′,a′′b′′ (ω)

by dividing ω and v in 2N + 1-channels, as we do for the
N&W92 method (see above). The first approximation that
we make neglects all contributions to the integral outside of
the boundaries ω±N ± ∆ω/2∫

dω γab
± (ω, v j)ζa′b′,a′′b′′ (ω)

≈

∫ ωN +∆ω/2

ω−N−∆ω/2
dω γab

± (ω, v j)ζa′b′,a′′b′′ (ω),

which is a good approximation for ωN � ωD (ωD is the
Doppler broadening). Then, we divide the integral in their
respective channels
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ω−N−∆ω/2
dω γab

± (ω, v j)ζa′b′,a′′b′′ (ω)

=

N∑
i=−N

∫ ∆ω/2

−∆ω/2
dω′γab

± (ωi + ω′, v j)ζa′b′,a′′b′′ (ωi + ω′).

To solve the individual integrals we assume that the function
ζa′b′,a′′b′′ (ωi +ω

′) can be approximated as a Taylor expansion
around ωi, truncated at first-order:

ζa′b′,a′′b′′ (ωi + ω′) =

∞∑
p=0

ω
′p

p!

(
dpζa′b′,a′′b′′

dω′p

)
ωi

≈ ζa′b′,a′′b′′ (ωi) + ω′
(

dζa′b′,a′′b′′

dω′

)
ωi

.

This leads to the approximate expression of the integrals

N∑
i=−N

∫ ∆ω/2

−∆ω/2
dω′γab

± (ωi + ω′, v j)ζa′b′,a′′b′′ (ωi + ω′)

≈

N∑
i=−N

ζa′b′,a′′b′′ (ωi)
∫ ∆ω/2

−∆ω/2
dω′γab

±

+

N∑
i=−N

(
dζa′b′,a′′b′′

dω′

)
ωi

∫ ∆ω/2

−∆ω/2
dω′ω′γab

± . (25)

The remaining integrals can be solved analytically. From the
definition of the γab

± (ω, v) function of Eq. (12), we have the
following analytical solutions∫ ∆ω/2

−∆ω/2
dω′ γab

± (ω′ + ωi, v j)

= −
(
atan qup − atan qdown

)
±

i
2

log
 Γ2 + q2

up

Γ2 + q2
down


= gr(i, j) ± igi(i, j) = g±(i, j), (26a)∫ ∆ω/2

−∆ω/2
dω′ ω′γab

± (ω′ + ωi, v j)

=
Γgi(i, j)
1 − j∆v

+

(
ωab

1 − j∆v
− (ω0 + i∆ω)

)
gr(i, j)

± i
([

ωab

1 − j∆v
− (ω0 + i∆ω)

]
gi(i, j) +

Γ

1 − j∆v
gr(i, j) + ∆ω

)
= gr,ω(i, j) ± igi,ω(i, j) = g±ω(i, j), (26b)

where

qup = ωab −

[
∆ω

2
+ ω0 + i∆ω

]
(1 − j∆v),

qdown = ωab −

[
−

∆ω

2
+ ω0 + i∆ω

]
(1 − j∆v).

We should note that our approach differs slightly from that of
N&W94; we use the analytical solutions to the integrals of
Eq. (26) instead of assuming a sharply peaked function. Let
us now insert these simplified integrals into the final approx-
imate equation for the integral∫

dω γab
± (ω, v j)ζa′b′,a′′b′′ (ω) ≈

N∑
i=−N

(
ζa′b′,a′′b′′ (ωi)g±(i, j)

+

(
dζa′b′,a′′b′′

dω′

)
ωi

g±ω(i, j)
 ,

(27)

where the derivatives
(

dζa′b′ ,a′′b′′

dω′

)
ωi

can be evaluated via the

finite-difference method. The numerical approximation for
the integral over v at a particular channel frequency ωi

〈γab
± (ωi)ρkk′〉v =

∫
dv γab

± (ωi, v)ρkk′ (v)

is obtained in a similar way, and yields∫
dv γab

± (ωi, v)ρkk′ (v) ≈
N∑

j=−N

(
c0

ω0
ρkk′ (v j)g±(i, j)

−

(
c0

ω0

)2 (
dρkk′

dv′

)
v j

g±ω(i, j)

 , (28)

where the derivatives
(

dρkk′

dv′

)
v j

, again, can be evaluated via the
finite-difference method. We evaluated the accuracy of the
truncated Taylor expansion, and found that adding higher-
order terms had minimal effect. Using the numerical expres-
sions of Eqs. (27) and (28) for the integrals, the density equa-
tions and propagation matrix can be set up. The latter will
contain all seven propagation coefficients. Solving the den-
sity equations is the subject of the next subsection.

It should be noted that above we assumed that different fre-
quency components of the radiation field are uncorrelated, which
is a standard assumption in maser theory (Gray 2012). The same
is true for the different velocity components of the molecular
states. Numerical simulation of maser polarization propagation
can be made using these formalisms by computing the state pop-
ulations for a given radiation field (see next paragraph) with the
use of Eq. (7) and by computing the propagation coefficients
using Eq. (14) and the newly found state populations. Subse-
quently, the radiation field is propagated using Eq. (13), where
for a small enough ∆s the propagated vector of Stokes param-
eters can be approximated by I(s + ∆s, ω) = e∆sK(s,ω)I(s, ω),
where K(s, ω) stands for the matrix of propagation coefficients
(see Eq. (13)). The initial radiation field may be blackbody radia-
tion, and the initial guess for the state-populations ∼ Λ/Γ. In the
following paragraph, we put extra emphasis on the computation
of the state populations.

3.2. Solving the density equations

Because convergence issues have been known to arise for the
density equations of N&W90 and N&W94 at high maser satu-
ration, we explicitly comment on the method we used to solve
the density equations. In the following, we consider the density
equations for N&W90, but a similar methodology was used for
the other approaches. From Eq. (21), we have n2

F1
+ n2

F2
coupled

equations for the density matrix (for N&W92, the dimensionality
is reduced to nF1 + nF2 ). To ensure the hermicity of the solutions,
it is convenient to separate the density matrix elements into their
real and imaginary parts,

ρaa′ = Re(ρaa′ ) + iIm(ρaa′ ), (29)

and we require Re(ρaa′ ) = Re(ρa′a) as well as Im(ρaa′ ) =
−Im(ρa′a). We bundle the unique elements in the vector
ρ= [ρa, ρb]T , where

ρa = [ρ(a)
11 , ρ

(a)
22 , · · · ρ

(a)
nF1 nF1

,Re(ρ(a)
12 ), Im(ρ(a)

12 ), · · · , Im(ρnF1−1,nF1
)]

(30)
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and ρb is the analogous population vector for the lower state. We
take the real and imaginary parts from Eq. (21) and find

Re(λaa′ ) = − ΓRe(ρaa′ ) + Im(ρaa′ )ωaa′ +
2π2

c~2

×

∑
bb′

(Re(ρbb′ )Re(ζa′b,ab′ ) − Im(ρbb′ )Im(ζa′b,ab′ ))

−
∑
ba′′

(Re(ρa′′a′ )Re(ζab,a′′b)∗ − Im(ρa′′a′ )Im(ζab,a′′b)∗)

−
∑
ba′′

(Re(ρaa′′ )Re((ζa′b,a′′b)∗) − Im(ρaa′′ )Im((ζa′b,a′′b)∗))

 ,
= aaa′ρ, (31)

Im(λaa′ ) = − ΓIm(ρaa′ ) − Re(ρaa′ )ωaa′ +
2π2

c~2

×

∑
bb′

(Re(ρbb′ )Im(ζa′b,ab′ ) + Im(ρbb′ )Re(ζa′b,ab′ ))

−
∑
ba′′

(Re(ρa′′a′ )Im(ζab,a′′b)∗ + Im(ρa′′a′ )Re(ζab,a′′b)∗)

−
∑
ba′′

(Re(ρaa′′ )Im((ζa′b,a′′b)∗) + Im(ρaa′′ )Re((ζa′b,a′′b)∗))

 ,
= baa′ρ. (32)

The collection of density equations can thus be formulated in the
following matrix equation

λ = Mρ, (33)

where all matrices and vectors are real, and we have the elements
of the matrix

M = [a11, a22, · · · anF1 nF1
, a12, b12, · · · , bnF1−1,nF1

, · · · ]T , (34)

where the last part is omitted, but is made up of the analogous
density equations of the lower level. We can solve for all densi-
ties by

ρ = inv(M)λ. (35)

The matrix inversion is performed using an LQ decompo-
sition, taken from the standard LAPACK libraries (Anderson
et al. 1999). This method is very robust, as exemplified by the
fact that these density equations are solvable for arbitrary angu-
lar momentum transitions (matrix dimensionality) and maser
saturation. This is in contrast to N&W90 and N&W94, where
convergence problems were reported for transitions of J > 3
(Nedoluha & Watson 1990).

3.3. Experiments

We present the developed methods by using them to analyze
masers with a non-paramagnetic Zeeman effect that have shown
polarization in their emission. In the following, we only present
results from the most rigorous N&W94 method. We consider all
Stokes parameters, high rates of stimulated emission, and non-
Zeeman polarizing mechanisms.

We report our calculations mainly through contour maps of

the linear polarization degree pL =

√
Q2

0 + U2
0/I0, polariza-

tion angle pa = atan(U0/Q0)/2, and circular polarization degree
pV = (Vmax − Vmin)/I0. The circular polarization degree is taken
to be negative if Vmax occurs at a frequency ω < ω0. The Stokes
parameters I0, Q0, and U0 are taken at the peak of I(ω). The
polarization angle is relative to the rejection of the magnetic field
direction from the propagation direction, i.e., the magnetic field
direction projected onto the plane of the sky.

3.3.1. SiO masers

We analyzed the polarization of SiO masers by a magnetic field.
We ran simulations at various magnetic field strengths, angular
momentum transitions, and propagation angles θ. The molecular
parameters that are used in the simulation are given in Table 1.
We performed calculations for the SiO masers in the vibrational
state v = 1. SiO masers also occur in higher vibrational states.
The results we present can be taken as similar to higher vibra-
tional states. Only the different isotropic decay rates, which scale
roughly as Γ ≈ 5v s−1 (Elitzur 1992), lead to a different ratio
gΩ/Γ which will have little impact on the presented results.

Maser polarization properties converge for ωD � gΩ. To
ensure ωD � gΩ, we use a thermal maser width of ∆ωth =
1000 × gΩ × J, where J is the angular momentum of the
upper level. This thermal maser width corresponds to vth ≈
0.83×J2

B(G) km s−1. We performed studies with the following:
– isotropic pumping, where the pumping matrix is Λ = λ1;
– polarized incident seed radiation, with isotropic pumping,

but with seed radiation of U/I = 0.1 and U/I = 0.5;
– anisotropic pumping, where the pumping matrix character-

ized by Eq. (16). We ran simulations with moderate η = 0.1
and high η = 0.5 degrees of anisotropy. We ran simulations
for three anisotropy directions: (i) parallel to the magnetic
field, (ii) perpendicular to the magnetic field and propaga-
tion direction, and (iii) at 45◦ from the magnetic field in the
plane perpendicular to the propagation direction.

3.3.2. Water masers

We present the polarization of water masers in the parameter
space relevant to observations. The strongest water masers do not
exceed Tb∆Ω = 1013 Ksr (Garay et al. 1989; Sobolev et al. 2018)
and magnetic field estimates range from B = 1 mG − 1 G. The
thermal width of the maser molecules affects the maser polariza-
tion (N&W92), so we analyzed the water masers excited at dif-
ferent temperatures. Preferred hyperfine pumping is a possibility
for this maser species, so we analyzed a range of relevant cases.
We also explored the effect of alternative polarization mecha-
nisms on the polarization of water masers.

4. Results

We report here the results of representative numerical simu-
lations of several v = 1 SiO masers and the 22 GHz water
maser. Results are only reported for the most rigorous N&W94
approach. We divide up this section into experiments on SiO
and water masers, and further compartmentalize experiments
of isotropically pumped masers, masers with polarized seed
radiation, and anisotropically pumped masers. The results are
graphically summarized as polarization landscapes, dependent
on maser luminosity and propagation magnetic field angle. A
large part of the results can be found in the Appendix. In this
section we lay out observable patterns in the reported polariza-
tion landscapes; in the following section, we discuss the physical
processes that give rise to these patterns.

4.1. SiO masers

4.1.1. Isotropic pumping

Simulations of a J = 1−0 SiO maser in a 1 G magnetic field
with varying luminosity and magnetic field angle are given in
Fig. 1. Simulations of higher angular momentum and at different
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Table 1. Molecular parameters for v = 1 SiO masers.

ν0 (GHz) gΩup/B (s−1 mG−1) gΩdown/B (s−1 mG−1) Ai j (s−1) Γ (s−1)

J = 1−0 43.122 0.75 0.75 3.024 × 10−6 5
J = 2−1 86.243 0.75 0.75 2.903 × 10−5 5
J = 3−2 129.363 0.75 0.75 1.050 × 10−4 5
J = 4−3 172.481 0.75 0.75 2.580 × 10−4 5
J = 5−4 215.595 0.75 0.75 5.134 × 10−4 5

Table 2. Molecular parameters for the 22.235 GHz water maser.

∆νhyp (kHz) gΩup/B (s−1 mG−1) gΩdown/B (s−1 mG−1) Ai j (s−1) Γ (s−1)

F = 5 − 4 −33.38 −0.79 −1.34 1.789 × 10−9 1
F = 6 − 5 0 3.71 4.12 1.806 × 10−9 1
F = 7 − 6 43.018 6.51 7.24 1.860 × 10−9 1

magnetic fields are given in Figs. A.1–A.3. The only polarizing
entity in these simulations is the magnetic field and its interac-
tion with the directional maser radiation. We observe, regard-
less of the magnetic field strength or angular momentum of
the transition, a peak in the linear polarization fraction around
log(R/gΩ) = 0,which is in the region where the rate of magnetic
precession (gΩ) and stimulated emission rate (R) become com-
parable in size. The peak of the linear polarization fraction is on
the order of the GKK73 estimate of linear polarization fraction,
but can exceed it by 10%. This excess of polarization is asso-
ciated with significant polarization in the Stokes U spectrum,
and is most pronounced for strong magnetic fields and around
θ = 20◦. The linear polarization fraction increases with the mag-
netic field strength, and decreases with the angular momentum
J, of the transition. A large region, around log(R/gΩ) = 0−0.5,
0−1.5, and 0−2.5, for B = 100 mG, 1 G, and 10 G has a sta-
ble polarization fraction of about pL = 1/3 (for the J = 1−0
transition) for a wide range of angles. The stability of the polar-
ization fraction over R/gΩ correlates with the propagation angle
and magnetic field strength. For θ close to 90◦, and strong mag-
netic fields, the polarization fraction is stable for a wide range of
R/gΩ. Significant polarization occurs for a much greater region
of R and θ when the magnetic field strength is increased. We
note that the polarization fraction function fulfills the symmetry
relation: pL(θ) = pL(180◦ − θ). The polarization angle and cir-
cular polarization flip according to pa(θ) = −pa(180◦ − θ) and
pV(θ) = −pV(180◦ − θ). An interesting feature is found near the
magic angle, where for log(R/gΩ) . 0 a sharp drop in the polar-
ization fraction is observed that becomes more pronounced with
decreasing log(R/gΩ). Polarization around the magic angle for
log(R/gΩ) . −2 is mostly absent.

Directing our attention to the polarization angles, we observe
that the 90◦ flip of the polarization angle can be produced
by crossing the magic angle θm, and by the transition from
log(R/gΩ) � 0 to log(R/gΩ) � 0. The θm crossing polar-
ization angle flip becomes sharper with B, and manifests itself
only for log(R/gΩ) < −1. For higher log(R/gΩ) the flip will get
less sharp. These features are particularly clear in Fig. 2. In the
intermediate region around log(R/gΩ), the region of highest lin-
ear polarization, arbitrary polarization angles can be produced.
Overall, apart from the sharper 90◦ flip at θm, the polarization
angle as a function of log(R/gΩ) and θ is very consistent for
the different magnetic field strengths and different transitions. At
log(R/gΩ) � 1, the polarization vectors will be aligned (θ = 0)

with the (projected) magnetic field direction at any propagation
angle θ.

We continue by analyzing the landscape of circular polar-
ization. We observe that the highest circular polarization frac-
tions occur around θ= 20◦, and is associated with the region
of maximum linear polarization fractions. However, for circular
polarization maximum polarization occurs at slightly higher R.
Circular polarization is most significant between log(R/gΩ) > −1
and log(R/gΩ) < 2.5, and quickly drops to zero for θ → 90◦.
Circular polarization contours for other magnetic field strengths
(see Appendix A) show similar circular polarization landscapes.
The maximum circular polarization fraction does not change
much for stronger magnetic field strengths, although the region
of significant polarization becomes larger. We saw an analogous
effect for the linear polarization. Instead, lower magnetic field
strength decreases the maximum circular polarization fraction,
and also decreases the region of significant circular polariza-
tion. For these simulations, we chose a thermal width ∆ω, such
that ∆ω = 1000gΩ (vSiO J=1−0

th = 0.033 B
mG km s−1), and found

that variations in the thermal width did not yield significantly
different circular polarization values as long as the requirement
∆ω � gΩ was fulfilled2.

Simulations of the J = 2−1 SiO maser-transition reveal
a sharp drop in both linear and circular polarization fractions
with respect to the J = 1−0 transitions. The maxima of the
polarization fractions are pQmax = 0.20 and pVmax = 0.10 for
B = 1 G, constituting a 60% loss in polarization with respect to
the J = 1−0 transition. The general shapes of the contour maps
are retained. The 90◦ flip, caused by an increase in R, characteris-
tic of the θ < θm masers, is observed to be less sharp, and occurs
at higher log(R/gΩ). Going to higher angular momentum tran-
sitions, the changes become less pronounced with respect to the
J = 2−1 transition, although we do observe a minor but steady
loss in polarizing strength of the maser with increasing J.

We also investigate the spectral properties of the SiO maser
polarization. In Fig. 3, we report three spectra of J = 1−0, B =
100 mG, isotropically pumped SiO masers at log(R/gΩ) = −1, 0,
and 1. In the figure, all the Stokes parameters are plotted, as are
the polarization angles across the spectrum. We note that the

2 These remarks are concerned with the polarizing mechanism around
−2 < log(R/gΩ) < 2. As is discussed later, circular polarization can
be introduced via pure spectral decoupling of the ∆m = ±1 transitions.
Circular polarization via such a mechanism is dependent on the line
width and thus maser thermal width.
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(c)

(b)

(a)

Fig. 1. Contour polarization plots of v = 1 SiO masers. The linear polar-
ization fraction (a), angle (b), and circular polarization fraction (c) are
plotted as a function of the propagation angle θ and the rate of stimu-
lated emission. Magnetic field strength and transition angular momen-
tum are indicated. For simulations with Jup > 1 and other magnetic field
strengths, see Figs. A.1–A.3

spectrum broadens with R because we already passed the sat-
uration level at log(R/gΩ) = −1. With the broadening, though,
the Stokes V fraction does not decrease as would be expected
from a local thermodynamic equilibrium (LTE) analysis. The
linear polarization roughly follows the same spectral form as

(a)

(b)

Fig. 2. Linear polarization fraction (a) and angle (b) of isotropically
pumped v = 1 SiO masers as a function of the propagation angle θ for
different saturation rates. The sharp 90◦ flip of the polarization at the
magic angle (black dotted line) becomes less sharp and disappears with
increasing levels of saturation. Magnetic field strength and transition
angular momentum are indicated.

the Stokes I spectrum, and the polarization angle can change
by up to ∼30◦ across the spectrum. We also note the perfect
anti-symmetrical nature of the Stokes V spectrum, as is expected
from a LTE analysis, which is retained for all R.

4.1.2. Polarized incident radiation

Simulations of the polarization of a J = 1−0 SiO maser at
B = 1 G with partially polarized seed radiation are shown in
Figs. 4 and 5. Simulations of higher angular momentum and
at different magnetic fields are given in Figs. A.4–A.9. When
analyzing these types of masers, a distinction should be made
between the regime of weak maser emission, where the rate of
stimulated emission is significantly weaker than the magnetic
field (log(R/gΩ) < −2), and the regime of strong maser emis-
sion, where the two quantities are comparable in size. In the
weak maser regime, the incident polarized radiation is simply
amplified and the fractional polarization from the incident radi-
ation is retained, along with the polarization angle of the inci-
dent radiation. In the strong maser regime, we found distinct
differences in the polarization landscapes between the strongly
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(a)

(b)

(c)

Fig. 3. SiO J = 1−0 maser spectra for different levels of satura-
tion. All Stokes parameters (left y-axis) and the polarization angles
(right y-axis) are plotted. The polarization angle is defined with respect
to the magnetic field direction projected on the plane of the sky. Simula-
tions were carried out at B = 100 mG, with a magnetic field propagation
angle of θ = 45◦.

polarized (U/I = 0.5) and the weakly polarized (U/I = 0.1) inci-
dent radiation. The linear and circular polarization landscapes of
the weakly polarized incident radiation above log(R/gΩ) > 0
look very similar to the landscapes generated from isotropic
seed radiation. In contrast, the linear polarization landscape of

the strongly polarized incident seed radiation looks completely
different, and only converges to the landscape of isotropic seed
radiation for log(R/gΩ) > 2. Interestingly, the effects on the
circular polarization landscapes are rather small, even for the
strongly polarized incident seed radiation. Although the effects
are small, we observe an increase in circular polarization fraction
with the polarized incident seed radiation.

Around the magic angle θm, the incident polarization frac-
tion is retained for the highest R. The strongest linear polariza-
tion fraction is found around θ = 20◦ and where R ∼ gΩ, just as
we have seen for isotropic seed radiation. Although we should
note that the maximum linear polarization fraction occurs for
somewhat lower R, which is an effect that is most pronounced at
the strongly polarized seed radiation. We should also note that
the symmetry around θ = 90◦ that characterizes the simulations
with isotropic seed radiation is not retained by these simulations.
The preferred direction of the incident radiation breaks the sym-
metry. This is perhaps most strongly reflected in the polariza-
tion angle maps. Here a feature is seen in the maps for both
strongly and weakly polarized incident radiation, at the magic
angle θ = θm, and around gΩ ∼ R, where a range of differ-
ent angles come together. Additionally, for θ < θm, a large and
sharp polarization angle change is seen around log(R/gΩ) ∼ −1.
Further inspection of these fluctuations in the polarization angle
reveal that in this region, the initially positive Stokes U element
of the radiation drops and changes sign. For θ < θm, the Stokes Q
coefficient initially builds up as negative, but turns positive after
log(R/gΩ) ∼ 0. For θ > θm, the Stokes Q coefficient does not
become negative. For angles θ > 90◦, the Stokes U element of
the radiation retains its positive sign throughout the propagation.

At different magnetic field strengths, similar general fea-
tures are observed that were also pointed out in the isotropic
seed-radiation simulations. For instance, we observed that the
magnetic field strength is correlated to the area (θ vs. R) of
significant polarization. An interesting feature is that the lower
magnetic field strength simulations seem to be more affected by
the incoming radiation than the stronger magnetic field strength
simulations, which retain more of the general structure also
observed for the isotropic seed radiation. Just as for the isotropic
seed-radiation masers, the higher angular momentum transitions
are significantly less polarized. However, for the higher angular
momentum contours, the general structure of polarization con-
tours is strongly influenced by the incoming polarized radiation.
The simulations with strongly polarized incoming radiation,
have nearly no general dependence on θ, as the incoming (linear)
polarization fraction smoothly deteriorates from log(R/gΩ) > 0,
to nullify around log(R/gΩ) ∼ 3. These effects are also reflected
in the landscape of circular polarization, which is affected by the
highly polarized incoming radiation. Although the effects are not
as pronounced as in the linear polarization contours, and do not
cause high fractions of circular polarization.

4.1.3. Anisotropic pumping

When anisotropic pumping is in play, the distinction should
be made between strong masers, where the radiation signifi-
cantly influences the direction of the molecule (R & gΩ), and
weak masers, where this is not the case. Weak masers propa-
gating through an anisotropically pumped medium, will accrue
polarization monotonically. The polarization will rise until the
point where the radiative interaction becomes stronger than the
degree of anisotropic pumping. After this point, the polarization
degree will drop, and the standard magnetic field polarization
mechanism will take over as the main source of polarization.
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(a) (b)

(c) (d)

Fig. 4. Contour plots of the linear polarization fraction and angle of an SiO maser as a function of the propagation angle θ and the rate of
stimulated emission. Maser simulations performed with incident polarized radiation of (a,b) U/I = 0.1 and (c,d) U/I = 0.5. Magnetic field
strength and transition angular momentum are indicated. For simulations with Jup > 1 and other magnetic field strengths, see Figs. A.4–A.9 in the
Appendix.

Figure 6 shows the polarization of anisotropically pumped SiO
masers with varying intensity of seed radiation as a function of
the rate of stimulated emission.

The polarization of weak masers is independent of the
magnetic field strength, but will be highly dependent on the inten-
sity of the seed radiation, and on the anisotropy of the pumping, η.
Strong masers have magnetic field interaction as their main polar-
ization mechanism, but they are still influenced by anisotropic
pumping, especially in the transitory period between the weak
and strong maser. The polarization of the strongest masers is
independent of the intensity of the incoming radiation.

The polarization landscape of an anisotropically pumped SiO
maser at B = 1 G is plotted in Fig. 7. Simulations of higher
angular momentum and at different magnetic fields are given
in Figs. A.10–A.18. If we examine the weak maser region, we
see directly a strong decline in polarization for θ → 0. For
higher rates of stimulated emission, at log(R/gΩ) > 1, we
see that the polarization is similar to the polarization gener-
ated by an isotropically pumped maser (Fig. 1), although we
observe additional polarization in the regions around θ = 90◦
and R ∼ gΩ. Also, we actually observe a decrease in polariza-
tion in the region around θ = 20◦ and R ∼ gΩ with respect to the
isotropically pumped maser. However, if the anisotropy param-

eter is increased the resemblance to the isotropically pumped
maser vanishes rapidly, and arbitrarily high polarization can be
achieved.

We observe that for increasing angular momentum of the
transition, the same anisotropy parameter η yields a weaker
polarization buildup in the weak maser regime. Nevertheless, a
high fractional linear polarization can be achieved for the higher
angular momentum transitions as a result of the anisotropic
pumping. A sufficiently large anisotropy parameter can yield
polarizations as high as 100%.

The orientation of the anisotropy in Fig. 7 is perpendicular to
both the magnetic field direction b and the propagation direction
s. In this orientation, the polarization maps are symmetric, such
that pL(θ) = pL(180◦ − θ), pa(θ) = −pa(180◦ − θ), and pV(θ) =
−pV(180◦−θ). This symmetry will be broken, however, when the
direction of the anisotropy orients itself in the plane such that b
spans with s (see Appendix A).

We now consider the circular polarization of the anisotrop-
ically pumped SiO maser. We found there was some influence
of the anisotropic pumping on the circular polarization, but the
structure is mostly similar to that obtained from isotropic pump-
ing, and the enhancement of polarization is not as strong as
it was for the linear polarization analogues. Comparing two
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(a)

(b)

Fig. 5. Contour plots of the circular polarization fraction of the SiO
maser as a function of the propagation angle θ and the rate of stim-
ulated emission. Maser simulations performed with incident polarized
radiation of (a) U/I = 0.1 and (b) U/I = 0.5. Magnetic field strength
and transition angular momentum are indicated.

orientations of the anisotropy directions, a1 ⊥ b, s and a2 ‖ b,
we find that the anisotropic pumping in the a1 direction actually
lowers the circular polarization, while pumping in the a2 direc-
tion enhances it. In the weak maser regime there is no large cir-
cular polarization fraction, nor does the fraction depend on the
brightness of the seed radiation.

4.2. H2O masers

4.2.1. Isotropic pumping

We examined the regime of magnetic fields from B = 20 mG to
B = 100 mG, at vth = 0.6 km s−1 (T = 260 K) to vth = 3.0 km s−1

(T = 6500 K). We summarize the results of these simulations
in Fig. 8, and further results can be found in Figs. A.19 and
A.20. The linear polarization fraction for these water masers is
only appreciable from about Tb∆Ω = 1010 Ksr, or log(R/gΩ) >
−1.5, where the strongest masers display the strongest polariza-
tion. The magnetic field interaction term is not strong enough
to facilitate the large overshoot in polarization around θ = 20◦
that we saw earlier. Rather, the maximum linear polarization is
found around θ → 90◦. In the range from B = 20 mG to
B = 100 mG, the linear polarization of the water masers does not

(a)

(b)

Fig. 6. Plots of the linear polarization fraction of anisotropically
pumped SiO masers as a function of the rate of stimulated emission.
Maser simulations performed with anisotropy parameters of (a) η = 0.1
and (b) η = 0.5. Simulations are performed for a range of incident radi-
ation strengths, as indicated in the figure. Magnetic field strength, prop-
agation angle, and transition angular momentum are indicated.

change significantly, although there is a slight general increase
in linear polarization fraction. For simulations at higher thermal
widths, vth > 1 km s−1, there is no significant effect on the lin-
ear polarization fraction. For vth < 1 km/s we observe minor
effects as the lines are no longer completely blended. For these
simulations, polarization will start at higher maser intensity, but
will soon converge to the landscape of the other vth solutions,
as broadening of the maser blends the individual lines. Analy-
sis of the polarization angle maps reveal no significant difference
between different magnetic field strengths or between different
thermal widths. The most striking feature of the polarization angle
maps are the sharp 90◦ flips associated with crossing the magic
angle that are general for any Tb∆Ω. We observe another sharp
angle flip, around log(R/gΩ) ∼ 0.75 for θ < θm, but this is a
180◦ flip.

The circular polarization maps present a rather compli-
cated landscape of circular polarization, never quite reach-
ing high degrees of circular polarization. Weaker masers with
Tb∆Ω � 1011 Ksr, follow roughly the LTE estimate of the cir-
cular polarization pV ∝ 2AFF′BGauss cos θ/∆vF(km/s) (Fiebig &
Güsten 1989). For these masers we observe the strongest circular
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(a)

(b)

(c)

Fig. 7. Contour plot of the (a) linear polarization fraction, (b) polar-
ization angle, and (c) circular polarization fraction of anisotropically
pumped SiO masers as a function of the rate of stimulated emission and
the angle θ. Maser simulations were performed with anisotropy param-
eters of η = 0.1 and at an anisotropy angle perpendicular to the mag-
netic field and propagation direction. Simulations were performed for an
incident radiation-strength of Tb = 0.1 K, but here only a small part of
the region sensitive to this parameter is shown. Magnetic field strength
and transition angular momentum are indicated. For simulations with
Jup > 1 and other magnetic field strengths, see Figs. A.10–A.18 in the
Appendix.

polarization for θ → 0◦ and low vth, which gradually diminishes
for higher vth and angles θ → 90◦. When Tb∆Ω > 109 Ksr, the

(a)

(b)

(c)

Fig. 8. Contour plots of the linear polarization fraction (a), angle (b) and
circular polarization fraction (c) of water masers as a function of the
propagation angle θ and the rate of stimulated emission. Magnetic field
strength and thermal width denoted inside the figure. For simulations
of other magnetic field strengths and thermal widths, see Figs. A.19
and A.20 in the Appendix.

simulation results for circular polarization depart from the LTE
estimates. For the strongest masers, around Tb∆Ω ∼ 1013 Ksr,
we find (for B = 20 mG) the highest circular polarization,
which can reach 0.55% around θ ∼ 60◦. Circular polarization
in this region has only a minor dependence on the magnetic field
strength and maser thermal width.
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We have already touched upon the complicating multi-
transitional nature of the water maser. It is very likely that
asymmetries occur in the pumping of the different hyperfine
transitions (see Walker 1984; Lankhaar et al. 2018). To further
investigate this, we plot for a number of preferred hyperfine
pumping ratios λ = λF=7−6/λother the fractional circular and lin-
ear polarizations of a water maser at θ = 45◦ as a function of
the maser luminosity. The F = 7 − 6 transition is the strongest
hyperfine transition and, incidentally, also the transition with the
highest Zeeman coefficient. Figure 10, quite surprisingly, shows
a negative correlation between the generated linear polarization
and the favoring of the F = 7 − 6 transition. However, the cir-
cular polarization increases as a result of the preferred pump-
ing of the F = 7 − 6 transition. Another interesting feature not
apparent from the contour maps are the discontinuities in the
linear and the circular polarization fractions. Discontinuities in
these functions arise because of the complex nature of the multi-
transitional lines, and indeed do not occur for the most preferably
pumped masers.

In Fig. 9, we present the 22 GHz water maser spectra for dif-
ferent levels of saturation. It is immediately obvious that for all
levels of saturation, the Stokes I spectra are slightly asymmetric
because of the multiple hyperfine components of this maser. This
asymmetry is also seen in the linear polarization, which roughly
follows the total intensity spectrum. We should note that circu-
lar polarization profiles are not the anti-symmetric S-shaped sig-
nals we observed for the single-transition SiO masers. Through
the contributions from multiple hyperfine components an
asymmetric circular polarization spectrum arises (Nedoluha &
Watson 1992; Vlemmings et al. 2001). A preferably pumped
water maser, however, will show the characteristic S-shaped cir-
cular polarization signal.

4.2.2. Polarized incident radiation

We already observed in the SiO masers that for the higher angu-
lar momentum contours, the general structure of polarization
contours is strongly influenced by the incoming polarized radia-
tion. This is thus also the case for water masers, which generally
also show weaker magnetic field interactions. The simulations
with strongly polarized incoming radiation have nearly no gen-
eral dependence on θ as the incoming linear polarization frac-
tion smoothly deteriorates from Tb∆Ω > 1012 Ksr. The weakly
polarized incident radiation has a less pronounced effect on the
polarization landscape, although it strongly dominates the land-
scape for Tb∆Ω < 1010 Ksr.

These effects are also reflected in the landscape of circular
polarization, which is strongly affected for the highly polarized
incoming radiation, in contrast to the weak effects incident polar-
ized seed radiation had on the SiO maser. Incident polarized seed
radiation can cause relatively high fractions of circular polariza-
tion, especially in the region around θ = 90◦ (the region where
isotropic incoming radiation leads to no circular polarization),
where for the highly polarized incoming radiation the circular
polarization can reach 5% (1% for weakly polarized incoming
radiation).

4.2.3. Anisotropic pumping

As a consequence of the shocked material that water masers
occur in, photons that are associated with the radiative relaxation
from the collisionally excited water molecules, may have a pre-
ferred escape direction. This can lead to a small anisotropy in the
maser pumping. An analysis of our simulations of the anisotrop-

(a)

(b)

(c)

Fig. 9. Water 22 GHz maser spectra for different levels of saturation.
Plotted are all Stokes parameters (left y-axis) and polarization angles
(right y-axis). The polarization angle is defined with respect to the mag-
netic field direction projected on the plane of the sky. Simulations were
carried out at B = 100 mG, vth = 1 km s−1, and with a magnetic field
propagation angle of θ = 45◦.

ically pumped water maser showed that the linear accrual of
polarization with the maser brightness is also characteristic of
these masers. We note for the perpendicularly pumped water
masers from Fig. 12 that masers of θ → 90◦ gather the most
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(a)

(b)

Fig. 10. Linear (a) and circular polarization (b) fraction of water masers
as a function of the maser luminosity. Different degrees of preferred
pumping are plotted. Magnetic field strength, angle θ, and thermal width
are indicated.

linear polarization from the propagation. For the water masers it
seems that the standard magnetic field polarization mechanism
has barely any effect on the polarization maps of both weak
and strong anisotropy, as shown by the symmetry of the lin-
ear polarization landscapes. The polarization of these masers are
almost independent of the magnetic field strength, but will be
highly dependent on the intensity of the seed radiation, and on
the anisotropy of the pumping η. Anisotropic pumping can gen-
erate arbitrary linear polarization fractions for the water masers.

High circular polarization fractions are only weakly asso-
ciated with the drastically higher linear polarization from
anisotropic pumping. Only the brightest of the strongly
anisotropically pumped masers show significantly higher circu-
lar polarization, but not exceeding 5%.

5. Discussion

We divide the discussion into two parts. First, we discuss the
results we have presented in the previous section, and lay out
the physical mechanisms behind the phenomena we observed
from the simulations. In the second part of the discussion, we
discuss these results in the context of previous SiO and water
maser polarization observations.

5.1. SiO masers

5.1.1. Simulations

90◦ flip of the polarization angle. We observed two processes
that can give rise to a 90◦ flip in the polarization angle: an increase
in rate of stimulated emission over two orders of magnitude, or the
crossing of the magic angle θm. When gΩ & 100R, the magnetic
field determines the symmetry axis of the molecule. When this
condition is fulfilled, and for the propagation radiation at an angle
with the magnetic field smaller than θm, the polarization is ori-
ented perpendicular to the magnetic field. For angles greater than
θm, polarization is oriented parallel to the magnetic field. Thus,
when we cross the magic angle and the condition gΩ & 100R is
fulfilled, we see a sharp 90◦ flip in the polarization angle across θm.
For stronger masers, where 100 & gΩ/R & 0, we also observed a
flip in the polarization angle, but this flip is gradual (over ∼10◦),
and does not predict zero polarization at the magic angle. The 90◦
flip feature of J = 1−0 SiO masers has recently be investigated
by Tobin et al. (2019). Tobin et al. (2019) analyze the changing
polarization fraction and angle of SiO maser spots across a clump.
They assume a gradually changing propagation angle with the
projected angular distance. From an analysis based on GKK73,
they fit the observed polarization fraction and angle. A gradual
90◦ flip is observed around the magic angle. According to their
analysis, this is due to the free K parameter that arises in the
GKK73 models. Usually this parameter is assumed to be zero on
the grounds of symmetry. According to our analysis, we do not
need to invoke such a free parameter because, as we have seen in
our simulations (Fig. 2), a blunt 90◦ flip around the magic angle
is characteristic of masers where the rate of stimulated emission
is on the same order as the magnetic precession rate. Tobin et al.
(2019) estimate log(R/gΩ) ∼ −1, and our simulations of a magic
angle flip at these conditions (Fig. 2, log(R/gΩ) = −1) show
a similar blunted magic angle flip in the polarization angle. We
should note that our analysis underestimates the polarization frac-
tion with respect to the observations, and non-Zeeman polarizing
mechanisms need to be invoked to reach the observed polarization
fractions.

Sometimes it is stated in the literature that in the limit
R � gΩ, maser polarization are randomly oriented (Plambeck
et al. 2003). This is not the case. Even though the radiation field
determines the alignment of the molecules, its interaction with
the magnetic field through the maser medium is still the polariz-
ing mechanism. It is therefore that the magnetic field determines
the polarization direction. A 90◦ flip across θm, however, will not
occur in the case of R � gΩ as the orientation of the polarization
is invariably parallel to the magnetic field. This is also associated
with the alternative mechanism that leads to a 90◦ polarization
angle flip. When R � gΩ and the propagation angle is smaller
than θm, the maser polarization will be oriented perpendicular
to the magnetic field direction. However, if the rate of stimu-
lated emission were to increase, or the magnetic field strength to
decrease, and the condition gΩ � R were no longer fulfilled, the
polarization would gradually align itself parallel to the magnetic
field. A change of two orders of magnitude in R or gΩ can cause
a 90◦ flip in the polarization angle.

A peak in polarization at gΩ ∼ R. Invariably, the highest lin-
ear and circular polarization fractions are observed for the case
that the magnetic field strength is of the same order of magni-
tude as the rate of stimulated emission. This effect seems to be
most pronounced for angles smaller than the magic angle, specif-
ically around the propagation angle θ = 20◦. The extra polariza-
tion comes from a strongly enhanced Stokes U component in
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(a) (b)

(c) (d)

Fig. 11. Contour plots of the (a,c) linear and (b,d) circular polarization fraction of a water maser as a function of the propagation angle θ and
the rate of maser luminosity. Maser simulations performed with incident polarized radiation of (a,b) U/I = 0.1 and (c,d) U/I = 0.5. Magnetic
field strength and thermal width are indicated. For simulations with other vth and other magnetic field strengths, see Figs. A.21 and A.22 in the
Appendix.

the radiation, and significant off-diagonal state density elements.
The effect is absent for 90◦ propagation because off-diagonal ele-
ments need not be invoked in these masers.

Absence of polarization below R = 1 s−1 (Tb ∆Ω =
9×106 Ksr). Considering an isotropically pumped maser, and
when R is so small that R � gΩ, we recognize from Eq. (7) that
the radiation field has only a small influence on the populations
of the magnetic substates of SiO, and will be minimally polar-
ized because of this. Also, because the (isotropic) decay of the
states, described by the term Γ, is larger than R, the polarization
of the states will be drastically lowered through the depolarizing
decay.

The circular polarization of SiO masers. Just as for linear
polarization, the highest circular polarization fraction was found
in the region R ∼ gΩ. The polarization fraction in this region
is not dependent on the maser thermal width. The high degree
of circular polarization found here is due to an effect that was
earlier described as “intensity-dependent circular polarization”
(Nedoluha & Watson 1994). Circular polarization is associated
with the changing of the molecular symmetry axis that in the
transition from R < gΩ to R > gΩ changes from parallel to the
magnetic field, to parallel to the propagation direction.

A version of the above-described effect is also responsible
for the circular polarization that will be generated by a ran-
domly oriented magnetic field that is strong enough to align the
molecule. Wiebe & Watson (1998) investigated the propagation
of polarized radiation through a medium with a randomly ori-
ented magnetic field along (128× 128) maser propagation paths.
Along the path, linear polarization builds up. However, this lin-
ear polarization would not be aligned with the orientation of the
molecules along the changing magnetic field. Locally, the lin-
early polarized radiation is rotated towards the local molecular
alignment axis, with the associated production of circular polar-
ization. In this way, relatively high degrees (<3%) of circular
polarization could be generated already from magnetic fields of
∼30 mG (Wiebe & Watson 1998). Because circular polarization
is generated from the linear polarization, the circular polariza-
tion should not exceed a certain linear polarization-dependent
limit. Through analyzing this relation, Cotton et al. (2011) found
that the polarizing effects described by Wiebe & Watson (1998)
could not explain the high degrees of circular polarization found
in their observations of SiO J = 1−0 masers. The circular
polarization effects we have included in our models alone can
also not fully explain the observations of Cotton et al. (2011)
(see also our discussion of the maser line profiles below).
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(a) (b)

(c) (d)

Fig. 12. Contour plots of the (a,c) linear and (b,d) circular polarization fraction of a water maser as a function of the propagation angle θ and the
rate of maser luminosity. Maser simulations performed with anisotropic pumping perpendicular to both propagation and magnetic field direction,
with anisotropy parameters of (a,b) η = 0.1 and (c,d) η = 0.5, and seed radiation of Tb = 0.1 K. We used a magnetic field strength for these
simulations of B = 20 mG and thermal width vth = 1 km s−1.

Slow convergence to the GKK73 solutions. With a mag-
netic precession rate of gΩ = 1500 × B(G) s−1 and an isotropic
decay rate of Γ = 5 s−1, the SiO maser generally fulfills the con-
dition gΩ � Γ. For the GKK73 solutions to maser linear polar-
ization to apply, we furthermore have a constraint on the rate of
stimulated emission such that gΩ � R � Γ. For a value of R in
the range from Γ to gΩ, this requirement cannot be fulfilled for
the magnetic field strengths expected around SiO masers. This is
confirmed by our calculations, where we do not find the GKK73
solutions in the relevant parameter space. Convergence to the
GKK73 solutions only occurs for unphysically strong magnetic
fields and unphysically luminous masers.

Dependence of polarization on the angular momentum J
of the transition. The difference in polarization fraction between
the J = 1−0 and J = 2−1 transitions is very large. For
higher J transitions, the polarization decrease with J is less dras-
tic. This phenomenon has already been observed by D&W90
and N&W90, and can be explained by the inability for the
J = 0 state to become polarized. The radiation field couples
directly (in irreducible tensor terms) to the rank-0, 1, and 2 ele-
ments. Coupling to higher rank elements is mediated by higher
order effects, and is therefore orders of magnitude weaker. The
maximum rank of the elements of a certain state is 2J +1. There-
fore, all the polarization modes of the radiation field can couple

directly to states of J ≥ 1. Direct coupling of the polarization
thus exists for all transitions but J = 1−0, leading to this transi-
tion being highly polarized. The further consistent polarization
decrease with J can be explained by the introduction of higher
rank irreducible population terms, whereto some of the polariza-
tion leaks away, but which do not couple directly to the radiation
field.

Incident polarized seed radiation as a polarization mecha-
nism. One principal result of the simulations with polarized seed
radiation was contained in the distinction between a weak maser
regime and a strong maser regime. We observed that the in the
weak maser regime, the incident polarization was retained, and
in the strong maser regime the polarization would converge to
the polarization obtained with isotropic seed radiation. In the
weak maser regime, the magnetic field defines the symmetry
axis. Because the radiation field is so weak, it has no appreciable
influence on the molecular states, and we can consider the states
to be unpolarized. That means that amplification is characterized
by a dominant Aω-term (see Eq. (14)). Thus, radiation is ampli-
fied and not altered in terms of polarization until it becomes a
significant entity that can align and polarize the molecular states.
After the weak maser regime, at about log(R/gΩ) = −1, a tran-
sition regime can be recognized where the initial polarization
and the overall radiation have an appreciable influence on the
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molecular states. The feedback of the polarized molecular states
in the propagation of the polarized radiation causes the radia-
tion to converge to a polarization that is general for the system
(in terms of R, gΩ, and θ), invariable of its initial conditions,
which is what we call the strong maser regime. Convergence
is attained later for strongly polarized seed radiation, and lower
magnetic fields. High degrees of polarization can be obtained in
the transition regime. Later in this discussion, we comment on
the effect these high degrees of linear polarization have on the
circular polarization.

Anisotropic pumping as a polarization mechanism. For the
anisotropically pumped maser we have a weak maser regime
and a strong maser regime as well. We should note, however,
that these regimes carry a different meaning with respect to the
regimes of the masers with polarized seed radiation of the same
name. The weak maser regime of the anisotropically pumped
maser is characterized by a linear growth of the polarization
with maser luminosity. This growth can continue to arbitrary
degrees of linear polarization until the radiation becomes strong
enough to align the molecular states. In the weak maser regime,
because the pumping is anisotropic (where the anisotropic part
can be represented by a second-rank irreducible tensor), polar-
ization is pumped into the molecular states causing a feed to the
radiation field via the propagation coefficients Bω and Fω (see
Eq. (14)). The buildup of polarization is thus dependent on the
relative anisotropy in the pumping ε, but also on the relative size
of Aω, given by δ (Eq. (18)), leading to the anisotropy parameter
η = ε/δ. The buildup of polarization in the weak maser regime
is independent of the magnetic field and is not associated with
circular polarization, but it is dependent on the brightness of the
seed radiation.

When radiative interactions become strong enough to influ-
ence the alignment of the molecule, a transition regime begins
and, generally, the strongly polarized radiation begins to lose
most of its polarization. The alignment of the molecular states
counters the large overshoot in polarization left from the weak
maser regime, and converges in the strong maser regime to a
polarization that is a function of the anisotropy of the pump-
ing (including direction), R and θ, which is independent of the
incoming radiation.

Maser line profiles. Maser line profiles are often much nar-
rower than their LTE counterparts because of the stimulated
emission mechanism. This is most obvious when the rate of
stimulated emission is near the isotropic decay rate R ∼ Γ.
After that point, broadening of the line starts and increases with
R. From analyzing the polarized spectra we observe that linear
polarization spectra roughly follow the Stokes I spectrum, which
is expected because the molecular states become polarized by
the directional intensity field. The difference in polarizing inten-
sity also leads to a variable polarization angle across the spec-
trum. This is particularly present for rates of stimulated emission
R ∼ gΩ. The degree of change of the polarization angle across
the maser line can therefore be taken as a proxy for the saturation
level.

We observe that the polarizing mechanism under inves-
tigation in our simulations produce perfect anti-symmetrical
S-shaped spectra for the Stokes V component of the radiation
field. Such anti-symmetric spectra are often seen in astrophysical
maser spectra (Amiri et al. 2012). However, asymmetric Stokes
V spectra are observed regularly as well. Cotton et al. (2011)
report the observation of many strongly asymmetrically circu-
larly polarized SiO masers. Our models do not produce such
asymmetrical spectra in the absence of hyperfine multiplicity,

but would need to include alternative effects. A velocity gradi-
ent across the maser column or the presence of strong anisotropic
resonant scattering in either a foreground cloud or as a part of the
maser action itself are known to be able to produce asymmetric
Stokes V spectra (Houde 2014). Kinematic effects coming from
other polarized background maser sources could also explain the
asymmetric signals.

Interesting evidence for kinematic effects can be found by
analyzing some individual maser line spectra (Cotton et al.
2011). The polarization spectra of the maser spot in Fig. 5, row 1,
from Cotton et al. (2011), show a similar variation for the polar-
ization angle across the spectrum to that in our Fig. 3 of the spec-
tral polarization of SiO masers. This maser shows an S-shaped
anti-symmetric Stokes V spectrum. Analyzing then rows 3 and
4 of the same figure in Cotton et al. (2011), we see a variation
in the polarization angle across the maser line that is more remi-
niscent of the 22 GHz water maser spectra of Fig. 9. The circular
polarization of these signals is also similar to our spectral models
of the water masers (Fig. 9). The different hyperfine components
in water masers can reasonably be considered to emulate kine-
matic effects as they would occur for an SiO maser. A deeper
analysis of such effects is beyond the scope of this paper, but we
can suggest that asymmetric circular polarization signals can be
the product of kinematic effects.

Alternative polarizing mechanisms and circular polariza-
tion. An interesting result of our investigations into the effects of
anisotropic pumping and polarized incident radiation is the rather
marginal effects these polarizing mechanisms have on the circular
polarization fraction of the maser. This can be best explained in
a tensorial picture of the matter-radiation interactions. In a ten-
sorial picture of the polarized radiation, Stokes Q and U (and
I) are expressed as second-rank components of the irreducible
radiation tensor, while Stokes V is a first rank component of
this tensor (Degl’Innocenti & Landolfi 2006). Direct polariza-
tion of the molecular states by linearly polarized radiation thus
only affects the second-rank populations. It is also the second-
rank populations that are pumped by the anisotropic pumping.
Thus, for incident polarized radiation and anisotropic pumping,
there is no direct coupling to the first rank populations, and
thus no direct coupling to the Stokes V radiation. The Stokes V
will only be slightly enhanced by higher order effects, such as
anisotropic resonant scattering (Houde et al. 2013), which will be
more pronounced with high linear polarization of the radiation.

Observational heuristics. Generally, we can recognize dif-
ferent regimes that are connected to the maser luminosity that
show particular behavior regarding maser polarization. We there-
fore define characteristic maser luminosities that will simplify
the analysis. The maser luminosity at which the rate of stim-
ulated emission is equal to the rate of magnetic precession is
defined as

(Tb∆Ω)mag. sat. =
4πω0(gΩ)

Ai jkB
, (36)

where ω0 is the maser’s natural frequency, kB is the Boltzmann
constant, and Ai j is the Einstein coefficient. Furthermore, we
define the luminosity after which the maser will start broaden-
ing because of saturation:

(Tb∆Ω)sat. =
4πω0Γ

Ai jkB
· (37)

Table 3 gives these luminosities for the different SiO masers.
Already at weak magnetic fields of B > 10 mG, (Tb∆Ω)mag. sat. >
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Table 3. Characteristic maser luminosities temperatures for v = 1 SiO
masers.

Transition (Tb∆Ω)sat (Ksr) (Tb∆Ω)mag. sat./B (Ksr mG−1)

J = 1−0 4.35 × 107 6.52 × 106

J = 2−1 9.00 × 106 1.35 × 106

J = 3−2 3.73 × 106 5.60 × 105

J = 4−3 2.03 × 106 3.04 × 105

J = 5−4 1.27 × 106 1.90 × 105

(Tb∆Ω)sat.. For the weakest masers, where Tb∆Ω < (Tb∆Ω)sat,
linear polarization is mostly absent in the emission because of
the depolarizing effect of the isotropic decay. Circular polar-
ization is generated through the Zeeman effect. Because of the
Zeeman effect, the σ± (∆m = ±1) transitions have a slight spec-
tral disposition, which, if subtracted from each other, yield the
S-shaped Stokes V spectrum. It can be shown via a LTE analy-
sis that the circular polarization follows (Fiebig & Güsten 1989;
Watson & Wyld 2001)

pV =
2AJJ′BGauss cos θ

∆vL(km/s)
, (38)

where AJJ′ is a transition-dependent constant and ∆vL is the
FWHM of the maser profile. The LTE estimates for the constant
AJJ′ of SiO transitions are

AJJ′ =
1.1807 × 10−3

J
,

where J is the rotational quantum number of the upper state. It
is usual to employ a LTE analysis of the circular polarization
of weak masers since the maser circular polarization mechanism
for these masers is similar to the LTE mechanism. To check the
validity of this analysis, we plot the results of our simulations for
the AJJ′ constants for three transitions at B = 1 G in Fig. 13. For
Tb∆Ω . (Tb∆Ω)mag. sat/1000, the AJJ′ coefficient obtained from
our simulations is similar to the LTE estimate. However, already
for Tb∆Ω ∼ (Tb∆Ω)mag. sat/100, we find that the AJJ′ constants
from our simulations are twice that of the LTE estimate, meaning
that a LTE analysis of the magnetic field strength would lead to
an overestimation by a factor of 2.

For masers Tb∆Ω � (Tb∆Ω)mag. sat., the highest circular
polarization is found for the masers that have not started broad-
ening yet (Tb∆Ω ∼ (Tb∆Ω)sat). After Tb∆Ω > (Tb∆Ω)sat, the
maser starts saturating with the associated broadening. As long
as the magnetic precession rate remains far greater than the
rate of stimulated emission, TbΩ � (Tb∆Ω)mag. sat., the circu-
lar polarization will decrease because of this broadening. Linear
polarization starts to build up, oriented parallel (θ > θm) or per-
pendicular (θ < θm) to the projected magnetic field direction.
Linear polarization rises steadily with the maser luminosity until
it reaches the GKK73 solution for the specific propagation angle.
However, long before the GKK73 solution is reached, when the
maser luminosity approaches (Tb∆Ω)mag. sat., alternative polar-
ization effects will take over.

In the regime of Tb∆Ω ∼ (Tb∆Ω)mag. sat., polarization
associated with the change in molecular alignment manifests
itself in the emission spectrum. Linear polarization in this
regime can therefore exceed the GKK73 solutions by ∼10%.
For θ < θm, the polarization vector changes from perpen-
dicular to parallel between Tb∆Ω ∼ (Tb∆Ω)mag. sat./10 and
Tb∆Ω ∼ 10(Tb∆Ω)mag. sat., and has intermediate polarization

Fig. 13. The AJJ′ coefficients of an isotropically pumped SiO maser at
B = 1 G as a function of the magnetic field propagation direction angle
cos θ. The different panels give the (a) J = 1−0, (b) J = 2−1, and (c)
J = 3−2 transitions. Plots are given for different log(R/gΩ). The LTE
solutions (constant over cos θ) are indicated with a dotted line.

angles within this range. With the gradual changing of the polar-
ization angle a lot of circular polarization is associated. This
is reflected in the high AJJ′ constants for the circular polariza-
tion (see Fig. 13). Constancy of AJJ′ over θ is also lost. For the
lower angular momentum transitions, there is a large overshoot
of the Zeeman circular polarization. Already for weak magnetic
fields, high degrees of circular polarization can be generated
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and the Zeeman analysis cannot be applied directly. Extrac-
tion of the magnetic field strength from masers in the regime
Tb∆Ω ∼ (Tb∆Ω)mag. sat. can be achieved by a simultaneous anal-
ysis of both the linear and circular polarization of the radiation,
which is demonstrated later on.

Alternative polarizing mechanisms such as anisotropic
pumping can enhance the polarization of masers to arbitrar-
ily high degrees. The presence of anisotropic pumping could
be determined by analyzing the weaker masers (Tb∆Ω �

(Tb∆Ω)mag. sat.) for their polarization. The linear polarization
degree of these masers should be proportional to their lumi-
nosity. When the anisotropically pumped maser approaches the
luminosity (Tb∆Ω)mag. sat., linear polarization drops as the stan-
dard polarizing mechanisms take over. Richter et al. (2016) find
in their VLBA observations of VY CMa the strongest polar-
ization for the weakest masers, and observe a drop in polariza-
tion after a certain maser luminosity threshold. Turning to polar-
ized seed radiation, in the regime (Tb∆Ω � (Tb∆Ω)mag. sat.),
the polarization is simply that of the seed radiation, and has
no dependence on the maser luminosity. Circular polarization
is only slightly enhanced for alternatively polarized masers.

Finally, it should be noted that the polarization properties are
a function of the maser luminosity Tb∆Ω(∝ R), which cannot be
measured directly. To estimate the maser luminosity from obser-
vations requires knowledge of the maser beaming solid angle
∆Ω. Direct observations of ∆Ω have proven difficult to date, but
have been performed with VLBA measurements to SiO around
AGB stars (Assaf et al. 2013). In these observations, Assaf et al.
(2013) measure, with a sizable error margin due to relatively low
resolution, ∆Ω ∼ 5 × 10−2 sr. This maser beaming solid angle is
independent of its brightness when the amplification is matter-
bounded (most easily approximated by the cylindrical maser)
(Elitzur et al. 1992). When the maser is amplification-bounded
(most easily approximated by the spherical maser) the beaming
solid angle drops with increasing maser brightness. To the best
of our knowledge, no investigations have been done on the geo-
metrical nature of the maser amplification of SiO masers.

5.1.2. SiO maser polarization observations

Many SiO maser polarization observations have been performed.
Very-long-baseline interferometry (VLBI) observations have
shown that SiO masers orient themselves in a ring-like struc-
ture around the central stellar object. The polarization of these
SiO masers, irrespective of their angular momentum transition,
show well-ordered polarization vectors with respect to this struc-
ture (Kemball & Diamond 1997; Cotton et al. 2004; Plambeck
et al. 2003; Vlemmings et al. 2011b, 2017). This is taken to
be an indicator of an ordered magnetic field. The linear polar-
ization fraction of individual masers can be arbitrarily high,
but median values are much lower. The J = 1−0-transition
has median linear polarization fractions of ∼25% (Kemball
& Diamond 1997). Analyzing the angular momentum depen-
dence of the linear polarization fraction, we note the general
trend of lower degrees of polarization for the higher angular
momentum transitions. This is not to say that high fractions
(>50%) of linear polarization do not occur for high-J SiO maser
transitions. It is almost certain that the most strongly polarized
masers are the product of anisotropically pumped maser action
as incident polarized radiation at these fractions is unlikely and
should lead to the same effect for the high-J masers. The hypoth-
esis of anisotropic pumping could be further supported by corre-
lating maser brightness for the weaker masers (R < gΩ) to linear
polarization.

The relationship between maser brightness and polariza-
tion fraction is unfortunately not well-documented. However,
Barvainis et al. (1987) meticulously tabulated their observations,
from which we could construct a scatter plot that indicated the
lowest fractions of polarization for the strongest masers. This is
in line with the simulations we delineate above, where we see
that above R ∼ gΩ, polarization fractions start to drop.

Herpin et al. (2006) were able to derive an interesting rela-
tion between the circular polarization and linear polarization
of SiO J = 2−1 masers. In a large survey of a number of
evolved stars, they analyzed, among other things, the correla-
tion between linear and circular polarization fractions of the
SiO masers. Even though the correlation was highly scattered,
a clear linear relation was observed between linear and circu-
lar polarization (Fig. 4, Herpin et al. (2006)). Also invariably,
high circular polarization was associated with high linear polar-
ization. To simulate their observations, we used CHAMP to
compute the linear and circular polarization fractions of 200
isotropically pumped SiO masers at randomly selected luminosi-
ties between Tb∆Ω = 106−1011 Ksr and randomly selected prop-
agation angles θ. We plot the results for SiO J = 2−1 masers
pumped at T = 1000 K, and magnetic field of B = 1 G in Fig. 14.
Herpin et al. (2006) found a rough linear relation between the
linear and circular polarization, pV = 0.25pL + 0.015, which we
plot in the figure.

Only for lower degrees of linear polarization do we find a
reasonable agreement between our simulations and the observa-
tions of Herpin et al. (2006). Our simulations seem to underes-
timate the circular polarization with respect to the observations
of Herpin et al. (2006). This is especially true for the strongly
linearly polarized masers. One factor that could play a role
here is the enhancement of circular polarization by the presence
of a velocity gradient along the propagation path of the SiO-
maser. N&W94 have shown that this can enhance the circular
polarization. Another explanation of the high circular polariza-
tion might be the anisotropic resonant scattering of maser radi-
ation by a foreground cloud of non-masing SiO (Houde et al.
2013; Houde 2014). Via anisotropic resonant scattering, lin-
early polarized radiation can be converted to circularly polarized
radiation. Anisotropic resonant scattering does not necessarily
produce the anti-symmetric S-shaped Stokes V spectrum profile
characteristic of circular polarization generated by the Zeeman
effect, but it can arise from scattering of a cloud outside the
velocity range of the maser. Non-anti-symmetric Stokes V spec-
tra were observed by Herpin et al. (2006), but they can also be
explained by a velocity gradient along the propagation path of
the maser, or the lack of spatial resolution from the single-dish
observations.

5.2. H2O masers

5.2.1. Simulations

The relevant characteristic maser luminosities are given in
Table 4. We list the relevant luminosities for individual hyperfine
transitions as well as the blended line. Compared to the SiO
maser, radiative interactions remain relatively weak with respect
to magnetic interactions up to high maser luminosities. This
is due to the much smaller line strength of this maser transi-
tion, which means that the Zeeman effect will be the dominating
polarizing mechanism up to high maser luminosities, and will
thus follow Eq. (38) up to high maser brightness. Linear polar-
ization will also remain rather low because the isotropic decay
will be a dominant de-polarizing entity up to (Tb∆Ω)sat (Ksr) at
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(a)

(b)

Fig. 14. Scatter plot for the linear-to-circular polarization fraction rela-
tion pL−pV. In red, the observations of (a) Herpin et al. (2006) and
(b) Surcis et al. (2011) are reported. In panel (a) the blue points come
from our simulations of the J = 2−1 transition at B = 1 G, with the
kinetic temperature of the maser T = 1000 K. In (panel b) the blue
points come from our simulations of the isotropically pumped water
maser at vth = 1.0 km s−1 and B = 200 mG. To generate these scatters,
we computed the polarization fractions from (a) 200 (b: 30) isotropi-
cally pumped masers with a randomly selected a luminosity between
(a) Tb∆Ω = 106−1011 (b: Tb∆Ω = 108.5−1011) and a randomly selected
propagation angle θ. In the scatter plot, we do not include masers that
show polarization <0.5% (b: <0.1%). In (panel a), we also report the
linear regression analysis result from Herpin et al. (2006).

about ∼1010 Ksr. Strong linear polarization is thus only seen for
the strongest masers.

For the regime Tb∆Ω � (Tb∆Ω)mag. sat, the maser circular
polarization can be described by Eq. (38). A LTE analysis of
the constant AFF′ , gives for the individual hyperfine transitions,
A76 = 13.3, A65 = 8.3, and A54 = 1.0. A LTE analysis of a com-
pletely blended water maser line gives Ablend = 8.2. Figure 15
shows the results of our full radiative transfer analysis of the cir-
cular polarization constants. Apart from the standard maser line
profile, water masers are further broadened by their hyperfine
structure. This leads to an overestimation of ∆vL. The dominant
Zeeman effect though, comes from a single hyperfine transition.
This produces higher Zeeman AFF′ coefficients with respect to
a LTE analysis. We observe that this effect is most pronounced
for masers pumped at vth = 0.6 km s−1, where the hyperfine tran-

Table 4. Characteristic maser luminosities for the 22 GHz water maser.

Transition (Tb∆Ω)sat (Ksr) (Tb∆Ω)mag. sat./B (Ksr mG−1)

F = 7 − 6 7.2 × 109 3.1 × 1010

F = 6 − 5 7.4 × 109 2.0 × 1010

F = 5 − 4 7.5 × 109 2.3 × 109

blend 7.4 × 109 6.0 × 109

sitions are minimally mixed. At vth = 2.0 km s−1, the hyperfine
broadening is negligible and the LTE value for the AFF′ coef-
ficient of the F = 7−6 hyperfine transition is returned for the
weakest masers.

Paradoxically, the preferred pumping of the hyperfine com-
ponent with the strongest Zeeman effect has a consequence that
the linear polarization deteriorates in the relevant intensity win-
dow for water masers (up to T∆Ω = 1013). This is due to the fact
that the magnetic field precession rate effectively increases, and
the (Tb∆Ω)mag. sat. is out of reach. Thus, the change in molecu-
lar symmetry-axis that is associated with the production of lin-
ear polarization occurs only for the strongest masers. Therefore,
transitions with weaker Zeeman interactions are associated with
higher degrees of linear polarization in the relevant brightness
regime for the water maser. We should note that this effect is
not as pronounced for the high-temperature masers, where the
broadening of the lines causes the other transitions to blend
in more. The maser circular polarization is proportional to the
strength of the Zeeman effect, as expected from Eq. (38).

5.2.2. Water maser polarization observations

Richards et al. (2011) performed water maser observations
around AGB stars with e-MERLIN. For the brightest masers,
a beaming solid angle on the order of ∆Ω ∼ 1.5 × 10−3 sr
was found. For some AGB stars, the geometrical masing
mechanism seemed to be amplification-bounded, but hints of
matter-bounded amplification were also found for some sources.
Line profile analysis by Vlemmings & van Langevelde (2005)
revealed a ∆Ω ∼ 10−2−10−3 sr for water masers around AGB
stars. A line profile analysis of the extremely strong water masers
around Orion-KL, yielded beaming solid angles as low as ∆Ω ∼
10−5 sr (Nedoluha & Watson 1991).

Water masers have been observed for their polarization on
many occasions around evolved stars (Vlemmings et al. 2006a)
and around star-forming regions (Garay et al. 1989). The most
striking observations were the early observations of the flaring,
very strong “super” water maser (Garay et al. 1989; Fiebig &
Güsten 1989). Garay et al. (1989) report the seven-year mon-
itoring of the polarization characteristics of the most powerful
water maser feature of Orion-KL. Brightness temperatures over
Tb = 1015 K were observed with associated maser fluxes of
Tb∆Ω ≤ 1010 (Nedoluha & Watson 1991). High degrees of linear
polarization up to 75% were observed. Analysis of the relation
between the polarization fraction and the maser brightness for
the highly polarized strongest feature shows a decline in polar-
ization with the maser intensity. This is in line with an anisotrop-
ically pumped maser at high brightness beyond (Tb∆Ω)mag. sat.

Circular polarization up to ∼2% for these strong maser flares
was also detected (Fiebig & Güsten 1989). Fiebig & Güsten
(1989) also included the masers of a number of other star-
forming regions in their sample. Stokes V spectra show the
characteristic S-shaped spectra, which is an anomaly for water
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Fig. 15. The AFF′ coefficients of an isotropically pumped water maser at
B = 20 G as a function of the magnetic field-propagation direction angle
cos θ. The panels show different thermal widths vth = (a) 0.6 km s−1, (b)
1.0 km s−1, and (c) 2.0 km s−1. Plots are given for different log(R/gΩ).
The LTE solutions (constant over cos θ) of the different hyperfine sub-
transitions are indicated by a dotted line.

masers that we found to occur only for preferably pumped water
masers where one hyperfine transition dominates the others.
The spread in circular polarization fractions can be explained
by the variable projection of the magnetic field (10−100 mG)
onto the propagation axis, and variable magnetic fields in the

sources. Vlemmings et al. (2001, 2002) investigated the circular
polarization of masers occurring in the circumstellar envelopes
of late-type stars. Magnetic fields around these masers are
expected to be strong (∼G), and circular polarization should
thus be detectable in the stronger maser features. Circular polar-
ization up to 13% is found, but this concerns a single out-
lier. The weaker masers show circular polarization up to 6%,
which can be generated by a magnetic field of ∼400 mG. Gen-
erally, circular polarization seems to decline with increasing
maser brightness, but this might be an effect of the detection
limit.

A large sample of polarization observations of water masers
comes from VLBI measurements around the high-mass star-
forming region W75N (Surcis et al. 2011). Here, for 17 maser
features, significant linear and circular polarization is found.
Linear polarization tends to be low <10%, but relatively high
circular polarization (<3%) is found. In part, the large fraction
of highly circularly polarized masers is due to observational bias
against weakly polarized masers. A similar scatter analysis to
that performed for the SiO maser sample of Herpin et al. (2006),
assuming that the water maser is pumped isotropically with no
hyperfine-preference, at a thermal width of ∆vth = 1 km s−1, and
the magnetic field is randomly oriented per maser, shows that a
magnetic field of ∼200 mG best reproduces the obtained linear-
to-circular polarization distribution (see Fig. 14).

6. Conclusions

In this paper, we present CHAMP, a program that performs one-
dimensional numerical maser polarization simulations of non-
paramagnetic molecules. Simulations are possible for masers
with arbitrary high angular momentum transitions. Also, mul-
tiple close-lying hyperfine transitions that contribute to the same
maser can be included in our model. Simulation of the polar-
ization of complex and highly excited masers will become more
relevant in the era of ALMA and its full polarization capabilities.

Illustrative calculations of the SiO and water masers reveal the
following general observations about the polarization of masers:

– Linear polarization is mostly absent when the rate of stim-
ulated emission is lower than the isotropic decay (Tb∆Ω <
(Tb∆Ω)sat). If polarization occurs for such weak masers,
alternative polarizing mechanisms are in play. Circular polar-
ization, however, is present for such weak masers and comes
from the Zeeman effect. A LTE analysis of the Zeeman effect
will give a reasonable estimate of the polarizing effects, but
this approximation worsens with the maser brightness.

– The 90◦ polarization angle flip at the magic angle θm, pre-
dicted by GKK73, is sharp only in the limit, gΩ � R, when
the magnetic precession rate is far greater than the rate of
stimulated emission. However, for gΩ/R < 100, the 90◦ flip
is gradual and significant polarization is also found at prop-
agation at the magic angle θm.

– Anisotropic pumping of a maser can lead to arbitrarily high
linear polarization fractions, but will only be weakly asso-
ciated with circular polarization. One characteristic of an
anisotropically pumped weak maser is a linear growth in lin-
ear polarization fraction as a function of the maser bright-
ness.

– Incident polarized seed radiation maintains its polarization
degree until the rate of stimulated emission becomes compa-
rable to the magnetic precession rate. From here, it slowly
converges to the standard isotropic polarization solution.

– Circular polarization fractions are highest in the region
where the rate of stimulated emission is on the same order
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as the magnetic precession rate. Circular polarization in this
regime is associated with high linear polarization. Weak
masers are weakly polarized, with a polarizing effect simi-
lar to thermal polarization.

– Overall polarization will drop strongly between the J = 1−0
and J = 2−1 transitions. The polarization of transitions with
increasing angular momentum will gradually deteriorate.

A cursory overview of existing maser polarization observations
leads to a reinforcement of the idea that highly polarized SiO
masers are the product of anisotropic pumping. A similar mech-
anism probably underlies the highly polarized water super maser
at Orion, which also showed a drop in polarization with maser
brightness, as predicted by our theories. We show that comparing
theoretical pL−pV scatter plots to the observationally obtained
pL−pV scatter, can be a promising method to ascertain the over-
all magnetic field strength of a region with a large number of
masers. Finally, we find that the variation in the polarization
angle across a maser spectrum can be used as a proxy for the rate
of stimulated emission. This would be an important additional
measure to determine the maser saturation level and beaming
angle, which are difficult to observe directly.
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Appendix A: Additional figures

(a) (b)

(c) (d)

(e) (f)

Fig. A.1. Simulations of an isotropically pumped SiO maser. Linear polarization fraction (a,d) and angle (b,e), and circular polarization fraction
(c,f). Magnetic field strength and transition angular momentum are indicated.
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Fig. A.2. Simulations of an isotropically pumped SiO maser. Linear polarization fraction (a,d,g) and angle (b,e,h), and circular polarization fraction
(c,f,i). Magnetic field strength and transition angular momentum are indicated.
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Fig. A.3. Simulations of an isotropically pumped SiO maser. Linear polarization fraction (a,d,g) and angle (b,e,h), and circular polarization fraction
(c,f,i). Magnetic field strength and transition angular momentum are indicated.
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Fig. A.4. Simulations of a SiO maser with 10% polarized seed radiation. Linear polarization fraction (a,d) and angle (b,e), and circular polarization
fraction (c,f). Magnetic field strength and transition angular momentum are indicated.
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Fig. A.5. Simulations of a SiO maser with 10% polarized seed radiation. Linear polarization fraction (a,d,g) and angle (b,e,h), and circular
polarization fraction (c,f,i). Magnetic field strength and transition angular momentum are indicated.
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Fig. A.6. Simulations of a SiO maser with 10% polarized seed radiation. Linear polarization fraction (a,d,g) and angle (b,e,h), and circular
polarization fraction (c,f,i). Magnetic field strength and transition angular momentum are indicated.
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Fig. A.7. Simulations of a SiO maser with 50% polarized seed radiation. Linear polarization fraction (a,d) and angle (b,e), and circular polarization
fraction (c,f). Magnetic field strength and transition angular momentum are indicated.
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Fig. A.8. Simulations of a SiO maser with 50% polarized seed radiation. Linear polarization fraction (a,d,g) and angle (b,e,h), and circular
polarization fraction (c,f,i). Magnetic field strength and transition angular momentum are indicated.
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Fig. A.9. Simulations of a SiO maser with 50% polarized seed radiation. Linear polarization fraction (a,d,g) and angle (b,e,h), and circular
polarization fraction (c,f,i). Magnetic field strength and transition angular momentum are indicated.
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Fig. A.10. Simulations of J = 1−0 SiO masers with anisotropic pumping direction parallel to the magnetic field. Linear polarization fraction (a,d)
and angle (b,e), and circular polarization fraction (c,f). Magnetic field strengths are B = 100 mG for (a,b,c) and B = 10 G for (d,e,f).
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Fig. A.11. Simulations of J = 2−1 SiO masers with anisotropic pumping direction parallel to the magnetic field. Linear polarization fraction (a,d,f)
and angle (b,e,h), and circular polarization fraction (c,f,g). Magnetic field strengths are B = 100 mG for (a,b,c), B = 1 G for (d,e,f), and B = 10 G
for (g,h,i).
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Fig. A.12. Simulations of J = 3−2 SiO masers with anisotropic pumping direction parallel to the magnetic field. Linear polarization fraction (a,d)
and angle (b,e), and circular polarization fraction (c,f). Magnetic field strengths are B = 100 mG for (a,b,c) and B = 1 G for (d,e,f).
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(a) (b)

(c) (d)

(e) (f)

Fig. A.13. Simulations of J = 1−0 SiO masers with anisotropic pumping direction perpendicular to the magnetic field and propagation direction.
Linear polarization fraction (a,d) and angle (b,e), and circular polarization fraction (c,f). Magnetic field strengths are B = 100 mG for (a,b,c) and
B = 10 G for (d,e,f).
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Fig. A.14. Simulations of J = 2−1 SiO masers with anisotropic pumping direction perpendicular to the magnetic field and propagation direction.
Linear polarization fraction (a,d) and angle (b,e), and circular polarization fraction (c,f). Magnetic field strengths are B = 100 mG for (a,b,c) and
B = 1 G for (d,e,f).
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Fig. A.15. Simulations of J = 3−2 SiO masers with anisotropic pumping direction perpendicular to the magnetic field and propagation direction.
Linear polarization fraction (a,d) and angle (b,e), and circular polarization fraction (c,f). Magnetic field strengths are B = 100 mG for (a,b,c) and
B = 1 G for (d,e,f).
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Fig. A.16. Simulations of J = 1−0 SiO masers with anisotropic pumping direction at 45◦ from the magnetic field in the plane perpendicular to
the propagation direction. Linear polarization fraction (a,d) and angle (b,e), and circular polarization fraction (c,f). Magnetic field strengths are
B = 100 mG for (a,b,c) and B = 1 G for (d,e,f).
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Fig. A.17. Simulations of J = 2−1 SiO masers with anisotropic pumping direction at 45◦ from the magnetic field in the plane perpendicular to
the propagation direction. Linear polarization fraction (a,d) and angle (b,e), and circular polarization fraction (c,f). Magnetic field strengths are
B = 100 mG for (a,b,c) and B = 1 G for (d,e,f).
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Fig. A.18. Simulations of J = 3−2 SiO masers with anisotropic pumping direction at 45◦ from the magnetic field in the plane perpendicular to
the propagation direction. Linear polarization fraction (a,d) and angle (b,e), and circular polarization fraction (c,f). Magnetic field strengths are
B = 100 mG for (a,b,c) and B = 1 G for (d,e,f).
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Fig. A.19. Polarization of a water maser isotropically pumped at B = 20 mG. Linear polarization fraction (a,d,g) and angle (b,e,h), and circular
polarization fraction (c,f,i). Thermal width used is vth = 0.6 km s−1 (a,b,c), 1 km s−1 (d,e,f), and 2 km s−1 (g,h,i).
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Fig. A.20. Polarization of a water maser isotropically pumped at B = 100 mG. Linear polarization fraction (a,d,g) and angle (b,e,h), and circular
polarization fraction (c,f,i). Thermal width used is vth = 0.6 km s−1 (a,b,c), 1 km s−1 (d,e,f), and 2 km s−1 (g,h,i).
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Fig. A.21. Polarization of a water maser with 10% polarized seed radiation at B = 20 mG. Linear polarization fraction (a,d,g) and angle (b,e,h),
and circular polarization fraction (c,f,i). Thermal width used is vth = 0.6 km s−1 (a,b,c), 1 km s−1 (d,e,f), and 2 km s−1 (g,h,i).
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Fig. A.22. Polarization of a water maser with 50% polarized seed radiation at B = 20 mG. Linear polarization fraction (a,d,g) and angle (b,e,h),
and circular polarization fraction (c,f,i). Thermal width used is vth = 0.6 km s−1 (a,b,c), 1 km s−1 (d,e,f), and 2 km s−1 (g,h,i).
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